Skip to main content

Perspectives on Electronic and Optoelectronic Materials

  • Reference work entry
Springer Handbook of Electronic and Photonic Materials

Part of the book series: Springer Handbooks ((SHB))

  • 14k Accesses

Abstract

This opening chapter will concentrate on the changes in the world of semiconducting materials and devices over the latter half of the twentieth century. Within this field we have chosen to concentrate on a few developments and cannot claim to cover all of the major areas. What we plan to do is give a sense of perspective of how the science and technology of these materials has come to its current state and to present a brief overview of why certain materials are chosen for particular device applications.

We start by identifying some of the earliest developments in our understanding of electronic materials; follow the development of silicon technology from the first demonstration of the transistor through to todayʼs integrated circuit; track some of the key electronic and optoelectronic uses of the conventional III–V semiconductors; and end with a review of the last decadeʼs explosion of interest in the III–nitride materials. The band gaps of the semiconductors encountered in this chapter are shown in Fig. 1.1 – a figure which will be frequently referred to in explaining the choice of materials for specific applications.

Parameter perspective: band gaps and lattice parameters of selected semiconductors discussed in the text. The important wavelengths for optical storage (CD, DVD and Blu–Ray) and the 1.55 μm used for efficient data transmission through optical fibres are labelled

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CMOS:

complementary metal-oxide-semiconductor

DH:

double heterostructure

DVD:

digital versatile disk

ELOG:

epitaxial layer overgrowth

FET:

field effect transistor

HEMT:

high electron mobility transistor

IC:

integrated circuit

LED:

light-emitting diodes

LPE:

liquid phase epitaxy

MBE:

molecular beam epitaxy

MESFET:

metal-semiconductor field-effect transistor

MOCVD:

metal-organic chemical vapor deposition

MOS:

metal/oxide/semiconductor

MOSFET:

metal/oxide/semiconductor field effect transistor

MOVPE:

metalorganic vapor phase epitaxy

SEM:

scanning electron microscope

TEM:

transmission electron microscope

VPE:

vapor phase epitaxy

pHEMT:

pseudomorphic HEMT

References

  1. M. Faraday: Experimental Researches in Electricity, Vol I and II (Dover, New York 1965) pp. 122–125 and pp. 426–427

    Google Scholar 

  2. W. Smith: J. Soc. Telegraph Eng. 2, 31 (1873)

    Google Scholar 

  3. W. G. Adams: Proc. R. Soc. London 25, 113 (1876)

    Article  Google Scholar 

  4. A. H. Wilson: Proc. R. Soc. London, Ser. A 133, 458 (1931)

    Article  CAS  Google Scholar 

  5. A. H. Wilson: Proc. R. Soc. London, Ser. A 134, 277 (1931)

    Article  CAS  Google Scholar 

  6. J. Bardeen, W. H. Brattain: Phys. Rev., 74, 230 (1948)

    Google Scholar 

  7. J. Bardeen: Nobel Lecture, Physics, 1942-1962 (Elsevier, Amsterdam 1956) www.nobel.se/physics/laureates/1956/shockley-lecture.html

    Google Scholar 

  8. E. Braun, S. MacDonald: Revolution in Miniature, 2 edn. (Cambridge Univ. Press, Cambridge 1982)

    Google Scholar 

  9. W. H. Brattain: Nobel Lecture, Physics, 1942-1962 (Elsevier, Amsterdam 1956) www.nobel.se/physics/ laureates/1956/brattain-lecture.html

    Google Scholar 

  10. C. S. Fuller: Phys. Rev. (Ser 2) 86, 136 (1952)

    CAS  Google Scholar 

  11. I. Derick, C. J. Frosh: US Patent 2802760 (1955)

    Google Scholar 

  12. J. Andrus, W. L. Bond: ,US Patent 3122817 (1957)

    Google Scholar 

  13. W. G. Pfann: Trans. Am. Inst. Mech. Eng. 194, 747 (1952)

    Google Scholar 

  14. W. G. Pfann: Zone Melting (Wiley, New York 1958)

    Google Scholar 

  15. G. K. Teal: IEEE Trans. Electron. Dev. 23, 621 (1976)

    Article  Google Scholar 

  16. G. K. Teal, J. B. Little: Phys. Rev. (Ser 2) 78, 647 (1950)

    Google Scholar 

  17. G. K. Teal, E. Buehler: Phys. Rev. 87, 190 (1952)

    CAS  Google Scholar 

  18. J. Czochralski: Z. Phys. Chem. 92, 219 (1917)

    CAS  Google Scholar 

  19. P. H. Keck, M. J. E. Golay: Phys. Rev. 89, 1297 (1953)

    Article  CAS  Google Scholar 

  20. H. C. Theurer: ,US Patent 3060123 (1952)

    Google Scholar 

  21. H. C. Theurer: Trans. Am. Inst. Mech. Eng. 206, 1316 (1956)

    Google Scholar 

  22. K. A. Jackson (Ed.): Silicon Devices (Wiley, Weinheim 1998)

    Google Scholar 

  23. W. C. Dash: J. Appl. Phys. 29, 736 (1958)

    Article  CAS  Google Scholar 

  24. W. C. Dash: J. Appl. Phys. 30, 459 (1959)

    Article  CAS  Google Scholar 

  25. W. C. Dash: J. Appl. Phys. 31, 736 (1960)

    Article  CAS  Google Scholar 

  26. G. Ziegler: Z. Naturforsch. 16a, 219 (1961)

    CAS  Google Scholar 

  27. M. Grayson (Ed.): Encyclopedia of Semiconductor Technology (Wiley, New York 1984) p. 734

    Google Scholar 

  28. I. M. Ross: Bell Labs Tech. J. 2(4), 3 (1997)

    Article  Google Scholar 

  29. W. Schockley: Bell Syst. Tech. J. 28(4), 435 (1949)

    Google Scholar 

  30. W. Shockley, M. Sparks, G. K. Teal: Phys. Rev. 83, 151 (1951)

    Article  Google Scholar 

  31. M. Tanenbaum, D. E. Thomas: Bell Syst. Tech. J. 35, 1 (1956)

    Google Scholar 

  32. C. M. Melliar-Smith, D. E. Haggan, W. W. Troutman: Bell Labs Tech. J. 2(4), 15 (1997)

    Article  Google Scholar 

  33. J. A. Hoerni: IRE Trans. Electron. Dev. 7, 178 (1960)

    Google Scholar 

  34. J. S. Kilby: IEEE Trans. Electron. Dev. 23, 648 (1976)

    Article  Google Scholar 

  35. J. S. Kilby: Nobel Lectures in Physics: 1996-2000 (Imperial College Press, London 2000) www.nobel.se/physics/laureates/2000/kilby-lecture.html

    Google Scholar 

  36. D. Kahng, M. M. Atalla: Silicon-Silicon Dioxide Field Induced Surface Devices (Solid State Research Conference, Pittsburgh, Pennsylvania 1960)

    Google Scholar 

  37. J. T. Clemens: Bell Labs Tech. J. 2(4), 76 (1997)

    Article  Google Scholar 

  38. T. H. Ning: IEEE Trans. Electron. Dev. 48, 2485 (2001)

    Article  CAS  Google Scholar 

  39. G. E. Moore: Electronics 38(8) (1965)

    Google Scholar 

  40. G. E. Moore: International Solid State Circuits Conference (2003)

    Google Scholar 

  41. F. H. Baumann: Mater. Res. Soc. Symp. 611, C4.1.1–C4.1.12 (2000)

    Google Scholar 

  42. H. Kroemer: Nobel Lectures in Physics: 1996-2000 (Imperial College Press, London 2000) www.nobel.se/physics/laureates/2000/kroemer-lecture.html

    Google Scholar 

  43. O. Wada, H. Hasegawa (Eds.): InP-Based Materials and Devices (Wiley, New York 1999)

    Google Scholar 

  44. C. Y. Chang, F. Kai: GaAs High-Speed Devices (Wiley, New York 1994)

    Google Scholar 

  45. A. Y. Cho: J. Vac. Sci. Technol., 8, S31 (1971)

    Google Scholar 

  46. H. M. Manasevit: Appl. Phys. Lett. 12, 156 (1968)

    Article  CAS  Google Scholar 

  47. H. J. Welker: IEEE Trans. Electron. Dev. 23, 664 (1976)

    Article  Google Scholar 

  48. H. Kroemer: RCA Rev. 18, 332 (1957)

    Google Scholar 

  49. C. A. Mead: Proc IEEE 54, 307 (1966)

    Article  Google Scholar 

  50. W. W. Hooper, W. I. Lehrer: Proc IEEE 55, 1237 (1967)

    Article  Google Scholar 

  51. R. van Tuyl, C. Liechti: IEEE Spectrum 14(3), 41 (1977)

    Google Scholar 

  52. R. Dingle: Appl. Phys. Lett. 33, 665 (1978)

    Article  CAS  Google Scholar 

  53. T. Mimura: IEEE Trans. Microwave Theory Tech. 50, 780 (2002)

    Article  Google Scholar 

  54. T. Mimura: Jpn. J. Appl. Phys. 19, L225 (1980)

    Article  CAS  Google Scholar 

  55. D. Delagebeaudeuf: Electron. Lett. 16, 667 (1980)

    Article  Google Scholar 

  56. D. Chattopadhyay: J. Phys. C 14, 891 (1981)

    Article  CAS  Google Scholar 

  57. E. E. Loebner: IEEE Trans. Electron. Dev. 23, 675 (1976)

    Article  Google Scholar 

  58. R. N. Hall: Phys. Rev. Lett. 9, 366 (1962)

    Article  CAS  Google Scholar 

  59. M. I. Nathan: Appl. Phys. Lett. 1, 62 (1962)

    Article  CAS  Google Scholar 

  60. N. Holonyak: Appl. Phys. Lett. 1, 82 (1962)

    Article  CAS  Google Scholar 

  61. H. Kroemer: Proc. IEEE 51, 1782 (1963)

    Article  Google Scholar 

  62. Z. I. Alferov: Nobel Lectures in Physics: 1996-2000 (Imperial College Press, London 2000) www.nobel.se/physics/laureates/2000/alferov-lecture.html

    Google Scholar 

  63. Z. I. Alferov: Fiz. Tekh. Poluprovodn. 4, 1826 (1970) Translated in: Sov. Phys. – Semicond. 4, 1573 (1971)

    CAS  Google Scholar 

  64. I. Hayashi: Appl. Phys. Lett. 17, 109 (1970)

    Article  CAS  Google Scholar 

  65. A. Žukauskas: Introduction to Solid-State Lighting (Wiley, New York 2002)

    Google Scholar 

  66. L. Esaki, R. Tsu: IBM J. Res. Dev. 14, 61 (1970)

    Article  CAS  Google Scholar 

  67. L. L. Chang: Appl. Phys. Lett. 24, 593 (1974)

    Article  CAS  Google Scholar 

  68. R. Dingle: Phys. Rev. Lett. 33, 827 (1974)

    Article  CAS  Google Scholar 

  69. J. P. van der Ziel: Appl. Phys. Lett. 26, 463 (1975)

    Article  Google Scholar 

  70. R. Dupuis: Appl. Phys. Lett. 32, 295 (1978)

    Article  CAS  Google Scholar 

  71. Z. I. Alferov: Semicond. 32, 1 (1998)

    Article  Google Scholar 

  72. D. K. Bowen, B. K. Tanner: High Resolution X-ray Diffractometry and Topography (Taylor Francis, London 1998)

    Google Scholar 

  73. L. Reimer, C. Deininger: Energy-filtering Transmission Electron Microscopy (Springer, Berlin, Heidelberg 1995)

    Google Scholar 

  74. C. Schönjahn: Appl. Phys. Lett. 83, 293 (2003)

    Article  Google Scholar 

  75. A. C. Twitchett: Phys. Rev. Lett. 88, 238302 (2002)

    Article  CAS  Google Scholar 

  76. P. M. Voyles: Ultramicrosc. 96, 251–273 (2003)

    Article  CAS  Google Scholar 

  77. J. J. Hsieh: Appl. Phys. Lett. 28, 709 (1976)

    Article  CAS  Google Scholar 

  78. H. E. Ruda (Ed.): Widegap II–VI Compounds for Opto-electronic Applications (Chapman Hall, London 1992)

    Google Scholar 

  79. M. A. Haase: Appl. Phys. Lett. 59, 1272 (1991)

    Article  CAS  Google Scholar 

  80. S. Nakamura: Appl. Phys. Lett. 64, 1687 (1994)

    Article  CAS  Google Scholar 

  81. S. Nakamura: Jpn. J. Appl. Phys. 35, L74 (1996)

    Article  CAS  Google Scholar 

  82. P. Prystawko: Phys. Status Solidi (a) 192, 320 (2002)

    Article  CAS  Google Scholar 

  83. S. Nakamura, G. Fasol: The Blue Laser Diode (Springer, Berlin, Heidelberg 1997)

    Google Scholar 

  84. B. Beaumont: Phys. Status Solidi (b) 227, 1 (2001)

    Article  CAS  Google Scholar 

  85. I. Ho, G. B. Stringfellow: Appl. Phys. Lett. 69, 2701 (1996)

    Article  CAS  Google Scholar 

  86. T. M. Smeeton: Appl. Phys. Lett. 83, 5419 (2003)

    Article  CAS  Google Scholar 

  87. J. Hogan: New Scientist, 24 (7th December 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tim Smeeton Ph.D. or Colin Humphreys Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Smeeton, T., Humphreys, C. (2006). Perspectives on Electronic and Optoelectronic Materials. In: Kasap, S., Capper, P. (eds) Springer Handbook of Electronic and Photonic Materials. Springer Handbooks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-29185-7_1

Download citation

Publish with us

Policies and ethics