Skip to main content

Biomineralization

  • Reference work entry
Paleontology

Part of the book series: Encyclopedia of Earth Science ((EESS))

  • 101 Accesses

Biomineralization is the process that enables living organisms to produce, within or on their body, skeletal hardparts consisting of inorganic crystals or amorphous mineral phases and organic matrix. In some cases this process is intracellular (e.g., in unicellular algae, higher plants, sponges, etc.), but in most cases it is extracellular. In intracellular biomineralization the hardpart is formed in vacuoles in the cytoplasm. Extracellular biomineralization occurs on the surface of single cells, or on the surface of ectodermal or mesenchymal tissue which presumably secretes physiological fluids containing the basic constituents of the organic and inorganic components of the prospective hardpart (Fig. 1). These fluids originate, in mollusks for instance, in the vesicles of the Golgi apparatus, from where they are transported through the cell, and released beyond the surface of the mantle epithelium to become part of the colloidal extrapalleal fluid. Enamel and dentine of vertebrate...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 519.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bevelander, G., and Nakahara, H., 1969. An electron microscope study of the formation of the nacreous layer in the shell of certain bivalve molluscs, Calc. Tissue Research, 3, 84–92.

    Google Scholar 

  • Bøggild, O. B., 1930. The shell structure of mollusks, Danske Vidensk. Selsk. Skr., 9, 235–326.

    Google Scholar 

  • Clark, G. R., 1975. Growth lines in invertebrate skeletons, Ann. Rev. Earth Planetary Sci., 2, 77–99.

    Google Scholar 

  • Erben, H. K., 1970. Ultrastruckturen und Mineralisation rezenter und fossiler Eischalen bei Vögeln und Reptilien, Biominer. Research Repts., 1, 1–66.

    Google Scholar 

  • Erben, H. K., 1972. Uber die Bildung und das Wachstum von Perlmutt, Biominer. Research Repts., 4, 15–46.

    Google Scholar 

  • Erben, H. K., 1974. On the structure and growth of the nacreous tablets in gastropods, Biominer. Research Repts., 7, 14–27.

    Google Scholar 

  • Erben, H. D., and Watabe, N., 1974. Crystal formation and growth in bivalve nacre, Nature, 248, 128–130.

    Google Scholar 

  • Glaessner, M. F., 1972. Precambrian palaeozoology, Univ. Adelaide Centre Precambr. Research, Spec. Paper, 1, 43–52.

    Google Scholar 

  • Hurd, D. C., 1972. Factors affecting solution rate of biogenic opal in seawater, Earth Planetary Sci. Letters, 15, 411–417.

    Google Scholar 

  • Knutson, D. W.; Buddemeier, R. W.; and Smith, S. V., 1972. Coral chronometers: Seasonal growth bands in reef corals, Science, 177, 270–272.

    Google Scholar 

  • Lyakhin, Y. I., 1968. Calcium carbonate saturation of Pacific Water, Oceanology, 8, 44–53.

    Google Scholar 

  • Matheja, J. and Degens, E. T., 1968. Molekulare Entwicklung mineralisationsfähiger organischer Matrizen, Neues Jahrb. Geol. Paläontol. Mh., 1968, 215–229.

    Google Scholar 

  • Meigen, W., 1903. Beitrage zur Kenntnis des kohlensauren Kalk, Naturwiss. Gesel. Freiburg Ber., 13, 1–55.

    Google Scholar 

  • Newell, N. D., 1969. Classification of Bivalvia, in R. C. Moore, ed., Treatise on Invertebrate Paleontology, pt. N, Mollusca 6, Bivalvia. Lawrence, Kansas: Geol. Soc. Amer. and Univ. Kansas Press, 1, N205–N224.

    Google Scholar 

  • Pannella, G., and MacClintock, C., 1968. Biological and environmental rhythms reflected in molluscan shell growth, J. Paleontol., 42(5, Suppl.), 64–80.

    Google Scholar 

  • Rhoads, D. C., and Lutz, R. A., eds., 1979. Skeletal Growth: Biological Records of Environmental Change. New York: Plenum.

    Google Scholar 

  • Thiele, H., 1967. Geordnete Kristallisation, Nucleation und Mineralisation, J. Biomed. Mater. Research., 1, 213–238.

    Google Scholar 

  • Towe, K. M., 1972. Invertebrate shell structure and the organic matrix concept, Biominer. Research Repts., 4, 1–14.

    Google Scholar 

  • Wada, K., 1972. Nucleation and growth of aragonitic crystals in the nacre of some bivalve molluscs, Biominer. Research Repts., 6, 141–159.

    Google Scholar 

  • Watabe, N., and Wilbur, K. M., 1960. Influence of the organic matrix on crystal type in molluscs, Nature, 188, 334.

    Google Scholar 

  • Wilbur, K. M., 1972. Shell formation in mollusks, in M. Florkin and B. T. Scheer, eds., Chemical Zoology, vol. VII, Mollusca. New York: Academic Press, 103–145.

    Google Scholar 

  • Wise, S. W., Jr., 1970. Microarchitecture and formation of nacre (mother-of-pearl) in pelecypods, gastropods and cephalopods, Eclogae Geol. Helvetiae, 63, 775–797.

    Google Scholar 

Cross-references

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Dowden, Hutchinson & Ross, Inc.

About this entry

Cite this entry

Chave, K.E., Erben, H.K. (1979). Biomineralization . In: Paleontology. Encyclopedia of Earth Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31078-9_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-31078-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-0-87933-185-6

  • Online ISBN: 978-3-540-31078-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics