Skip to main content

Mechanical Properties of Micromachined Structures

  • Reference work entry
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

  • 1924 Accesses

Abstract

To be able to accurately design structures and make reliability predictions, in any field it is necessary first to know the mechanical properties mechanical properties of the materials that make up the structural components. In the fields of microelectromechanical systems (MEMS) MEMS and nanoelectromechanical systems (NEMS), NEMS the devices are necessarily very small. The processing techniques and microstructures of the materials in these devices may differ significantly from bulk structures. Also, the surface-area-to-volume ratio in these structures is much higher than in bulk samples, and so the surface properties become much more important. In short, it cannot be assumed that mechanical properties measured using bulk specimens will apply to the same materials when used in MEMS and NEMS. This chapter will review the techniques that have been used to determine the mechanical properties of micromachined structures, especially residual stress, stress strength, strength and Young's modulus. Young's modulus The experimental measurements that have been performed will then be summarized, in particular the values obtained for polycrystalline silicon (polysilicon).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

LPCVD:

low pressure chemical vapor deposition

MEMS:

microelectromechanical systems

NEMS:

nanoelectromechanical systems

SEM:

scanning electron microscope/microscopy

References

  1. W. Nix: Mechanical properties of thin films, Metall. Trans. A 20 (1989) 2217–2245

    Article  Google Scholar 

  2. G. G. Stoney: The tension of metallic films deposited by electrolysis, Proc. R. Soc. Lond. A 82 (1909) 172–175

    Article  CAS  Google Scholar 

  3. W. Brantley: Calculated elastic constants for stress problems associated with semiconductor devices, J. Appl. Phys. 44 (1973) 534–535

    Article  CAS  Google Scholar 

  4. A. Ni, D. Sherman, R. Ballarini, H. Kahn, B. Mi, S. M. Phillips, A. H. Heuer: Optimal design of multilayered polysilicon films for prescribed curvature, J. Mater. Sci., in press

    Google Scholar 

  5. J. A. Floro, E. Chason, S. R. Lee, R. D. Twesten, R. Q. Hwang, L. B. Freund: Real-time stress evolution during Si 1-x Ge x heteroepitaxy: Dislocations, islanding, and segregation, J. Electron. Mater. 26 (1997) 969–979

    Article  CAS  Google Scholar 

  6. X. Li, B. Bhusan: Micro/nanomechanical characterization of ceramic films for microdevices, Thin Solid Films 340 (1999) 210–217

    Article  CAS  Google Scholar 

  7. M. P. de Boer, H. Huang, J. C. Nelson, Z. P. Jiang, W. W. Gerberich: Fracture toughness of silicon and thin film micro-structures by wedge indentation, Mater. Res. Soc. Symp. Proc. 308 (1993) 647–652

    Google Scholar 

  8. H. Guckel, D. Burns, C. Rutigliano, E. Lovell, B. Choi: Diagnostic microstructures for the measurement of intrinsic strain in thin films, J. Micromech. Microeng. 2 (1992) 86–95

    Article  Google Scholar 

  9. F. Ericson, S. Greek, J. Soderkvist, J.-A. Schweitz: High sensitivity surface micromachined structures for internal stress and stress gradient evaluation, J. Micromech. Microeng. 7 (1997) 30–36

    Article  CAS  Google Scholar 

  10. L. S. Fan, R. S. Muller, W. Yun, R. T. Howe, J. Huang: Spiral microstructures for the measurement of average strain gradients in thin films, Proc. IEEE Micro Electro Mechanical Systems Workshop, Napa Valley 1990 (IEEE, New York 1990) 177–182

    Google Scholar 

  11. M. Biebl, H. von Philipsborn: Fracture strength of doped and undoped polysilicon, Proc. Intl. Conf. Solid-State Sensors and Actuators, Stockholm 1995, ed. by S. Middelhoek, K. Cammann (Royal Swedish Academy of Engineering Sciences, Stockholm 1995) 72–75

    Google Scholar 

  12. L. S. Fan, R. T. Howe, R. S. Muller: Fracture toughness characterization of brittle films, Sens. Actuators A 21-23 (1990) 872–874

    Article  Google Scholar 

  13. H. Kahn, R. Ballarini, J. J. Bellante, A. H. Heuer: Fatigue failure in polysilicon is not due to simple stress corrosion cracking, Science 298 (2002) 1215–1218

    CAS  Google Scholar 

  14. H. Kahn, N. Tayebi, R. Ballarini, R. L. Mullen, A. H. Heuer: Wafer-level strength and fracture toughness testing of surface-micromachined MEMS devices, Mater. Res. Soc. Symp. Proc. 605 (2000) 25–30

    CAS  Google Scholar 

  15. W. N. Sharpe Jr., B. Yuan, R. L. Edwards: A new technique for measuring the mechanical properties of thin films, J. Microelectromech. Syst. 6 (1997) 193–199

    Article  Google Scholar 

  16. H. S. Cho, W. G. Babcock, H. Last, K. J. Hemker: Annealing effects on the microstructure and mechanical properties of LIGA nickel for MEMS, Mater. Res. Soc. Symp. Proc. 657 (2001) EE5.23.1–EE5.23.6

    Google Scholar 

  17. W. Suwito, M. L. Dunn, S. J. Cunningham, D. T. Read: Elastic moduli, strength, and fracture initiation at sharp notches in etched single crystal silicon microstructures, J. Appl. Phys. 85 (1999) 3519–3534

    Article  CAS  Google Scholar 

  18. T. P. Weihs, S. Hong, J. C. Bravman, W. D. Nix: Mechanical deflection of cantilever microbeams: A new technique for testing the mechanical properties of thin films, J. Mater. Res. 3 (1988) 931–942

    Article  Google Scholar 

  19. B. D. Jensen, M. P. de Boer, N. D. Masters, F. Bitsie, D. A. La Van: Interferometry of actuated microcantilevers to determine material properties and test structure nonidealities in MEMS, J. Microelectromech. Syst. 10 (2001) 336–346

    Article  Google Scholar 

  20. M. G. Allen, M. Mehregany, R. T. Howe, S. D. Senturia: Microfabricated structures for the in situ measurement of residual stress, Young's modulus, and ultimate strain of thin films, Appl. Phys. Lett. 51 (1987) 241–243

    Article  CAS  Google Scholar 

  21. H. Kahn, S. Stemmer, K. Nandakumar, A. H. Heuer, R. L. Mullen, R. Ballarini, M. A. Huff: Mechanical properties of thick, surface micromachined polysilicon films, Proc. IEEE Micro Electro Mechanical Systems Workshop, San Diego 1996, ed. by M. G. Allen, M. L. Redd (IEEE, New York 1996) 343–348

    Google Scholar 

  22. L. Kiesewetter, J.-M. Zhang, D. Houdeau, A. Steckenborn: Determination of Young's moduli of micromechanical thin films using the resonance method, Sens. Actuators A 35 (1992) 153–159

    Article  Google Scholar 

  23. W. C. Tang, T.-C. H. Nguyen, R. T. Howe: Laterally driven polysilicon resonant microstructures, Sens. Actuators A 20 (1989) 25–32

    Article  Google Scholar 

  24. P. T. Jones, G. C. Johnson, R. T. Howe: Fracture strength of polycrystalline silicon, Mater. Res. Soc. Symp. Proc. 518 (1998) 197–202

    CAS  Google Scholar 

  25. P. Minotti, R. Le Moal, E. Joseph, G. Bourbon: Toward standard method for microelectromechanical systems material measurement through on-chip electrostatic probing of micrometer size polysilicon tensile specimens, Jpn. J. Appl. Phys. 40 (2001) L120–L122

    Article  CAS  Google Scholar 

  26. C. L. Muhlstein, E. A. Stach, R. O. Ritchie: A reaction-layer mechanism for the delayed failure of micron-scale polycrystalline silicon structural films subjected to high-cycle fatigue loading, Acta Mater. 50 (2002) 3579–3595

    Article  CAS  Google Scholar 

  27. M. G. Lim, J. C. Chang, D. P. Schultz, R. T. Howe, R. M. White: Polysilicon microstructures to characterize static friction, Proc. IEEE Micro Electro Mechanical Systems Workshop, Napa Valley 1990 (IEEE, New York 1990) 82–88

    Google Scholar 

  28. B. T. Crozier, M. P. de Boer, J. M. Redmond, D. F. Bahr, T. A. Michalske: Friction measurement in MEMS using a new test structure, Mater. Res. Soc. Symp. Proc. 605 (2000) 129–134

    CAS  Google Scholar 

  29. J. Yang, H. Kahn, A. Q. He, S. M. Phillips, A. H. Heuer: A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: The MultiPoly process, J. Microelectromech. Syst. 9 (2000) 485–494

    Article  CAS  Google Scholar 

  30. E. Chason, B. W. Sheldon, L. B. Freund, J. A. Floro, S. J. Hearne: Origin of compressive residual stress in polycrystalline thin films, Phys. Rev. Lett. 88 (2002) 156103-1–156103-4

    Google Scholar 

  31. S. Jayaraman, R. L. Edwards, K. J. Hemker: Relating mechanical testing and microstructural features of polysilicon thin films, J. Mater. Res. 14 (1999) 688–697

    Article  CAS  Google Scholar 

  32. R. Ballarini, H. Kahn, N. Tayebi, A. H. Heuer: Effects of microstructure on the strength and fracture toughness of polysilicon: A wafer level testing approach, ASTM STP 1413 (2001) 37–51

    Google Scholar 

  33. J. Bagdahn, J. Schischka, M. Petzold, W. N. Sharpe Jr.: Fracture toughness and fatigue investigations of polycrystalline silicon, Proc. SPIE 4558 (2001) 159–168

    Article  CAS  Google Scholar 

  34. I. S. Raju, J. C. Newman Jr.: Stress intensity factors for a wide range of semi-elliptical surface cracks in finite-thickness plates, Eng. Fract. Mech. 11 (1979) 817–829

    Article  Google Scholar 

  35. J. Bagdahn, W. N. Sharpe Jr., O. Jadaan: Fracture strength of polysilicon at stress concentrations, J. Microelectromech. Syst. (2003) 302–312

    Google Scholar 

  36. T. Yi, L. Li, C.-J. Kim: Microscale material testing of single crystalline silicon: Process effects on surface morphology an dtensile strength, Sens. Actuators A 83 (2000) 172–178

    Article  Google Scholar 

  37. H. Kahn, R. Ballarini, R. L. Mullen, A. H. Heuer: Electrostatically actuated failure of microfabricated polysilicon fracture mechanics specimens, Proc. R. Soc. Lond. A 455 (1999) 3807–3923

    Article  CAS  Google Scholar 

  38. W. W. Van Arsdell, S. B. Brown: Subcritical crack growth in silicon MEMS, J. Microelectromech. Syst. 8 (1999) 319–327

    Article  Google Scholar 

  39. T. Tsuchiya, A. Inoue, J. Sakata: Tensile testing of insulating thin films; humidity effect on tensile strength of SiO2 films, Sens. Actuators A 82 (2000) 286–290

    Article  Google Scholar 

  40. H. Ogawa, K. Suzuki, S. Kaneko, Y. Nakano, Y. Ishikawa, T. Kitahara: Measurements of mechanical properties of microfabricated thin films, Proc. IEEE Micro Electro Mechanical Systems Workshop (IEEE, New York 1997) 430–435

    Google Scholar 

  41. S. Roy, C. A. Zorman, M. Mehregany: The mechanical properties of polycrystalline silicon carbide films determined using bulk micromachined diaphragms, Mater. Res. Soc. Symp. Proc. 657 (2001) EE9.5.1–EE9.5.6

    Google Scholar 

  42. A. J. Fleischman, X. Wei, C. A. Zorman, M. Mehregany: Surface micromachining of polycrystalline SiC deposited on SiO2 by APCVD, Mater. Sci. Forum 264-268 (1998) 885–888

    Article  Google Scholar 

  43. A. E. Franke, E. Bilic, D. T. Chang, P. T. Jones, T.-J. King, R. T. Howe, G. C. Johnson: Post-CMOS integration of germanium microstructures, Proc. Intl. Conf. Solid-State Sensors and Actuators (IEE Jpn., Tokyo 1999) 630–637

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Kahn, H. (2004). Mechanical Properties of Micromachined Structures. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29838-X_34

Download citation

  • DOI: https://doi.org/10.1007/3-540-29838-X_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-01218-4

  • Online ISBN: 978-3-540-29838-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics