Skip to main content

Angular Momentum Theory

  • Reference work entry

Part of the book series: Springer Handbooks ((SHB))

Abstract

Angular momentum theory is presented from the viewpoint of the group SU(1) of unimodular unitary matrices of order two. This is the basic quantum mechanical rotation group for implementing the consequences of rotational symmetry into isolated complex physical systems, and gives the structure of the angular momentum multiplets of such systems. This entails the study of representation functions of SU(2), the Lie algebra of SU(2) and copies thereof, and the associated Wigner-Clebsch-Gordan coefficients, Racah coefficients, and 1n-j coefficients, with an almost boundless set of inter-relations, and presentations of the associated conceptual framework. The relationship to the rotation group in physical 3-space is given in detail. Formulas are often given in a compendium format with brief introductions on their physical and mathematical content. A special effort is made to inter-relate the material to the special functions of mathematics and to the combinatorial foundations of the subject.

This is a preview of subscription content, log in via an institution.

Abbreviations

CG:

Clebsch-Gordan

WCG:

Wigner-Clebsch-Gordan

References

  1. L. C. Biedenharn, J. D. Louck: Encyclopedia of Mathematics and Its Applications, Vol. 8 & 9, ed. by G.-C. Rota (Addison-Wesley, Reading 1981) presently by (Cambridge Univ. Press, Cambridge)

    Google Scholar 

  2. J. D. Louck: J. Math. and Math. Sci. 22, 745 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Schwinger: On Angular Momentum. U. S. Atomic Energy Commission Report NYO-3071, 1952 (unpublished). In: Quantum Theory of Angular Momentum, ed. by L. C. Biedenharn, H. van Dam (Academic, New York 1965) pp. 229-279

    Google Scholar 

  4. B. R. Judd, G. M. S. Lister: J. Phys. A 20, 3159 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  5. B. R. Judd: Symmetries in Science, ed. by B. Gruber, R. S. Millman (Plenum, New York 1980) pp. 151-160

    Google Scholar 

  6. S. Roman, G.-C. Rota: Adv. in Math. 27, 95 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. A. P. Jucys, I. B. Levinson, V. V. Vanagas: The Theory of Angular Momentum (Israel Program for Scientific Translation, Jerusalem 1962) (Mathematicheskii apparat teorii momenta kolichestva dvizheniya) Translated from the Russian by A. Sen, A. R. Sen (1962)

    MATH  Google Scholar 

  8. A. P. Jucys, A. A. Bandzaitis: Angular Momentum Theory in Quantum Physics (Moksias, Vilnius 1977)

    Google Scholar 

  9. R. P. Stanley: Enumerative Combinatorics, Vol. 1 (Cambridge Univ. Press, Cambridge 1997)

    MATH  Google Scholar 

  10. A. Clebsch: Theorie der binären algebraischen Formen (Teubner, Leipzig 1872)

    MATH  Google Scholar 

  11. J. D. Louck, W. Y. C. Chen, H. W. Galbraith: Symmetry, Structural Properties of Condensed Matter, ed. by T. Lulek, B. Lulek, A. Wal (World Scientific, Singapore 1999) pp. 112-137

    Google Scholar 

  12. W. Y. C. Chen, J. D. Louck: Adv. Math. 140, 207 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. P. A. MacMahon: Combinatory Analysis (Cambridge Univ. Press, Cambridge 1960) (Chelsia Publishing Co., New York, 1960) (Originally published in two volumes by Cambridge Univ. Press, Cambridge, 1915, 1916)

    MATH  Google Scholar 

  14. J. D. Louck: Adv. Appl. Math. 17, 143 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. T. Molien: Über die Invarianten der linearen Substitutionsgruppen, Sitzungsber. Konig. Preuss. Akad. Wiss. 52, 1152 (1897)

    Google Scholar 

  16. L. Michel, B. I. Zhilinskii: Physics Reports 341, 11 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. L. Wei: Comput. Phys. Commun. 120, 222 (1999)

    Article  ADS  MATH  Google Scholar 

  18. A. R. Edmonds: Angular Momentum in Quantum Mechanics (Princeton Univ. Press, Princeton 1957)

    MATH  Google Scholar 

  19. E. Cartan: Thesis (Paris, Nony 1894) [Ouevres Complète, Part 1, pp. 137-287 (Gauthier-Villars, Paris 1952)]

    Google Scholar 

  20. H. Weyl: Gruppentheorie und Quantenmechanik (Hirzel, Leipzig 1928) Translated by H. P. Robertson as The Theory of Groups and Quantum Mechanics (Methuen, London 1931)

    MATH  Google Scholar 

  21. P. A. M. Dirac: The Principles of Quantum Mechanics, 4th edn. (Oxford Univ. Press, London 1958)

    MATH  Google Scholar 

  22. M. Born, P. Jordan: Elementare Quantenmechanik (Springer, Berlin, Heidelberg 1930)

    MATH  Google Scholar 

  23. H. B. G. Casimir: Thesis, University of Leyden (Wolters, Groningen 1931) [Koninkl. Ned. Akad. Wetenschap, Proc. 34, 844 (1931)]

    Google Scholar 

  24. B. L. van der Waerden: Die gruppentheoretische Methode in der Quantenmechanik (Springer, Berlin, Heidelberg 1932)

    Google Scholar 

  25. W. Pauli: Handbuch der Physik, Vol. 24, ed. by H. Geiger, K. Scheel (Springer, Berlin, Heidelberg 1933) Chap. 1, pp. 83-272. Later published in Encyclopedia of Physics, Vol. 5, Part 1, ed. by S. Flügge (Springer, Berlin, Heidelberg 1958), pp. 45, 46

    Google Scholar 

  26. H. Weyl: The Structure and Representations of Continuous Groups, Lectures at the Institute for Advanced Study. Princeton, 1934-1935 (unpublished). Notes by R. Brauer

    Google Scholar 

  27. E. U. Condon, G. H. Shortley: The Theory of Atomic Spectra (Cambridge Univ. Press, London 1935)

    Google Scholar 

  28. H. A. Kramers: Quantum Mechanics (North-Holland, Amsterdam 1957) Translation by D. ter Haar of Kramer's monograph published in the Hand- und Jahrbuch der chemischen Physik (1937)

    MATH  Google Scholar 

  29. G. Szegö: Orthogonal Polynomials (Edwards, Ann Arbor 1948)

    Google Scholar 

  30. I. M. Gel'fand, Z. Ya. Shapiro: Am. Math. Soc. Transl. 2, 207 (1956)

    MATH  Google Scholar 

  31. A. Erdelyi, W. Magnus, F. Oberhettinger, G. F. Tricomi: Higher Transcendental Functions, Vol. 1 (McGraw-Hill, New York 1953)

    Google Scholar 

  32. E. P. Wigner: Application of Group Theory to the Special Functions of Mathematical Physics. Lecture notes, 1955 (unpublished)

    Google Scholar 

  33. H. C. Brinkman: Applications of Spinor Invariants in Atomic Physics (North-Holland, Amsterdam 1956)

    Google Scholar 

  34. M. E. Rose: Elementary Theory of Angular Momentum (Wiley, New York 1957)

    MATH  Google Scholar 

  35. U. Fano, G. Racah: Irreducible Tensorial Sets (Academic, New York 1959)

    Google Scholar 

  36. E. P. Wigner: Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra (Academic, New York 1959) Translation from the 1931 German edition by J. J. Griffin

    MATH  Google Scholar 

  37. J. C. Slater: Quantum Theory of Atomic Structure, Vol. 2 (McGraw-Hill, New York 1960)

    MATH  Google Scholar 

  38. V. Heine: Group Theory and Quantum Mechanics; An Introduction to Its Present Usage (Pergamon, New York 1960)

    Google Scholar 

  39. W. T. Sharp: Thesis, Princeton University (1960) (issued as Report AECL-1098, Atomic Energy of Canada, Chalk River, Ontario (1960))

    Google Scholar 

  40. D. M. Brink, G. R. Satchler: Angular Momentum (Oxford Univ. Press, London 1962)

    MATH  Google Scholar 

  41. M. Hamermesh: Group Theory and Its Applications to Physical Problems (Addison-Wesley, Reading 1962)

    Google Scholar 

  42. G. W. Mackey: The Mathematical Foundations of Quantum Mechanics (Benjamin, New York 1963)

    MATH  Google Scholar 

  43. A. de-Shalit, I. Talmi: Nuclear Shell Theory (Pure and Applied Physics Series), Vol. 14 (Academic, New York 1963)

    Google Scholar 

  44. R. P. Feynman: Feynman Lectures on Physics (Addison-Wesley, Reading 1963) Chap. 34

    Google Scholar 

  45. R. Judd: Operator Techniques in Atomic Spectroscopy (McGraw-Hill, New York 1963)

    Google Scholar 

  46. A. S. Davydov: Quantum Mechanics (Pergamon, London, Addison-Wesley, Reading 1965) Translation from the Russian of Kvantovaya Mekhanika (Moscow, 1963), with revisions and additions by D. ter Haar

    Google Scholar 

  47. I. M. Gel'fand, R. A. Minlos, Z. Ya. Shapiro: Representations of the Rotation and Lorentz Groups and Their Applications (Macmillan, New York 1963) Translated from the Russian by G. Cummins and T. Boddington

    MATH  Google Scholar 

  48. R. Hagedorn: Selected Topics on Scattering Theory: Part IV, Angular Momentum, Lectures given at the Max-Planck-Institut für Physik, Munich (1963)

    Google Scholar 

  49. M. A. Naimark: Linear Representations of the Lorentz Group (Pergamon, New York 1964)

    Google Scholar 

  50. L. C. Biedenharn, H. van Dam: Quantum Theory of Angular Momentum (Academic, New York 1965)

    Google Scholar 

  51. B. L. van der Waerden: Sources of Quantum Mechanics (North-Holland, Amsterdam 1967)

    MATH  Google Scholar 

  52. B. R. Judd: Second Quantization and Atomic Spectroscopy (Johns Hopkins Press, Baltimore 1967)

    Google Scholar 

  53. N. Vilenkin: Special Functions and the Theory of Group Representations, Vol. 22, Translated from the Russian Am. Math. Soc. Transl. (Amer. Math. Soc., Providence, 1968)

    Google Scholar 

  54. J. D. Talman: Special Functions: A Group Theoretic Approach (Benjamin, New York 1968) Based on E. P. Wigner's lectures (see [2.3])

    MATH  Google Scholar 

  55. B. G. Wybourne: Symmetry Principles and Atomic Spectroscopy (Wiley-Interscience, New York 1970)

    Google Scholar 

  56. E. A. El Baz, B. Castel: Graphical Methods of Spin Algebras in Atomic, Nuclear, and Particle Physics (Dekker, New York 1972)

    Google Scholar 

  57. R. Gilmore: Lie Groups, Lie Algebras, and Some of Their Applications (Wiley, New York 1974)

    MATH  Google Scholar 

  58. D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskiǐ: Quantum Theory of Angular Momentum (Nauka, Leningrad 1975) (in Russian)

    Google Scholar 

  59. R. D. Cowan: The Theory of Atomic Structure and Spectra (Univ. Calif. Press, Berkeley 1981)

    Google Scholar 

  60. R. N. Zare: Angular Momentum (Wiley-Interscience, New York 1988)

    Google Scholar 

  61. G. E. Andrews, R. A. Askey, R. Roy: Special Functions. In: Encyclopidia of Mathematics and Its Applications, Vol. 71, ed. by G.-C. Rota (Cambridge Univ. Press, Cambridge 1999)

    Google Scholar 

  62. P. Gordan: Über das Formensystem binärer Formen (Teubner, Leipzig 1875)

    Google Scholar 

  63. W. Heisenberg: Z. Phys. 33, 879 (1925)

    Article  ADS  Google Scholar 

  64. M. Born, P. Jordan: Z. Phys. 34, 858 (1925)

    Article  ADS  Google Scholar 

  65. P. A. M. Dirac: Proc. Soc. A 109, 642 (1925)

    Article  ADS  Google Scholar 

  66. M. Born, W. Heisenberg, P. Jordan: Z. Phys. 35, 557 (1926)

    Article  ADS  Google Scholar 

  67. W. Pauli: Z. Phys. 36, 336 (1926)

    Article  ADS  Google Scholar 

  68. E. P. Wigner: Z. Phys. 43, 624 (1927)

    Article  ADS  Google Scholar 

  69. E. P. Wigner: Z. Phys. 45, 601 (1927)

    Article  ADS  Google Scholar 

  70. C. Eckart: Rev. Mod. Phys. 2, 305 (1930)

    Article  ADS  Google Scholar 

  71. E. P. Wigner: Göttinger Nachr., Math.-Phys. 546, (1932)

    Google Scholar 

  72. J. H. Van Vleck: Phys. Rev. 47, 487 (1935)

    Article  ADS  MATH  Google Scholar 

  73. E. P. Wigner: On the Matrices which Reduce the Kronecker Products of Representations of S. R. Groups, 1940 (unpublished). In: Quantum Theory of Angular Momentum, ed. by L. C. Biedenharn, H. van Dam (Academic, New York 1965) pp. 87-133

    Google Scholar 

  74. G. Racah: Phys. Rev. 62, 438 (1942)

    Article  ADS  Google Scholar 

  75. G. Racah: Phys. Rev. 63, 367 (1943)

    Article  ADS  Google Scholar 

  76. I. M. Gel'fand, M. L. Tseitlin: Dokl. Akad. Nauk SSSR 71, 825 (1950)

    MATH  Google Scholar 

  77. J. H. Van Vleck: Rev. Mod. Phys. 23, 213 (1951)

    Article  ADS  MATH  Google Scholar 

  78. H. A. Jahn: Proc. R. Soc. A 205, 192 (1951)

    Article  ADS  MATH  Google Scholar 

  79. L. C. Biedenharn, J. M. Blatt, M. E. Rose: Rev. Mod. Phys. 24, 249 (1952)

    Article  ADS  MATH  Google Scholar 

  80. L. C. Biedenharn: Notes on Multipole Fields, Lecture notes at Yale University, New Haven 1952 (unpublished)

    Google Scholar 

  81. J. P. Elliott: Proc. R. Soc. A 218, 345 (1953)

    Article  ADS  Google Scholar 

  82. L. C. Biedenharn: J. Math. Phys. 31, 287 (1953)

    MathSciNet  MATH  Google Scholar 

  83. H. A. Jahn, J. Hope: Phys. Rev. 93, 318 (1954)

    Article  ADS  MATH  Google Scholar 

  84. T. Regge: Nuovo Cimento 10, 544 (1958)

    Article  MATH  Google Scholar 

  85. T. Regge: Nuovo Cimento 11, 116 (1959)

    Article  Google Scholar 

  86. V. Bargmann: Commun. Pure Appl. Math. 14, 187 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  87. A. Giovannini, D. A. Smith: Spectroscopic and Group Theoretic Methods in Physics (Racah Memorial Volume), ed. by F. Block, S. G. Cohen, A. de-Shalit, S. Sambursky, I. Talmi (Wiley-Interscience, New York 1968) pp. 89-97

    Google Scholar 

  88. V. Bargmann: Rev. Mod. Phys. 34, 829 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. L. Michel: Lecture Notes in Physics: Group Representations in Mathematics and Physics, Battelle Recontres, ed. by V. Bargmann (Springer, Berlin, Heidelberg 1970) pp. 36-143

    Google Scholar 

  90. A. C. T. Wu: J. Math. Phys. 13, 84 (1972)

    Article  ADS  MATH  Google Scholar 

  91. Ya. A. Smorodinskiĭ, L. A. Shelepin: Sov. Phys. Usp. 15, 1 (1972)

    Article  ADS  Google Scholar 

  92. Ya. A. Smorodinskiĭ, L. A. Shelepin: Usp. Fiz. Nauk 106, 3 (1972)

    Google Scholar 

  93. L. A. Shelepin: Invariant algebraic methods and symmetric analysis of cooperative phenomena. In: Group-Theoretical Methods in Physics, ed. by D. V. Skobel'tsyn (Fourth Internat. Collog., Nijmegen 1975) pp. 1-109 A special research report translated from the Russian by Consultants Bureau, New York, London.

    Google Scholar 

  94. Ya. A. Smorodinskiǐ: Sov. Phys. JETP 48, 403 (1978)

    ADS  Google Scholar 

  95. I. M. Gel'fand, M. I. Graev: Dokl. Math. 33, 336 (2000) Tranl. from Dokl. Akad. Nauk 372, 151 (2000)

    Google Scholar 

Download references

Acknowledgements

This contribution on angular momentum theory is dedicated to Lawrence C. Biedenharn, whose tireless and continuing efforts in bringing understanding and structure to this complex subject is everywhere imprinted.

We also wish to acknowledge the many contributions of H. W. Galbraith and W. Y. C. Chen in sorting out the significance of results found in Schwinger [2.20]. The Supplement is dedicated to the memory of Brian G. Wybourne, whose contributions to symmetry techniques and angular momentum theory, both abstract and applied to physical systems, was monumental.

The author expresses his gratitude to Debi Erpenbeck, whose artful mastery of TEX and scrupulous attention to detail allowed the numerous complex relations to be displayed in two-column format.

Thanks are also given to Professors Brian Judd and Gordon Drake for the opportunity to make this contribution.

Author's note. It is quite impossible to attribute credits fairly in this subject because of its diverse origins across all areas of physics, chemistry, and mathematics. Any attempt to do so would likely be as misleading as it is informative. Most of the material is rooted in the very foundations of quantum theory itself, and the physical problems it addresses, making it still more difficult to assess unambiguous credit of ideas. Pragmatically, there is also the problem of confidence in the detailed correctness of complicated relationships, which prejudices one to cite those relationships personally checked. This accounts for the heavy use of formulas from [2.1], which is, by far, the most often used source. But most of that material itself is derived from other primary sources, and an inadequate attempt was made there to indicate the broad base of origins. While one might expect to find in a reference book a comprehensive list of credits for most of the formulas, it has been necessary to weigh the relative merits of presenting a mature subject from a viewpoint of conceptual unity versus credits for individual contributions. The first position was adopted. Nonetheless, there is an obligation to indicate the origins of a subject, noting those works that have been most influential in its developments. The list of textbooks and seminal articles given in the references is intended to serve this purpose, however inadequately.

Excerpts and Fig. 2.1 are reprinted from Biedenharn and Louck [2.1] with permission of Cambridge University Press. Tables 2.2-2.4 have been adapted from Edmonds [2.18] by permission of Princeton University Press. Thanks are given for this cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Louck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Louck, J. (2006). Angular Momentum Theory. In: Drake, G. (eds) Springer Handbook of Atomic, Molecular, and Optical Physics. Springer Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-0-387-26308-3_2

Download citation

Publish with us

Policies and ethics