Skip to main content

Materials Aspects of Micro- and Nanoelectromechanical Systems

  • Reference work entry
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

Two of the more significant technological achievements during the last 20 years have been the development of MEMS and its new offshoot, NEMS. These developments were made possible in large measure by significant advancements in the materials and processes used in the fabrication of MEMS and NEMS devices. And while initial developments capitalized on a mature Si infrastructure, recent advances have used materials and processes not associated with IC fabrication, a trend that is likely to continue as new application areas are identified.

A well-rounded understanding of MEMS and NEMS requires a basic knowledge of the materials used to construct the devices, since material properties often govern device performance. An understanding of the materials used in MEMS and NEMS is really an understanding of material systems. Devices are rarely constructed of a single material, but rather a collection of materials, each providing a critical function and often working in conjunction with each other. It is from this perspective that the following chapter is constructed. A preview of the materials selected for inclusion is presented in Table 7.1. From this table it is easy to see that this chapter is not a summary of all materials used in MEMS and NEMS, as such a work would itself constitute a text of significant size. It does, however, present a selection of some of the more important material systems, including examples that illustrate the importance of viewing MEMS and NEMS in terms of material systems.

Table 7.1 Distinguishing characteristics and application examples of selected materials for MEMS and NEMS

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AFM:

atomic force microscope/microscopy

APCVD:

atmospheric pressure chemical vapor deposition

CVD:

chemical vapor deposition

DRIE:

deep reactive ion etching

FET:

field-effect transistor

IC:

integrated circuit

ITO:

indium tin oxide

LPCVD:

low pressure chemical vapor deposition

MEMS:

microelectromechanical systems

MOCVD:

metalorganic CVD

NEMS:

nanoelectromechanical systems

PECVD:

plasma enhanced CVD

PMMA:

poly(methylmethacrylate)

PSG:

phosphorus-doped glass

PZT:

lead zirconate titanate

RF:

radiofrequency

RIE:

reactive ion etching

SEM:

scanning electron microscope/microscopy

TMAH:

tetramethyl-aluminium hydroxide

References

  1. C. S. Smith: Piezoresistive effect in germanium and silicon, Phys. Rev. 94 (1954) 1–10

    Article  Google Scholar 

  2. A. N. Cleland, M. L. Roukes: Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals, Appl. Phys. Lett. 69 (1996) 2653–2655

    Article  CAS  Google Scholar 

  3. D. W. Carr, H. G. Craighead: Fabrication of nanoelectromechanical systems in single crystal silicon using silicon on insulator substrates and electron beam lithography, J. Vac. Sci. Technol. B 15 (1997) 2760–2763

    Article  CAS  Google Scholar 

  4. J. J. McMahon, J. M. Melzak, C. A. Zorman, J. Chung, M. Mehregany: Deposition and characterization of in situ boron doped polycristalline silicon films for microelectromechanical systems applications, Mater. Res. Soc. Proc. 605 (2000) 31–36

    CAS  Google Scholar 

  5. T. Kamins: Polycrystalline Silicon for Integrated Circuits and Displays, 2nd edn. (Kluwer, Boston 1998)

    Google Scholar 

  6. L. Cao, T. S. Kin, S. C. Mantell, D. Polla: Simulation and fabrication of piezoresistive membrane type MEMS strain sensors, Sens. Actuators 80 (2000) 273–279

    Article  Google Scholar 

  7. H. Guckel, T. Randazzo, D. W. Burns: A simple technique for the determination of mechanical strain in thin films with application to polysilicon, J. Appl. Phys. 57 (1985) 1671–1675

    Article  CAS  Google Scholar 

  8. R. T. Howe, R. S. Muller: Stress in polysilicon and amorphous silicon thin films, J. Appl. Phys. 54 (1983) 4674–4675

    Article  CAS  Google Scholar 

  9. X. Zhang, T. Y. Zhang, M. Wong, Y. Zohar: Rapid thermal annealing of polysilicon thin films, J. Microelectromech. Syst. 7 (1998) 356–364

    Article  CAS  Google Scholar 

  10. J. Yang, H. Kahn, A.-Q. He, S. M. Phillips, A. H. Heuer: A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: The multipoly process, J. Microelectromech. Syst. 9 (2000) 485–494

    Article  CAS  Google Scholar 

  11. P. Gennissen, M. Bartek, P. J. French, P. M. Sarro: Bipolar-compatible epitaxial poly for smart sensors: Stress minimization and applications, Sens. Actuators A 62 (1997) 636–645

    Article  Google Scholar 

  12. P. Lange, M. Kirsten, W. Riethmuller, B. Wenk, G. Zwicker, J. R. Morante, F. Ericson, J. A. Schweitz: Thick polycrystalline silicon for surface-micromechanical applications: Deposition, structuring, and mechanical characterization, Sens. Actuators A 54 (1996) 674–678

    Article  Google Scholar 

  13. S. Greek, F. Ericson, S. Johansson, M. Furtsch, A. Rump: Mechanical characterization of thick polysilicon films: Young's modulus and fracture strength evaluated with microstructures, 9 (1999) 245–251

    Article  CAS  Google Scholar 

  14. K. Funk, H. Emmerich, A. Schilp, M. Offenberg, R. Neul, F. Larmer: A surface micromachined silicon gyroscope using a thick polysilicon layer, Proc. of the 12nd Int. Conf. Microelectromech. Systems, Orlando 1999, ed. by K. J. Gabriel, K. Najafi (IEEE, Piscataway 1999) 57–60

    Google Scholar 

  15. T. Abe, M. L. Reed: Low strain sputtered polysilicon for micromechanical structures, Proc. 9th Int. Workshop Microelectromech. Systems, San Diego 1996, ed. by M. G. Allen, M. L. Reed (IEEE, Piscataway 1996) 258–262

    Google Scholar 

  16. K. Honer, G. T. A. Kovacs: Integration of sputtered silicon microstructures with pre-fabricated CMOS circuitry, Sens. Actuators A 91 (2001) 392–403

    Article  Google Scholar 

  17. R. Anderson, R. S. Muller, C. W. Tobias: Porous polycrystalline silicon: A new material for MEMS, J. Microelectromech. Syst. 3 (1994) 10–18

    Article  CAS  Google Scholar 

  18. W. Lang, P. Steiner, H. Sandmaier: Porous silicon: A novel material for microsystems, Sens. Actuators A 51 (1995) 31–36

    Article  Google Scholar 

  19. S. K. Ghandhi: VLSI Fabrication Principles – Silicon and Gallium Arsenide (Wiley, New York 1983)

    Google Scholar 

  20. W. A. Pilskin: Comparison of properties of dielectric films deposited by various methods, J. Vac. Sci. Technol. 21 (1977) 1064–1081

    Article  Google Scholar 

  21. J. S. Danel, F. Michel, G. Delapierre: Micromachining of quartz and its application to an acceleration sensor, Sens. Actuators A 21-23 (1990) 971–977

    Article  Google Scholar 

  22. A. Yasseen, J. D. Cawley, M. Mehregany: Thick glass film technology for polysilicon surface micromachining, J. Microelectromech. Syst. 8 (1999) 172–179

    Article  CAS  Google Scholar 

  23. R. Liu, M. J. Vasile, D. J. Beebe: The fabrication of nonplanar spin-on glass microstructures, J. Microelectromech. Syst. 8 (1999) 146–151

    Article  CAS  Google Scholar 

  24. B. Folkmer, P. Steiner, W. Lang: Silicon nitride membrane sensors with monocrystalline transducers, Sens. Actuators A 51 (1995) 71–75

    Article  Google Scholar 

  25. M. Sekimoto, H. Yoshihara, T. Ohkubo: Silicon nitride single-layer X-ray mask, J. Vac. Sci. Technol. 21 (1982) 1017–1021

    Article  CAS  Google Scholar 

  26. P. J. French, P. M. Sarro, R. Mallee, E. J. M. Fakkeldij, R. F. Wolffenbuttel: Optimization of a low-stress silicon nitride process for surface micromachining applications, Sens. Actuators A 58 (1997) 149–157

    Article  Google Scholar 

  27. B. Li, B. Xiong, L. Jiang, Y. Zohar, M. Wong: Germanium as a versatile material for low-temperature micromachining, J. Microelectromech. Syst. 8 (1999) 366–372

    Article  CAS  Google Scholar 

  28. A. Franke, D. Bilic, D. T. Chang, P. T. Jones, T. J. King, R. T. Howe, C. G. Johnson: Post-CMOS integration of germanium microstructures, Proc. 12nd Int. Conf. Microelectromech. Syst., Orlando 1999, ed. by K. J. Gabriel, K. Najafi (IEEE, Piscataway 1999) 630–637

    Google Scholar 

  29. A. E. Franke, Y. Jiao, M. T. Wu, T. J. King, R. T. Howe: Post-CMOS modular integration of poly-SiGe microstructures using poly-Ge sacrificial layers, Technical Digest – Solid State Sens. Actuator Workshop, Hilton Head 2000, ed. by L. Bousse (Transducers Research Foundation, Cleveland Heights Ohio 2000) 18–21

    Google Scholar 

  30. S. Sedky, P. Fiorini, M. Caymax, S. Loreti, K. Baert, L. Hermans, R. Mertens: Structural and mechanical properties of polycrystalline silicon germanium for micromachining applications, J. Microelectromech. Syst. 7 (1998) 365–372

    Article  CAS  Google Scholar 

  31. S. Sedky, A. Witvrouw, K. Baert: Poly SiGe, a promising material for MEMS monolithic integration with the driving electronics, Sens. Actuators A 97-98 (2002) 503–511

    Article  Google Scholar 

  32. J. M. Heck, C. G. Keller, A. E. Franke, L. Muller, T.-J. King, R. T. Howe: High aspect ratio polysilicon-germanium microstructures, Proc. 10th Int. Conf. Solid State Sens. Actuators, Sendai 1999, ed. by M. Esashi, T. Morizumi (IEE of Japan, Tokyo 1999) 328–334

    Google Scholar 

  33. P. Van Gerwen, T. Slater, J. B. Chevrier, K. Baert, R. Mertens: Thin-film boron-doped polycrystalline silicon70%-germanium30% for thermopiles, Sens. Actuators A 53 (1996) 325–329

    Article  Google Scholar 

  34. D. Hyman, J. Lam, B. Warneke, A. Schmitz, T. Y. Hsu, J. Brown, J. Schaffner, A. Walson, R. Y. Loo, M. Mehregany, J. Lee: Surface micromachined RF MEMS switches on GaAs substrates, Int. J. Radio Frequency Microwave Commun. Eng. 9 (1999) 348–361

    Google Scholar 

  35. C. Chang, P. Chang: Innovative micromachined microwave switch with very low insertion loss, Sens. Actuators 79 (2000) 71–75

    Article  Google Scholar 

  36. C. L. Shih, B. K. Lai, H. Kahn, S. M. Phillips, A. H. Heuer: A robust co-sputtering fabrication procedure for TiNi shape memory alloys for MEMS, J. Microelectromech. Syst. 10 (2001) 69–79

    Article  CAS  Google Scholar 

  37. G. Hahm, H. Kahn, S. M. Phillips, A. H. Heuer: Fully microfabricated silicon spring biased shape memory actuated microvalve, Technical Digest – Solid State Sens. Actuator Workshop, Hilton Head Island 2000, ed. by L. Bousse (Transducers Research Foundation, Cleveland Heights Ohio 2000) 230–233

    Google Scholar 

  38. S. D. Leith, D. T. Schwartz: High-rate through-mold electrodeposition of thick (>200 micron) NiFe MEMS components with uniform composition, J. Microelectromech. Syst. 8 (1999) 384–392

    Article  CAS  Google Scholar 

  39. N. Rajan, M. Mehregany, C. A. Zorman, S. Stefanescu, T. Kicher: Fabrication and testing of micromachined silicon carbide and nickel fuel atomizers for gas turbine engines, J. Microelectromech. Syst. 8 (1999) 251–257

    Article  CAS  Google Scholar 

  40. T. Pornsin-sirirak, Y. C. Tai, H. Nassef, C. M. Ho: Titanium-alloy MEMS wing technology for a microaerial vehicle application, Sens. Actuators A 89 (2001) 95–103

    Article  Google Scholar 

  41. C. R. Stoldt, C. Carraro, W. R. Ashurst, D. Gao, R. T. Howe, R. Maboudian: A low temperature CVD process for silicon carbide MEMS, Sens. Actuators A 97-98 (2002) 410–415

    Article  Google Scholar 

  42. M. Eickhoff, H. Moller, G. Kroetz, J. von Berg, R. Ziermann: A high temperature pressure sensor prepared by selective deposition of cubic silicon carbide on SOI substrates, Sens. Actuators 74 (1999) 56–59

    Article  Google Scholar 

  43. Y. T. Yang, K. L. Ekinci, X. M. H. Huang, L. M. Schiavone, M. L. Roukes, C. A. Zorman, M. Mehregany: Monocrystalline silicon carbide nanoelectromechanical systems, Appl. Phys. Lett. 78 (2001) 162–164

    Article  CAS  Google Scholar 

  44. C. A. Zorman, S. Rajgolpal, X. A. Fu, R. Jezeski, J. Melzak, M. Mehregany: Deposition of polycrystalline 3C-SiC films on 100 mm-diameter (100) Si wafers in a large-volume LPCVD furnace, Electrochem. Solid State Lett. 5 (2002) G99–G101

    Article  CAS  Google Scholar 

  45. I. Behrens, E. Peiner, A. S. Bakin, A. Schlachetzski: Micromachining of silicon carbide on silicon fabricated by low-pressure chemical vapor deposition, J. Micromech. Microeng. 12 (2002) 380–384

    Article  CAS  Google Scholar 

  46. C. A. Zorman, S. Roy, C. H. Wu, A. J. Fleischman, M. Mehregany: Characterization of polycrystalline silicon carbide films grown by atmospheric pressure chemical vapor deposition on polycrystalline silicon, J. Mater. Res. 13 (1996) 406–412

    Article  Google Scholar 

  47. C. H. Wu, C. H. Zorman, M. Mehregany: Growth of polycrystalline SiC films on SiO2 and Si3N4 by APCVD, Thin Solid Films 355-356 (1999) 179–183

    Article  Google Scholar 

  48. P. Sarro: Silicon carbide as a new MEMS technology, Sens. Actuators 82 (2000) 210–218

    Article  Google Scholar 

  49. N. Ledermann, J. Baborowski, P. Muralt, N. Xantopoulos, J. M. Tellenbach: Sputtered silicon carbide thin films as protective coatings for MEMS applications, Surf. Coat. Technol. 125 (2000) 246–250

    Article  CAS  Google Scholar 

  50. R. S. Okojie, A. A. Ned, A. D. Kurtz: Operation of a 6H-SiC pressure sensor at 500 °C, Sens. Actuators A 66 (1998) 200–204

    Article  Google Scholar 

  51. K. Lohner, K. S. Chen, A. A. Ayon, M. S. Spearing: Microfabricated silicon carbide microengine structures, Mater. Res. Soc. Symp. Proc. 546 (1999) 85–90

    CAS  Google Scholar 

  52. S. Tanaka, S. Sugimoto, J.-F. Li, R. Watanabe, M. Esashi: Silicon carbide micro-reaction-sintering using micromachined silicon molds, J. Microelectromech. Syst. 10 (2001) 55–61

    Article  CAS  Google Scholar 

  53. X. Song, S. Rajgolpal, J. M. Melzak, C. A. Zorman, M. Mehregany: Development of a multilayer SiC surface micromachining process with capabilities and design rules comparable with conventional polysilicon surface micromachining, Mater. Sci. Forum 389-393 (2001) 755–758

    Article  Google Scholar 

  54. L. A. Liew, W. Zhang, V. M. Bright, A. Linan, M. L. Dunn, R. Raj: Fabrication of SiCN ceramic MEMS using injectable polymer-precursor technique, Sens. Actuators A 89 (2001) 64–70

    Article  Google Scholar 

  55. A. J. Fleischman, S. Roy, C. A. Zorman, M. Mehregany: Polycrystalline silicon carbide for surface micromachining, Proc.9th Int. Workshop Microelectromech. Systems, San Diego 1996, ed. by M. G. Allen, M. L. Reid (IEEE, Piscataway 1996) 234–238

    Google Scholar 

  56. A. J. Fleischman, X. Wei, C. A. Zorman, M. Mehregany: Surface micromachining of polycrystalline SiC deposited on SiO2 by APCVD, Mater. Sci. Forum 264-268 (1998) 885–888

    Article  Google Scholar 

  57. A. Yasseen, C. H. Wu, C. A. Zorman, M. Mehregany: Fabrication and testing of surface micromachined polycrystalline SiC micromotors, Electron Device Lett. 21 (2000) 164–166

    Article  CAS  Google Scholar 

  58. T. Shibata, Y. Kitamoto, K. Unno, E. Makino: Micromachining of diamond film for MEMS applications, J. Microelectromech. Syst. 9 (2000) 47–51

    Article  CAS  Google Scholar 

  59. H. Bjorkman, P. Rangsten, P. Hollman, K. Hjort: Diamond replicas from microstructured silicon masters, Sens. Actuators 73 (1999) 24–29

    Article  Google Scholar 

  60. P. Rangsten, H. Bjorkman, K. Hjort: Microfluidic components in diamond, Proc. 10th Int. Conf. Solid State Sens. Actuators, Sendai 1999, ed. by M. Esashi, T. Morizumi (IEE of Japan, Tokyo 1999) 190–193

    Google Scholar 

  61. H. Bjorkman, P. Rangsten, K. Hjort: Diamond microstructures for optical microelectromechanical systems, Sens. Actuators 78 (1999) 41–47

    Article  Google Scholar 

  62. M. Aslam, D. Schulz: Technology of diamond microelectromechanical systems, Proc. 8th Int. Conf. Solid State Sens. Actuators, Stockholm 1995, ed. by I. Lundstrum (Foundation for Sensor and Actuator Technology, Stockholm 1995) 222–224

    Google Scholar 

  63. R. Ramesham: Fabrication of diamond microstructures for microelectromechanical systems (MEMS) by a surface micromachining process, Thin Solid Films 340 (1999) 1–6

    Article  CAS  Google Scholar 

  64. Y. Yang, X. Wang, C. Ren, J. Xie, P. Lu, W. Wang: Diamond surface micromachining technology, Diamond Rel. Mater. 8 (1999) 1834–1837

    Article  CAS  Google Scholar 

  65. X. D. Wang, G. D. Hong, J. Zhang, B. L. Lin, H. Q. Gong, W. Y. Wang: Precise patterning of diamond films for MEMS application, J. Mater. Processing Technol. 127 (2002) 230–233

    Article  CAS  Google Scholar 

  66. A. R. Krauss, O. Auciello, D. M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D. C. Mancini, N. Moldovan, A. Erdemire, D. Ersoy, M. N. Gardos, H. G. Busmann, E. M. Meyer, M. Q. Ding: Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices, Diamond Rel. Mater. 10 (2001) 1952–1961

    Article  CAS  Google Scholar 

  67. K. Hjort, J. Soderkvist, J.-A. Schweitz: Galium arsenide as a mechanical material, J. Micromech. Microeng. 4 (1994) 1–13

    Article  CAS  Google Scholar 

  68. K. Hjort: Sacrificial etching of III-V compounds for micromechanical devices, J. Micromech. Microeng. 6 (1996) 370–365

    Article  CAS  Google Scholar 

  69. K. Fobelets, R. Vounckx, G. Borghs: A GaAs pressure sensor based on resonant tunnelling diodes, J. Micromech. Microeng. 4 (1994) 123–128

    Article  CAS  Google Scholar 

  70. A. Dehe, K. Fricke, H. L. Hartnagel: Infrared thermopile sensor based on AlGaAs-GaAs micromachining, Sens. Actuators A 46-47 (1995) 432–436

    Article  Google Scholar 

  71. A. Dehe, K. Fricke, K. Mutamba, H. L. Hartnagel: A piezoresistive GaAs pressure sensor with GaAs/AlGaAs membrane technology, J. Micromech. Microeng. 5 (1995) 139–142

    Article  CAS  Google Scholar 

  72. A. Dehe, J. Peerlings, J. Pfeiffer, R. Riemenschneider, A. Vogt, K. Streubel, H. Kunzel P. Meissner, H. L. Hartnagel: III-V compound semiconductor micromachined actuators for long resonator tunable Fabry–Perot detectors, Sens. Actuators A 68 (1998) 365–371

    Article  Google Scholar 

  73. T. Lalinsky, S. Hascik, Z. Mozolova, E. Burian, M. Drzik: The improved performance of GaAs micromachined power sensor microsystem, Sens. Actuators 76 (1999) 241–246

    Article  Google Scholar 

  74. T. Lalinsky, E. Burian, M. Drzik, S. Hascik, Z. Mozolova, J. Kuzmik, Z. Hatzopoulos: Performance of GaAs micromachined microactuator, Sens. Actuators 85 (2000) 365–370

    Article  Google Scholar 

  75. H. X. Tang, X. M. H. Huang, M. L. Roukes, M. Bichler, W. Wegscheider: Two-dimensional electron-gas actuation and transduction for GaAs nanoelectromechanical systems, Appl. Phys. Lett. 81 (2002) 3879–3881

    Article  CAS  Google Scholar 

  76. T. S. Tighe, J. M. Worlock, M. L. Roukes: Direct thermal conductance measurements on suspended monocrystalline nanostructures, Appl. Phys. Lett. 70 (1997) 2687–2689

    Article  CAS  Google Scholar 

  77. J. Miao, B. L. Weiss, H. L. Hartnagel: Micromachining of three-dimensional GaAs membrane structures using high-energy nitrogen implantation, J. Micromech. Microeng. 13 (2003) 35–39

    Article  CAS  Google Scholar 

  78. C. Seassal, J. L. Leclercq, P. Viktorovitch: Fabrication of InP-based freestanding microstructures by selective surface micromachining, J. Micromech. Microeng. 6 (1996) 261–265

    Article  Google Scholar 

  79. J. Leclerq, R. P. Ribas, J. M. Karam, P. Viktorovitch: III-V micromachined devices for microsystems, Microelectron. J. 29 (1998) 613–619

    Article  Google Scholar 

  80. H. Yamaguchi, R. Dreyfus, S. Miyashita, Y. Hirayama: Fabrication and elastic properties of InAs freestanding structures based on InAs/GaAs(111) A heteroepitaxial systems, Physica E 13 (2002) 1163–1167

    CAS  Google Scholar 

  81. J. B. Lee, J. English, C. H. Ahn, M. G. Allen: Planarization techniques for vertically integrated metallic MEMS on silicon foundry circuits, J. Micromech. Microeng. 7 (1997) 44–54

    Article  CAS  Google Scholar 

  82. B. Xu, L. E. Cross, J. J. Bernstein: Ferroelectric and antiferroelectric films for microelectromechanical systems applications, Thin Solid Films 377-378 (2000) 712–718

    Article  CAS  Google Scholar 

  83. S. P. Beeby, A. Blackburn, N. M. White: Processing of PZT piezoelectric thick films on silicon for microelectromechanical systems, J. Micromech. Microeng. 9 (1999) 218–229

    Article  CAS  Google Scholar 

  84. C. Shearwood, M. A. Harradine, T. S. Birch, J. C. Stevens: Applications of polyimide membranes to MEMS technology, Microelectron. Eng. 30 (1996) 547–550

    Article  CAS  Google Scholar 

  85. F. Jiang, G. B. Lee, Y. C. Tai, C. M. Ho: A flexible micromachine-based shear-stress sensor array and its application to separation-point detection, Sens. Actuators 79 (2000) 194–203

    Article  Google Scholar 

  86. D. Memmi, V. Foglietti, E. Cianci, G. Caliano, M. Pappalardo: Fabrication of capacitive micromechanical ultrasonic transducers by low-temperature process, Sens. Actuators A 99 (2002) 85–91

    Article  Google Scholar 

  87. A. Bagolini, L. Pakula, T. L. M. Scholtes, H. T. M. Pham, P. J. French, P. M. Sarro: Polyimide sacrificial layer and novel materials for post-processing surface micromachining, J. Micromech. Microeng. 12 (2002) 385–389

    Article  CAS  Google Scholar 

  88. T. Stieglitz: Flexible biomedical microdevices with double-sided electrode arrangements for neural applications, Sens. Actuators A 90 (2001) 203–211

    Article  Google Scholar 

  89. T. Stieglitz, G. Matthias: Flexible BioMEMS with electrode arrangements on front and back side as key component in neural prostheses and biohybrid systems, Sens. Actuators B 83 (2002) 8–14

    Article  Google Scholar 

  90. H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, P. Renaud: High-aspect-ratio, ultrathick, negative-tone-near-UV photoresist and its applications in MEMS, Sens. Actuators A 64 (1998) 33–39

    Article  Google Scholar 

  91. H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, P. Vettiger: SU-8: A low-cost negative resist for MEMS, J. Micromech. Microeng. 7 (1997) 121–124

    Article  CAS  Google Scholar 

  92. E. H. Conradie, D. F. Moore: SU-8 thick photoresist processing as a functional material for MEMS applications, J. Micromech. Microeng. 12 (2002) 368–374

    Article  CAS  Google Scholar 

  93. C. T. Pan, H. Yang, S. C. Shen, M. C. Chou, H. P. Chou: A low-temperature wafer bonding technique using patternable materials, J. Micromech. Microeng. 12 (2002) 611–615

    Article  CAS  Google Scholar 

  94. P. A. Stupar, A. P. Pisano: Silicon parylene, and silicon/parylene micro-needles for strength and toughness, Technical Digest 11st Int. Conf. Solid State Sens. Actuators, Munich 2001, ed. by E. Obermeier (Springer, Berlin, Heidelberg 2001) 1368–1389

    Google Scholar 

  95. X. Yang, J. M. Yang, Y. C. Tai, C. M. Ho: Micromachined membrane particle filters, Sens. Actuators 73 (1999) 184–191

    Article  Google Scholar 

  96. J. M. Zara, S. W. Smith: Optical scanner using a MEMS actuator, Sens. Actuators A 102 (2002) 176–184

    Article  Google Scholar 

  97. H. S. Noh, P. J. Hesketh, G. C. Frye-Mason: Parylene gas chromatographic column for rapid thermal cycling, J. Microelectromech. Syst. 11 (2002) 718–725

    Article  CAS  Google Scholar 

  98. T. J. Yao, X. Yang, Y. C. Tai: BrF3 dry release technology for large freestanding parylene microstructures and electrostatic actuators, Sens. Actuators A 97-98 (2002) 771–775

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Zorman, C.A., Mehregany, M. (2004). Materials Aspects of Micro- and Nanoelectromechanical Systems. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29838-X_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-29838-X_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-01218-4

  • Online ISBN: 978-3-540-29838-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics