Skip to main content

High Volume Manufacturing and Field Stability of MEMS Products

  • Reference work entry
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

  • 1998 Accesses

Abstract

Low volume MEMS/NEMS production is practical when an attractive concept is implemented with business, manufacturing, packaging, and test support. Moving beyond this to high volume production adds requirements on design, process control, quality, product stability, market size, market maturity, capital investment, and business systems. In a broad sense, this chapter uses a case study approach: It describes and compares the silicon-based MEMS accelerometers, pressure sensors, image projection systems, and gyroscopes that are in high volume production. Although they serve several markets, these businesses have common characteristics. For example, the manufacturing lines use automated semiconductor equipment and standard material sets to make consistent products in large quantities. Standard, well controlled processes are sometimes modified for a MEMS product. However, novel processes that cannot run with standard equipment and material sets are avoided when possible. This reliance on semiconductor tools, as well as the organizational practices required to manufacture clean, particle-free products partially explains why the MEMS market leaders are integrated circuit manufacturers. There are other factors. MEMS and NEMS are enabling technologies, so it can take several years for high volume applications to develop. Indeed, market size is usually a strong function of price. This becomes a vicious circle, because low price requires low cost – a result that is normally achieved only after a product is in high volume production. During the early years, IC companies reduced cost and financial risk by using existing facilities for low volume MEMS production. As a result, product architectures are partially determined by capabilities developed for previous products. This chapter includes a discussion of MEMS product architecture with particular attention to the impact of electronic integration, packaging, and surfaces. Packaging and testing are critical, because they are significant factors in MEMS product cost. These devices have extremelyhigh surface/volume ratios, so performance and stability may depend on the control of surface characteristics after packaging. Looking into the future, the competitive advantage of IC suppliers will decrease as small companies learn to integrate MEMS/NEMS devices on CMOS foundry wafers. Packaging challenges still remain, because most MEMS/NEMS products must interact with the environment without degrading stability or reliability. Generic packaging solutions are unlikely. However, packaging subcontractors recognize that MEMS/NEMS is a growth opportunity. They will spread the overhead burden of high-capital-cost-facilities by developing flexible processes in order to package several types of moderate volume integrated MEMS/NEMS products on the same equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ASA:

anti-stiction agent

CVD:

chemical vapor deposition

DLP:

digital light processing

DMD:

digital micromirror device

EDP:

ethylene diamine pyrocatechol

ESD:

electrostatic discharge

FMEA:

failure mode effect analysis

HF:

hydrofluoric acid

IC:

integrated circuit

LCC:

leadless chip carrier

MAP:

manifold absolute pressure

MEMS:

microelectromechanical systems

NEMS:

nanoelectromechanical systems

PA:

plasminogen activator

RF:

radiofrequency

SAM:

self-assembling monolayer

SRAM:

static random access memory

References

  1. J. B. Angell, S. C. Terry, P. W. Barth: Silicon micromechanical devices, Sci. Am. 248 (1983) 44–50

    Article  CAS  Google Scholar 

  2. T. A. Core, W. K. Tsang, S. J. Sherman: Fabrication technology for an integrated surface-micromachined sensor, Solid State Technol. 36(10) (1993) 39–47

    CAS  Google Scholar 

  3. W. Kuehnel, S. Sherman: A surface micromachined silicon accelerometer with on-chip detection circuitry, Sens. Actuators A 45 (1994) 7–16

    Article  Google Scholar 

  4. K. H.-L. Chau, R. E. Sulouff Jr.: Technology for the high-volume manufacturing of integrated surface-micromachined accelerometer products, Microelectron. J. 29 (1998) 579–586

    Article  Google Scholar 

  5. B. Sulouff: Integrated surface micromachined technology. In: Sensors for Automotive Technology, Sensors Applications, Vol. 4, ed. by J. Marek, H.-P. Trah, Y. Suzuki, I. Yokomori (Wiley-VCH, Weinheim 2003) Chap. 5.2

    Google Scholar 

  6. M. A. Mignardi, R. O. Gale, D. J. Dawson, J. C. Smith: The digital micromirror device – A micro-optical electromechanical device of display applications. In: MEMS and MOEMS Technology and Applications, ed. by P. Rai-Choudhury (SPIE, Bellingham 2000) Chap. 4

    Google Scholar 

  7. K. Nunan, G. Ready, J. Sledziewski: LPCVD & PECVD operations designed for iMEMS sensor devices, Vac. Technol. Coat. 2(1) (2001) 26–37

    Google Scholar 

  8. M. Williams, J. Smith, J. Mark, G. Matamis, B. Gogoi: Development of low stress, silicon-rich nitride film for micromachined sensor applications, Micromachining and Microfabrication Process Technology VI, Proc. SPIE 4174, ed. by J. Karam, J. Yasaitis, Proc. SPIE 4174 (2000) 436–442

    Google Scholar 

  9. Z. Zhang, K. Eskes: Elimination of wafer edge die yield loss for accelerometers, Micromachining and Microfabrication Process Technology VI, ed. by J. Karam, J. Yasaitis, Proc. SPIE 4174 (2000) 477–484

    Google Scholar 

  10. G. Bitko, A. C. McNeil, D. J. Monk: Effect of inorganic thin film material processing and properties on stress in silicon piezoresistive pressure sensors, Proc. Mat. Res. Soc. Symp. 444 (1997) 221–226

    CAS  Google Scholar 

  11. A. Hein, S. Finkbeiner, J. Marek, E. Obermeier: Material related effects on wet chemical micromachining of smart MEMS devices, Micromachined Devices and Components V, ed. by P. French, E. Peeters, Proc. SPIE 3876 (1999) 29–36

    Google Scholar 

  12. B. Sulouff: Commercialization of MEMS automotive accelerometers, 7th International Conference on the Commercialization of Micro and Nano Systems (COMS), Ypsilanti 2002 (MANCEF, Albuquerque 2002) 267–270

    Google Scholar 

  13. H. Weinberg: MEMS sensors are driving the automotive industry, Sensors 19(2) (2002) 36–41

    Google Scholar 

  14. J. Marek, M. Illing: Microsystems for the automotive industry, Electron Devices Meeting, IEDM Technical Digest International, San Francisco 2000 (IEEE, New York 2000) 3–8

    Google Scholar 

  15. D. S. Eddy, D. R. Sparks: Application of MEMS technology in automotive sensors and actuators, Proc. IEEE 86(8) (1998) 1747–1755

    Article  Google Scholar 

  16. R. Verma, I. Baskett, B. Loggins: Micromachined electromechanical sensors for automotive applications, SAE Special Pub. 1312 (1998) 55–59

    Google Scholar 

  17. R. Maboudian, R. T. Howe: Critical review: Adhesion in surface micromechanical structures, J. Vac. Sci. Technol. B 15(1) (1997) 1–20

    Article  CAS  Google Scholar 

  18. U. Srinivasan, M. R. Houston, R. T. Howe, R. Maboudian: Alkyltrichlorosilane-based self-assembled monolayer films for stiction reduction in silicon micromachines, J. Microelectromech. Syst. 7(2) (1998) 252–260

    Article  CAS  Google Scholar 

  19. B. H. Kim, T. D. Chung, C. H. Oh, K. Chun: A new organic modifier for anti-stiction, J. Microelectromech. Syst. 10(1) (2001) 33–40

    Article  CAS  Google Scholar 

  20. S. Pamidighantam, W. Laureyn, A. Salah, A. Verbist, H. Tilmans: A novel process for fabricating slender and compliant suspended poly-Si micromechanical structures with sub-micron gap spacing, 15th IEEE 2002 Micro Electro Mechanical Systems (MEMS) Conf. (IEEE, New York 2002) 661–664

    Google Scholar 

  21. B. C. Bunker, R. W. Carpick, R. A. Assink, M. L. Thomas, M. G. Hankins, J. A. Voigt, D. Sipola, M. P. de Boer, G. L. Gulley: Impact of solution agglomeration on the deposition of self-assembled monolayers, Langmuir 16 (2000) 7742–7751

    Article  CAS  Google Scholar 

  22. Y. Jun, V. Boiadjiev, R. Major, X.-Y. Zhu: Novel chemistry for surface engineering in MEMS, Materials and Devices Characterization in Micromachining III, ed. by Y. Vladimirsky, P. Coane, Proc. SPIE 4175 (2000) 113–120

    Google Scholar 

  23. R. Maboudian, W. R. Ashurst, C. Carraro: Self-assembled monolayers as anti-stiction coatings for MEMS: Characteristics and recent developments, Sens. Actuators A 82(1) (2000) 219–223

    Article  Google Scholar 

  24. W. R. Ashurst, C. Yau, C. Carraro, R. Maboudian, M. T. Dugger: Dichlorodimethylsilane as an anti-stiction monolayer for MEMS: A comparison to the octadecyltrichlorosilane self-assembled monolayer, J. Microelectromech. Syst. 10 (2001) 41–49

    Article  CAS  Google Scholar 

  25. W. R. Ashurst, C. Yau, C. Carraro, C. Lee, G. J. Kluth, R. T. Howe, R. Maboudian: Alkene based monolayer films as anti-stiction coatings for polysilicon MEMS, Sens. Actuators A 91(3) (2001) 239–248

    Article  Google Scholar 

  26. S. J. Jacobs, S. A. Miller, J. J. Malone, W. C. McDonald, V. C. Lopes, L. K. Magel: Hermeticity and stiction in MEMS packaging, 40th Annual IEEE International Reliability Physics Symp., Dallas 2002 (IEEE, New York 2002) 136–139

    Google Scholar 

  27. Nexus Task Force Report: Market Analysis for Microsystems 1996-2002 (NEXUS, Grenoble 1998) www.nexus-mems.com

    Google Scholar 

  28. T. Maudie, J. Wertz: Pressure sensor performance and reliability, IEEE Industry Appl. Mag. 3(3) (1997) 37–43

    Article  Google Scholar 

  29. Lj. Ristic, R. Gutteridge, B. Dunn, D. Mietus, P. Bennett: Surface micromachined polysilicon accelerometer, IEEE 1992 Solid State Sensor and Actuator Workshop, IEEE 5th Technical Digest, Hilton Head 1992 (IEEE, New York 1992) 118–121

    Google Scholar 

  30. M. Furtsch, M. Offenberg, H. Munzel, J. R. Morante: Influence of anneals in oxygen ambient on stress of thick polysilicon layers, Sens. Actuators 76 (1999) 335–342

    Article  Google Scholar 

  31. P. Lange, M. Kirsten, W. Riethmuller, B. Wenk, G. Zwicker, J. R. Morante, F. Ericson, J. A. Schweitz: Thick polycristalline silicon for surface micromechanical applications: Deposition, structuring and mechanical characterization, Proc. 8th International Conf. on Solid State Sensors and Actuators and Eurosensors IX, Transducers '95, Vol. 1 (IEEE, New York 1995) 202–205

    Google Scholar 

  32. F. Laermer, A. Schilp: Method of anisotropically etching silicon, (1996) U.S. Patent 5,501,893

    Google Scholar 

  33. M. Offenberg, H. Munzel, D. Schubert, O. Schatz, F. Laermer, E. Muller, B. Maihofer, J. Marek: Acceleration sensor in surface micromachining for airbag applications with high signal/noise ratio, SAE Special Pub. 1133 (1996) 35–41

    Google Scholar 

  34. F. Laermer, A. Schilp, K. Funk, M. Offenberg: Bosch deep silicon etching: Improving uniformity and etch rate for advanced MEMS applications, Proc 12nd International Conf. on Micro Electro Mechanical Systems MEMS (IEEE, New York 1999) 211–216

    Google Scholar 

  35. J. R. Martin, C. M. Roberts Jr.: Package for sealing an integrated circuit die, (2001) U.S. Patent 6,323,550

    Google Scholar 

  36. J. A. Geen, S. J. Sherman, J. F. Chang, S. R. Lewis: Single chip surface micromachined integrated gyroscope with 50 deg/hour allan deviation, IEEE J. Solid-State Circuits 37(12) (2002) 1860–1866

    Article  Google Scholar 

  37. K. Funk, H. Emmerich, A. Schilp, M. Offenberg, R. Neul, F. Larmer: A surface micromachined silicon gyroscope using a thick polysilicon layer, Proc. 12nd International Conf. on Micro Electro Mechanical Systems MEMS (IEEE, New York 1999) 57–60

    Google Scholar 

  38. M. Lutz, W. Golderer, J. Gerstenmeier, J. Marek, B. Maihofer, S. Mahler, H. Munzel, U. Bischof: A precision yaw rate sensor in silicon micromachining, 11st International Conf. on Solid State Sensors and Actuators, Transducers '97 (IEEE, New York 1997) 847–850

    Google Scholar 

  39. T. A. Core, R. T. Howe: Method for fabricating microstructures, (1994) U.S. Patent 5,314,572

    Google Scholar 

  40. M. Offenberg, F. Laermer, B. Elsner, H. Munzel, W. Reithmuller: Novel process for a monolithic integrated accelerometer, Proc. 8th International Conf. on Solid State Sensors and Actuators and Eurosensors IX, Transducers '95 (IEEE, New York 1995) 589–592

    Google Scholar 

  41. J. Anguita, F. Briones: HF/H2O vapor etching of SiO2 sacrificial layer for large-area surface-micromachined membranes, Sens. Actuators A 64 (1998) 247–251

    Article  Google Scholar 

  42. M. A. Schmidt: Wafer-to-wafer bonding for microstructure formation, Proc. IEEE 86(8) (1998) 1575–1585

    Article  CAS  Google Scholar 

  43. A. R. Mirza: Wafer-level bonding technology for MEMS, Proc. 7th Intersociety Conf. on Thermal and Thermomechanical Phenomena in Electronic Systems, ITHERM 2000, Vol. 1 (IEEE, New York 2000) 113–119

    Google Scholar 

  44. A. R. Mirza: One micron precision, wafer-level aligned bonding for interconnect, MEMS and packaging applications, Proc. 50th Electronic Components & Technology Conf. (IEEE, New York 2000) 676–680

    Google Scholar 

  45. S. Mack, H. Baumann, U. Goesele: Gas tightness of cavities sealed by silicon wafer bonding, Proc. 10th Annual International Workshop on Micro Electro Mechanical Systems, MEMS; IEEE Micro Electro Mechanical Systems (MEMS) (IEEE, New York 1997) 488–493

    Google Scholar 

  46. G. Wallis: Field assisted glass sealing, SAE Automotive Engineering Congress, Detroit 1971 (Society of Automotive Engineers, New York 1971) Paper 71023

    Google Scholar 

  47. S. A. Audet, K. M. Edenfeld: Integrated sensor wafer-level packaging, Proc. International Conf. on Solid State Sensors and Actuators, Transducers '97, Vol. 1 (IEEE, New York 1997) 287–289

    Google Scholar 

  48. C. Gormley, A. Boyle, V. Srigengan, S. Blackstone: HARM processing techniques for MEMS and MOEMS devices using bonded SOI substrates and DRIE, Micromachining and Microfabrication Process Technology VI, ed. by J. Karam, J. Yasaitis, Proc. SPIE 4174 (2000) 98–110

    Google Scholar 

  49. K. Somasundram, D. Cole, C. McNamara, A. Boyle, P. McCann, C. Devine, A. Nevin: Fusion-bonded multilayered SOI for MEMS applications, Smart Sensors, Actuators and MEMS, Proc. SPIE 5116, ed. by J.-C. Chiao, V. Varadan, C. Cané (2003) 12–19

    Google Scholar 

  50. C. M. Roberts Jr., L. H. Long, P. A. Ruggerio: Method for separating circuit dies from a wafer, (1994) U.S. Patent 5,362,681

    Google Scholar 

  51. T. Maudie, T. Miller, R. Nielsen, D. Wallace, T. Ruehs, D. Zehrbach: Challenges of MEMS device characterization in engineering development and final manufacturing, Proc. 1998 IEEE AUTOTESTCON (IEEE, New York 1998) 164–170

    Google Scholar 

  52. S. Petrovic, A. Ramirez, T. Maudie, D. Stanerson, J. Wertz, G. Bitko, J. Matkin, D. J. Monk: Reliability test methods for media-compatible pressure sensors, IEEE Trans. Industrial Electron. 45(6) (1998) 877–885

    Article  Google Scholar 

  53. S. Petrovic: Progress in media compatible pressure sensors, Proc. of InterPACK'01, the Pacific Rim/International Intersociety Electronic Packaging Technical/Business Conf. & Exhibition (ASME, New York 2001) IPACK2001-15517

    Google Scholar 

  54. H.-J. Kress, J. Marek, M. Mast, O. Schatz, J. Muchow: Integrated pressure sensors with electronic trimming, Automotive Eng. 103(4) (1995) 65–68

    Google Scholar 

  55. C. Fung, R. Harris, T. Zhu: Multifunction polysilicon pressure sensors for process control, Sensors 16(10) (1999) 75–79

    Google Scholar 

  56. K. H.-L. Chau, C. D. Fung, P. R. Harris, J. G. Panagou: High-stress and overrange behavior of sealed cavity polysilicon pressure sensors, IEEE 4th Technical Digest, Solid State Sensor and Actuator Workshop (IEEE, New York 1990) 181–183

    Google Scholar 

  57. A. B. Sontheimer: Digital micromirror device (DMD) hinge memory lifetime reliability modeling, Proc. 40th Annual IEEE International Reliability Physics Symp. (IEEE, New York 2002) 118–121

    Google Scholar 

  58. J. P. O'Connor: Packaging design considerations and guidelines for the digital micromirror device™, Proc. of InterPACK'01, the Pacific Rim/International Intersociety Electronic Packaging Technical/Business Conf. & Exhibition (ASME, New York 2001) IPACK2001-15526

    Google Scholar 

  59. C. Bang, V. Bright, M. A. Mignardi, D. J. Monk: Assembly and test for MEMS and optical MEMS. In: MEMS and MOEMS Technology and Applications, ed. by P. Rai-Choudhury (SPIE, Bellingham 2000) Chap. 7

    Google Scholar 

  60. F. Poradish, J. T. McKinley: Package for a semiconductor device, (1994) U.S. Patent 5,293,511

    Google Scholar 

  61. T. W. Migl: Interfacing to the digital micromirror device for home entertainment applications, Proc. of InterPACK'01, the Pacific Rim/International Intersociety Electronic Packaging Technical/Business Conf. & Exhibition (ASME, New York 2001) IPACK2001-15712

    Google Scholar 

  62. S. J. Jacobs, J. J. Malone, S. A. Miller, A. Gonzalez, R. Robbins, V. C. Lopes, D. Doane: Challenges in DMD™ assembly and test, Proc. Mater. Res. Soc. 657 (2001) EE6.1.1-EE6.1.12

    Google Scholar 

  63. Automotive Industry Action Group: Quality Systems Requirements QS-9000, 3rd edn. (Automotive Industry Action Group of the American Society for Quality, Milwaukee 1998)

    Google Scholar 

  64. J. A. Walraven, B. A. Waterson, I. De Wolf: Failure analysis of micromechanical systems (MEMS). In: Microelectronic Failure Analysis, 4th edn. (ASM, Materials Park 2002) 2002 Suppl.

    Google Scholar 

  65. M. R. Douglass: Lifetime estimates and unique failure mechanisms of the digital micromirror device (DMD), Proc. 1998 36th Annual IEEE International Reliability Physics Symp. (IEEE, New York 1998) 9–16

    Google Scholar 

  66. J. R. Martin: Surface characteristics of integrated MEMS in high volume production. In: Nanotribology: Critical Assessment and Research Needs, ed. by S. M. Hsu, Z. C. Ying (Kluwer, Dordrecht 2002) Chap. 14

    Google Scholar 

  67. H. R. Shea, A. Gasparyan, C. D. White, R. B. Comizzoli, D. Abusch-Magder, S. Arney: Anodic oxidation and reliability of MEMS poly-silicon electrodes at high relative humidity and high voltages, MEMS Reliability for Critical Applications; Proc. SPIE 4180 (2000) 117–122

    CAS  Google Scholar 

  68. J. Martin: Stiction suppression in high volume MEMS products, Proc. 2003 STLE/ASME Joint International Tribology Conf. (ASME, New York 2003) 2003TRIB-266

    Google Scholar 

  69. G. X. Li, F. A. Shemansky Jr.: Drop Test and analysis on micro-machined structures, Sens. Actuators 85 (2000) 280–286

    Article  Google Scholar 

  70. R. T. Howe, H. J. Barber, M. Judy: Apparatus to minimize stiction in micromachined structures, (1996) U.S. patent 5,542,295

    Google Scholar 

  71. L. J. Hornbeck, W. E. Nelson: Spatial light modulator and method, (1992) U.S. Patent 5,096,279

    Google Scholar 

  72. L. J. Hornbeck: Low reset voltage process for DMD, (1994) U.S. Patent 5,331,454

    Google Scholar 

  73. E. C. Fisher, R. Jascott, R. O. Gale: Method of passivating a micromechanical device within a hermetic package, (1999) U.S. Patent 5,936,758

    Google Scholar 

  74. B. A. Miksic: Use of vapor phase inhibitors for corrosion protection of metal products, Proc. 1983 NACE Annual Conf., Corrosion 83 (National Assoc. Corrosion Engineers, Houston 1983) Paper 308

    Google Scholar 

  75. D. Vanderpool, S. Akin, P. Hassett: Corrosion inhibitors in the electronics industry: Organic copper corrosion inhibitors, Proc. 1986 NACE Annual Conf., Corrosion 86 (National Assoc. Corrosion Engineers, Houston 1986) Paper 1

    Google Scholar 

  76. J. R. Martin, Y. Zhao: Micromachined device packaged to reduce stiction, (1997) U.S. Patent 5,694,740

    Google Scholar 

  77. J. R. Martin: Process for wafer level treatment to reduce stiction and passivate micromachined surfaces and compounds used therefor, (2001) International Patent Application WO 01/57920 A1

    Google Scholar 

  78. S. T. Patton, J. S. Zabinski: Failure mechanisms of a MEMS actuator in very high vacuum, Tribol. Int. 35(6) (2002) 373–379

    Article  CAS  Google Scholar 

  79. S. T. Patton, K. C. Eapen, J. S. Zabinski: Effects of adsorbed water and sample aging in air on the µN level adhesion force between Si(100) and silicon nitride, Tribol. Int. 34(7) (2001) 481–491

    Article  CAS  Google Scholar 

  80. S. T. Patton, W. D. Cowan, K. C. Eapen, J. S. Zabinski: Effect of surface chemistry on the tribological performance of a MEMS electrostatic lateral output motor, Tribol. Lett. 9 (2000) 199–209

    Article  CAS  Google Scholar 

  81. S. T. Patton, W. D. Cowan, J. S. Zabinski: Performance and reliability of a new MEMS electrostatic lateral output motor, Proc. 1999 37th Annual IEEE International Reliability Physics Symp. (IEEE, New York 1999) 179–188

    Google Scholar 

  82. D. M. Tanner, J. A. Walraven, L. W. Irwin, M. T. Dugger, N. F. Smith, W. P. Eaton, W. M. Miller, S. L. Miller: The effect of humidity on the reliability of a surface micromachined microengine, Proc. 1999 37th Annual IEEE International Reliability Physics Symp. (IEEE, New York 1999) 189–197

    Google Scholar 

  83. M. P. de Boer, P. J. Clews, B. K. Smith, T. A. Michalske: Adhesion of polysilicon microbeams in controlled humidity ambients, Proc. Mater. Res. Soc. Symp. 518 (1998) 131–136

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Martin, J. (2004). High Volume Manufacturing and Field Stability of MEMS Products. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29838-X_36

Download citation

  • DOI: https://doi.org/10.1007/3-540-29838-X_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-01218-4

  • Online ISBN: 978-3-540-29838-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics