Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Hyperfine structure in atomic and molecular spectra is a result of the interaction between electronic degrees of freedom and nuclear properties other than the dominant one, the nuclear Coulomb field. It includes splittings of energy levels (and thus of spectral lines) from magnetic dipole and electric quadrupole interactions (and higher multipoles, on occasion). Isotope shifts are experimentally entangled with hyperfine structure, and the so-called field effect in the isotope shift can be naturally included as part of hyperfine structure. Studies of hyperfine structure can be used to probe nuclear properties, but they are an equally important probe of the structure of atomic systems, providing especially good tests of atomic wave functions near the nucleus. There are also isotope shifts owing to the mass differences between different nuclear species, and the study of these shifts provides useful atomic information, especially about correlations between electrons.

Hyperfine effects are usually small and often, but not always, it is sufficient to consider only diagonal matrix elements for the atomic or molecular system and for the nuclear system. In some cases, however, matrix elements off-diagonal in the atomic space, even though small, can be of importance; one possible result is to cause admixtures sufficient to make normally forbidden transitions possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

SMS:

specific mass shift

References

  1. H. B. G. Casimir: On the Interaction Between Atomic Nuclei and Electrons (Teyler's Tweede Genootschap, Haarlem 1963)

    MATH  Google Scholar 

  2. H. B. G. Casimir: On the Interaction Between Atomic Nuclei and Electrons (Freeman, San Francisco 1936)

    MATH  Google Scholar 

  3. L. Pauling, S. Goudsmit: The Structure of Line Spectra (McGraw Hill, New York 1930)

    MATH  Google Scholar 

  4. G. Herzberg: Atomic Spectra and Atomic Structure, 1st and 2nd edn. (Prentice-Hall and Dover, New York 1937 and 1944)

    Google Scholar 

  5. G. Herzberg: Molecular Spectra and Molecular Structure, I. Spectra of Diatomic Molecules, 2nd edn. (Van Nostrand, Princeton 1950)

    Google Scholar 

  6. H. Kopfermann: Nuclear Moments (Academic, New York 1958)

    Google Scholar 

  7. N. F. Ramsey: Molecular Beams (Clarendon, Oxford 1956)

    Google Scholar 

  8. J. C. Slater: Quantum Theory of Atomic Structure, Vol. II (McGraw-Hill, New York 1960)

    MATH  Google Scholar 

  9. I. I. Sobelman: Introduction to the Theory of Atomic Spectra (Pergamon, London 1972)

    Google Scholar 

  10. H. G. Kuhn: Atomic Spectra, 1st and 2nd edn. (Academic, New York 1962 and 1969)

    Google Scholar 

  11. A. Corney: Atomic and Laser Spectroscopy (Clarendon, Oxford 1977)

    Google Scholar 

  12. M. Weissbluth: Atoms and Molecules (Academic, New York 1978)

    Google Scholar 

  13. I. I. Sobelman: Atomic Spectra and Radiative Transitions (Springer, Berlin, Heidelberg 1979)

    Google Scholar 

  14. H. Haken, H. C. Wolf: Atomic and Quantum Physics (Springer, Berlin, Heidelberg 1984)

    Google Scholar 

  15. L. Armstrong, Jr.: Theory of the Hyperfine Structure of Free Atoms (Wiley, New York 1971)

    Google Scholar 

  16. W. H. King: Isotope Shifts in Atomic Spectra (Plenum, New York 1984)

    Google Scholar 

  17. I. Lindgren, J. Morrison: Atomic Many-Body Theory (Springer, Berlin, Heidelberg 1982)

    Google Scholar 

  18. J. Bauche, R.-J. Champeau: Adv. At. Mol. Opt. Phys. 12, 39 (1976)

    Google Scholar 

  19. K. Heilig, A. Steudel: New developments of classical optical spectroscopy. In: Progress in Atomic Spectroscopy, Part A, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York 1978) pp. 263-328

    Google Scholar 

  20. V. W. Hughes, B. Bederson, V. W. Cohen, F. M. J. Pichanik (Eds.): Atomic Physics (Plenum, New York 1969)articles by H. M. Foley, pp. 509-522, and H. H. Stroke, pp. 523-550

    Google Scholar 

  21. J. C. Zorn, R. R. Lewis, M. K. Weiss (Eds.): Atomic Physics, AIP Conf. Proc. 233 (American Institute of Physics, New York 1991)

    Google Scholar 

  22. H. Walther, T. W. Hänsch, B. Neizert: Atomic Physics, AIP Conf. Proc. 275 (American Institute of Physics, New York 1993)

    Google Scholar 

  23. J. Hüfner, F. Scheck, C. S. Wu: Muon Phys. 1, 201 (1977)

    Google Scholar 

  24. R. C. Barrett: Muon Phys. 1, 309-322 (1977)

    Google Scholar 

  25. R. C. Barrett, D. Jackson: Nuclear Sizes and Structure (Oxford Univ. Press, Oxford 1977)

    Google Scholar 

  26. K. Pachucki: Phys. Rev. A 63, 032508 (2001)

    Article  ADS  Google Scholar 

  27. G. Backenstoss: Ann. Rev. Nucl. Sci. 20, 467 (1970)

    Article  ADS  Google Scholar 

  28. J. Konijn: An improved parametrization of the optical potential for pionic atoms. In: Pions in Nuclei, ed. by E. Oset, M. J. Vicente Vacas, C. Garcia Recio (World Scientific, Singapore 1992) p. 303

    Google Scholar 

  29. C. J. Batty: Nucl. Phys. A 508, 89C (1990)

    Article  ADS  Google Scholar 

  30. G. Backenstoss: Comtemp. Phys. 30, 433 (1989)

    ADS  Google Scholar 

  31. V. I. Korobov, D. Bakalov: J. Phys. B 34, L519 (2001)

    Article  ADS  Google Scholar 

  32. P. Raghavan: At. Data Nucl. Data Tables 42, 189 (1989)

    Article  ADS  Google Scholar 

  33. M. J. Martin, J. K. Tuli (Eds.): Nuclear Data Sheets (Academic, New York 1995) Nos. 74-76; each issue contains a guide to the most recent compilation for each atomic mass number

    Google Scholar 

  34. C. M. Lederer, V. S. Shirley: Table of Isotopes, 7th edn. (Wiley, New York 1978)

    Google Scholar 

  35. D. M. Brink, G. R. Satchler: Angular Momentum, 2nd edn. (Clarendon Press, Oxford 1968)

    Google Scholar 

  36. C. Schwartz: Phys. Rev. 97, 380 (1955)

    Article  MATH  ADS  Google Scholar 

  37. D. S. Hughes, C. Eckart: Phys. Rev. 36, 694 (1930)

    Article  ADS  Google Scholar 

  38. G. W. F. Drake, Z.-C. Yan: Phys. Rev. A 46, 2378 (1992)

    Article  ADS  Google Scholar 

  39. A. P. Stone: Proc. Phys. Soc. Lond. 77, 786 (1961)

    Article  ADS  Google Scholar 

  40. A. P. Stone: Proc. Phys. Soc. Lond. 81, 868 (1963)

    Article  ADS  Google Scholar 

  41. J. R. Lawall. Ping Zhao, F. M. Pipkin: Phys. Rev. Lett. 66, 592 (1991)

    Article  ADS  Google Scholar 

  42. D. Shiner, R. Dixson, V. Vedantham: Phys. Rev. Lett. 74, 3553 (1995)

    Article  ADS  Google Scholar 

  43. F. Marin, F. Minardi, F. S. Pavone, G. W. F. Drake: Z. Phys. D 32, 285 (1995)

    Article  ADS  Google Scholar 

  44. G. W. F. Drake: High-precision calculations for the Rydberg states of helium. In: Long Range Casimir Forces: Theory and Recent Experiments on Atomic Systems, ed. by F. S. Levin, D. A. Micha (Plenum, New York 1993) pp. 196-199 For isotope shifts in Li+, see also [16.10]

    Google Scholar 

  45. P. Villemoes et al.: Phys. Rev. A 51, 2838 (1995)

    Article  ADS  Google Scholar 

  46. E. C. Seltzer: Phys. Rev. 188, 1916 (1969)

    Article  ADS  Google Scholar 

  47. G. Fricke et al.: At. Data Nucl. Data Tables 60, 177 (1995)

    Article  ADS  Google Scholar 

  48. F. Boehm, P. L. Lee: At. Data Nucl. Data Tables 37, 455 (1987)

    Article  Google Scholar 

  49. S. A. Blundell et al.: J. Phys. B 20, 3663 (1987)

    Article  ADS  Google Scholar 

  50. W. H. King: J. Opt. Soc. Am. 53, 638 (1963)

    Article  Google Scholar 

  51. P. Pyykkö: Z. Naturforsch. 47a, 189 (1992)

    Google Scholar 

  52. R. F. Casten: Nuclear Structure from a Simple Perspective (Oxford Univ. Press, Oxford 1990) pp. 296-300

    Google Scholar 

  53. W. Dankwort, J. Ferch, H. Gebauer: Z. Phys. 267, 229 (1974)

    Article  ADS  Google Scholar 

  54. O. Becker et al.: Phys. Rev. A 48, 3546 (1993)

    Article  ADS  Google Scholar 

  55. B. Castel, I. S. Towner: Modern Theories of Nuclear Moments (Clarendon Press, Oxford 1990)

    Google Scholar 

  56. T. Yamazaki et al.: Phys. Rev. Lett. 25, 547 (1970)

    Article  ADS  Google Scholar 

  57. K. Pachucki: J. Phys. B 34, 3357 (2001)

    ADS  Google Scholar 

  58. K. Pachucki: Phys. Rev. A 66, 062501 (2002)

    Article  ADS  Google Scholar 

  59. V. Jaccarino, J. G. King, R. A. Satten, H. H. Stroke: Phys. Rev. 94, 1798 (1954)

    Article  ADS  Google Scholar 

  60. P. Kusch, T. G. Eck: Phys. Rev. 94, 1799 (1954)

    Article  ADS  Google Scholar 

  61. M. Mizushima: Quantum Mechanics of Atomic Spectra and Atomic Structure (Benjamin, New York 1970) Sect. 9-10

    Google Scholar 

  62. W. J. Childs: Phys. Rev. A 44, 1523 (1991)

    Article  ADS  Google Scholar 

  63. F. Bitter: Phys. Rev. 76, 150 (1949)

    Article  ADS  Google Scholar 

  64. A. Bohr, V. F. Weisskopf: Phys. Rev. 77, 94 (1950)

    Article  MATH  ADS  Google Scholar 

  65. S. Büttgenbach: Hyperfine Interactions 20, 1 (1984)

    Article  ADS  Google Scholar 

  66. G. Savard, G. Werth: Ann. Rev. Nucl. Part. Sci. 50, 119 (2000)

    Article  ADS  Google Scholar 

  67. R. A. Sorensen: Am. J. Phys. 35, 1078 (1967)

    Article  ADS  Google Scholar 

  68. H. Iimura et al.: Phys. Rev. C 68, 054328 (2003)

    Article  ADS  Google Scholar 

  69. P. Beiersdorfer et al.: Nucl. Instrum. Methods Physics Research B 205, 62 (2003)

    Article  ADS  Google Scholar 

  70. E. Riis, A. G. Sinclair, O. Paulsen, G. W. F. Drake, W. R. C. Rowley, A. P. Levick: Phys. Rev. A 49, 207 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Emery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Emery, G. (2006). Hyperfine Structure. In: Drake, G. (eds) Springer Handbook of Atomic, Molecular, and Optical Physics. Springer Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-0-387-26308-3_16

Download citation

Publish with us

Policies and ethics