Skip to main content

Micro/Nanotribology of MEMS/NEMS Materials and Devices

  • Reference work entry
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

The field of MEMS MEMS/NEMS NEMS has expanded considerably over the last decade. The length scale and large surface-to-volume ratio of the devices result in very high retarding forces such as adhesion adhesion and friction friction that seriously undermine the performance and reliability of the devices. These tribological phenomena need to be studied and understood at the micro- to nanoscales. In addition, materials for MEMS/NEMS must exhibit good microscale tribological properties. There is a need to develop lubricants and identify lubrication methods that are suitable for MEMS/NEMS. Using AFM-based techniques, researchers have conducted micro/nanotribological studies of materials and lubricants for use in MEMS/NEMS. In addition, component level testing has also been carried out to aid in better understanding the observed tribological phenomena in MEMS/NEMS.

Macroscale and microscale tribological studies of silicon and polysilicon films have been performed. The effects of doping and oxide films and environment on the tribological properties of these popular MEMS/NEMS materials have also been studied. SiC film is found to be a good tribological material for use in high-temperature MEMS/NEMS devices. Hexadecane thiol self-assembled monolayers and bonded perfluoropolyether lubricants appear to be well suited for lubrication of microdevices under a range of environmental conditions. DLC coatings can also be used for low friction and wear. Surface roughness measurements of micromachined polysilicon surfaces have been made using an AFM. The roughness distribution on surfaces is strongly dependent on the fabrication process. Roughness should be optimized for low adhesion, friction, and wear. Adhesion and friction of microstructures can be measured using novel apparatuses. Adhesion and friction measurements on silicon-on-silicon confirm AFM measurements that hexadecane thiol and bonded perfluoropolyether films exhibit superior adhesion and friction properties. Static friction force measurements of micromotors have been performed using an AFM. The forces are found to vary considerably with humidity. A bonded layer of perfluoropolyether lubricant is found to satisfactorily reduce the friction forces in the micromotor.

AFM/FFM-based techniques can be satisfactorily used to study and evaluate micro/nanoscale tribological phenomena related to MEMS/NEMS devices.

This chapter presents a review of macro- and micro/nanoscale tribological studies of materials and lubrication studies for MEMS/NEMS and component-level studies of stiction phenomena in MEMS/NEMS devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

μCP:

microcontact printing

AFM:

atomic force microscope/microscopy

CBA:

cantilever beam array

CVD:

chemical vapor deposition

DLC:

diamond-like carbon

DLP:

digital light processing

DMD:

digital micromirror device

ECR-CVD:

electron cyclotron resonance chemical vapor deposition

FFM:

friction force microscope/microscopy

GMR:

giant magnetoresistance

HARMEMS:

high-aspect-ratio MEMS

IC:

integrated circuit

LPCVD:

low pressure chemical vapor deposition

MEMS:

microelectromechanical systems

NEMS:

nanoelectromechanical systems

OMVPE:

organometallic vapor phase epitaxy

PDMS:

polydimethylsiloxane

PECVD:

plasma enhanced CVD

PFDA:

perfluorodecanoic acid

PFPE:

perfluoropolyether

PMMA:

poly(methylmethacrylate)

RH:

relative humidity

SAM:

self-assembling monolayer

SEM:

scanning electron microscope/microscopy

SFA:

surface forces apparatus

STM:

scanning tunneling microscope/microscopy

References

  1. NASA Ames Research Center, Mottett Field, CA, USA, www.ipt.arc.nasa.gov/gallery.html

  2. W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha, L. P. Kouwenhoven: Electron transport through double quantum dots, Rev. Mod. Phys. 75 (2003) 1–22

    Google Scholar 

  3. Texas Instruments DLP Products, Plano, TX, USA, www.dlp.com

  4. Anonymous: Microelectromechanical Systems: Advanced Materials and Fabrication Methods (National Academy Press, Washington, D.C. 1997)

    Google Scholar 

  5. M. Roukes: Nanoelectromechanical systems face the future, Phys. World (February 2001) 25–31

    Google Scholar 

  6. M. A. Huff: A distributed MEMS processing environment, http://www.mems-exchange.org/ (2002)

    Google Scholar 

  7. R. S. Muller, R. T. Howe, S. D. Senturia, R. L. Smith, R. M. White: Microsensors (IEEE, New York 1990)

    Google Scholar 

  8. I. Fujimasa: Micromachines: A New Era in Mechanical Engineering (Oxford Univ. Press, Oxford 1996)

    Google Scholar 

  9. W. S. Trimmer (Ed.): Micromachines and MEMS: Classic and Seminal Papers to 1990 (IEEE, New York 1997)

    Google Scholar 

  10. B. Bhushan (Ed.): Tribology Issues and Opportunities in MEMS (Kluwer, Dordrecht 1998)

    Google Scholar 

  11. G. T. A. Kovacs: Micromachined Transducers Sourcebook (WCB McGraw-Hill, Boston 1998)

    Google Scholar 

  12. S. D. Senturia: Microsystem Design (Kluwer, Boston 2001)

    Google Scholar 

  13. M. Gad-el-Hak: The MEMS Handbook (CRC, Boca Raton 2002)

    Google Scholar 

  14. T. R. Hsu: MEMS and Microsystems (McGraw-Hill, Boston 2002)

    Google Scholar 

  15. M. Madou: Fundamentals of Microfabrication: The Science of Miniaturization, 2nd edn. (CRC, Boca Raton 2002)

    Google Scholar 

  16. R. C. Jaeger: Introduction to Microelectronic Fabrication, 5th edn. (Addison-Wesley, Reading 1988)

    Google Scholar 

  17. J. W. Judy: Microelectromechanical systems (MEMS): Fabrication, design, and applications, Smart Mater. Struct. 10 (2001) 1115–1134

    Google Scholar 

  18. E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Munchmeyer: Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process), Microelectron. Eng. 4 (1986) 35–56

    CAS  Google Scholar 

  19. C. R. Friedrich, R. O. Warrington: Surface characterization of non-lithographic micromachining. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer, Dordrecht 1998) pp. 73–84

    Google Scholar 

  20. M. Madou: Facilitating choices of machining tools and materials for miniaturization science: A review. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer, Dordrecht 1998) pp. 31–51

    Google Scholar 

  21. H. Lehr, S. Abel, J. Doppler, W. Ehrfeld, B. Hagemann, K. P. Kamper, F. Michel, Ch. Schulz, Ch. Thurigen: Microactuators as driving units for microrobotic systems, SPIE Proc. Microrobotics: Components and Applications 2906 (1996) 202–210

    Google Scholar 

  22. H. Lehr, W. Ehrfeld, B. Hagemann, K. P. Kamper, F. Michel, Ch. Schulz, Ch. Thurigen: Development of micro-millimotors, Min. Invas. Ther. Allied Technol. 6 (1997) 191–194

    Google Scholar 

  23. F. Michel, W. Ehrfeld: Microfabrication technologies for high performance microactuators. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer, Dordrecht 1998) pp. 53–72

    Google Scholar 

  24. M. Tanaka: Development of desktop machining microfactory, Riken Rev. 34 (2001) 46–49

    Google Scholar 

  25. Y. Xia, G. M. Whitesides: Soft lithography, Angew. Chem. Int. Edn. 37 (1998) 550–575

    CAS  Google Scholar 

  26. H. Becker, C. Gaertner: Polymer microfabrication methods for microfluidic analytical applications, Electrophoresis 21 (2000) 12–26

    CAS  Google Scholar 

  27. Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, G. M. Whitesides: Complex optical surfaces formed by replica molding against elastomeric masters, Science 273 (1996) 347–349

    CAS  Google Scholar 

  28. S. Y. Chou, P. R. Krauss, P. J. Renstrom: Imprint lithography with 25-nanometer resolution, Science 272 (1996) 85–87

    CAS  Google Scholar 

  29. A. Kumar, G. M. Whitesides: Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching, Appl. Phys. Lett. 63 (1993) 2002–2004

    CAS  Google Scholar 

  30. T. A. Core, W. K. Tsang, S. J. Sherman: Fabrication technology for an integrated surface-micromachined sensor, Solid State Technol. 36 (1993) 39–47

    CAS  Google Scholar 

  31. J. Bryzek, K. Peterson, W. McCulley: Micromachines on the march, IEEE Spectrum (May 1994) 20–31

    Google Scholar 

  32. L. J. Hornbeck, W. E. Nelson: Bistable deformable mirror device. In: OSA Technical Digest Series, Vol. 8, Spatial Light Modulators and Applications (OSA, Washington 1988) pp. 107–110

    Google Scholar 

  33. L. J. Hornbeck: A digital light processing(tm) update – Status and future applications, Proc. SPIE 3634 (1999) 158–170

    Google Scholar 

  34. L. J. Hornbeck: The DMD™ projection display chip: A MEMS-based technology, MRS Bull. 26 (2001) 325–328

    Google Scholar 

  35. B. Bhushan: Tribology and Mechanics of Magnetic Storage Devices, 2nd edn. (Springer, New York 1996)

    Google Scholar 

  36. H. Hamilton: Contact recording on perpendicular rigid media, J. Mag. Soc. Jpn. 15 (1991) (Suppl. S2) 483–481

    Google Scholar 

  37. T. Ohwe, Y. Mizoshita, S. Yonoeka: Development of integrated suspension system for a nanoslider with an MR head transducer, IEEE Trans. Magn. 29 (1993) 3924–3926

    Google Scholar 

  38. L. S. Fan, S. Woodman: Batch fabrication of mechanical platforms for high-density data storage, 8th Int. Conf. Solid State Sensors and Actuators (Transducers '95)/Eurosensors IX, Stockholm 1995, 434–437

    Google Scholar 

  39. D. A. Horsley, M. B. Cohn, A. Singh, R. Horowitz, A. P. Pisano: Design and fabrication of an angular microactuator for magnetic disk drives, J. Microelectromech. Syst. 7 (1998) 141–148

    Google Scholar 

  40. T. Hirano, L. S. Fan, D. Kercher, S. Pattanaik, T. S. Pan: HDD tracking microactuator and its integration issues, Proc. ASME 2 2000, ed. by A. P. Lee, J. Simon, F. K. Foster, R. S. Keynton (ASME, New York 2000) 449–452

    Google Scholar 

  41. P. Gravesen, J. Branebjerg, O. S. Jensen: Microfluidics – A review, J. Micromech. Microeng. 3 (1993) 168–182

    CAS  Google Scholar 

  42. C. Lai Poh San, E. P. H. Yap (Eds.): Frontiers in Human Genetics (World Scientific, Singapore 2001)

    Google Scholar 

  43. C. H. Mastrangelo, H. Becker (Eds.): Microfluidics and BioMEMS, Proc. SPIE 4560 (2001)

    Google Scholar 

  44. H. Becker, L. E. Locascio: Polymer microfluidic devices, Talanta 56 (2002) 267–287

    CAS  Google Scholar 

  45. S. Shoji, M. Esashi: Microflow devices and systems, J. Micromech. Microeng. 4 (1994) 157–171

    CAS  Google Scholar 

  46. P. Woias: Micropumps – Summarizing the first two decades, Proc. SPIE – Microfluidics and BioMEMS, ed. by C. H. Mastrangelo, H. Becker, Proc. SPIE 4560 (2001) 39–52

    Google Scholar 

  47. M. Scott: MEMS and MOEMS for national security applications, Reliability, Testing, and Characterization of MEMS/MOEMS II, Proc. SPIE 4980 (2003) 37–44

    Google Scholar 

  48. K. E. Drexler: Nanosystems: Molecular Machinery, Manufacturing and Computation (Wiley, New York 1992)

    Google Scholar 

  49. B. Bhushan: Handbook of Micro/Nanotribology, 2nd edn. (CRC, Boca Raton 1999)

    Google Scholar 

  50. G. Timp (Ed.): Nanotechnology (Springer, New York 1999)

    Google Scholar 

  51. E. A. Rietman: Molecular Engineering of Nanosystems (Springer, New York 2001)

    Google Scholar 

  52. H. S. Nalwa (Ed.): Nanostructured Materials and Nanotechnology (Academic, San Diego 2002)

    Google Scholar 

  53. W. A. Goddard, D. W. Brenner, S. E. Lyshevski, G. J. Iafrate: Handbook of Nanoscience, Engineering, and Technology (CRC, Boca Raton 2003)

    Google Scholar 

  54. B. Bhushan: Principles and Applications of Tribology (Wiley, New York 1999)

    Google Scholar 

  55. B. Bhushan: Introduction to Tribology (Wiley, New York 2002)

    Google Scholar 

  56. Y. C. Tai, L. S. Fan, R. S. Muller: IC-processed micro-motors: Design, technology and testing, Proc. IEEE Micro Electro Mechanical Systems 1989, 1–6

    Google Scholar 

  57. S. M. Spearing, K. S. Chen: Micro-gas turbine engine materials and structures, Ceramic Eng. Sci. Proc. 18 (2001) 11–18

    Google Scholar 

  58. M. Mehregany, K. J. Gabriel, W. S. N. Trimmer: Integrated fabrication of polysilicon mechanisms, IEEE Trans. Electron. Dev. 35 (1988) 719–723

    Google Scholar 

  59. E. J. Garcia, J. J. Sniegowski: Surface micromachined microengine, Sens. Actuators A 48 (1995) 203–214

    Google Scholar 

  60. J. K. Robertson, K. D. Wise: An electrostatically actuated integrated microflow controller, Sens. Actuators A 71 (1998) 98–106

    Google Scholar 

  61. B. Bhushan: Nanotribology and nanomechanics of MEMS devices, Proc. Ninth Annual Workshop on Micro Electro Mechanical Systems 1996 (IEEE, New York 1996) 91–98

    Google Scholar 

  62. D. M. Tanner, N. F. Smith, L. W. Irwin et al.: MEMS Reliability: Infrastructure, Test Structures, Experiments, and Failure Modes (Sandia National Laboratories, Albuquerque 2000) 2000–2091

    Google Scholar 

  63. S. S. Mani, J. G. Fleming, J. A. Walraven, J. J. Sniegowski et al.: Effect of W coating on microengine performance, Proc. 38th Annual Inter. Reliability Phys. Symp. 2000 (IEEE, New York 2000) 146–151

    Google Scholar 

  64. R. E. Sulouff: MEMS opportunities in accelerometers and gyros and the microtribology problems limiting commercialization. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer, Dordrecht 1998) pp. 109–120

    Google Scholar 

  65. Analog Devices Inc., Berkeley, CA, USA, www.analog.com

  66. S. A. Henck: Lubrication of digital micromirror devices, Tribol. Lett. 3 (1997) 239–247

    CAS  Google Scholar 

  67. M. R. Douglass: Lifetime estimates and unique failure mechanisms of the digital micromirror devices (DMD), Proc. 36th Annual Inter. Reliability Phys. Symp. 1998 (IEEE, New York 1998) 9–16

    Google Scholar 

  68. M. R. Douglass: DMD reliability: A MEMS success story, Reliability, Testing, and Characterization of MEMS/MOEMS II, Proc. SPIE 4980 (2003) 1–11

    Google Scholar 

  69. W. C. Tang, A. P. Lee: Defense applications of MEMS, MRS Bull. 26 (2001) 318–319. Also see www.darpa.mil/mto/mems

    Google Scholar 

  70. H. Guckel, D. W. Burns: Fabrication of micromechanical devices from polysilicon films with smooth surfaces, Sens. Actuators 20 (1989) 117–122

    CAS  Google Scholar 

  71. G. T. Mulhern, D. S. Soane, R. T. Howe: Supercritical carbon dioxide drying of microstructures, Proc. Int. Conf. on Solid-State Sensors and Actuators 1993 (IEEE, New York 1993) 269–299

    Google Scholar 

  72. P. Vettiger, J. Brugger, M. Despont, U. Drechsler, U. Duerig, W. Haeberle: Ultrahigh density, high data-rate NEMS based AFM data storage system, Microelectron. Eng. 46 (1999) 11–27, also see www.ibm.com

    CAS  Google Scholar 

  73. M. Ferrari, J. Liu: The engineered course of treatment, Mech. Eng. (December 2001) 44–47

    Google Scholar 

  74. F. J. Martin, C. Grove: Microfabricated drug delivery systems: Concepts to improve clinical benefits, Biomed. Microdev. 3 (2001) 97–108

    CAS  Google Scholar 

  75. K. F. Man, B. H. Stark, R. Ramesham: A Resource Handbook for MEMS Reliability, Rev. A (California Institute of Technology, Pasadena 1998)

    Google Scholar 

  76. S. Kayali, R. Lawton, B. H. Stark: MEMS reliability assurance activities at JPL, EEE Links 5 (1999) 10–13

    Google Scholar 

  77. S. Arney: Designing for MEMS reliability, MRS Bull. 26 (2001) 296–299

    CAS  Google Scholar 

  78. K. F. Man: MEMS reliability for space applications by elimination of potential failure modes through testing and analysis (2001), www.rel.jpl.nasa.gov/Org/5053/atop/products/Prod%-map.html

    Google Scholar 

  79. B. Bhushan, A. V. Kulkarni, W. Bonin, J. T. Wyrobek: Nano/picoindentation measurement using a capacitance transducer system in atomic force microscopy, Philos. Mag. 74 (1996) 1117–1128

    CAS  Google Scholar 

  80. S. Sundararajan, B. Bhushan: Development of AFM-based techniques to measure mechanical properties of nanoscale structures, Sens. Actuators A 101 (2002) 338–351

    Google Scholar 

  81. B. Bhushan (Ed.): Modern Tribology Handbook (CRC, Boca Raton 2001)

    Google Scholar 

  82. B. Bhushan, J. N. Israelachvili, U. Landman: Nanotribology: Friction, wear and lubrication at the atomic scale, Nature 374 (1995) 607–616

    CAS  Google Scholar 

  83. J. S. Shor, D. Goldstein, A. D. Kurtz: Characterization of n-type β-SiC as a piezoresistor, IEEE Trans. Electron. Dev. 40 (1993) 1093–1099

    CAS  Google Scholar 

  84. M. Mehregany, C. A. Zorman, N. Rajan, C. H. Wu: Silicon carbide MEMS for harsh environments, Proc. IEEE 86 (1998) 1594–1610

    CAS  Google Scholar 

  85. C. A. Zorman, A. J. Fleischmann, A. S. Dewa, M. Mehregany, C. Jacob, S. Nishino, P. Pirouz: Epitaxial growth of 3C-SiC films on 4 in diam Si(100) silicon wafers by atmospheric pressure chemical vapor deposition, J. Appl. Phys. 78 (1995) 5136–5138

    CAS  Google Scholar 

  86. C. A. Zorman, S. Roy, C. H. Wu, A. J. Fleischman, M. Mehregany: Characterization of polycrystalline silicon carbide films grown by atmospheric pressure chemical vapor deposition on polycrystalline silicon, J. Mater. Res. 13 (1998) 406–412

    CAS  Google Scholar 

  87. B. Bhushan, B. K. Gupta: Handbook of Tribology: Materials, Coatings and Surface Treatments (Krieger, Malabar 1997) Reprint

    Google Scholar 

  88. J. F. Shackelford, W. Alexander, J. S. Park (Eds.): CRC Material Science and Engineering Handbook, 2nd edn. (CRC, Boca Raton 1994)

    Google Scholar 

  89. B. K. Gupta, J. Chevallier, B. Bhushan: Tribology of ion bombarded silicon for micromechanical applications, ASME J. Tribol. 115 (1993) 392–399

    CAS  Google Scholar 

  90. B. K. Gupta, B. Bhushan, J. Chevallier: Modification of tribological properties of silicon by boron ion implantation, Tribol. Trans. 37 (1994) 601–607

    CAS  Google Scholar 

  91. B. K. Gupta, B. Bhushan: Nanoindentation studies of ion implanted silicon, Surf. Coat. Technol. 68-69 (1994) 564–570

    Google Scholar 

  92. B. Bhushan, V. N. Koinkar: Tribological studies of silicon for magnetic recording applications, J. Appl. Phys. 75 (1994) 5741–5746

    CAS  Google Scholar 

  93. G. M. Pharr: The anomalous behavior of silicon during nanoindentation. In: Thin Films: Stresses and Mechanical Properties III, Vol. 239, ed. by W. D. Nix, J. C. Bravman, E. Arzt, L. B. Freund (Materials Research Soc., Pittsburgh 1991) pp. 301–312

    Google Scholar 

  94. D. L. Callahan, J. C. Morris: The extent of phase transformation in silicon hardness indentation, J. Mater. Res. 7 (1992) 1612–1617

    Google Scholar 

  95. N. A. Fleck, G. M. Muller, M. F. Ashby, J. W. Hutchinson: Strain gradient plasticity: Theory and experiment, Acta Metall. Mater. 42 (1994) 475–487

    CAS  Google Scholar 

  96. B. Bhushan, S. Venkatesan: Friction and wear studies of silicon in sliding contact with thin-film magnetic rigid disks, J. Mater. Res. 8 (1993) 1611–1628

    CAS  Google Scholar 

  97. S. Venkatesan, B. Bhushan: The role of environment in the friction and wear of single-crystal silicon in sliding contact with thin-film magnetic rigid disks, Adv. Info Storage Syst. 5 (1993) 241–257

    Google Scholar 

  98. S. Venkatesan, B. Bhushan: The sliding friction and wear behavior of single-crystal, polycrystalline and oxidized silicon, Wear 171 (1994) 25–32

    CAS  Google Scholar 

  99. B. Bhushan: Chemical, mechanical, and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5 nm: Recent developments, Diam. Relat. Mater. 8 (1999) 1985–2015

    CAS  Google Scholar 

  100. S. Sundararajan, B. Bhushan: Micro/nanotribological studies of polysilicon and SiC films for MEMS applications, Wear 217 (1998) 251–261

    CAS  Google Scholar 

  101. X. Li, B. Bhushan: Micro/nanomechanical characterization of ceramic films for microdevices, Thin Solid Films 340 (1999) 210–217

    CAS  Google Scholar 

  102. A. A. Yasseen, C. H. Wu, C. A. Zorman, M. Mehregany: Fabrication and testing of surface micromachined polycrystalline SiC micromotors, IEEE Electron. Dev. Lett. 21 (2000) 164–166

    CAS  Google Scholar 

  103. H. Liu, B. Bhushan: Nanotribological characterization of molecularly-thick lubricant films for applications to MEMS/NEMS by AFM, Ultramicroscopy 97 (2003) 321–340

    CAS  Google Scholar 

  104. B. Bhushan, A. V. Kulkarni, V. N. Koinkar, M. Boehm, L. Odoni, C. Martelet, M. Belin: Microtribological characterization of self-assembled and Langmuir–Blodgett monolayers by atomic force and friction force microscopy, Langmuir 11 (1995) 3189–3198

    CAS  Google Scholar 

  105. V. N. Koinkar, B. Bhushan: Micro/nanoscale studies of boundary layers of liquid lubricants for magnetic disks, J. Appl. Phys. 79 (1996) 8071–8075

    CAS  Google Scholar 

  106. V. N. Koinkar, B. Bhushan: Microtribological studies of unlubricated and lubricated surfaces using atomic force/friction force microscopy, J. Vac. Sci. Technol. A 14 (1996) 2378–2391

    CAS  Google Scholar 

  107. B. Bhushan, H. Liu: Nanotribological properties and mechanisms of alkylthiol and biphenyl thiol self-assembled monolayers studied by AFM, Phys. Rev. B 63 (2001) 245412:1–11

    Google Scholar 

  108. H. Liu, B. Bhushan: Investigation of nanotribological properties of self-assembled monolayers with alkyl and biphenyl spacer chains, Ultramicroscopy 91 (2002) 185–202

    CAS  Google Scholar 

  109. T. Stifter, O. Marti, B. Bhushan: Theoretical investigation of the distance dependence of capillary and van der Waals forces in scanning force microscopy, Phys. Rev. B 62 (2000) 13667–13673

    CAS  Google Scholar 

  110. B. Bhushan: Self-assembled monolayers for controlling hydrophobicity and/or friction and wear. In: Modern Tribology Handbook, ed. by B. Bhushan (CRC, Boca Raton 2001) pp. 909–929

    Google Scholar 

  111. H. Liu, B. Bhushan, W. Eck, V. Stadler: Investigation of the adhesion, friction, and wear properties of biphenyl thiol self-assembled monolayers by atomic force microscopy, J. Vac. Sci. Technol. A 19 (2001) 1234–1240

    CAS  Google Scholar 

  112. S. Sundararajan, B. Bhushan: Static friction and surface roughness studies of surface micromachined electrostatic micromotors using an atomic force/friction force microscope, J. Vac. Sci. Technol. A 19 (2001) 1777–1785

    CAS  Google Scholar 

  113. C. H. Mastrangelo, C. H. Hsu: Mechanical stability and adhesion of microstructures under capillary forces – Part II: Experiments, J. Microelectromech. Syst. 2 (1993) 44–55

    CAS  Google Scholar 

  114. H. Liu, B. Bhushan: Adhesion and friction studies of microelectromechanical systems/nanoelectromechanical systems materials using a novel microtriboapparatus, J. Vac. Sci. Technol. A 21 (2003) 1528–1538

    CAS  Google Scholar 

  115. M. P. De Boer, T. A. Michalske: Accurate method for determining adhesion of cantilever beams, J. Appl. Phys. 86 (1999) 817

    Google Scholar 

  116. R. Maboudian, R. T. Howe: Critical review: Adhesion in surface micromechanical structures, J. Vac. Sci. Technol. B 15 (1997) 1–20

    CAS  Google Scholar 

  117. C. H. Mastrangelo: Surface force induced failures in microelectromechanical systems. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer, Dordrecht 1998) pp. 367–395

    Google Scholar 

  118. B. Bhushan, H. Liu, S. M. Hsu: Adhesion and friction studies of silicon and hydrophobic and low friction films and investigation of scale effects, ASME J. Tribol. in press

    Google Scholar 

  119. S. K. Chilamakuri, B. Bhushan: A comprehensive kinetic meniscus model for prediction of long-term static friction, J. Appl. Phys. 15 (1999) 4649–4656

    Google Scholar 

  120. J. Kijlstra, K. Reihs, A. Klamt: Roughness and topology of ultra-hydrophobic surfaces, Colloids Surf. A 206 (2002) 521–529

    CAS  Google Scholar 

  121. D. Quere, P. Aussillous: Non-stick droplets, Chem. Eng. Technol. 25 (2002) 925–928

    CAS  Google Scholar 

  122. Y. C. Tai, R. S. Muller: Frictional study of IC processed micromotors, Sens. Actuators A 21-23 (1990) 180–183

    Google Scholar 

  123. K. J. Gabriel, F. Behi, R. Mahadevan, M. Mehregany: In situ friction and wear measurement in integrated polysilicon mechanisms, Sens. Actuators A 21-23 (1990) 184–188

    Google Scholar 

  124. M. G. Lim, J. C. Chang, D. P. Schultz, R. T. Howe, R. M. White: Polysilicon microstructures to characterize static friction, Proc. IEEE Micro Electro Mechanical Systems (IEEE, New York 1990) 82–88

    Google Scholar 

  125. U. Beerschwinger, S. J. Yang, R. L. Reuben, M. R. Taghizadeh, U. Wallrabe: Friction measurements on LIGA-processed microstructures, J. Micromech. Microeng. 4 (1994) 14–24

    CAS  Google Scholar 

  126. D. Matheison, U. Beerschwinger, S. J. Young, R. L. Rueben, M. Taghizadeh, S. Eckert, U. Wallrabe: Effect of progressive wear on the friction characteristics of nickel LIGA processed rotors, Wear 192 (1996) 199–207

    Google Scholar 

  127. R. Maboudian: Adhesion and friction issues associated with reliable operation of MEMS, MRS Bull. (June 1998) 47–51

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Bhushan, B. (2004). Micro/Nanotribology of MEMS/NEMS Materials and Devices. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29838-X_33

Download citation

  • DOI: https://doi.org/10.1007/3-540-29838-X_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-01218-4

  • Online ISBN: 978-3-540-29838-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics