Skip to main content

Part of the book series: Springer Handbooks ((SHB))

  • 14k Accesses

Abstract

The history of gallium arsenide is complicated because the technology required to produce GaAs devices has been fraught with problems associated with the material itself and with difficulties in its fabrication. Thus, for many years, GaAs was labelled as “the semiconductor of the future, and it will always be that way.” Recently, however, advances in compact-disc (CD) technology, fibre-optic communications and mobile telephony have boosted investment in GaAs research and development. Consequently, there have been advances in materials and fabrication technology and, as a result, GaAs devices now enjoy stable niche markets.

The specialised uses for GaAs in high-frequency and optoelectronic applications result from the physical processes of electron motion that allow high-speed and efficient light emission to take place. In this review, these advanced devices are shown to result from the physical properties of GaAs as a semiconducting material, the controlled growth of GaAs and its alloys and the subsequent fabrication into devices.

Extensive use is made of chapters from “Properties of Gallium Arsenide, 3rd edition” which I edited with the help of Prof. G. E. Stillman [23.1]. This book was written to reflect virtually all aspects of GaAs and its devices within a readable text. I believe that we succeeded in that aim and I make no apologies in referring to it. Readers who need specialised data, but not necessarily within an explanatory text, should refer to the Landolt-Börnstein, group III (condensed matter) data collection [23.2,3]. The sub-volumes A1α (lattice properties) and A2α (impurities and defects) within volume 41 are rich sources of data for all III–V compounds. Although there are no better sources than the original research papers, I have referred to textbooks where possible. This is because the presentation and discussion of scientific data is often clearer than in the original text, and these books are more accessible to students.

Gallium arsenide (GaAs) is one of the most useful of the III–V semiconductors. In this chapter, the properties of GaAs are described and the ways in which these are exploited in devices are explained. The limitations of this material are presented in terms of both its physical and its electronic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BEP:

beam effective pressure

CL:

cathodoluminescence

CV:

chemical vapor

DH:

double heterostructure

DLTS:

deep level transient spectroscopy

DVD:

digital versatile disk

DXD:

double-crystal X-ray diffraction

EPD:

etch pit density

EPR:

electron paramagnetic resonance

FET:

field effect transistor

FTIR:

Fourier transform infrared

GDMS:

glow discharge mass spectrometry

GF:

gradient freeze

GRIN:

graded refractive index

GSMBE:

gas-source molecular beam epitaxy

HB:

horizontal Bridgman

HBT:

hetero-junction bipolar transistor

HEMT:

high electron mobility transistor

IC:

integrated circuit

IR:

infrared

JFET:

junction field-effect transistors

LEC:

liquid-encapsulated Czochralski

LED:

light-emitting diodes

LPE:

liquid phase epitaxy

LVM:

localized vibrational mode

MBE:

molecular beam epitaxy

MESFET:

metal-semiconductor field-effect transistor

MOCVD:

metal-organic chemical vapor deposition

MODFET:

modulation-doped field effect transistor

MOMBE:

metalorganic molecular beam epitaxy

MOVPE:

metalorganic vapor phase epitaxy

MQW:

multiple quantum well

NDR:

negative differential resistance

PL:

photoluminescence

PTIS:

photothermal ionisation spectroscopy

QW:

quantum well

RCLED:

resonant-cavity light-emitting diode

RF:

radio frequency

RG:

recombination–generation

RHEED:

reflection high-energy electron diffraction

RTA:

rapid thermal annealing

SCH:

separate confinement heterojunction

SEM:

scanning electron microscope

SIMS:

secondary ion mass spectrometry

TDCM:

time-domain charge measurement

TEM:

transmission electron microscope

TMA:

trimethyl-aluminum

TMG:

trimethyl-gallium

TMI:

trimethyl-indium

TSC:

thermally stimulated current

VCSEL:

vertical-cavity surface-emitting laser

VGF:

vertical gradient freeze

VPE:

vapor phase epitaxy

pBN:

pyrolytic boron nitride

pHEMT:

pseudomorphic HEMT

ppm:

parts per million

References

  1. M. R. Brozel, G. E. Stillman: Properties of Gallium Arsenide, 3rd edn. (INSPEC, London 1996)

    Google Scholar 

  2. W.  Martienssen: Landolt-Börnstein, New Series Group III/ 41A1α , 41Aα (Springer, Berlin Heidelberg New York 2001, 2002)

    Google Scholar 

  3. W. Martienssen, H. Warlimont: Springer Handbook of Condensed Matter and Materials Data (Springer, Berlin Heidelberg New York 2005) Chap. 4.1, p. 621

    Google Scholar 

  4. S. M. Sze: Semiconductor Devices, Physics and Technology (Wiley, Chichester 1985)

    Google Scholar 

  5. W. Koster, B. Thoma: Z. Met. Kd. 46, 291 (1995)

    Google Scholar 

  6. D. T. J. Hurle: A comprehensive thermodynamic analysis of native point defect and dopant solubilities in gallium arsenide, J. Appl. Phys. 85(10), 6957–7022 (1999)

    CAS  Google Scholar 

  7. K. R. Elliott: Appl. Phys. Lett. 42(3), 274–276 (1983)

    CAS  Google Scholar 

  8. K. Kurusu, Y. Suzuki, H. Takami: J. Electrochem. Soc. 136, 1450–1452 (1989)

    CAS  Google Scholar 

  9. K. Terashima et al.: Jpn. J. Appl. Phys. 79, 463–468 (1984)

    Google Scholar 

  10. L. R. Weisberg, F. D. Rosi, P. G. Herkart: Properties of Elemental and Compound Semiconductors, Vol. 5, ed. by H. C. Gatos (Interscience, New York 1960) pp. 25–67

    Google Scholar 

  11. J. M. Woodall: Electrochem. Technol. 2, 167–169 (1964)

    CAS  Google Scholar 

  12. G. R. Cronin, R. W. Haisty: J. Electrochem. Soc. 111, 874–877 (1964)

    CAS  Google Scholar 

  13. G. Martinez, A. M. Hennel, W. Szuszkiewicz, M. Balkanski, B. Clerjaud: Phys. Rev. B 23, 3920 (1981)

    CAS  Google Scholar 

  14. T. P. Chen, T. S. Huang, L. J. Chen, Y. D. Gou: J. Cryst. Growth 106, 367 (1990)

    CAS  Google Scholar 

  15. F. Moravec, B. Stepanek, P. Doubrava: Cryst. Res. Technol. 26, 579–585 (1991)

    CAS  Google Scholar 

  16. E. P. A. Metz, R. C. Miller, R. Mazelsky: J. Appl. Phys. 33, 2016 (1962)

    CAS  Google Scholar 

  17. J. B. Mullin, R. J. Heritage, C. H. Holliday, B. W.Straughan: J. Cryst. Growth 3-4, 281–285 (1968)

    CAS  Google Scholar 

  18. J. R. Oliver, R. D. Fairman, R. T. Chen: Electron. Lett. 17, 839–841 (1981)

    CAS  Google Scholar 

  19. H. M. Hobgood, L. B. Ta, A. Rohatgi, G. W. Eldridge, R. N. Thomas: Residual impurities and defect levels in semi-insulating GaAs grown by liquid encapsulated Czochalski, Proc. Conf. Semi-insulating III–V Materials, Evian, France 1982, ed. by S. Makram-Ebeid, B. Tuck (Shiva, Nantwich 1982) 30

    Google Scholar 

  20. D. E. Holmes, R. T. Chen, K. R. Elliott, C. G. Kirkpatrick: IEEE Trans. Electron. Dev. 29, 1045 (1982)

    Google Scholar 

  21. D. E. Holmes, R. T. Chen, K. R. Elliott, C. G. Kirkpatrick: Appl. Phys. Lett 40, 46–48 (1982)

    CAS  Google Scholar 

  22. K. Laithwaite, R. C. Newman, J. F. Angress, G. A. Gledhill: Inst. Phys. Conf. Ser. 33, 133 (1977)

    Google Scholar 

  23. A. S. Jordan, R. Caruso, A. R. von Neida: Bell Syst. Tech. J. 59, 593 (1980)

    CAS  Google Scholar 

  24. M. R. Brozel, J. B. Clegg, R. C. Newman: J. Phys. D 11, 1331 (1978)

    CAS  Google Scholar 

  25. P. J. Doering, B. Friedenreich, R. J. Tobin, P. J. Pearah, J. P. Tower, R. M. Ware: Proc. 6th Conf. Semi-Insulating III–V Materials, Toronto, Canada 1990, ed. by A. G.  Milnes, C. I.  Miner (IOP, London 1990) 173–181

    Google Scholar 

  26. U. Lambert, G. Nagel, H. Rufer, E. Tomzig: Proc. 6th Conf. Semi-Insulating III–V Materials, Toronto, Canada 1990, ed. by A. G. Milnes, C. I. Miner (IOP, London 1990) 183–188

    Google Scholar 

  27. J. M. Baranowski, P. Trautman: Properties of Gallium Arsenide, 3 edn., ed. by M. R. Brozel, G. E. Stillman (INSPEC, London 1996) pp. 341–357

    Google Scholar 

  28. I. Grant, D. Rumsby, R. M. Ware, M. R. Brozel, B. Tuck: Proc. Conf. on Semi-Insulating III–V Materials, Evian, France 1982, ed. by S. Makram-Ebeid, B. Tuck (Shiva, Nantwich 1982) 98–106

    Google Scholar 

  29. M. S. Skolnick, M. R. Brozel, L. J. Reed, I. Grant, D. J. Stirland, R. M. Ware: J. Electron. Mater. 13, 107–125 (1984)

    CAS  Google Scholar 

  30. A. G. Cullis, P. G. Augustus, D. J. Stirland: J. Appl. Phys. 51, 2256 (1980)

    Google Scholar 

  31. D. Rumsby, I. Grant, M. R. Brozel, E. J. Foulkes, R. M. Ware: Electrical behaviour of annealed LEC GaAs, Proc. Conf. on Semi-Insulating III–V Materials, Kah-Nee-Ta, ed. by D. C. Look, J. S. Blakemore (Shiva, Nantwich 1984) 165–170

    Google Scholar 

  32. O. Oda: Properties of Gallium Arsenide, 3rd edn., ed. by M. R. Brozel, G. E. Stillman (INSPEC, London 1996) pp. 591–595

    Google Scholar 

  33. E. M. Monberg, H. Brown, C. E. Bormer: J Cryst. Growth 94, 643–650 (1989)

    Google Scholar 

  34. E. D. Bourret, E. C. Merk: J. Cryst. Growth 110, 395–404 (1991)

    CAS  Google Scholar 

  35. M. R. Brozel, I. R. Grant: Growth of gallium arsenide. In: Bulk Crystal Growth, ed. by P. Capper (Wiley, Chichester 2005) pp. 43–71

    Google Scholar 

  36. M. S. Tyagi: Introduction to Semiconductor Materials and Devices (Wiley, New York 1991)

    Google Scholar 

  37. M. G. Astles: Liquid Phase Epitaxial growth of III–V Semiconductor Materials and their Device Applications (IOP, Bristol 1990)

    Google Scholar 

  38. K. Somogyi: Properties of Gallium Arsenide, 3rd edn., ed. by M. R. Brozel, G. E. Stillman (INSPEC, London 1996) pp. 625–638

    Google Scholar 

  39. M. Razeghi: The MOCVD Challenge (Hilger, Bristol 1989)

    Google Scholar 

  40. G. B. Stringfellow: Organometallic Vapor Phase Epitaxy: Theory and Practice (Academic, Boston 1989)

    Google Scholar 

  41. K. F. Jensen: Handbook of Crystal Growth, Vol. 3b, ed. by D. T. J. Hurle (Elsevier Science, Amsterdam 1994) p. 3541

    Google Scholar 

  42. D. W. Kisker: Handbook of Crystal Growth, Vol. 3b, ed. by D. T. J.  Hurle (Elsevier Science, Amsterdam 1994) p. 393

    Google Scholar 

  43. G. B. Stringfellow: Handbook of Crystal Growth, Vol. 3b, ed. by D. T. J. Hurle (Elsevier Science, Amsterdam 1994) p. 349

    Google Scholar 

  44. L. Samuelson, W. Seifert: Handbook of Crystal Growth, Vol. 3b, ed. by D. T. J. Hurle (Elsevier Science, Amsterdam 1994) p. 745

    Google Scholar 

  45. M. A. Herman, H. Sitter: Molecular Beam Epitaxy: Fundamentals and Current Status (Springer, Berlin Heidelberg New York 1989)

    Google Scholar 

  46. K. R. Evans: Properties of Gallium Arsenide, 3rd edn., ed. by M. R. Brozel, G. E. Stillman (INSPEC, London 1996) pp. 655–662

    Google Scholar 

  47. F. W. Smith, A. R. Calawa, C. L. Chen, M. J. Manfra, L. J. Mahoney: IEEE Electron. Dev. Lett. 9, 77 (1988)

    CAS  Google Scholar 

  48. M. Missous: Properties of Gallium Arsenide, 3rd edn., ed. by M. R. Brozel, G. E. Stillman (INSPEC, London 1996) pp. 679–683

    Google Scholar 

  49. J. F. Whitaker: Properties of Gallium Arsenide, 3rd edn., ed. by M. R. Brozel, G. E. Stillman (INSPEC, London 1996) pp. 693–701

    Google Scholar 

  50. N. X. Nguyen, U. K. Mishra: Properties of Gallium Arsenide, 3rd edn., ed. by M. R. Brozel, G. E. Stillman (INSPEC, London 1996) pp. 689–692

    Google Scholar 

  51. C. R. Abernathy: Properties of Gallium Arsenide, 3rd edn., ed. by M. R. Brozel, G. E. Stillman (INSPEC, London 1996) pp. 663–671

    Google Scholar 

  52. J. W. Matthews, A. E. Blakeslee: J. Cryst. Growth 27, 118 (1974)

    CAS  Google Scholar 

  53. B. Tuck: Introduction to Diffusion in Semiconductors (Peregrinus, Stevenage 1974)

    Google Scholar 

  54. B. Tuck: Atomic Diffusion in III–V Semiconductors (A.  Hilger, Bristol 1988)

    Google Scholar 

  55. K. A. Khadim, B. Tuck: J. Mater. Sci. 7, 68–74 (1972)

    Google Scholar 

  56. J. Crank: The Mathematics of Diffusion (Clarendon, Oxford 1975)

    Google Scholar 

  57. K. P. Roenker: Microelectron. Reliab. 35, 713 (1995)

    Google Scholar 

  58. S. A. Stockman: Properties of Gallium Arsenide, 3rd edn., ed. by M. R. Brozel, G. E. Stillman (INSPEC, London 1996) pp. 101–116

    Google Scholar 

  59. T. Ahlgren, J. Likonen, J. Slotte, J. Raisanen, M. Rajatora: Phys. Rev. B 56, 4597–4603 (1997)

    CAS  Google Scholar 

  60. M. R. Brozel, E. J. Foulkes, B. Tuck, N. K. Goswami, J. E. Whitehouse: J. Phys. D 16, 1085–1092 (1983)

    CAS  Google Scholar 

  61. B. J. Sealy: Properties of Gallium Arsenide, 3rd edn., ed. by M. R. Brozel, G. E. Stillman (INSPEC, London 1996) pp. 765–782

    Google Scholar 

  62. M. S. Abrahams, C. J. Buiocchi: J. Appl. Phys. 36, 2855 (1965)

    CAS  Google Scholar 

  63. R. T. Blunt, S. Clarke, D. J. Stirland: IEEE Trans. Electron. Dev. 29, 1039 (1982)

    Google Scholar 

  64. A. R. Lang: Recent Applications of X-Ray Topography. In: Modern Diffraction and Imaging Technique in Materials Science, ed. by S. Amelinckx, G. Gevers, J. Van Landuyt (North Holland, Amsterdam 1978) pp. 407–479

    Google Scholar 

  65. G. T. Brown, C. A. Warwick: J. Electrochem. Soc. 133, 2576 (1986)

    CAS  Google Scholar 

  66. P. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, M. J. Whelan: Electron Microscopy of Thin Crystals (Krieger, Malabar 1977)

    Google Scholar 

  67. M. R. Brozel: Properties of Gallium Arsenide, 3rd edn., ed. by M. R. Brozel, G. E. Stillman (INSPEC, London 1996) p. 377

    Google Scholar 

  68. L. Breivik, M. R. Brozel, D. J. Stirland, S. Tuzemen: Semicond. Sci. Technol. 7, A269–A274 (1992)

    CAS  Google Scholar 

  69. G. Jacob: Proc. Conf. on Semi-Insulating III–V Materials, Evian, France 1982, ed. by S. Makram-Ebeid, B. Tuck (Shiva, Nantwich 1982) 2

    Google Scholar 

  70. T. Ogawa, T. Kojima: Mater. Sci. Monogr. 44, 207–214 (1987)

    CAS  Google Scholar 

  71. R. C. Newman: Infra-Red Studies of Crystal Defects (Taylor Francis, London 1973)

    Google Scholar 

  72. R. Murray: Properties of Gallium Arsenide, 3rd edn., ed. by M. R. Brozel, G. E. Stillman (INSPEC, London 1996) pp. 227–234

    Google Scholar 

  73. R. J. Wagner, J. J. Krebs, G. H. Strauss, A. M. White: Soild State Commun. 36, 15 (1980)

    CAS  Google Scholar 

  74. G. M. Martin: Appl. Phys. Lett. 39, 747 (1981)

    CAS  Google Scholar 

  75. M. Skowronski, J. Lagowski, H. C. Gatos: J. Appl. Phys. 59, 2451 (1986)

    CAS  Google Scholar 

  76. J. Dabrowski, M. Scheffler: Phys. Rev. Lett. 60, 2183 (1988)

    CAS  Google Scholar 

  77. T. J. Chadi, K. J. Chang: Phys. Rev. Lett. 60, 2187 (1988)

    CAS  Google Scholar 

  78. M. R. Brozel, I. Grant, R. M. Ware, D. J. Stirland: Appl. Phys. Lett. 42, 610–12 (1983)

    CAS  Google Scholar 

  79. M. S. Skolnick, L. J. Reed, A. D. Pitt: Appl. Phys. Lett. 44, 447–449 (1984)

    CAS  Google Scholar 

  80. M. R. Brozel, M. S. Skolnick: Near band edge “Reverse Contrast” images in GaAs, Proc. Conf. Semi-Insulating III–V Materials, Hakone 1986, ed. by H. Kukimoto, S. Miyazawa (Shiva, Nantwich 1986) 109

    Google Scholar 

  81. C. Le Berre et al.: Appl. Phys. Lett. 66, 2534 (1995)

    Google Scholar 

  82. M. R. Brozel, S. Tuzemen: Mater. Sci. Eng. (B) 28, 130–133 (1994)

    CAS  Google Scholar 

  83. G. M. Martin, A. Mitonneau, A. Mircea: Electron. Lett. 13, 191–193 (1977)

    CAS  Google Scholar 

  84. A. Mitonneau, G. M. Martin, A. Mircea: Electron. Lett. 13, 666–668 (1977)

    CAS  Google Scholar 

  85. A. Mitonneau, A. Mircea, G. M. Martin, D. Pons: Revue de Phys. Appl. 14, 853–861 (1979)

    CAS  Google Scholar 

  86. S. A. Stockman, A. W. Hanson, S. L. Jackson, J. E. Baker, G. E. Stillman: Appl. Phys. Letts. 62, 1248 (1992)

    Google Scholar 

  87. N. Watanabe, T. Nittono, H. Ito: J. Cryst. Growth 145, 929 (1994)

    CAS  Google Scholar 

  88. M. R. Melloch, N. Otsuka, J. M. Woodall, A. C. Warren, J. L. Freeouf: Appl. Phys. Lett. 57, 1631 (1990)

    Google Scholar 

  89. Z. Liliental-Weber, A. Claverie, J. Washburn, F. Smith, A. R. Calawa: Appl. Phys. A 53, 141 (1991)

    Google Scholar 

  90. A. C. Warren, J. M. Woodall, J. L. Freeouf, D. Grischkowsky, D. T. Melloch: Appl. Phys. Lett. 57, 1331–1333 (1990)

    CAS  Google Scholar 

  91. D. E. Bliss, W. Walukiewicz, J. W. AgerIII, E. E. Haller, K. T. Chan, S. J. Tamigawa: Appl. Phys. 71, 1699 (1992)

    CAS  Google Scholar 

  92. D. J. Keeble, M. T. Umlor, P. Asoka-Kumar, K. G. Lynn, P. W. Cooke: Appl. Phys. Lett. 63, 87 (1993)

    CAS  Google Scholar 

  93. D. K. Schroder: Semiconductor Material and Device Characterization, 2nd edn. (Wiley Interscience, New York 1998)

    Google Scholar 

  94. Ch. H. Alt: Appl. Phys. Lett. 54, 1445 (1989)

    CAS  Google Scholar 

  95. D. C. Look: Electrical Characterization of GaAs materials and Devices, Design Meas. Electron. Eng. Ser. 1989 (Wiley, Chichester 1989)

    Google Scholar 

  96. R. Stibal, J. Windscheif, W. Jantz: Semicond. Sci. Technol. 6, 995–1001 (1991)

    CAS  Google Scholar 

  97. M. Wickert, R. Stibal, P. Hiesinger, W. Jantz, J. Wagner: High resolution EL2 and resistivity topography of SI GaAs wafers, Proc. SIMC-X, Berkeley, CA 1998, ed. by Z. Liliental-Weber, C. Miner (IEEE, 1999) 21–24

    Google Scholar 

  98. G. M. Martin, J. P. Farges, G. Jacob, J. P. Hallais, G. Poiblaud: J. Appl. Phys. 51, 2840–2852 (1980)

    CAS  Google Scholar 

  99. G. E. Stillman, C. M. Wolfe, J. O. Dimmock: Semicond. Semimet., Vol. 21 (Academic, New York 1977) p. 169

    Google Scholar 

  100. M. N. Afsar, K. J. Button, G. L. McCoy: Inst. Phys. Conf. Ser. 56, 547–555 (1980)

    CAS  Google Scholar 

  101. P. Blood, J. W. Orton: The Electrical Characterization of Semiconductors: Majority Carriers and Electron States (Academic, London 1992)

    Google Scholar 

  102. D. V. Lang, L. C. Kimmerling: IOP Conf. Ser. 23, 581 (1975)

    CAS  Google Scholar 

  103. D. V. Lang: J. Appl. Phys. 45, 3023 (1974)

    CAS  Google Scholar 

  104. L. Dobaczewski, P. Kaczor, I. D. Hawkins, A. R. Peaker: J. Appl. Phys. 76, 194 (1994)

    CAS  Google Scholar 

  105. H. B. Bebb, E. W. Williams: Photoluminescence I: Theory. In: Semicond. Semimet., Vol. 8, ed. by R. K. Willardson, A. C. Beer (Academic, New York 1972) pp. 181–320

    Google Scholar 

  106. P. J. Dean: Prog. Cryst. Growth Charact. 5, 89–174 (1982)

    CAS  Google Scholar 

  107. M. Tajima, T. Iino: Jpn. J. Appl. Phys. 28, L841–844 (1989)

    CAS  Google Scholar 

  108. C. J. Miner, C. J. L. Moore: Properties of Gallium Arsenide, 3rd edn., ed. by M. R. Brozel, G. E. Stillman (INSPEC, London 1996) pp. 320–332

    Google Scholar 

  109. O. Oda, H. Yamamoto, M. Seiwa, G. Kano, T. Inoue, M. Mori, H. Shimakura, M. Oyake: Semicond. Sci. Technol. 7, A215 (1992)

    CAS  Google Scholar 

  110. B. J. Skromme, C. J. Sandroff, E. Yablonovitch, T. Gmitter: Appl. Phys. Lett. 51, 24 (1987)

    Google Scholar 

  111. C. J. Miner: Semicond. Sci. Technol. 7, A10 (1992)

    CAS  Google Scholar 

  112. A. M. Huber, C. Grattepain: SIMS Analysis of III–V compound microelectronic materials. In: Analysis of Microelectronic Materials and Devices, ed. by M. Grasserbauer, H. W. Werner (Wiley, New York 1991) p. 305

    Google Scholar 

  113. B. K. Tanner, D. K. Bowen: Characterization of Crystal Growth Defects by X-Ray Methods (Plenum, New York 1980)

    Google Scholar 

  114. B. K. Tanner: X-Ray Topography and Precision Diffractometry of Semiconductor Materials, ed. by T. J. Shaffner, D. K. Schroder (Electrochem. Soc., Pennington 1988) pp. 133–149

    Google Scholar 

  115. S. P. Kwok: J. Vac. Sci. Tech. B 4, 6 (1986)

    Google Scholar 

  116. B. K. Ridley, T. B. Watkins: Proc. Phys. Soc. 78, 293 (1961)

    Google Scholar 

  117. C. Hilsum: Proc. IRE 50, 185 (1962)

    Google Scholar 

  118. J. B. Gunn: Solid State Commun. 1, 88 (1963)

    Google Scholar 

  119. M. P. Shaw: The Physics and Instabilities of Solid State Electron Devices (Kluwer Academic/Plenum, Dordrecht 1992) pp. 830–835

    Google Scholar 

  120. C. G. Discus et al.: Properties of Gallium Arsenide, 3rd edn., ed. by M. R. Brozel, G. E. Stillman (INSPEC, London 1996)

    Google Scholar 

  121. J. Singh: Physics of Semiconductors and Their Heterostructures (McGraw–Hill, New York 1994)

    Google Scholar 

  122. Y. Chang, F. Kai: GaAs High-Speed Devices (Wiley, New York 1994)

    Google Scholar 

  123. J. M. Golio: Microwave Metal Semiconductor Field Effect Transistors and High Electron Mobility Transistors (Artech House, London 1991)

    Google Scholar 

  124. W. Liu: Fundamentals of III–V Devices: HBTs, MESFETs and HFETs/HEMTs (Wiley, New York 1999)

    Google Scholar 

  125. R. H. Wallis: Properties of Gallium Arsenide, 3rd edn., ed. by M. R. Brozel, G. E. Stillman (INSPEC, London 1996) pp. 811–819

    Google Scholar 

  126. W. Shockley: US Patent 2569347 (1951)

    Google Scholar 

  127. H. Kroemer: Proc. IRE 45, 1535 (1957)

    Google Scholar 

  128. E. F. Schubert: Light Emitting Diodes (Cambridge Univ. Press, Cambridge 2003)

    Google Scholar 

  129. E. F. Schubert: Properties of Gallium Arsenide, 3rd edn., ed. by M. R. Brozel, G. E. Stillman (INSPEC, London 1996) pp. 874–886

    Google Scholar 

  130. E. Kapon (ed): Semiconductor Lasers I. Fundamentals (Academic, New York 1998)

    Google Scholar 

  131. T. Numai: Fundamentals of Semiconductor Lasers (Springer, Berlin Heidelberg New York 2004)

    Google Scholar 

  132. L. A. Coldren, S. W. Corzine: Diode Lasers and Photonic Integrated Circuits (Wiley Interscience, New York 1995)

    Google Scholar 

  133. R. M. Kolbas: Properties of Gallium Arsenide, 3rd edn., ed. by M. R. Brozel, G. E. Stillman (INSPEC, London 1996) pp. 887–905

    Google Scholar 

  134. G. Morthier, P. Vankwikelberge: Handbook of Distributed Feedback Laser Diodes (Artech House, London 1997)

    Google Scholar 

  135. P. K. Bhattacharya: Properties of Gallium Arsenide, 3rd edn., ed. by M. R. Brozel, G. E. Stillman (INSPEC, London 1996) pp. 861–873

    Google Scholar 

  136. T. E. Sale: Vertical Cavity Surface Emitting Lasers, Electron. El. Res. Stud. Optoelectronics S (Research Studies, 2003)

    Google Scholar 

  137. Y. J. Yang: Appl. Phys. Lett. 62, 600–602 (1993)

    CAS  Google Scholar 

  138. L. A. Coldren, S. W. Corzine: Diode Lasers and Photonic Integrated Circuits (Wiley, New York 1995)

    Google Scholar 

  139. H. Yamamoto, M. Asada, Y. Suematsu: Electron. Lett. 21, 579 (1985)

    CAS  Google Scholar 

  140. J. M. Woodall, H. J. Hovel: Appl. Phys. Lett. 30, 492 (1977)

    CAS  Google Scholar 

  141. L. J. Kozlowski et al.: IEEE Trans. Electron. Dev. 38, 1124 (1991)

    CAS  Google Scholar 

  142. C. M. Buttar: GaAs detectors and related compounds, Nucl. Inst. Phys. Res. A 395, 1–8 (1997)

    CAS  Google Scholar 

  143. L. P. Sadwick, R. J. Hwu: Properties of Gallium Arsenide, 3 edn., ed. by M. R. Brozel, G. E. Stillman (INSPEC, London 1996) pp. 948–962

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Brozel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Brozel, M. (2006). Gallium Arsenide. In: Kasap, S., Capper, P. (eds) Springer Handbook of Electronic and Photonic Materials. Springer Handbooks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-29185-7_23

Download citation

Publish with us

Policies and ethics