Skip to main content

Part of the book series: Springer Handbooks ((SHB))

  • 10k Accesses

Abstract

Molecular structure is a reflection of the Born-Oppenheimer separation of electronic and nuclear motion, which is in turn a consequence of the large difference between the electron and nuclear masses. One consequence of this separation is the concept of a potential energy surface for nuclear motion created by the faster moving electrons. Corollaries include equilibrium structures, transition states, and reaction paths which are the foundation of the description of molecular structure and reactivity. However the Born-Oppenheimer approximation is not uniformly applicable and its breakdown results in perturbations in molecular spectra, radiationless decay, and nonadiabatic chemical reactions.

There are many issues that can be addressed in a discussion of molecular structure, including the structure and bonding of individual classes of molecules, computational and/or experimental techniques used to determine or infer molecular structure, the accuracy of those methods, etc. In an effort to provide a broad view of the essential aspects of molecular structure, this Chapter considers issues in molecular structure from a theoretical/computational perspective using the Born-Oppenheimer approximation as the point of origin. Rather than providing a compendium of results, this chapter will explain how issues in molecular structure are investigated and how the questions that can be addressed reflect the available methodology. Even with these restrictions the scope of this topic remains enormous and precludes a detailed presentation of any one issue. Thus the abbreviated discussions in this work are supplemented by ample references to the literature.

Several aspects of potential energy surfaces and their relation to molecular structure will be considered: (i) the electronic structure techniques used to determine a single point on a potential energy surface, and the interactions that couple the electronic states in question, (ii) the local properties of potential energy surfaces, in particular equilibrium structures and rovibrational levels that provide the link to experimental inferences concerning molecular structure, (iii) global chemistry deduced from potential energy surfaces including reaction mechanisms and reaction paths and (iv) phenomena resulting from the nonadiabatic interactions that couple potential energy surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

CAS:

complete active space

CASPT:

complete active space perturbation theory

CCD:

coupled cluster doubles

CI:

configuration interaction

CSF:

configurational state functions

DFT:

discrete Fourier transform

ECP:

effective core potential

KS:

Kohn-Sham

MCSCF:

multiconfigurational self-consistent field

MP2:

second order Møller-Plesset perturbation theory

MP3:

third order Møller-Plesset perturbation theory

MR-SDCI:

multireference singles/doubles configuration interaction

MR:

multireference

SCF:

self-consistent field

SD:

spin-dependent

References

  1. H. A. Bethe, E. E. Salpeter: Quantum Mechanics of One and Two Electron Atoms (Plenum/Rosetta, New York 1977)

    Google Scholar 

  2. M. Born, K. Huang: Dynamical Theory of Crystal Lattices (Oxford Univ. Press, Oxford 1954)

    MATH  Google Scholar 

  3. G. Herzberg, H. C. Longuet-Higgins: Disc. Faraday Soc. 35, 77 (1963)

    Google Scholar 

  4. M. V. Berry: Proc. R. Soc. London A392, 45 (1984)

    ADS  Google Scholar 

  5. H. C. Longuet-Higgins: Adv. Spectrosc. 2, 429 (1961)

    ADS  Google Scholar 

  6. W. H. Gerber, E. Schumacher: J. Chem. Phys. 69, 1692 (1978)

    ADS  Google Scholar 

  7. L. R. Kahn, P. Baybutt, D. G. Truhlar: J. Chem. Phys. 65, 3826 (1976)

    ADS  Google Scholar 

  8. J. C. Tully: In: Modern Theoretical Chemistry, Vol. 2, ed. by W. H. Miller (Plenum, New York 1976) p. 217

    Google Scholar 

  9. B. C. Garrett, D. G. Truhlar: Theoretical Chemistry Advances and Perspectives (Academic, New York 1981)

    Google Scholar 

  10. D. M. Bishop, L. M. Cheung: J. Chem. Phys. 78, 1396 (1983)

    ADS  Google Scholar 

  11. D. M. Bishop, L. M. Cheung: J. Chem. Phys. 80, 4341 (1984)

    ADS  Google Scholar 

  12. J. O. Jensen, D. R. Yarkony: J. Chem. Phys. 89, 3853 (1988)

    Google Scholar 

  13. C. R. Vidal, W. C. Stwalley: J. Chem. Phys. 77, 883 (1982)

    ADS  Google Scholar 

  14. Y. C. Chen, D. R. Harding, W. C. Stwalley, C. R. Vidal: J. Chem. Phys. 85, 2436 (1986)

    ADS  Google Scholar 

  15. J. N. Murrell, S. Carter, S. C. Farantos, P. Huxley, A. J. C. Varandas: Molecular Potential Energy Surfaces (Wiley, New York 1984)

    Google Scholar 

  16. D. G. Truhlar, R. Steckler, M. S. Gordon: Chem. Rev. 87, 217 (1987)

    Google Scholar 

  17. K. Fukui: Acc. Chem. Res. 14, 363 (1981)

    Google Scholar 

  18. C. J. Cerjan, W. H. Miller: J. Chem. Phys. 75, 2800 (1981)

    ADS  Google Scholar 

  19. H. B. Schlegel: Adv. Chem. Phys. 67, 249 (1987)

    Google Scholar 

  20. H. B. Schlegel: In: Modern Electronic Structure Theory, Part 1, ed. by D. R. Yarkony (World Scientific, Singapore 1995)

    Google Scholar 

  21. H. F. Schaefer (Ed.): Modern Theoretical Chemistry (Plenum, New York 1976)

    Google Scholar 

  22. D. R. Yarkony (Ed.): Modern Electronic Structure Theory (World Scientific, Singapore 1995)

    Google Scholar 

  23. A. D. McLachlan: Mol. Phys. 4, 417 (1961)

    ADS  MathSciNet  Google Scholar 

  24. F. T. Smith: Phys. Rev. 179, 111 (1969)

    ADS  Google Scholar 

  25. W. Lichten: Phys. Rev. 131, 339 (1963)

    Google Scholar 

  26. W. Lichten: Phys. Rev. 164, 131 (1967)

    ADS  Google Scholar 

  27. C. A. Mead, D. G. Truhlar: J. Chem. Phys. 77, 6090 (1982)

    ADS  Google Scholar 

  28. M. Baer: Chem. Phys. Lett. 35, 112 (1975)

    ADS  Google Scholar 

  29. M. Baer: Chem. Phys. 15, 49 (1976)

    ADS  MathSciNet  Google Scholar 

  30. T. Pacher, C. A. Mead, L. S. Cederbaum, H. Koppel: J. Chem.Phys. 91, 7057 (1989)

    ADS  Google Scholar 

  31. V. Sidis: In: State-Selected and State-to-State Ion-Molecule Reaction Dynamics Part 2, Theory, Vol. 82, ed. by M. Baer, C. Y. Ng (Wiley, New York 1992) p. 73

    Google Scholar 

  32. R. Renner: Z. Phys 92, 172 (1934)

    MATH  ADS  Google Scholar 

  33. J. von Neumann, E. Wigner: Z.. Phys 30, 467 (1929)

    Google Scholar 

  34. C. A. Mead: J. Chem. Phys. 70, 2276 (1979)

    ADS  Google Scholar 

  35. A. Szabo, N. S. Ostlund: Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (McMillan, New York 1982)

    Google Scholar 

  36. P. Jørgensen, J. Simons: Second Quantization Based Methods in Quantum Chemistry (Academic, New York 1981)

    Google Scholar 

  37. J. Almlöf: In: Modern Electronic Structure Theory, Part 1, ed. by D. R. Yarkony (World Scientific, Singapore 1995) p. 1

    Google Scholar 

  38. T. H. Dunning, P. J. Hay: In: Modern Theoretical Chemistry, Vol. 3, ed. by H. F. Schaefer (Plenum, New York 1976)

    Google Scholar 

  39. B.O. Roos, P. Linse, P.E.M. Siegbahn, M.R.A. Blomberg: Chem. Phys 66, 197 (1982)

    Google Scholar 

  40. M. Moshinsky: Group Theory and the Many Body Problem (Gordon and Breach, New York 1968)

    Google Scholar 

  41. J. Hinze: The Unitary Group, Lecture Notes in Chem. (Springer, Berlin, Heidelberg 1979) p. 22

    Google Scholar 

  42. I. Shavitt: In: Modern Theoretical Chemistry, Vol. 3, ed. by H./,F. Schaefer (Plenum, New York 1976) p. 189

    Google Scholar 

  43. Y. Yamaguchi, Y. Osamura, J. D. Goddard, H. F. Schaefer: A New Dimension to Quantum Chemistry: Analytic Derivative Methods in ab initio Molecular Electronic Structure Theory (Oxford Univ. Press, Oxford 1994)

    Google Scholar 

  44. B. H. Lengsfield, D. R. Yarkony: In: State-Selected and State to State Ion-Molecule Reaction Dynamics: Part 2, Theory, Vol. 82, ed. by M. Baer, C. Ng (Wiley, New York 1992)

    Google Scholar 

  45. P. Pulay: Mol. Phys. 17, 197 (1969)

    ADS  Google Scholar 

  46. C. C. J. Roothaan: Rev. Mod. Phys. 23, 69 (1951)

    MATH  ADS  Google Scholar 

  47. J. F. Gaw, Y. Yamaguchi, H. F. Schaefer: J. Chem. Phys. 81, 6395 (1984)

    ADS  Google Scholar 

  48. J. F. Gaw, Y. Yamaguchi, H. F. Schaefer, N. C. Handy: J. Chem.Phys. 85, 5132 (1986)

    ADS  Google Scholar 

  49. J. Almlöf: J. Comput. Chem. 3, 385 (1982)

    Google Scholar 

  50. K. Docken, J. Hinze: J. Chem. Phys. 57, 4928 (1972)

    ADS  Google Scholar 

  51. J. Hinze: J. Chem. Phys. 59, 6424 (1973)

    ADS  MathSciNet  Google Scholar 

  52. H. Werner, W. Meyer: J. Chem. Phys. 74, 5794 (1981)

    ADS  Google Scholar 

  53. B. H. Lengsfield: J. Chem. Phys. 77, 4073 (1982)

    ADS  Google Scholar 

  54. C. Møller, M. S. Plesset: Phys. Rev. 46, 618 (1934)

    MATH  ADS  Google Scholar 

  55. J. Almlöf: Chem. Phys. Lett. 181, 319 (1991)

    ADS  Google Scholar 

  56. J. Cizek: J. Chem. Phys. 45, 4256 (1966)

    ADS  Google Scholar 

  57. J. Cizek: Adv. Chem. Phys. 14, 35 (1969)

    Google Scholar 

  58. J. Paldus, J. Cizek: In: Energy Structure and Reactivity, ed. by D. Smith, W. B. McRae (Wiley, New York 1973) p. 35

    Google Scholar 

  59. R. J. Bartlett, G. D. Purvis III: Int. J. Quantum Chem. Symp. 14, 561 (1978)

    Google Scholar 

  60. J. A. Pople, R. Krishnan, H. B. Schlegel, J. S. Binkley: Int. J. Quantum Chem. 14, 545 (1978)

    Google Scholar 

  61. P. O. Löwdin: Phys. Rev. 97, 1474 (1955)

    ADS  MathSciNet  Google Scholar 

  62. R. J. Bartlett, J. D. Watts, S. A. Kucharski, J. Noga: Chem. Phys. Lett. 165, 513 (1990)

    ADS  Google Scholar 

  63. S. A. Kucharski, R. J. Bartlett: Chem. Phys. Lett. 158, 550 (1989)

    ADS  Google Scholar 

  64. K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon: Chem. Phys. Lett. 157, 479 (1989)

    ADS  Google Scholar 

  65. J. D. Watts, J. Gauss, R. J. Bartlett: J. Chem. Phys. 98, 8718 (1993)

    ADS  Google Scholar 

  66. R. J. Bartlett: In: Modern Electronic Structure Theory, ed. by D. R. Yarkony (World Scientific, Singapore 1995) p. 2

    Google Scholar 

  67. R. N. Diffenderfer, D. R. Yarkony: J. Chem. Phys. 86, 5098 (1982)

    Google Scholar 

  68. B. O. Roos, P. R. Taylor, P. E. M. Siegbahn: Chem. Phys. 48, 157 (1980)

    MathSciNet  Google Scholar 

  69. B. O. Roos: Int. J. Quantum Chem. Symp. 14, 175 (1980)

    Google Scholar 

  70. P. Siegbahn, A. Heiberg, B. Roos, B. Levy: Phys. Scr. 21, 323 (1980)

    ADS  Google Scholar 

  71. C. W. Bauschlicher, S. R. Langhoff, P. R. Taylor: Adv. Chem. Phys. 77, 103 (1990)

    Google Scholar 

  72. H. J. Silverstone, O. Sinanoglu: J. Chem. Phys. 44, 1899 (1966)

    ADS  Google Scholar 

  73. E. Dalgaard, P. Jørgensen: J. Chem. Phys. 69, 3833 (1978)

    ADS  Google Scholar 

  74. E. R. Davidson: J. Comput. Phys. 17, 87 (1975)

    ADS  Google Scholar 

  75. B. O. Roos: Chem. Phys. Lett. 15, 153 (1972)

    ADS  Google Scholar 

  76. P. E. M. Siegbahn: J. Chem. Phys. 72, 1647 (1980)

    ADS  MathSciNet  Google Scholar 

  77. R. J. Harrison: J. Chem. Phys. 94, 5021 (1991)

    ADS  Google Scholar 

  78. R. Caballol, J. P. Malrieu: Chem. Phys. Lett. 188, 543 (1992)

    ADS  Google Scholar 

  79. A. Povill, J. Rubio, F. Illas: Theo. Chim. Acta 82, 229 (1992)

    Google Scholar 

  80. P. J. Knowles, H. Werner: Chem. Phys. Lett. 115, 259 (1985)

    ADS  Google Scholar 

  81. P. J. Knowles, H. Werner: Chem. Phys. Lett. 145, 514 (1988)

    ADS  Google Scholar 

  82. H. Werner, P. J. Knowles: J. Chem. Phys. 82, 5053 (1985)

    ADS  Google Scholar 

  83. H. Werner, P. J. Knowles: J. Chem. Phys. 89, 5803 (1988)

    ADS  Google Scholar 

  84. K. Andersson, P. Å. Malmqvist, B. O. Roos, A. J. Sadlej, K. Wolinski: J. Phys. Chem. 94, 5483 (1990)

    Google Scholar 

  85. K. Andersson, P. Å. Malmqvist, B. O. Roos: J. Chem. Phys. 96, 1218 (1992)

    ADS  Google Scholar 

  86. R. G. Parr, W. Yang: Density-Functional Theory of Atoms and Molecules (Oxford, New York 1989)

    Google Scholar 

  87. P. Hohenberg, W. Kohn: Phys. Rev. B 136, 864 (1964)

    ADS  MathSciNet  Google Scholar 

  88. W. Kohn, L. J. Sham: Phys. Rev. A 140, 1133 (1965)

    ADS  MathSciNet  Google Scholar 

  89. A. D. Becke: In: Modern Electronic Structure Theory, Part 2, ed. by D. R. Yarkony (World Scientific, Singapore 1995)

    Google Scholar 

  90. P. Pula: In: Modern Electronic Structure Theory, Part 2, ed. by D. R. Yarkony (World Scientific, Singapore 1995)

    Google Scholar 

  91. B. Liu, A. D. McLean: J. Chem. Phys. 59, 4557 (1973)

    ADS  Google Scholar 

  92. B. Liu, A. D. McLean: J. Chem. Phys. 91, 2348 (1989)

    ADS  Google Scholar 

  93. S. F. Boys, F. Bernardi: Mol. Phys. 19, 553 (1970)

    ADS  Google Scholar 

  94. M. Gutowski, J. van Lenthe, J. C. G. M. van Duijneveldt, F. B. van Duijneveldt: J. Chem. Phys. 98, 4728 (1993)

    ADS  Google Scholar 

  95. H. Lefebvre-Brion, R. W. Field: Perturbations in the Spectra of Diatomic Molecules (Academic, New York 1986)

    Google Scholar 

  96. S. Han, H. Hettema, D. R. Yarkony: J. Chem. Phys. 102, 1955 (1995)

    ADS  Google Scholar 

  97. B. H. Lengsfield, P. Saxe, D. R. Yarkony: J. Chem. Phys. 81, 4549 (1984)

    ADS  Google Scholar 

  98. P. Saxe, B. H. Lengsfield, D. R. Yarkony: Chem. Phys. Lett. 113, 159 (1985)

    ADS  Google Scholar 

  99. R. J. Buenker, G. Hirsch, S. D. Peyerimhoff, P. J. Bruna, J. Romelt, M. Bettendorff, C. Petrongolo: In: Current Aspects of Quantum Chemistry 1981, Vol. 21, ed. by R. Carbo (Elsevier, New York 1982) p. 81

    Google Scholar 

  100. C. A. Mead: J. Chem. Phys. 78, 807 (1993)

    ADS  Google Scholar 

  101. J. Hellmann: Einführung in die Quantenchemie (Deuticke, Leipzig 1937)

    Google Scholar 

  102. R. P. Feynman: Phys. Rev. 56, 340 (1939)

    MATH  ADS  Google Scholar 

  103. S. R. Langhoff, C. W. Kern: In: Modern Theoretical Chemistry, Vol. 4, ed. by H. F. Schaefer (Plenum, New York 1977) p. 381

    Google Scholar 

  104. M. Blume, R. E. Watson: Proc. R. Soc. London A 270, 127 (1962)

    ADS  MathSciNet  Google Scholar 

  105. M. Blume, R. E. Watson: Proc. R. Soc. London A 271, 565 (1963)

    ADS  Google Scholar 

  106. S. Fraga, K. M. S. Saxena, B. W. N. Lo: At. Data 3, 323 (1971)

    ADS  Google Scholar 

  107. W. C. Ermler, R. B. Ross, P. A. Christiansen: Advances in Quantum Chemistry, Vol. 19 (Academic, New York 1988) p. 139

    Google Scholar 

  108. W. C. Ermler, Y. S. Lee, P. A. Christiansen, K. S. Pitzer: Chem. Phys. Lett. 81, 70 (1981)

    ADS  Google Scholar 

  109. Y. S. Lee, W. C. Erlmer, K. S. Pitzer: J. Chem. Phys. 67, 5861 (1977)

    ADS  Google Scholar 

  110. R. M. Pitzer, N. W. Winter: J. Chem. Phys. 92, 3061 (1988)

    Google Scholar 

  111. W. J. Stevens, M. Krauss: J. Chem. Phys. 76, 3834 (1982)

    ADS  Google Scholar 

  112. J. P. Desclaux: Comp. Phys. Comm. 9, 31 (1975)

    ADS  Google Scholar 

  113. K. Balasubramanian: J. Phys. Chem. 93, 6585 (1989)

    Google Scholar 

  114. B. A. Hess: Phys. Rev. A 33, 3742 (1986)

    ADS  Google Scholar 

  115. B. A. Hess, P. Chandra: Phys. Scr. 36, 412 (1987)

    ADS  Google Scholar 

  116. J. Sucher: Phys. Rev. A 22, 348 (1980)

    ADS  MathSciNet  Google Scholar 

  117. C. M. Marian: J. Chem. Phys. 93, 1176 (1990)

    ADS  Google Scholar 

  118. C. M. Marian: J. Chem. Phys. 94, 5574 (1991)

    ADS  Google Scholar 

  119. T. R. Furlani, H. F. King: J. Chem. Phys. 82, 5577 (1985)

    ADS  Google Scholar 

  120. B. A. Hess, R. J. Buenker, C. M. Marian, S. D. Peyerimhoff: Chem. Phys. 71, 79 (1982)

    Google Scholar 

  121. D. R. Yarkony: J. Chem. Phys. 84, 2075 (1986)

    ADS  Google Scholar 

  122. J. O. Jensen, D. R. Yarkony: Chem. Phys. Lett. 141, 391 (1987)

    ADS  Google Scholar 

  123. B. Liu, M. Yoshimine: J. Chem. Phys. 74, 612 (1981)

    ADS  Google Scholar 

  124. D. R. Yarkony: Int. Rev. Phys. Chem. 11, 195 (1992)

    Google Scholar 

  125. M. R. Manaa, D. R. Yarkony: J. Chem. Phys. 99, 5251 (1993)

    ADS  Google Scholar 

  126. D. R. Yarkony: J. Chem. Phys. 97, 4407 (1993)

    Google Scholar 

  127. D. R. Yarkony: J. Chem. Phys. 100, 3639 (1994)

    ADS  Google Scholar 

  128. R. Fletcher: Practical Methods of Optimization, Vol. 2 (Wiley, New York Vol 1981)

    MATH  Google Scholar 

  129. I. N. Radazos, M. A. Robb, M. A. Bernardi, M. Olivucci: Chem. Phys. Lett. 197, 217 (1992)

    ADS  Google Scholar 

  130. G. Herzberg, H. C. Longuet-Higgins: Disc. Faraday Soc. 35, 77 (1963)

    Google Scholar 

  131. M. V. Berry: Proc. R. Soc. London A 392, 45 (1984)

    MATH  ADS  Google Scholar 

  132. S. Xantheas, S. T. Elbert, K. Ruedenberg: J. Chem. Phys. 93, 7519 (1990)

    ADS  Google Scholar 

  133. J. Tennyson, S. Miller, B. T. Sutcliffe: J. Chem. Soc. Faraday Trans. 84, 1295 (1988)

    Google Scholar 

  134. J. H. Van Vleck: Rev. Mod. Phys. 23, 213 (1951)

    MATH  ADS  Google Scholar 

  135. M. Mizushima: The Theory of Rotating Diatomic Molecules (Wiley, New York 1975)

    Google Scholar 

  136. T. J. Lee, D. J. Fox, H. F. Schaefer, R. M. Pitzer: J. Chem.Phys. 81, 356 (1984)

    ADS  Google Scholar 

  137. R. N. Dixon: Mol. Phys. 54, 333 (1985)

    ADS  Google Scholar 

  138. R. J. Whitehead, N. C. Handy: J. Mol. Spec. 55, 356 (1975)

    ADS  Google Scholar 

  139. M. E. Rose: Elementary Theory of Angular Momentum (Wiley, New York 1957)

    MATH  Google Scholar 

  140. I. M. Mills: In: Molecular Spectroscopy: Modern Research, ed. by K. N. Rao, C. W. Mathews (Academic, New York 1970) p. 115

    Google Scholar 

  141. C. Eckart: Phys. Rev. 47, 552 (1935)

    MATH  ADS  Google Scholar 

  142. E. B. Wilson, Jr., J. B. Howard: J. Chem. Phys. 4, 260 (1936)

    ADS  Google Scholar 

  143. B. T. Darling, D. M. Dennison: Phys. Rev. 57, 128 (1940)

    ADS  Google Scholar 

  144. E. B. Wilson, J. C. Decius, P. C. Cross: Molecular Vibrations (McGraw-Hill, New York 1955)

    Google Scholar 

  145. J. K. G. Watson: Mol. Phys. 15, 479 (1968)

    ADS  Google Scholar 

  146. R. N. Zare: Angular Momentum (Wiley, New York 1988)

    Google Scholar 

  147. B. T. Sutcliffe, J. Tennyson: Mol. Phys. 58, 1053 (1986)

    ADS  Google Scholar 

  148. J. Segall, R. N. Zare, H. R. Dubal, M. Lewerenz, M. Quack: J. Chem. Phys. 86, 634 (1987)

    ADS  Google Scholar 

  149. W. H. Green, W. D. Lawrence, C. B. Moore: J. Chem. Phys. 86, 6000 (1987)

    ADS  Google Scholar 

  150. R. D. Amos, J. G. Gaw, N. C. Handy, S. Carter: J. Chem. Soc. Faraday Trans. 84, 1247 (1988)

    Google Scholar 

  151. P. Botschwina: Chem. Phys. 68, 41 (1982)

    ADS  Google Scholar 

  152. P. Botschwina: J. Chem. Soc. Faraday Trans. 84, 1263 (1988)

    Google Scholar 

  153. J. M. Hutson: In: Advances in Molecular Vibrations and Collision Dynamics, Vol. 1A, ed. by J. M. Bowman, M. A. Ratner (JAI Press, Greenwich 1991)

    Google Scholar 

  154. M. L. Dubernet, D. Flower, J. M. Hutson: J. Chem. Phys. 94, 7602 (1991)

    ADS  Google Scholar 

  155. M. H. Alexander, S. Gregurick, P. J. Dagdigian: J. Chem. Phys. 101, 2887 (1994)

    ADS  Google Scholar 

  156. D. M. Brink, G. R. Satchler: Angular Momentum (Clarendon, Oxford 1968)

    Google Scholar 

  157. A. Arthurs, A. Dalgarno: Proc. Roy. Soc. London A 256, 540 (1960)

    MATH  ADS  MathSciNet  Google Scholar 

  158. M. Alexander: Chem. Phys. 92, 337 (1985)

    ADS  Google Scholar 

  159. H. Werner, B. Follmeg, M. H. Alexander: J. Chem. Phys. 89, 3139 (1988)

    ADS  Google Scholar 

  160. H. Werner, B. Follmeg, M. H. Alexander, D. Lemoine: J. Chem. Phys. 91, 5425 (1989)

    ADS  Google Scholar 

  161. C. Chakravarty, D. Clary: J. Chem. Phys. 94, 4149 (1991)

    ADS  Google Scholar 

  162. M. H. Alexander, S. Gregurick, P. J. Dagdigian, G. W. Lemire, M. J. McQuaid, R. C. Sausa: J. Chem. Phys. 101, 4547 (1994)

    ADS  Google Scholar 

  163. W. H. Miller: In: The Theory of Chemical Reaction Dynamics, ed. by D. C. Clary (Reidel, Dordrecht 1986)

    Google Scholar 

  164. W. H. Miller, N. Handy, J. Adams: J. Chem. Phys. 72, 99 (1980)

    ADS  Google Scholar 

  165. M. Page, J. W. McIver: J. Chem. Phys. 88, 922 (1988)

    ADS  Google Scholar 

  166. S. Kato, R. L. Jaffe, A. Komornicki, K. Morokuma: J. Chem. Phys. 78, 4567 (1983)

    ADS  Google Scholar 

  167. S. P. Walch: Chem. Phys. Lett. 208, 214 (1993)

    ADS  Google Scholar 

  168. D. F. Strobel: Planet. Space Sci. 30, 839 (1982)

    ADS  Google Scholar 

  169. M. R. Berman, M. C. Lin: J. Phys. Chem 87, 3933 (1983)

    Google Scholar 

  170. C. P. Fenimore: 13th International Symposium on Combustion (The Combustion Institute, Pittsburgh 1971) p. 373

    Google Scholar 

  171. J. Blauwens, B. Smets, J. Peeters: 16th International Symposium on Combustion (The Combustion Institute, Pittsburgh 1977) p. 1055

    Google Scholar 

  172. A. J. Dean, R. K. Hanson, C. T. Bowman: 23rd International Symposium on Combustion (The Combustion Institute, Pittsburgh 1990) p. 259

    Google Scholar 

  173. J. C. Tully: J. Chem. Phys. 61, 61 (1974)

    ADS  Google Scholar 

  174. G. E. Zahr, R. K. Preston, W. H. Miller: J. Chem. Phys 62, 1127 (1975)

    ADS  Google Scholar 

  175. M. R. Manaa, D. R. Yarkony: J. Chem. Phys. 95, 1808 (1991)

    ADS  Google Scholar 

  176. M. R. Manaa, D. R. Yarkony: Chem. Phys. Lett. 188, 352 (1992)

    ADS  Google Scholar 

  177. J. M. L. Martin, P. R. Taylor: Chem. Phys. Lett. 209, 143 (1993)

    ADS  Google Scholar 

  178. T. Seideman, S. P. Walch: J. Chem. Phys. 101, 3656 (1994)

    ADS  Google Scholar 

  179. M. Tinkham: Group Theory and Quantum Mechanics (McGraw-Hill, New York 1964)

    MATH  Google Scholar 

  180. T. Seideman: J. Chem. Phys. 101, 3662 (1994)

    ADS  Google Scholar 

  181. K. H. Becker, B. Engelhardt, H. Geiger, R. Kurtenbach, G. Schrey, P. Wissen: Chem. Phys. Lett. 154, 342 (1992)

    ADS  Google Scholar 

  182. D. Lindackers, M. Burmeister, P. Roth: 23rd International Symposium on Combustion (Combustion Institute, Pittsburgh 1990) p. 251

    Google Scholar 

  183. D. Lindackers, M. Burmeister, P. Roth: Combustion and Flame 81, 251 (1990)

    Google Scholar 

  184. X. Hu, K. Schulten: Phys. Tod. 50, 28 (1997)

    ADS  Google Scholar 

  185. W. Weber, V. Helms, A. McMCammon, P. W. Langhoff: Proc. Natl. Acad. Sci. U.S.A. 96, 6177 (1999)

    ADS  Google Scholar 

  186. D. R. Yarkony: J. Phys. Chem. A 105, 6277 (2001)

    Google Scholar 

  187. D. R. Yarkony: J. Chem. Phys. 121, 628 (2004)

    ADS  Google Scholar 

  188. D. R. Yarkony: J. Phys. Chem. A 108, 3200 (2004)

    Google Scholar 

  189. S. Matsika, D. R. Yarkony: J. Chem. Phys. 117, 6907 (2002)

    ADS  Google Scholar 

  190. S. Matsika, D. R. Yarkony: J. Phys. Chem. B 106, 8108 (2002)

    Google Scholar 

  191. S. Matsika, D. R. Yarkony: J. Chem. Phys. 115, 5066 (2001)

    ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported in part by NSF grant CHE 94-04193, AFOSR grant F49620-93-1-0067 and DOE grant DE-FG02-91ER14189

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Yarkony .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Yarkony, D. (2006). Molecular Structure. In: Drake, G. (eds) Springer Handbook of Atomic, Molecular, and Optical Physics. Springer Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-0-387-26308-3_31

Download citation

Publish with us

Policies and ethics