Skip to main content

Geographical Epidemiology

  • Reference work entry

Abstract

Although, at first sight, geographical epidemiology may appear to differ substantially from other areas of epidemiology, it has many features in common. In particular, a major objective of epidemiology – to infer etiological relationships from observed associations – applies also in geographical studies. The distinctive characteristic is of course that geographical location is an important explanatory variable, either because it reflects an environmentally determined element of risk or because people with similar risk attributes live together, so that risk varies from place to place. The two-dimensional nature of geographical location means that the standard statistical techniques for handling sets of essentially univariate variables need to be augmented by more sophisticated methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe O (1973) A note on the methodology of Knox’s tests of “Time and Space Interaction.” Biometrics 29:67–77

    Article  CAS  PubMed  Google Scholar 

  • Anderson NH, Titterington DM (1995) Some methods for investigating spatial clustering, with epidemiological applications. J R Stat Soc Ser A 160:87–105

    Article  Google Scholar 

  • Antó JM, Sunyer J (1992) Soya bean as a risk factor for epidemic asthma. In: Elliott P, Cuzick J, English D, Stern R (eds) Geographical environmental epidemiology: methods for small-area studies. Oxford University Press for World Health Organization, Oxford, pp 323–341

    Google Scholar 

  • Armitage P, Colton T (eds) (1998) Encyclopedia of biostatistics. Wiley, Chichester

    Google Scholar 

  • Baris YI, Simonato L, Saracci R, Winkelmann R (1992) The epidemic of respiratory cancer associated with erionite fibres in the Cappadocian region of Turkey. In: Elliott P, Cuzick J, English D, Stern R (eds) Geographical environmental epidemiology: methods for small-area studies. Oxford University Press for World Health Organization, Oxford, pp 310–322

    Google Scholar 

  • Besag J, Newell J (1991) The detection of clusters in rare diseases. J R Stat Soc Ser A 154:143–155

    Article  Google Scholar 

  • Bithell JF (1990) An application of density estimation to geographical epidemiology. Stat Med 9:691–701

    Article  CAS  PubMed  Google Scholar 

  • Bithell JF (1995) The choice of test for detecting raised disease risk near a point source. Stat Med 14:2309–2322

    Article  CAS  PubMed  Google Scholar 

  • Bithell JF (1998) Geographical analysis. In: Armitage P, Colton T (eds) Encyclopedia of biostatistics. Wiley, Chichester, pp 1701–1716

    Google Scholar 

  • Bithell JF (1999) Disease mapping using the relative risk function estimated from areal data. In: Lawson AB, Biggeri A, Böhning D, Lesaffre E, Viel J-F, Bertollini R (eds) Disease mapping and risk assessment for public health decision making. Wiley, Chichester, pp 247–255

    Google Scholar 

  • Bithell JF (2003) Selecting a powerful test for detecting risk near point sources. Bulletin of the international statistical institute 54th session. The Institute, Berlin/Germany, pp 97–98

    Google Scholar 

  • Bithell JF, Dutton SJ, Draper GJ, Neary NM (1994) Distribution of childhood leukaemia and non-Hodgkin’s lymphomas near nuclear installations in England and Wales. Br Med J 309(6953):501–505

    Article  CAS  Google Scholar 

  • Bithell JF, Dutton SJ, Neary NM, Vincent TJ (1995) Use of regression methods for control of socio-economic confounding. J Epidemiol Community Health 49(Suppl 2):S15–S19

    Article  PubMed Central  PubMed  Google Scholar 

  • Clayton D, Bernardinelli L (1992) Bayesian methods for mapping disease risk. In: Elliott P, Cuzick J, English D, Stern R (eds) Geographical environmental epidemiology: methods for small-area studies. Oxford University Press for World Health Organization, Oxford, pp 205–220

    Google Scholar 

  • Clayton D, Kaldor J (1987) Empirical Bayes estimates of age-standardized relative risks for use in disease mapping. Biometrics 43:671–682

    Article  CAS  PubMed  Google Scholar 

  • Cliff AD, Ord JK (1981) Spatial processes: models and applications. Pion, London

    Google Scholar 

  • COMARE (2005) Tenth report. The incidence of childhood cancer around nuclear installations in Great Britain. HMSO, London

    Google Scholar 

  • COMARE (2011) Fourteenth report. Further consideration of the incidence of childhood cancer around nuclear power plants in Great Britain. HMSO, London

    Google Scholar 

  • Cook DG, Pocock SJ (1983) Multiple regression in geographical mortality studies, with allowance for spatially correlated errors. Biometrics 39:361–372

    Article  CAS  PubMed  Google Scholar 

  • Cox DR, Snell EJ (1984) The analysis of binary data, 2nd edn. Chapman and Hall, London

    Google Scholar 

  • Cuzick J, Edwards R (1990) Spatial clustering for inhomogeneous populations (with discussion). J R Stat Soc Ser B 52:73–104

    Google Scholar 

  • David FN, Barton DE (1966) Two space-time interaction tests for epidemicity. Br J Prev Soc Med 20:44–48

    PubMed Central  Google Scholar 

  • Davies TM, Hazelton M (2010) Adaptive kernel estimation of spatial relative risk. Stat Med 29:2423–2437

    PubMed  Google Scholar 

  • Dempster AP, Schatzoff M (1965) Expected significance levels as a sensitivity index for test statistics. J Am Stat Assoc 60:420–436

    Article  Google Scholar 

  • Diggle PJ (2000) Overview of methods for disease mapping and its relationship to cluster detection. In: Elliott P, Wakefield JC, Best NG, Briggs DJ (eds) Spatial epidemiology: methods and applications. Oxford University Press, Oxford, pp 87–103

    Google Scholar 

  • Diggle PJ, Elliott P (1995) Disease risk near point sources: statistical issues for analyses using individual or spatially aggregated data. J Epidemiol Community Health 49(Suppl 2):S20–S27

    Article  PubMed Central  PubMed  Google Scholar 

  • Diggle PJ, Rowlingson BS (1994) A conditional approach to point process modelling of elevated risk. J R Stat Soc Ser A 157:433–440

    Article  Google Scholar 

  • Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman and Hall, New York

    Book  Google Scholar 

  • Elliott P, Cuzick J, English D, Stern R (eds) (1992) Geographical environmental epidemiology: methods for small-area studies. Oxford University Press for World Health Organization, Oxford, pp 323–341

    Google Scholar 

  • Elliott P, Wakefield JC, Best NG, Briggs DJ (eds) (2000) Spatial epidemiology: methods and applications. Oxford University Press, Oxford, pp 87–103

    Google Scholar 

  • Geary RC (1954) The contiguity ratio and statistical mapping. Inc Stat 5:115–145

    Google Scholar 

  • Gelman A, Price PN (1999) All maps of parameter estimates are misleading. Stat Med 18:3221–3234

    Article  CAS  PubMed  Google Scholar 

  • Greenland S, Morgenstern H (1989) Ecological bias, confounding, and effect modification. Int J Epidemiol 18(1):269–274

    Article  CAS  PubMed  Google Scholar 

  • Jacquez GM (1996) A k nearest neighbour test for space-time interaction. Stat Med 15:1935–1949

    Article  CAS  PubMed  Google Scholar 

  • Kelsall JE, Diggle PJ (1998) Spatial variation in risk: a nonparametric binary regression approach. Appl Stat 47:559–573

    Google Scholar 

  • Knox EG (1964) The detection of space-time interactions. Appl Stat 13:25–29

    Article  Google Scholar 

  • Kulldorf M, Hjalmars U (1999) The Knox method and other tests for space-time interaction. Biometrics: 55:544–552

    Article  Google Scholar 

  • Lawson AB (1993) On the analysis of mortality events associated with a prespecified fixed point. J R Stat Soc Ser A 156:363–377

    Article  CAS  Google Scholar 

  • Lawson AB, Biggeri A, Böhning D, Lesaffre E, Viel J-F, Bertollini R (eds) (1999) Disease mapping and risk assessment for public health decision making. Wiley, Chichester

    Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman and Hall, London

    Book  Google Scholar 

  • Moran PAP (1948) The interpretation of statistical maps. J R Stat Soc Ser 10:243–251

    Google Scholar 

  • Pfeiffer D, Robinson T, Stevenson M, Stevens K, Rogers D, Clements A (2008) Spatial analysis in epidemiology. Oxford University Press, Oxford

    Book  Google Scholar 

  • Pike MC, Smith PG (1974) A note on a ‘close pairs’ test for space clustering. Br J Prev Soc Med 28:63–64

    PubMed Central  Google Scholar 

  • Potthoff RF, Whittinghill M (1966) Testing for homogeneity II. The Poisson distribution. Biometrika 53:183–190

    CAS  PubMed  Google Scholar 

  • Rogerson PA (2006) Statistical methods for the detection of spatial clustering in case-control data. Stat Med 25:811–823

    Article  PubMed  Google Scholar 

  • Scott DW (1992) Multivariate density estimation. Wiley, London

    Book  Google Scholar 

  • Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, London

    Book  Google Scholar 

  • Snow J (1855) On the mode of communication of cholera, 2nd edn. Churchill, London

    Google Scholar 

  • Stone RA (1988) Investigations of excess environmental risks around putative sources: statistical problems and a proposed test. Stat Med 7:649–660

    Article  CAS  PubMed  Google Scholar 

  • Tango T (2010) Statistical methods for disease clustering. Springer, New York

    Book  Google Scholar 

  • Wakefield JC (2008) Ecological studies revisited. Ann Rev Public Health 29:75–90

    Article  Google Scholar 

  • Wakefield JC, Best NG, Waller L (2000) Bayesian approaches to disease mapping. In: Elliott P, Wakefield JC, Best NG, Briggs DJ (eds) Spatial epidemiology: methods and applications. Oxford University Press, Oxford, pp 87–103

    Google Scholar 

  • Walter SD (1993) Assessing spatial patterns in disease rates. Stat Med 12:1885–1894

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Bithell, J.F. (2014). Geographical Epidemiology. In: Ahrens, W., Pigeot, I. (eds) Handbook of Epidemiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09834-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09834-0_22

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-09833-3

  • Online ISBN: 978-0-387-09834-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics