Skip to main content

Stamping Techniques for Micro and Nanofabrication: Methods and Applications

  • Reference work entry
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter highlights some recent advances in high resolution printing methods, in which a “stamp” forms a pattern of “ink” on the surface it contacts. It focuses on two approaches whose capabilities, level of development, and demonstrated applications indicate a strong potential for widespread use, especially in areas where conventional methods are unsuitable. The first of these, known as microcontact printing, uses a high resolution rubber stamp to print patterns of chemical inks, mainly those that lead to the formation of organic self-assembled monolayers (SAMs). These printed SAMs can be used either as resists in selective wet etching, or as templates in selective deposition to form structures of a variety of materials. The other approach, referred to as nanotransfer printing, uses similar high resolution stamps, but ones inked with solid thin film materials. In this case, SAMs, or other types of surface chemistries, bond these films to a substrate that the stamp contacts. The material transfer that results upon removal of the stamp forms a pattern in the geometry of the relief features, in a purely additive fashion. In addition to providing detailed descriptions of these micro/nanoprinting techniques, this chapter illustrates their use in some areas where these methods may provide attractive alternatives to more established lithographic methods. The demonstrator applications span fields as diverse as biotechnology (intravascular stents), fiber optics (tunable fiber devices), nanoanalytical chemistry (high resolution nuclear magnetic resonance), plastic electronics (paper-like displays), and integrated optics (distributed feedback lasers). The growing interest in nanoscience and nanotechnology motivates research and the development of new methods that can be used for nanofabricating the relevant test structures or devices. The attractive capabilities of the techniques described here, together with the interesting and subtle materials science, chemistry, and physics associated with them, make this a promising area for basic and applied study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

μCP:

microcontact printing

DBR:

distributed Bragg reflector

DFB:

distributed feedback

ITO:

indium tin oxide

MIM:

metal/insulator/metal

MPTMS:

mercaptopropyltrimethoxysilane

PDMS:

polydimethylsiloxane

PECVD:

plasma enhanced CVD

PET:

poly(ethylene terephthalate)

SAM:

self-assembling monolayer

SEM:

scanning electron microscope/microscopy

nTP:

nanotransfer printing

References

  1. C. A. Mirkin, J. A. Rogers: Emerging methods for micro- and nanofabrication, MRS Bull. 26 (2001) 506–507

    Article  CAS  Google Scholar 

  2. H. I. Smith, H. G. Craighead: Nanofabrication, Phys. Today 43 (February 1990) 24–43

    Article  CAS  Google Scholar 

  3. W. M. Moreau (Ed.): Semiconductor Lithography: Principles and Materials (Plenum, New York 1988)

    Google Scholar 

  4. S. Matsui, Y. Ochiai: Focused ion beam applications to solid state devices, Nanotechnology 7 (1996) 247–258

    Article  CAS  Google Scholar 

  5. J. M. Gibson: Reading and writing with electron beams, Phys. Today 50 (1997) 56–61

    Article  CAS  Google Scholar 

  6. L. L. Sohn, R. L. Willett: Fabrication of nanostructures using atomic-force microscope-based lithography, Appl. Phys. Lett. 67 (1995) 1552–1554

    Article  CAS  Google Scholar 

  7. E. Betzig, K. Trautman: Near-Field optics – microscopy, spectroscopy, and surface modification beyond the diffraction limit, Science 257 (1992) 189–195

    Article  CAS  Google Scholar 

  8. A. J. Bard, G. Denault, C. Lee, D. Mandler, D. O. Wipf: Scanning electrochemical microscopy: A new technique for the characterization and modification of surfaces, Acc. Chem. Res. 23 (1990) 357

    Article  CAS  Google Scholar 

  9. J. A. Stroscio, D. M. Eigler: Atomic and molecular manipulation with the scanning tunneling microscope, Science 254 (1991) 1319–1326

    Article  CAS  Google Scholar 

  10. J. Nole: Holographic lithography needs no mask, Laser Focus World 33 (1997) 209–212

    Google Scholar 

  11. A. N. Broers, A. C. F. Hoole, J. M. Ryan: Electron beam lithography – resolution limits, Microelectron. Eng. 32 (1996) 131–142

    Article  CAS  Google Scholar 

  12. A. N. Broers, W. Molzen, J. Cuomo, N. Wittels: Electron-beam fabrication of 80 A metal structures, Appl. Phys. Lett. 29 (1976) 596

    Article  CAS  Google Scholar 

  13. A. Kumar, G. M. Whitesides: Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching, Appl. Phys. Lett. 63 (1993) 2002–2004

    Article  CAS  Google Scholar 

  14. Y. Xia, G. M. Whitesides: Soft lithography, Angew. Chem. Int. Ed. 37 (1998) 550–575

    Article  CAS  Google Scholar 

  15. Y. Xia, J. A. Rogers, K. E. Paul, G. M. Whitesides: Unconventional methods for fabricating and patterning nanostructures, Chem. Rev. 99 (1999) 1823–1848

    Article  CAS  Google Scholar 

  16. J. A. Rogers, R. J. Jackman, J. L. Wagener, A. M. Vengsarkar, G. M. Whitesides: Using microcontact printing to generate photomasks on the surface of optical fibers: A new method for producing in-fiber gratings, Appl. Phys. Lett. 70 (1997) 7–9

    Article  CAS  Google Scholar 

  17. B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J. P. Renault, H. Rothuizen, H. Schmid, P. Schmidt-Winkel, R. Stutz, H. Wolf: Printing meets lithography: Soft approaches to high-resolution printing, IBM J. Res. Dev. 45 (2001) 697–719

    Article  CAS  Google Scholar 

  18. J. A. Rogers: Rubber stamping for plastic electronics and fiber optics, MRS Bull. 26 (2001) 530–534

    Article  CAS  Google Scholar 

  19. N. B. Larsen, H. Biebuyck, E. Delamarche, B. Michel: Order in microcontact printed self-assembled monolayers, J. Am. Chem. Soc. 119 (1997) 3017–3026

    Article  CAS  Google Scholar 

  20. H. A. Biebuyck, G. M. Whitesides: Self-organization of organic liquids on patterned self-assembled monolayers of alkanethiolates on gold, Langmuir 10 (1994) 2790–2793

    Article  CAS  Google Scholar 

  21. J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, P. Drzaic: Paper-like electronic displays: Large area, rubber stamped plastic sheets of electronics and electrophoretic inks, Proc. Nat. Acad. Sci. 98 (2001) 4835–4840

    Article  CAS  Google Scholar 

  22. J. L. Wilbur, H. A. Biebuyck, J. C. MacDonald, G. M. Whitesides: Scanning force microscopies can image patterned self-assembled monolayers, Langmuir 11 (1995) 825–831

    Article  CAS  Google Scholar 

  23. J. C. Love, D. B. Wolfe, M. L. Chabinyc, K. E. Paul, G. M. Whitesides: Self-assembled monolayers of alkanethiolates on palladium are good etch resists, J. Am. Chem. Soc. 124 (2002) 1576–1577

    Article  CAS  Google Scholar 

  24. H. Schmid, B. Michel: Siloxane polymers for high-resolution, high-accuracy soft lithography, Macromolecules 33 (2000) 3042–3049

    Article  CAS  Google Scholar 

  25. K. Choi, J. A. Rogers: A photocurable poly(dimethylsiloxane) chemistry for soft lithography in the nanometer regime, J. Am. Chem. Soc. 125 (2003) 4060–4061

    Article  CAS  Google Scholar 

  26. J. A. Rogers K. E. Paul, G. M. Whitesides: Quantifying distortions in soft lithography, J. Vac. Sci. Technol. B 16 (1998) 88–97

    Article  CAS  Google Scholar 

  27. J. Tate, J. A. Rogers, C. D. W. Jones, W. Li, Z. Bao, D. W. Murphy, R. E. Slusher, A. Dodabalapur, H. E. Katz, A. J. Lovinger: Anodization and microcontact printing on electroless silver: Solution-based fabrication procedures for low voltage organic electronic systems, Langmuir 16 (2000) 6054–6060

    Article  CAS  Google Scholar 

  28. Y. Xia, E. Kim, G. M. Whitesides: Microcontact printing of alkanethiols on silver and its application to microfabrication, J. Electrochem. Soc. 143 (1996) 1070–1079

    Article  CAS  Google Scholar 

  29. Y. N. Xia, X. M. Zhao, E. Kim, G. M. Whitesides: A selective etching solution for use with patterned self-assembled monolayers of alkanethiolates on gold, Chem. Mater. 7 (1995) 2332–2337

    Article  CAS  Google Scholar 

  30. R. J. Jackman, J. Wilbur, G. M. Whitesides: Fabrication of submicrometer features on curved substrates by microcontact printing, Science 269 (1995) 664–666

    Article  CAS  Google Scholar 

  31. R. J. Jackman, S. T. Brittain, A. Adams, M. G. Prentiss, G. M. Whitesides: Design and fabrication of topologically complex, three-dimensional microstructures, Science 280 (1998) 2089–2091

    Article  CAS  Google Scholar 

  32. J. A. Rogers, R. J. Jackman, G. M. Whitesides: Microcontact printing and electroplating on curved substrates: a new means for producing free-standing three-dimensional microstructures with possible applications ranging from micro-coil springs to coronary stents, Adv. Mater. 9 (1997) 475–477

    Article  CAS  Google Scholar 

  33. Y.-L. Loo, R. W. Willett, K. Baldwin, J. A. Rogers: Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics, Appl. Phys. Lett. 81 (2002) 562–564

    Article  CAS  Google Scholar 

  34. Y.-L. Loo, R. W. Willett, K. Baldwin, J. A. Rogers: Interfacial chemistries for nanoscale transfer printing, J. Am. Chem. Soc. 124 (2002) 7654–7655

    Article  CAS  Google Scholar 

  35. Y.-L. Loo, J. W. P. Hsu, R. L. Willett, K. W. Baldwin, K. W. West, J. A. Rogers: High-resolution transfer printing on GaAs surfaces using alkane dithiol self-assembled monolayers, J. Vac. Sci. Technol. B. 20 (2002) 2853–2856

    Article  CAS  Google Scholar 

  36. G. S. Ferguson, M. K. Chaudhury, G. B. Sigal, G. M. Whitesides: Contact adhesion of thin gold-films on elastomeric supports – cold welding under ambient conditions, Science 253 (1991) 776–778

    Article  CAS  Google Scholar 

  37. W. Zhang, S. Y. Chou: Multilevel nanoimprint lithography with submicron alignment over 4 in Si wafers, Appl. Phys. Lett. 79 (2001) 845–847

    Article  CAS  Google Scholar 

  38. N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, G. M. Whitesides: Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer, Nature 393 (1998) 146–149

    Article  CAS  Google Scholar 

  39. J. A. Rogers, Z. Bao, A. Dodabalapur, A. Makhija: Organic smart pixels and complementary inverter circuits formed on plastic substrates by casting, printing and molding, IEEE Electron Dev. Lett. 21 (2000) 100–103

    Article  CAS  Google Scholar 

  40. Z. Bao, J. A. Rogers, H. E. Katz: Printable organic and polymeric semiconducting materials and devices, J. Mater. Chem. 9 (1999) 1895–1904

    Article  CAS  Google Scholar 

  41. J. A. Rogers, Z. Bao, A. Makhija: Non-photolithographic fabrication sequence suitable for reel-to-reel production of high performance organic transistors and circuits that incorporate them, Adv. Mater. 11 (1999) 741–745

    Article  CAS  Google Scholar 

  42. P. Mach, S. Rodriguez, R. Nortrup, P. Wiltzius, J. A. Rogers: Active matrix displays that use printed organic transistors and polymer dispersed liquid crystals on flexible substrates, Appl. Phys. Lett. 78 (2001) 3592–3594

    Article  CAS  Google Scholar 

  43. J. A. Rogers: Toward paperlike displays, Science 291 (2001) 1502–1503

    Article  CAS  Google Scholar 

  44. Y.-L. Loo, T. Someya, K. W. Baldwin, P. Ho, Z. Bao, A. Dodabalapur, H. E. Katz, J. A. Rogers: Soft, conformable electrical contacts for organic transistors: High resolution circuits by lamination, Proc. Nat. Acad. Sci. USA 99 (2002) 10252–10256

    Article  CAS  Google Scholar 

  45. C. Kim, P. E. Burrows, S. R. Forrest: Micropatterning of organic electronic devices by cold-welding, Science 288 (2000) 831–833

    Article  CAS  Google Scholar 

  46. C. Kim, M. Shtein, S. R. Forrest: Nanolithography based on patterned metal transfer and its application to organic electronic devices, Appl. Phys. Lett. 80 (2002) 4051–4053

    Article  CAS  Google Scholar 

  47. J. A. Rogers, R. J. Jackman G. M. Whitesides, D. L. Olson, J. V. Sweedler: Using microcontact printing to fabricate microcoils on capillaries for high resolution 1H-NMR on nanoliter volumes, Appl. Phys. Lett. 70 (1997) 2464–2466

    Article  CAS  Google Scholar 

  48. J. A. Rogers, R. J. Jackman, G. M. Whitesides: Constructing single and multiple helical microcoils and characterizing their performance as components of microinductors and microelectromagnets, J. Microelectromech. Syst. (JMEMS) 6 (1997) 184–192

    Article  Google Scholar 

  49. R. J. Jackman, J. A. Rogers, G. M. Whitesides: Fabrication and characterization of a concentric, cylindrical microtransformer, IEEE Trans. Magn. 33 (1997) 2501–2503

    Article  Google Scholar 

  50. J. A. Rogers, M. Meier, A. Dodabalapur: Using stamping and molding techniques to produce distributed feedback and Bragg reflector resonators for plastic lasers, Appl. Phys. Lett. 73 (1998) 1766–1768

    Article  CAS  Google Scholar 

  51. M. Berggren, A. Dodabalapur, R. E. Slusher, A. Timko, O. Nalamasu: Organic solid-state lasers with imprinted gratings on plastic substrates, Appl. Phys. Lett. 72 (1998) 410–411

    Article  CAS  Google Scholar 

  52. J. A. Rogers, M. Meier, A. Dodabalapur: Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on non-planar substrates, Appl. Phys. Lett. 74 (1999) 3257–3259

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author extends his deepest thanks to all of the collaborators who contributed the work described here.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Rogers, J.A. (2004). Stamping Techniques for Micro and Nanofabrication: Methods and Applications. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29838-X_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-29838-X_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-01218-4

  • Online ISBN: 978-3-540-29838-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics