Skip to main content

Statistical Methods in GeneticEpidemiology

  • Reference work entry
Handbook of Epidemiology

Abstract

Genetic epidemiology combines the scientific disciplines of human genetics, epidemiology, and biostatistics and has close relationships with the fields of medicine, molecular genetics, and molecular epidemiology. The latter traditionally has been concerned more with the study of molecular markers of exposure, susceptibility, and disease (see chapter Molecular Epidemiology of this handbook). The field is also a specialized subdiscipline of biometry and mathematical population genetics with major biometrical contributions to human genetics and the development of statistical methods including segregation, linkage, and association analysis; simulation methods; and computer algorithms. Rather than focusing on cells or molecules (as in molecular genetics) or on individual patients (as in clinical genetics), genetic epidemiology research is conducted using populations or large series of systematically collected families (Khoury et al. 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth HF, Unwin J, Jamison DL, Cordell HJ (2011) Investigation of maternal effects, maternal-fetal interactions and parent-of-origin effects (imprinting), using mothers and their offspring. Genet Epidemiol 35:19–45

    PubMed Central  PubMed  Google Scholar 

  • Albert PS, Ratnasinghe D, Tangrea J, Wacholder S (2001) Limitations of the case-only design for identifying gene-environment interactions. Am J Epidemiol 154:687–693

    PubMed  CAS  Google Scholar 

  • Altshuler D, Daly MJ, Lander ES (2008) Genetic mapping in human disease. Science 322:881–888

    PubMed Central  PubMed  CAS  Google Scholar 

  • Basu S, Pan W (2011) Comparison of statistical tests for disease association with rare variants. Genet Epidemiol 35:606–619

    PubMed Central  PubMed  Google Scholar 

  • Browning BL, Browning SR (2009) A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 84:210–223

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cantor RM, Lange K, Sinsheimer JS (2010) Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am J Hum Genet 86:6–22

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, Thomas G, Hirschhorn JN, Abecasis G, Altshuler D, Bailey-Wilson JE, Brooks LD, Cardon LR, Daly M, Donnelly P, Fraumeni JF Jr, Freimer NB, Gerhard DS, Gunter C, Guttmacher AE, Guyer MS, Harris EL, Hoh J, Hoover R, Kong CA, Merikangas KR, Morton CC, Palmer LJ, Phimister EG, Rice JP, Roberts J, Rotimi C, Tucker MA, Vogan KJ, Wacholder S, Wijsman EM, Winn DM, Collins FS (2007) Replicating genotype-phenotype associations. Nature 447:655–660

    PubMed  CAS  Google Scholar 

  • Chatterjee N, Park J-H, Caporaso N, Gail MH (2011) Predicting the future of genetic risk prediction. Cancer Epidemiol Biomark Prev 20:3–8

    Google Scholar 

  • Clerget-Darpoux F, Bonaiti-Pellie C, Hochez J (1986) Effects of misspecifying genetic parameters in lod score analysis. Biometrics 42:393–399

    PubMed  CAS  Google Scholar 

  • Conneely KN, Boehnke M (2007) So many correlated tests, so little time! Rapid adjustment of p values for multiple correlated tests. Am J Hum Genet 81:1158–1168

    PubMed Central  PubMed  CAS  Google Scholar 

  • Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923

    PubMed  CAS  Google Scholar 

  • Cornelis MC, Tchetgen Tchetgen EJ, Liang L, Qi L, Chatterjee N, Hu FB, Kraft P (2012) Gene-environment interactions in genome-wide association studies: a comparative study of tests applied to empirical studies of type 2 diabetes. Am J Epidemiol 175:191–202

    PubMed Central  PubMed  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    PubMed  CAS  Google Scholar 

  • Day NE, Simons MJ (1976) Disease susceptibility genes – their identification by multiple case family studies. Tissue Antigens 8:109–119

    PubMed  CAS  Google Scholar 

  • de Bakker PI, Ferreira MA, Jia X, Neale BM, Raychaudhuri S, Voight BF (2008) Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum Mol Genet 17:R122–R128

    PubMed Central  PubMed  Google Scholar 

  • Devlin B, Risch N (1995) A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics 29:311–337

    PubMed  CAS  Google Scholar 

  • Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 55:997–1004

    PubMed  CAS  Google Scholar 

  • Devlin B, Risch N, Roeder K (1996) Disequilibrium mapping: composite likelihood for pairwise disequilibrium. Genomics 36:1–16

    PubMed  CAS  Google Scholar 

  • Ehm MG, Nelson MR, Spurr NK (2005) Guidelines for conducting and reporting whole genome/large-scale association studies. Hum Mol Genet 14:2485–2488

    PubMed  CAS  Google Scholar 

  • Elston RC (1995) Twixt cup and lip: how intractable is the ascertainment problem? Am J Hum Genet 56:15–17

    PubMed Central  PubMed  CAS  Google Scholar 

  • Elston RC (1998) Methods of linkage analysis – and the assumptions underlying them. Am J Hum Genet 63:931–934

    PubMed Central  PubMed  CAS  Google Scholar 

  • Elston RC, Stewart J (1971) A general model for the genetic analysis of pedigrees. Hum Hered 21:523–542

    PubMed  CAS  Google Scholar 

  • Evans DG, Harris R (1992) Heterogeneity in genetic conditions. Q J Med 84:563–565

    PubMed  CAS  Google Scholar 

  • Evans DM, Marchini J, Morris AP, Cardon LR (2006) Two-stage two-locus models in genome-wide association. PLoS Genet 2:e157

    PubMed Central  PubMed  Google Scholar 

  • Excoffier L, Slatkin M (1995) Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 12:921–927

    PubMed  CAS  Google Scholar 

  • Falk CT, Rubinstein P (1987) Haplotype relative risks: an easy reliable way to construct a proper control sample for risk calculations. Ann Hum Genet 51:227–233

    PubMed  CAS  Google Scholar 

  • Freedman ML, Haiman CA, Patterson N, McDonald GJ, Tandon A, Waliszewska A, Penney K, Steen RG, Ardlie K, John EM, Oakley-Girvan I, Whittemore AS, Cooney KA, Ingles SA, Altshuler D, Henderson BE, Reich D (2006) Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proc Natl Acad Sci 103:14068–14073

    PubMed Central  PubMed  CAS  Google Scholar 

  • Freedman ML, Monteiro AN, Gayther SA, Coetzee GA, Risch A, Plass C, Casey G, De Biasi M, Carlson C, Duggan D, James M, Liu P, Tichelaar JW, Vikis HG, You M, Mills IG (2011) Principles for the post-GWAS functional characterization of cancer risk loci. Nat Genet 43:513–518

    PubMed Central  PubMed  CAS  Google Scholar 

  • Futschik A, Schlotterer C (2010) The next generation of molecular markers from massively parallel sequencing of pooled DNA samples. Genetics 186:207–218

    PubMed Central  PubMed  CAS  Google Scholar 

  • Haiman CA, Chen GK, Blot WJ, Strom SS, Berndt SI, Kittles RA, Rybicki BA, Isaacs WB, Ingles SA, Stanford JL, Diver WR, Witte JS, Chanock SJ, Kolb S, Signorello LB, Yamamura Y, Neslund-Dudas C, Thun MJ, Murphy A, Casey G, Sheng X, Wan P, Pooler LC, Monroe KR, Waters KM, Le Marchand L, Kolonel LN, Stram DO, Henderson BE (2011) Characterizing genetic risk at known prostate cancer susceptibility loci in African Americans. PLoS Genet 7:e1001387

    PubMed Central  PubMed  CAS  Google Scholar 

  • Haldane JBS (1919) The combination of linkage values and the calculation of distances between the loci of linked factors. J Genet 8:299–309

    Google Scholar 

  • Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, King MC (1990) Linkage of early-onset familial breast cancer to chromosome 17q21. Science 250:1684–1689

    PubMed  CAS  Google Scholar 

  • Hardy GH (1908) Mendelian proportions in a mixed population. Science 28:49–50

    PubMed  CAS  Google Scholar 

  • Hawkins RD, Hon GC, Ren B (2010) Next-generation genomics: an integrative approach. Nat Rev Genet 11:476–486

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci 106:9362–9367

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hindorff LA, MacArthur J (European Bioinformatics Institute), Wise A, Junkins HA, Hall PN, Klemm AK, Manolio TA (2012) A catalog of published genome-wide association studies. Available at http://www.genome.gov/gwastudies. Accessed 8 July 2012

  • Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common disease and complex traits. Nat Rev Genet 6:95–108

    PubMed  CAS  Google Scholar 

  • Holmans P (1993) Asymptotic properties of affected-sib-pair linkage analysis. Am J Hum Genet 52:362–374

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hu YJ, Lin DY (2010) Analysis of untyped SNPs: maximum likelihood and imputation methods. Genet Epidemiol 34:803–815

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hudson K, Javitt G, Burke W, Byers P (2007) ASHG statement* on direct-to-consumer genetic testing in the united states. Obstet Gynecol 110:1392–1395

    PubMed  Google Scholar 

  • Hudson TJ, Cooper DN (2009) STREGA: a ‘How-To’ guide for reporting genetic associations. Hum Genet 125:117–118

    PubMed  Google Scholar 

  • IGES (2012) International Society for Genetic Epidemiology. http://geneticepi.org/front. Accessed 8 July 2012

  • Ioannidis JP (2007) Non-replication and inconsistency in the genome-wide association setting. Hum Hered 64:203–213

    PubMed  CAS  Google Scholar 

  • Ioannidis JP, Boffetta P, Little J, O’Brien TR, Uitterlinden AG, Vineis P, Balding DJ, Chokkalingam A, Dolan SM, Flanders WD, Higgins JP, McCarthy MI, McDermott DH, Page GP, Rebbeck TR, Seminara D, Khoury MJ (2008) Assessment of cumulative evidence on genetic associations: interim guidelines. Int J Epidemiol 37:120–132

    PubMed  Google Scholar 

  • Janssens AC, Ioannidis JP, van Duijn CM, Little J, Khoury MJ (2011) Strengthening the reporting of genetic risk prediction studies: the grips statement. Genet Med 13:453–456

    PubMed  Google Scholar 

  • Jostins L, Barrett JC (2011) Genetic risk prediction in complex disease. Hum Mol Genet 20:R182–188

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kaye J (2008) The regulation of direct-to-consumer genetic tests. Hum Mol Genet 17:R180–183

    PubMed Central  PubMed  CAS  Google Scholar 

  • Khoury M, Beaty T, Cohen B (1993) Fundamentals of genetic epidemiology. Oxford University Press, Oxford

    Google Scholar 

  • Khoury MJ, Bertram L, Boffetta P, Butterworth AS, Chanock SJ, Dolan SM, Fortier I, Garcia-Closas M, Gwinn M, Higgins JP, Janssens AC, Ostell J, Owen RP, Pagon RA, Rebbeck TR, Rothman N, Bernstein JL, Burton PR, Campbell H, Chockalingam A, Furberg H, Little J, O’Brien TR, Seminara D, Vineis P, Winn DM, Yu W, Ioannidis JP (2009) Genome-wide association studies, field synopses, and the development of the knowledge base on genetic variation and human diseases. Am J Epidemiol 170:269–279

    PubMed Central  PubMed  Google Scholar 

  • Klein RJ, Zeiss C, Chew EY, Tsai J-Y, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J (2005) Complement factor h polymorphism in age-related macular degeneration. Science 308:385–389

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kooperberg C, Leblanc M (2008) Increasing the power of identifying gene x gene interactions in genome-wide association studies. Genet Epidemiol 32:255–263

    PubMed Central  PubMed  Google Scholar 

  • Kraft P, Cox DG (2008) Study designs for genome-wide association studies. Adv Genet 60:465–504

    PubMed  CAS  Google Scholar 

  • Kraft P, Hunter DJ (2009) Genetic risk prediction – are we there yet? N Engl J Med 360:1701–1702

    PubMed  CAS  Google Scholar 

  • Kraft P, Wacholder S, Cornelis MC, Hu FB, Hayes RB, Thomas G, Hoover R, Hunter DJ, Chanock S (2009) Beyond odds ratios – communicating disease risk based on genetic profiles. Nat Rev Genet 10:264–269

    PubMed  CAS  Google Scholar 

  • Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES (1996) Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 58:1347–1363

    PubMed Central  PubMed  CAS  Google Scholar 

  • Laird NM, Lange C (2006) Family-based designs in the age of large-scale gene-association studies. Nat Genet 7:385–394

    CAS  Google Scholar 

  • Lalouel JM, Rao DC, Morton NE, Elston RC (1983) A unified model for complex segregation analysis. Am J Hum Genet 35:816–826

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lander ES, Green P (1987) Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci 84:2363–2367

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lander ES, Schork NJ (1994) Genetic dissection of complex traits. Science 265:2037–2048

    PubMed  CAS  Google Scholar 

  • Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, Willer CJ, Jackson AU, Vedantam S, Raychaudhuri S, Ferreira T, Wood AR, Weyant RJ, Segre AV, Speliotes EK, Wheeler E, Soranzo N, Park JH, Yang J, Gudbjartsson D, Heard-Costa NL, Randall JC, Qi L, Vernon Smith A, Magi R, Pastinen T, Liang L, Heid IM, Luan J, Thorleifsson G, Winkler TW, Goddard ME, Sin Lo K, Palmer C, Workalemahu T, Aulchenko YS, Johansson A, Zillikens MC, Feitosa MF, Esko T, Johnson T, Ketkar S, Kraft P, Mangino M, Prokopenko I, Absher D, Albrecht E, Ernst F, Glazer NL, Hayward C, Hottenga JJ, Jacobs KB, Knowles JW, Kutalik Z, Monda KL, Polasek O, Preuss M, Rayner NW, Robertson NR, Steinthorsdottir V, Tyrer JP, Voight BF, Wiklund F, Xu J, Zhao JH, Nyholt DR, Pellikka N, Perola M, Perry JR, Surakka I, Tammesoo ML, Altmaier EL, Amin N, Aspelund T, Bhangale T, Boucher G, Chasman DI, Chen C, Coin L, Cooper MN, Dixon AL, Gibson Q, Grundberg E, Hao K, Juhani Junttila M, Kaplan LM, Kettunen J, Konig IR, Kwan T, Lawrence RW, Levinson DF, Lorentzon M, McKnight B, Morris AP, Muller M, Suh Ngwa J, Purcell S, Rafelt S, Salem RM, Salvi E, Sanna S, Shi J, Sovio U, Thompson JR, Turchin MC, Vandenput L, Verlaan DJ, Vitart V, White CC, Ziegler A, Almgren P, Balmforth AJ, Campbell H, Citterio L, De Grandi A, Dominiczak A, Duan J, Elliott P, Elosua R, Eriksson JG, Freimer NB, Geus EJ, Glorioso N, Haiqing S, Hartikainen AL, Havulinna AS, Hicks AA, Hui J, Igl W, Illig T, Jula A, Kajantie E, Kilpelainen TO, Koiranen M, Kolcic I, Koskinen S, Kovacs P, Laitinen J, Liu J, Lokki ML, Marusic A, Maschio A, Meitinger T, Mulas A, Pare G, Parker AN, Peden JF, Petersmann A, Pichler I, Pietilainen KH, Pouta A, Ridderstrale M, Rotter JI, Sambrook JG, Sanders AR, Schmidt CO, Sinisalo J, Smit JH, Stringham HM, Bragi Walters G, Widen E, Wild SH, Willemsen G, Zagato L, Zgaga L, Zitting P, Alavere H, Farrall M, McArdle WL, Nelis M, Peters MJ, Ripatti S, van Meurs JB, Aben KK, Ardlie KG, Beckmann JS, Beilby JP, Bergman RN, Bergmann S, Collins FS, Cusi D, den Heijer M, Eiriksdottir G, Gejman PV, Hall AS, Hamsten A, Huikuri HV, Iribarren C, Kahonen M, Kaprio J, Kathiresan S, Kiemeney L, Kocher T, Launer LJ, Lehtimaki T, Melander O, Mosley TH Jr, Musk AW, Nieminen MS, O’Donnell CJ, Ohlsson C, Oostra B, Palmer LJ, Raitakari O, Ridker PM, Rioux JD, Rissanen A, Rivolta C, Schunkert H, Shuldiner AR, Siscovick DS, Stumvoll M, Tonjes A, Tuomilehto J, van Ommen GJ, Viikari J, Heath AC, Martin NG, Montgomery GW, Province MA, Kayser M, Arnold AM, Atwood LD, Boerwinkle E, Chanock SJ, Deloukas P, Gieger C, Gronberg H, Hall P, Hattersley AT, Hengstenberg C, Hoffman W, Lathrop GM, Salomaa V, Schreiber S, Uda M, Waterworth D, Wright AF, Assimes TL, Barroso I, Hofman A, Mohlke KL, Boomsma DI, Caulfield MJ, Cupples LA, Erdmann J, Fox CS, Gudnason V, Gyllensten U, Harris TB, Hayes RB, Jarvelin MR, Mooser V, Munroe PB, Ouwehand WH, Penninx BW, Pramstaller PP, Quertermous T, Rudan I, Samani NJ, Spector TD, Volzke H, Watkins H, Wilson JF, Groop LC, Haritunians T, Hu FB, Kaplan RC, Metspalu A, North KE, Schlessinger D, Wareham NJ, Hunter DJ, O’Connell JR, Strachan DP, Wichmann HE, Borecki IB, van Duijn CM, Schadt EE, Thorsteinsdottir U, Peltonen L, Uitterlinden AG, Visscher PM, Chatterjee N, Loos RJ, Boehnke M, McCarthy MI, Ingelsson E, Lindgren CM, Abecasis GR, Stefansson K, Frayling TM, Hirschhorn JN (2010) Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467:832–838

    Google Scholar 

  • Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, Axelrod N, Huang J, Kirkness EF, Denisov G, Lin Y, MacDonald JR, Pang AW, Shago M, Stockwell TB, Tsiamouri A, Bafna V, Bansal V, Kravitz SA, Busam DA, Beeson KY, McIntosh TC, Remington KA, Abril JF, Gill J, Borman J, Rogers YH, Frazier ME, Scherer SW, Strausberg RL, Venter JC (2007) The diploid genome sequence of an individual human. PLoS Biol 5:e254

    PubMed Central  PubMed  Google Scholar 

  • Lewinger JP, Conti DV, Baurley JW, Triche TJ, Thomas DC (2007) Hierarchical bayes prioritization of marker associations from a genome-wide association scan for further investigation. Genet Epidemiol 31:871–882

    PubMed  Google Scholar 

  • Li D, Conti DV (2009) Detecting gene-environment interactions using a combined case-only and case-control approach. Am J Epidemiol 169:497–504

    PubMed Central  PubMed  Google Scholar 

  • Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR (2010) Mach: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol 34:816–834

    PubMed Central  PubMed  Google Scholar 

  • Lin DY, Zeng D (2010) Meta-analysis of genome-wide association studies: no efficiency gain in using individual participant data. Genet Epidemiol 34:60–66

    PubMed  CAS  Google Scholar 

  • Little J, Higgins JP, Ioannidis JP, Moher D, Gagnon F, von Elm E, Khoury MJ, Cohen B, Davey-Smith G, Grimshaw J, Scheet P, Gwinn M, Williamson RE, Zou GY, Hutchings K, Johnson CY, Tait V, Wiens M, Golding J, van Duijn C, McLaughlin J, Paterson A, Wells G, Fortier I, Freedman M, Zecevic M, King R, Infante-Rivard C, Stewart A, Birkett N (2009) Strengthening the reporting of genetic association studies (STREGA): an extension of the STROBE statement. PLoS Med 6:e22

    PubMed  Google Scholar 

  • Machiela MJ, Chen C-Y, Chen C, Chanock SJ, Hunter DJ, Kraft P (2011) Evaluation of polygenic risk scores for predicting breast and prostate cancer risk. Genet Epidemiol 35(6):506–514

    PubMed  Google Scholar 

  • MacInnis RJ, Antoniou AC, Eeles RA, Severi G, Al Olama AA, McGuffog L, Kote-Jarai Z, Guy M, O’Brien LT, Hall AL, Wilkinson RA, Sawyer E, Ardern-Jones AT, Dearnaley DP, Horwich A, Khoo VS, Parker CC, Huddart RA, Van As N, McCredie MR, English DR, Giles GG, Hopper JL, Easton DF (2011) A risk prediction algorithm based on family history and common genetic variants: application to prostate cancer with potential clinical impact. Genet Epidemiol 35:549–556

    PubMed Central  PubMed  Google Scholar 

  • Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM (2009) Finding the missing heritability of complex diseases. Nature 461:747–753

    PubMed Central  PubMed  CAS  Google Scholar 

  • Marchini J, Howie B (2010) Genotype imputation for genome-wide association studies. Nat Rev Genet 11:499–511

    PubMed  CAS  Google Scholar 

  • Marchini J, Donnelly P, Cardon LR (2005) Genome-wide strategies for detecting multiple loci that influence complex diseases. Nat Genet 37:413–417

    PubMed  CAS  Google Scholar 

  • Mardis ER (2006) Anticipating the 1,000 dollar genome. Genome Biol 7:112

    PubMed Central  PubMed  Google Scholar 

  • Maynard Smith J (1989) Evolutionary genetics. Oxford University Press, Oxford

    Google Scholar 

  • McCarthy MI, Hirschhorn JN (2008) Genome-wide association studies: potential next steps on a genetic journey. Hum Mol Genet 17:R156–165

    PubMed Central  PubMed  CAS  Google Scholar 

  • McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, Hirschhorn JN (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9:356–369

    PubMed  CAS  Google Scholar 

  • McKusick VA (1998) Mendelian inheritance in man. Catalogs of human genes and genetic disorders, 12th edn. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Mendel GJ (1865) Versuche über Pflanzenhybriden. Verhandlungen des Naturforschenden Vereins, Brünn

    Google Scholar 

  • Morton NE (1955) Sequential tests for the detection of linkage. Am J Hum Genet 7:277–318

    PubMed Central  PubMed  CAS  Google Scholar 

  • Morton NE, MacLean CJ (1974) Analysis of family resemblance. 3. Complex segregation of quantitative traits. Am J Hum Genet 26:489–503

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mukherjee B, Chatterjee N (2008) Exploiting gene-environment independence for analysis of case-control studies: an empirical Bayes-type shrinkage estimator to trade-off between bias and efficiency. Biometrics 64:685–694

    PubMed  Google Scholar 

  • Mukherjee B, Ahn J, Gruber SB, Chatterjee N (2012) Testing gene-environment interaction in large-scale case-control association studies: possible choices and comparisons. Am J Epidemiol 175:177–190

    PubMed Central  PubMed  Google Scholar 

  • Murcray CE, Lewinger JP, Conti DV, Thomas DC, Gauderman WJ (2011) Sample size requirements to detect gene-environment interactions in genome-wide association studies. Genet Epidemiol 35:201–210

    PubMed Central  PubMed  Google Scholar 

  • Newcombe PJ, Reck BH, Sun J, Platek GT, Verzilli C, Kader AK, Kim S-T, Hsu F-C, Zhang Z, Zheng SL, Mooser VE, Condreay LD, Spraggs CF, Whittaker JC, Rittmaster RS, Xu J (2012) A comparison of Bayesian and frequentist approaches to incorporating external information for the prediction of prostate cancer risk. Genet Epidemiol 36:71–83

    PubMed Central  PubMed  Google Scholar 

  • Newman B, Austin MA, Lee M, King MC (1988) Inheritance of human breast cancer: evidence for autosomal dominant transmission in high-risk families. Proc Natl Acad Sci 85:3044–3048

    PubMed Central  PubMed  CAS  Google Scholar 

  • OMIM (2012) Online Inheritance In Man. http://www.ncbi.nlm.nih.gov/omim/. Accessed 8 July 2012

  • Ott J (1999) Analysis of human genetic linkage, 3rd edn. Johns Hopkins, Baltimore

    Google Scholar 

  • Patterson N, Hattangadi N, Lane B, Lohmueller KE, Hafler DA, Oksenberg JR, Hauser SL, Smith MW, O’Brien SJ, Altshuler D, Daly MJ, Reich D (2004) Methods for high-density admixture mapping of disease genes. Am J Hum Genet 74:979–1000

    PubMed Central  PubMed  CAS  Google Scholar 

  • Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genet 2:e190

    PubMed Central  PubMed  Google Scholar 

  • Pe’er I, Yelensky R, Altshuler D, Daly MJ (2008) Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet Epidemiol 32:381–385

    PubMed  Google Scholar 

  • Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS (2008) Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 27:157–172; discussion 207–212

    PubMed  Google Scholar 

  • Penrose LS (1953) The general purpose sibpair linkage test. Ann Eugen 18:120–124

    PubMed  CAS  Google Scholar 

  • Pharoah PD, Antoniou A, Bobrow M, Zimmern RL, Easton DF, Ponder BA (2002) Polygenic susceptibility to breast cancer and implications for prevention. Nat Genet 31:33–36

    PubMed  CAS  Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    PubMed  CAS  Google Scholar 

  • Price AL, Tandon A, Patterson N, Barnes KC, Rafaels N, Ruczinski I, Beaty TH, Mathias R, Reich D, Myers S (2009) Sensitive detection of chromosomal segments of distinct ancestry in admixed populations. PLoS Genet 5:e1000519

    PubMed Central  PubMed  Google Scholar 

  • Price AL, Kryukov GV, de Bakker PI, Purcell SM, Staples J, Wei LJ, Sunyaev SR (2010) Pooled association tests for rare variants in exon-resequencing studies. Am J Hum Genet 86:832–838

    PubMed Central  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. Am J Hum Genet 67:170–181

    PubMed Central  PubMed  CAS  Google Scholar 

  • Qian D, Beckmann L (2002) Minimum recombinant haplotyping in pedigrees. Am J Hum Genet 70:1434–1445

    PubMed Central  PubMed  CAS  Google Scholar 

  • Quintana MA, Bernstein JL, Thomas DC, Conti DV (2011) Incorporating model uncertainty in detecting rare variants: the Bayesian risk index. Genet Epidemiol 35:638–649

    PubMed Central  PubMed  Google Scholar 

  • Reich DE, Lander ES (2001) On the allelic spectrum of human disease. Trends Genet 17:502–510

    PubMed  CAS  Google Scholar 

  • Risch N (1984) Segregation analysis incorporating linkage markers. I. Single-locus models with an application to type I diabetes. Am J Hum Genet 36:363–386

    PubMed Central  PubMed  CAS  Google Scholar 

  • Risch N (1991) A note on multiple testing procedures in linkage analysis. Am J Hum Genet 48:1058–1064

    PubMed Central  PubMed  CAS  Google Scholar 

  • Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1616–1617

    Google Scholar 

  • Rohde K, Fuerst R (2001) Haplotyping and estimation of haplotype frequencies for closely linked biallelic multilocus genetic phenotypes including nuclear family information. Hum Mutat 17:289–295

    PubMed  CAS  Google Scholar 

  • Sampson J, Jacobs K, Yeager M, Chanock S, Chatterjee N (2011) Efficient study design for next generation sequencing. Genet Epidemiol. doi:10.1002/gepi.20575 (Epub ahead of print)

    PubMed Central  PubMed  Google Scholar 

  • Sanderson S, Zimmern R, Kroese M, Higgins J, Patch C, Emery J (2005) How can the evaluation of genetic tests be enhanced? Lessons learned from the ACCE framework and evaluating genetic tests in the United Kingdom. Genet Med 7:495–500

    PubMed  Google Scholar 

  • Sankararaman S, Sridhar S, Kimmel G, Halperin E (2008) Estimating local ancestry in admixed populations.Am J Hum Genet 82:290–303

    PubMed Central  PubMed  CAS  Google Scholar 

  • Satagopan JM, Elston RC (2003) Optimal two-stage genotyping in population-based association studies. Genet Epidemiol 25:149–157

    PubMed  Google Scholar 

  • Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, Guhathakurta D, Sieberts SK, Monks S, Reitman M, Zhang C, Lum PY, Leonardson A, Thieringer R, Metzger JM, Yang L, Castle J, Zhu H, Kash SF, Drake TA, Sachs A, Lusis AJ (2005) An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 37:710–717

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schaid DJ (1999) Likelihoods and TDT for the case-parents design. Genet Epidemiol 16:250–260

    PubMed  CAS  Google Scholar 

  • Schaid DJ, Sommer SS (1994) Comparison of statistics for candidate-gene association studies. Am J Hum Genet 55:402–409

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sham P (1998) Statistics in human genetics. Wiley, New York

    Google Scholar 

  • Shi G, Rao DC (2011) Optimum designs for next-generation sequencing to discover rare variants for common complex disease. Genet Epidemiol 35:572–579

    PubMed Central  PubMed  Google Scholar 

  • Shute NC, Ewens WJ (1988) A resolution of the ascertainment sampling problem. II. Generalizations and numerical results. Am J Hum Genet 43:374–386

    PubMed Central  PubMed  CAS  Google Scholar 

  • Skol AD, Scott LJ, Abecasis GR, Boehnke M (2006) Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 38:209–213

    PubMed  CAS  Google Scholar 

  • Skol AD, Scott LJ, Abecasis GR, Boehnke M (2007) Optimal designs for two-stage genome-wide association studies. Genet Epidemiol 31:776–788

    PubMed  Google Scholar 

  • So H-C, Kwan JSH, Cherny SS, Sham PC (2011) Risk prediction of complex diseases from family history and known susceptibility loci, with applications for cancer screening. Am J Hum Genet 88:548–565

    PubMed Central  PubMed  CAS  Google Scholar 

  • Spielman RS, Ewens WJ (1998) A sibship test for linkage in the presence of association: the sib transmission/disequilibrium test. Am J Hum Genet 62:450–458

    PubMed Central  PubMed  CAS  Google Scholar 

  • Spielman RS, McGinnis RE, Ewens WJ (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 52:506–516

    PubMed Central  PubMed  CAS  Google Scholar 

  • Stephens M, Donnelly P (2003) A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–1169

    PubMed Central  PubMed  CAS  Google Scholar 

  • Suarez BK, Hampe CL (1994) Linkage and association. Am J Hum Genet 54:554–559; author reply 60–63

    Google Scholar 

  • Terwilliger JD, Ott J (1992) A haplotype based haplotype relative risk approach to detecting allelic associations. Hum Hered 42:337–346

    PubMed  CAS  Google Scholar 

  • Terwilliger JD, Ott J (1994) Handbook of human genetic linkage. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Thomas D (2010a) Gene-environment-wide association studies: emerging approaches. Nat Rev Genet 11:259–272

    PubMed Central  PubMed  CAS  Google Scholar 

  • Thomas DC (2010b) Design and analysis issues in genome-wide association studies. In: Khoury MJ, Bedrosian S, Gwinn M, Khoury MJ, Bedrosian S, Gwinn M, Higgins JPT, Ioannidis JPA, Little J (eds) Human genome epidemiology: building the evidence for using genetic information to improve health and prevent disease, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Thomas DC, Casey G, Conti DV, Haile RW, Lewinger JP, Stram DO (2009) Methodological issues in multistage genome-wide association studies. Stat Sci 24:414–429

    PubMed Central  PubMed  Google Scholar 

  • Thomas PD, Mi H, Lewis S (2007) Ontology annotation: mapping genomic regions to biological function. Curr Opin Chem Biol 11:4–11

    PubMed  CAS  Google Scholar 

  • Umbach DM, Weinberg CR (1997) Designing and analysing case-control studies to exploit independence of genotype and exposure. Stat Med 16:1731–1743

    PubMed  CAS  Google Scholar 

  • Vogel W (2000) Genetische Epidemiologie oder zur Spezifität von Subdisziplinen der Humangenetik. Med Genet 4:395–399

    Google Scholar 

  • Wang H, Thomas DC, Pe’er I, Stram DO (2006) Optimal two-stage genotyping designs for genome-wide association scans. Genet Epidemiol 30:356–368

    PubMed  Google Scholar 

  • Wang K, Li M, Hakonarson H (2010) Analysing biological pathways in genome-wide association studies. Nat Rev Genet 11:843–854

    PubMed  CAS  Google Scholar 

  • Wang WYS, Barratt BJ, Clayton DG, Todd JA (2005) Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet 6:109–118

    PubMed  CAS  Google Scholar 

  • Weinberg W (1980) Über den Nachweis der Vererbung beim Menschen. Jahreshefte des Vereins für vaterländische Naturkunde in Württemberg 64:368–383

    Google Scholar 

  • Weiss KM (1993) Genetic variation and human disease: principles and evolutionary approaches. Cambridge University Press, Cambridge

    Google Scholar 

  • Whittaker JC, Morris AP (2001) Family-based tests of association and/or linkage. Ann Hum Genet 65:407–419

    PubMed  CAS  Google Scholar 

  • Whittemore AS, Tu IP (1998) Simple, robust linkage tests for affected sibs. Am J Hum Genet 62:1228–1242

    PubMed Central  PubMed  CAS  Google Scholar 

  • Witte JS (2010) Genome-wide association studies and beyond. Annu Rev Publ Health 31:9–20 4 p following 20

    Google Scholar 

  • Zaitlen N, Eskin E (2010) Imputation aware meta-analysis of genome-wide association studies. Genet Epidemiol 34(6):537–542

    PubMed Central  PubMed  Google Scholar 

  • Zeggini E, Ioannidis JP (2009) Meta-analysis in genome-wide association studies. Pharmacogenomics 10:191–201

    PubMed Central  PubMed  Google Scholar 

  • Zhou JY, Ding J, Fung WK, Lin S (2010) Detection of parent-of-origin effects using general pedigree data. Genet Epidemiol 34:151–158

    PubMed Central  PubMed  Google Scholar 

  • Zhu X, Feng T, Li Y, Lu Q, Elston RC (2010) Detecting rare variants for complex traits using family and unrelated data. Genet Epidemiol 34:171–187

    PubMed Central  PubMed  Google Scholar 

  • Zou KH, O’Malley AJ, Mauri L (2007) Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation 115:654–657

    PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Bickeböller is supported by the German Research Foundation (DFG) grants (GRK 1644/1, KFO 241). Dr. Thomas is supported by NIH research grants ES019876, ES07048, MH084678, and HG005927.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Bickeböller, H., Thomas, D.C. (2014). Statistical Methods in GeneticEpidemiology. In: Ahrens, W., Pigeot, I. (eds) Handbook of Epidemiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09834-0_62

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09834-0_62

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-09833-3

  • Online ISBN: 978-0-387-09834-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics