Skip to main content

Soft materials for high frequency electronics

  • Reference work entry
Magnetism
  • 1798 Accesses

Abstract

Electronics is different from power electrical engineering in two major respects. The range of frequencies involved is typically restricted to 1 kHz in power electrical engineering, whereas it extends to the microwave regime, beyond 1 GHz, in electronics. The excitation level of magnetic materials is near saturation in power electriccd engineering, leading to very large non-linear effects, while it remains usually much lower in electronics, where the linear regime prevails since the signals have low amplitude. While power electrical engineering mainly uses ferromagnetic alloy sheets, good conductors of electricity, the favorite materials of electronics are ferrimagnetic oxides, with insulator or semiconductor electrical character.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Irving, N. Mullineux, Mathematics in Physics and Engineering, (1959) Academic Press, New York-London, 592.

    MATH  Google Scholar 

  2. HA. Kramers, Phys. Z. 30 (1929) 522; R.de L. Krönig, J. Opt. Soc. Amer. 12 (1926) 547.

    Google Scholar 

  3. J.F. Nye, Physical Properties of Crystals: their representation by tensors and matrices (1987) Oxford Univ. Press, New York.

    Google Scholar 

  4. R.A. Waldron, Ferrites: principes et applications aux hyperfréquences (1964) Dunod, Paris.

    Google Scholar 

  5. J.C. Mallinson, The foundation of magnetic recording (1987) Academic Press, New York-London.

    Google Scholar 

  6. T. A. Gilbert, Equation of motion of magnetization. Armor Research Foundation Rep. No 11 (1955) Chicago, USA.

    Google Scholar 

  7. D. Polder, Phil. Mag. 40 (1949) 100.

    Google Scholar 

  8. J.L. Snoek, Physica 14 (1948) 207.

    Article  ADS  Google Scholar 

  9. W. Döring, Z. fĂ¼r Naturforschung 3a (1948) 374.

    Google Scholar 

  10. CM. Srivastava, S.N. Shringi, R.G. Srivastava, G. Nanadikar, Phys. Rev. B14 (1976) 2052.

    Google Scholar 

  11. C.M. Srivastava, O. Prakash, R. Ayiar, Phys. Stat. Sol. A64 (1981) 787.

    Article  ADS  Google Scholar 

  12. L. NĂ©el, J. Phys. Rod. 13 (1952) 249.

    Article  ADS  Google Scholar 

  13. L. NĂ©el, J. Phys. Rod. 15 (1954) 225.

    Article  MATH  ADS  Google Scholar 

  14. M. Guyot, T. Merceron, V. Gagan, A. Mersekher, Phys. stat. Sol. A106 (1988) 595

    Article  ADS  Google Scholar 

  15. A. Globus, J. Phys. 38, CI.-1 (1977).

    Google Scholar 

  16. M.T. Johnson, E.G. Wisser, IEEE Trans. Magn. 26 (1990) 1987.

    Article  ADS  Google Scholar 

  17. M. Guyot, V. Cagan, J. Magn. Magn. Mater. 17 (1982) 202.

    Article  ADS  Google Scholar 

  18. J. Smit, Proc. 4th Intern. Conf. on ferrites, San Francisco, part. I (1984), F.F.U. Wang ed. American Ceramic Society, Columbus, USA.

    Google Scholar 

  19. D.J. Bergman, Phys. Report 43 (1978) 377.

    Article  MathSciNet  ADS  Google Scholar 

  20. R. Landauer, in Electrical transport and optical properties of inhomogeneous media, AIP Conf. Proc. NO 40 (1978). JC. Garland & D.B. Tanner Eds, AIP, Woodbury, New York.

    Google Scholar 

  21. J.P. Bouchaud, P.G. Zerah, Phys. Rev. Lett. 63 (1989) 1000.

    Article  ADS  Google Scholar 

  22. J.P. Bouchaud, P.G. Zerah, J. Appl. Phys. 67 (1990) 5512.

    Article  ADS  Google Scholar 

  23. C. Kittel, Phys. Rev. 73 (1948) 155.

    Article  ADS  Google Scholar 

  24. L.R. Walker, J. Appl. Phys. 29 (1958) 318.

    Article  ADS  Google Scholar 

  25. D. Stancil, Theory of magnetostatic waves (1993) Springer Verlag, Berlin-New York.

    Google Scholar 

  26. M Sparks, Ferromagnetic relaxation theory (1964) Mcgraw-Hill, New York.

    Google Scholar 

  27. C.E. Patton, Microwave resonance and relaxation in[30], 575.

    Google Scholar 

  28. J. Smit, H.P. Wijn, Ferrites (1959) John Wiley & Sons, New York.

    Google Scholar 

  29. W. von Aulock, Handbook of microwave ferrite materials (1965) Academic Press, New York-London.

    Google Scholar 

  30. D.J. Craik, Magnetic oxides (1975) John Wiley & Sons, New York.

    Google Scholar 

  31. R. Valenzuela, Magnetic ceramics (1994) Cambridge Univ. Press.

    Book  Google Scholar 

  32. C. Guillaud, Proc. IEEE 104B (1957) 165.

    Google Scholar 

  33. J. Smit, H.P.J. Wijn, Adv. Electr.and Electr. Physics 6 (1954) 69.

    Google Scholar 

  34. P.I. Slick in Ferromagnetic materials, Vol. 2 (1980) 189, E.P. Wohlfarth Ed., North Holland, Amsterdam.

    Google Scholar 

  35. J. Nicolas,.ibid..

    Google Scholar 

  36. E.F. Bertaut, F. Forrat, C.R. Acad. Sci. Paris 242 (1956) 382.

    Google Scholar 

  37. J. Helszajn, YIG Resonators and Filters (1985) John Wiley & Sons, New York.

    Google Scholar 

  38. C. Vassalo, Electromagnétisme classique dans la matière (1980) Dunod, Paris.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this entry

Cite this entry

Peuzin, JC. (2005). Soft materials for high frequency electronics. In: du Trémolet de Lacheisserie, É., Gignoux, D., Schlenker, M. (eds) Magnetism. Springer, New York, NY. https://doi.org/10.1007/978-0-387-23063-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-23063-4_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-23000-9

  • Online ISBN: 978-0-387-23063-4

Publish with us

Policies and ethics