Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Infrared spectroscopy consists of the measurement of interactions of waves of the infrared (IR) part of the electromagnetic spectrum with matter. The IR spectrum starts just beyond the red part of the visible spectrum at a wavelength λ =700  nm and extends to the microwave region at λ =0.1  cm. Electromagnetic waves are generally described in terms of their frequency ν in Hz. In IR spectroscopy it is common practice however to use the spatial frequency σ = ν/c. These are called wavenumbers and have units of cm−1. In this way the near, mid and far IR spectrum spans the frequencies from 14300 cm−1 to 10 cm−1. The interactions observed in the IR spectrum involve principally the energies associated with molecular structure change. Infrared spectroscopy is therefore useful for molecular structure elucidation and the identification and quantification of different molecular species in a sample [40.1].

The most common IR analysis of a sample is by IR absorption spectroscopy. This involves transmitting a beam of intense IR radiation through the sample and observing the distribution of wavenumbers absorbed by the molecules. Molecules in a sample may also be studied by IR emission spectroscopy simply by observing specific wavenumbers being emitted by virtue of the nonzero absolute temperature of the sample. Finally, radiation reflected from a smooth surface of a solid sample also provides information about the molecular structure of the material by virtue of the anomalous dispersion associated with absorption bands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

FTIR:

Fourier transform infrared spectroscopy

IR:

infrared

References

  1. N. B. Colthup, L. H. Daly, S. E. Wiberley: Introduction to Infrared, Raman Spectroscopy (Academic, New York 1990)

    Google Scholar 

  2. P. B. Fellgett: J. Phys. Radium 19, 187, 237 (1958)

    Article  Google Scholar 

  3. J. E. Hoffman, G. A. Vanasse: J. Phys. (Paris) 28, C2:79 (1967)

    Article  Google Scholar 

  4. P. Saarinen, J. Kauppinnen: Appl. Opt. 31, 2353 (1992)

    Article  ADS  Google Scholar 

  5. P. Jacquinot: J. Opt. Soc. Am. 44, 761 (1954)

    Article  ADS  Google Scholar 

  6. M. C. Martin: Synchrotron Radiation News 15, 10 (2002)

    Article  Google Scholar 

  7. H.-Y. N. Holman, M. C. Martin, W. McKinney: Spectroscopy - An International Journal 17, 139 (2003)

    Google Scholar 

  8. H.-Y. N. Holman, K. A. Bjornsted, M. P. McNamara, M. C. Martin, W. R. McKinney, E A. Blakely: J. Biomed. Opt. 7, 417 (2002)

    Article  ADS  Google Scholar 

  9. M S. Anderson, J. M. Andringa, R. W. Carlson, P. Conrad, W. Hartford, M. Shafer, A. Soto, A. I. Tsapin, J. P. Dybwad, W. Wadsworth, K. Hand: Rev. Sci. Instr. 76, 034101 (2005)

    Article  ADS  Google Scholar 

  10. G. A. Vanasse, A. T. Stair, D. J. Baker (Eds.): Aspen International Conference on Fourier Spectroscopy, 1970, AFCRL-71-0019

    Google Scholar 

  11. P. R. Griffith, J. A. de Haseth: Fourier Transform Infrared Spectrometry, J. Biomed. Opt., Vol. 83 (Wiley Interscience, New York 1986)

    Google Scholar 

  12. M. L. Forman: J. Opt. Soc. Am. 56, 978 (1966)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Buijs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Buijs, H. (2006). Infrared Spectroscopy. In: Drake, G. (eds) Springer Handbook of Atomic, Molecular, and Optical Physics. Springer Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-0-387-26308-3_40

Download citation

Publish with us

Policies and ethics