Skip to main content

Bacteria in sediments

  • Reference work entry
Sedimentology

Part of the book series: Encyclopedia of Earth Science ((EESS))

  • 87 Accesses

Epibenthic bacteria forming biofilms and microbial mats

Bacteria live in an extremely wide range of habitats, and their occurrence is only restricted by the requirement for water and the physicochemical stability limits of biomolecules (Knoll and Bauld, 1989). In sediments, epibenthic bacteria attach firmly to the surfaces of mineral particles by their adhesive and mucous, ‘extracellular polymeric substances (EPS)’ often more abundant than the cell material itself (Decho, 1990 for overview and introduction; Decho, 2000). The mucilaginous substances aid the microbes to sequester nutrients, to protect themselves against osmotic pressure caused by changing salinities, and to maintain an optimal chemical microenvironment for activities of extracellular enzymes (Decho, 1990). These coatings, composed of single cells and their mucilages enveloping mineral particles are known as biofilms (Marshall, 1984; Charaklis and Wilderer, 1989; compare also Stolz, 2000). Further biomass enrichment...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 519.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Beveridge, T.J., 1989. Role of cellular design in bacterial metal accumulation and mineralization. Annual Reviews Microbiology, 43: 147–171.

    Article  Google Scholar 

  • Beveridge, T.J., and Doyle, R.J. (eds.), 1989. Metal Ions and Bacteria. New York: Wiley.

    Google Scholar 

  • Charaklis, W.G., and Wilderer, P.A., 1989. Structure and Function of Biofilms. New York: Wiley.

    Google Scholar 

  • Cohen, Y., and Rosenberg, E., 1989. Microbial Mats. Physiological Ecology of Benthic Microbial Communities. Washington, DC: American Society of Microbiologists.

    Google Scholar 

  • Decho, A.W., 1990. Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanographic Marine Biology Annual Review, 28: 73–153.

    Google Scholar 

  • Decho, A.W., 2000. Exopolymer microdomains as a structuring agent for heterogeneity within microbial biofilms. In Riding, R., and Awramik, S.M. (eds.), Microbial Sediments. Berlin: Springer Verlag, pp. 9–15.

    Google Scholar 

  • Douglas, S., and Beveridge, T.J., 1998. Mineral formation by bacteria in natural microbial communities. FEMS Microbial Ecology, 26: 79–88.

    Article  Google Scholar 

  • Ehrlich, H.L., 1996. Geomicrobiology. New York, Basel: Marcel Dekker.

    Google Scholar 

  • Ferris, F.G., 2000. Microbe-metal interactions in sediments. In Riding, R., and Awramik, S.M. (eds.), Microbial Sediments. Berlin: Springer Verlag, pp. 121–126.

    Google Scholar 

  • Gerdes, G., Klenke, Th., and Noffke, N., 2000. Microbial signatures in peritidal siliciclastic sediments: a catalogue. Sedimentology, 47: 279–308.

    Article  Google Scholar 

  • Hanselmann, K., 1989. Rezente Seesedimente. Lebensraeume fuer Mikroorganismen. Die Geowissenschaften, 4: 98–113.

    Google Scholar 

  • Knoll, A.H., and Bauld, J., 1989. The evolution of ecological tolerance in prokaryotes. Transactions of the Royal Society Edinburgh: Earth Science, 80: 209–223.

    Google Scholar 

  • Krumbein, W.E., 1979a. Photolithotrophic and chemoorganotrophic activity of bacteria and algae as related to beachrock formation and degradation (Gulf of Aqaba, Sinai). Geomicrobiology Journal, 1: 156–202.

    Google Scholar 

  • Krumbein, W.E., 1983. Stromatolites–The challenge of a term in time and space. Precambrian Research, 20: 493–531.

    Article  Google Scholar 

  • Krumbein, W.E., 1986. Biotransfer of minerals by microbes and microbial mats. In Leadbeater, B.S., and Riding, R. (eds.), Biomineralization in Lower Plants and Animals. Oxford: Clarendon, pp. 55–72.

    Google Scholar 

  • Marshall, K., 1984. Microbial Adhesion and Aggregation. Berlin: Springer Verlag.

    Google Scholar 

  • Nealson, K., 1997. Sediment bacteria: who's there, what are they doing, and what's new? Annual Review Earth Planet Science, 25: 403–434.

    Article  Google Scholar 

  • Nisbet, E.G., and Sleep, N.H., 2001. The habitat and nature of early life. Nature, 409: 1083–1091.

    Article  Google Scholar 

  • Schulze-Lam, S., Fortin, D., Davis, B.S., and Beveridge, T.J., 1996. Mineralization of bacterial surfaces. Chemical Geology, 132: 171–181.

    Article  Google Scholar 

  • Stal, L.J., and Caumette, P., 1994. Microbial mats. Structure, Development and Environmental Significance. NATO ASI Series Ecological Sciences, Volume 35: Berlin: Springer Verlag.

    Google Scholar 

  • Stal, L.J., 2000. Cyanobacterial mats and stromatolites. In Whitton, B.A., and Potts, M., (eds.), The Ecology of Cyanobacteria. Dordrecht: Kluwer Academic Publishers, pp. 62–120.

    Google Scholar 

  • Stolz, J.F., 2000. Structure of microbial mats and biofilms, In Riding, R., and Awramik, S.M. (eds.), Microbial Sediments. Berlin: Springer Verlag.

    Google Scholar 

Cross-references

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Dowden, Hutchinson & Ross, Inc.

About this entry

Cite this entry

Noffke, N. (1978). Bacteria in sediments. In: Sedimentology. Encyclopedia of Earth Science. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31079-7_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-31079-7_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-0-87933-152-8

  • Online ISBN: 978-3-540-31079-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics