Skip to main content

The “Millipede” – A Nanotechnology-Based AFM Data-Storage System

  • Reference work entry
Springer Handbook of Nanotechnology

Abstract

The “millipede” concept presented here is a new approach for storing data at high speed and ultrahigh density. The interesting part is that millipede stores digital information in a completely different way from magnetic hard disks, optical disks, and transistor-based memory chips. The ultimate locality is provided by a tip, and high data rates are a result of massive parallel operation of such tips. As storage medium, polymer films are being considered, although the use of other media, in particular, magnetic materials, has not been ruled out. The current effort is focused on demonstrating the millipede concept with areal densities of up to 0.5–1 Tb/in2 and parallel operation of very large 2-D (up to 64 × 64) AFM cantilever arrays with integrated tips and write/read/erase functionality. The fabrication and integration of such a large number of mechanical devices (cantilever beams) will lead to what we envision as the VLSI age of micro- and nanomechanics.

In this chapter, the millipede concept for a MEMS-based storage device is described in detail. In particular, various aspects pertaining to AFM thermomechanical read/write/erase functions, 2-D array fabrication and characteristics, x/y/z microscanner design, polymer media properties, read channel modeling, servo control and synchronization, as well as modulation coding techniques suitable for probe-based data-storage devices are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AFM:

atomic force microscope/microscopy

BP:

bit pitch

MEMS:

microelectromechanical systems

PDMS:

polydimethylsiloxane

PECVD:

plasma enhanced CVD

PES:

position error signal

PMMA:

poly(methylmethacrylate)

SEM:

scanning electron microscope/microscopy

STM:

scanning tunneling microscope/microscopy

TP:

track pitch

VCO:

voltage-controlled oscillator

VLSI:

very large-scale integration

References

  1. E. Grochowski, R. F. Hoyt: Future trends in hard disk drives, IEEE Trans. Magn. 32 (1996) 1850–1854

    Article  Google Scholar 

  2. D. A. Thompson, J. S. Best: The future of magnetic data storage technology, IBM J. Res. Dev. 44 (2000) 311–322

    Article  CAS  Google Scholar 

  3. G. Binnig, H. Rohrer, C. Gerber, E. Weibel: 7×7 reconstruction on Si(111) resolved in real space, Phys. Rev. Lett. 50 (1983) 120–123

    Article  CAS  Google Scholar 

  4. G. Binnig, C. F. Quate, C. Gerber: Atomic force microscope, Phys. Rev. Lett. 56 (1986) 930–933

    Article  Google Scholar 

  5. H. J. Mamin, D. Rugar: Thermomechanical writing with an atomic force microscope tip, Appl. Phys. Lett. 61 (1992) 1003–1005

    Article  CAS  Google Scholar 

  6. R. P. Ried, H. J. Mamin, B. D. Terris, L. S. Fan, D. Rugar: 6-MHz 2-N/m piezoresistive atomic-force-microscope cantilevers with incisive tips, J. Microelectromech. Syst. 6 (1997) 294–302

    Article  Google Scholar 

  7. B. D. Terris, S. A. Rishton, H. J. Mamin, R. P. Ried, D. Rugar: Atomic force microscope-based data storage: Track servo and wear study, Appl. Phys. A 66 (1998) S809–S813

    Article  CAS  Google Scholar 

  8. H. J. Mamin, B. D. Terris, L. S. Fan, S. Hoen, R. C. Barrett, D. Rugar: High-density data storage using proximal probe techniques, IBM J. Res. Dev. 39 (1995) 681–699

    Article  CAS  Google Scholar 

  9. H. J. Mamin, R. P. Ried, B. D. Terris, D. Rugar: High-density data storage based on the atomic force microscope, Proc. IEEE 87 (1999) 1014–1027

    Article  Google Scholar 

  10. L. R. Carley, J. A. Bain, G. K. Fedder, D. W. Greve, D. F. Guillou, M. S. C. Lu, T. Mukherjee, S. Santhanam, L. Abelmann, S. Min: Single-chip computers with microelectromechanical systems-based magnetic memory, J. Appl. Phys. 87 (2000) 6680–6685

    Article  CAS  Google Scholar 

  11. G. Gibson, T. I. Kamins, M. S. Keshner, S. L. Neberhuis, C. M. Perlov, C. C. Yang: Ultra-high density storage device, (1996) US Patent 5,557,596

    Google Scholar 

  12. E. Eleftheriou, T. Antonakopoulos, G. K. Binnig, G. Cherubini, M. Despont, A. Dholakia, U. Dürig, M. A. Lantz, H. Pozidis, H. E. Rothuizen, P. Vettiger: millipede – A MEMS-based scanning-probe data-storage system, IEEE Trans. Magn. 39 (2003) 938–945

    Article  Google Scholar 

  13. G. K. Binnig, H. Rohrer, P. Vettiger: Mass-storage applications of local probe arrays, (1998) US Patent 5,835,477

    Google Scholar 

  14. P. Vettiger, J. Brugger, M. Despont, U. Drechsler, U. Dürig, W. Häberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. Binnig: Ultrahigh density, high-data-rate NEMS-based AFM data storage system, J. Microelectron. Eng. 46 (1999) 11–17

    Article  CAS  Google Scholar 

  15. P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Dürig, B. Gotsmann, W. Häberle, M. A. Lantz, H. E. Rothuizen, R. Stutz, G. K. Binnig: The “millipede” – Nanotechnology entering data storage, IEEE Trans. Nanotechnol. 1 (2002) 39–55

    Article  Google Scholar 

  16. M. Lutwyche, C. Andreoli, G. Binnig, J. Brugger, U. Drechsler, W. Häberle, H. Rohrer, H. Rothuizen, P. Vettiger: Microfabrication and parallel operation of 5×5 2D AFM cantilever array for data storage and imaging, Proc. IEEE 11st Int. Workshop MEMS, Heidelberg 1998 (IEEE, Piscataway 1998) 8–11

    Google Scholar 

  17. M. Lutwyche, C. Andreoli, G. Binnig, J. Brugger, U. Drechsler, W. Häberle, H. Rohrer, H. Rothuizen, P. Vettiger, G. Yaralioglu, C. Quate: 5×5 2D AFM cantilever arrays: A first step towards a terabit storage device, Sens. Actuators A 73 (1999) 89–94

    Article  Google Scholar 

  18. P. Vettiger, M. Despont, U. Drechsler, U. Dürig, W. Häberle, M. I. Lutwyche, H. E. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig: The “millipede” – More than one thousand tips for future AFM data storage, IBM J. Res. Dev. 44 (2000) 323–340

    Article  CAS  Google Scholar 

  19. B. W. Chui, H. J. Mamin, B. D. Terris, D. Rugar, K. E. Goodson, T. W. Kenny: Micromachined heaters with 1-µs thermal time constants for AFM thermomechanical data storage, Proc. IEEE Transducers, Chicago 1997 (IEEE, Piscataway 1997) 1085–1088

    Google Scholar 

  20. W. P. King, J. G. Santiago, T. W. Kenny, K. E. Goodson: Modelling and prediction of sub-micrometer heat transfer during thermomechanical data storage, 1999 Microelectromechanical Systems (MEMS). Proc. ASME Intl. Mechanical Engineering Congress and Exposition, ed. by A. P. Lee, L. Lin, F. K. Forster, Y. C. Young, K. Goodson, R. S. Keynton (ASME, New York 1999) 583–588

    Google Scholar 

  21. W. P. King, T. W. Kenny, K. E. Goodson, G. L. W. Cross, M. Despont, U. Dürig, H. Rothuizen, G. Binnig, P. Vettiger: Design of atomic force microscope cantilevers for combined thermomechanical writing and thermal reading in array operation, J. Microelectromech. Syst. 11 (2002) 765–774

    Article  CAS  Google Scholar 

  22. G. K. Binnig, M. Despont, W. Häberle, P. Vettiger: Method of forming ultrasmall structures and apparatus therefore, (March 1999) US Patent Office, Application No. 147865

    Google Scholar 

  23. G. Binnig, M. Despont, U. Drechsler, W. Häberle, M. Lutwyche, P. Vettiger, H. J. Mamin, B. W. Chui, T. W. Kenny: Ultra high-density AFM data storage with erase capability, Appl. Phys. Lett. 74 (1999) 1329–1331

    Article  CAS  Google Scholar 

  24. G. K. Binnig, J. Brugger, W. Häberle, P. Vettiger: Investigation and/or manipulation device, (March 1999) US Patent Office, Application No. 147867

    Google Scholar 

  25. S. M. Sze: Physics of Semiconductors Devices (Wiley, New York 1981)

    Google Scholar 

  26. G. Cherubini, T. Antonakopoulos, P. Bächtold, G. K. Binnig, M. Despont, U. Drechsler, A. Dholakia, U. Dürig, E. Eleftheriou, B. Gotsmann, W. Häberle, M. A. Lantz, T. Loeliger, H. Pozidis, H. E. Rothuizen, R. Stutz, P. Vettiger: The millipede, a very dense, highly parallel scanning-probe data-storage system, ESSCIRC – Proceedings 28th European Solid-State Circuits Conference, ed. by A. Baschirotto, P. Malcovati (Univ. Bologna, Bologna 2002) 121–125

    Google Scholar 

  27. E. Eleftheriou, T. Antonakopoulos, G. K. Binnig, G. Cherubini, M. Despont, A. Dholakia, U. Dürig, M. A. Lantz, H. Pozidis, H. E. Rothuizen, P. Vettiger: “millipede”: A MEMS-based scanning-probe data-storage system, Digest of the Asia-Pacific Magnetic Recording Conference 2002, APMRC '02 (IEEE, Piscataway 2002) CE–2–1–CE2–2

    Google Scholar 

  28. M. Despont, J. Brugger, U. Drechsler, U. Dürig, W. Häberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. Binnig, H. Rohrer, P. Vettiger: VLSI-NEMS chip for AFM data storage, Technical Digest 12nd IEEE Int. Micro Electro Mechanical Systems Conf. “MEMS '99” (IEEE, Piscataway 1999) 564–569

    Google Scholar 

  29. T. S. Ravi, R. B. Marcus: Oxidation sharpening of silicon tips, J. Vac. Sci. Technol. B 9 (1991) 2733–2737

    Article  CAS  Google Scholar 

  30. M. Despont, J. Brugger, U. Drechsler, U. Dürig, W. Häberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. Binnig, H. Rohrer, P. Vettiger: VLSI-NEMS chip for parallel AFM data storage, Sens. Actuators A 80 (2000) 100–107

    Article  Google Scholar 

  31. H. Rothuizen, M. Despont, U. Drechsler, G. Genolet, W. Häberle, M. Lutwyche, R. Stutz, P. Vettiger: Compact copper/epoxy-based micromachined electromagnetic scanner for scanning probe applications, Technical Digest, 15th IEEE Int. Conf. on Micro Electro Mechanical Systems “MEMS 2002” (IEEE, Piscataway 2002) 582–585

    Google Scholar 

  32. S. C. Minne, G. Yaralioglu, S. R. Manalis, J. D. Adams, A. Atalar, C. F. Quate: Automated parallel high-speed atomic force microscopy, Appl. Phys. Lett. 72 (1998) 2340–2342

    Article  CAS  Google Scholar 

  33. M. Lutwyche, U. Drechsler, W. Häberle, R. Widmer, H. Rothuizen, P. Vettiger, J. Thaysen: Planar micromagnetic x/y/z scanner with five degrees of freedom. In: Magnetic Materials, Processes, and Devices: Applications to Storage and Micromechanical Systems (MEMS), Vol. 98-20, ed. by L. Romankiw, S. Krongelb, C. H. Ahn (Electrochemical Society, Pennington 1999) pp. 423–433

    Google Scholar 

  34. H. Rothuizen, U. Drechsler, G. Genolet, W. Häberle, M. Lutwyche, R. Stutz, R. Widmer, P. Vettiger: Fabrication of a micromachined magnetic x/y/z scanner for parallel scanning probe applications, Microelectron. Eng. 53 (2000) 509–512

    Article  CAS  Google Scholar 

  35. J.-J. Choi, H. Park, K. Y. Kim, J. U. Jeon: Electromagnetic micro x-y stage for probe-based data storage, J. Semicond. Technol. Sci. 1 (2001) 84–93

    Google Scholar 

  36. H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, P. Renaud: High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS, Sens. Actuators A 64 (1998) 33–39

    Article  Google Scholar 

  37. C. Q. Davis, D. Freeman: Using a light microscope to measure motions with nanometer accuracy, Opt. Eng. 37 (1998) 1299–1304

    Article  Google Scholar 

  38. M. I. Lutwyche, M. Despont, U. Drechsler, U. Dürig, W. Häberle, H. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, P. Vettiger: Highly parallel data storage system based on scanning probe arrays, Appl. Phys. Lett. 77 (2000) 3299–3301

    Article  CAS  Google Scholar 

  39. K. Fuchs, C. Friedrich, J. Weese: Viscoelastic properties of narrow-distribution poly(methyl metacrylates), Macromolecules 29 (1996) 5893–5901

    Article  CAS  Google Scholar 

  40. U. Dürig, B. Gotsman: This estimate is based on a fluid dynamic deformation model of a thin film, private communication

    Google Scholar 

  41. J. D. Ferry: Viscoelastic Properties of Polymers, 3rd edition (Wiley, New York 1980)

    Google Scholar 

  42. T. Loeliger, P. Bächtold, G. K. Binnig, G. Cherubini, U. Dürig, E. Eleftheriou, P. Vettiger, M. Uster, H. Jäckel: CMOS sensor array with cell-level analog-to-digital conversion for local probe data storage, ESSCIRC – Proceedings 28th European Solid-State Circuits Conference, ed. by A. Baschirotto, P. Malcovati (Univ. Bologna, Bologna 2002) 623–626

    Google Scholar 

  43. A. H. Sacks: Position signal generation in magnetic disk drives. Ph.D. Thesis (Carnegie Mellon University, Pittsburgh 1995)

    Google Scholar 

  44. K. A. S. Immink: Coding Techniques for Digital Recorders (Prentice Hall, Hemel 1991)

    Google Scholar 

Download references

Acknowledgements

It is our pleasure to acknowledge our colleagues T. Albrecht, T. Antonakopoulos, P. Bächtold, A. Dholakia, U. Drechsler, B. Gotsmann, W. Häberle, D. Jubin, M.A. Lantz, T. Loeliger, H.E. Rothuizen, R. Stutz, and D. Wiesmann for their invaluable contributions to the millipede project.

In addition, thanks and appreciation go to H. Rohrer for his contribution to the initial millipede vision and concept and to our former collaborators, J. Brugger, now at the Swiss Federal Institute of Technology, Lausanne (Switzerland), M.I. Lutwyche, now at Seagate, Pittsburg, IL, and W.P. King, now at Georgia Tech, Atlanta, GA, as well as to K. Goodson, T.W. Kenny, and C.F. Quate of Stanford University, CA.

We are also pleased to acknowledge stimulating discussions with and encouraging support from our colleagues W. Bux and P.F. Seidler of the IBM Zurich Research Laboratory, J. Mamin, D. Rugar, and B.D. Terris of the IBM Almaden Research Center, San Jose, CA, and G. Hefferon of IBM, East Fishkill, NY.

Special thanks go to J. Frommer, C. Hawker, J. Mamin, and R. Miller of the IBM Almaden Research Center for their enthusiastic support in identifying and synthesizing alternative polymer media materials, and to H. Dang, A. Sharma, and S. Sri-Jayantha of the IBM T.J. Watson Research Center, Yorktown Heights, NY, for their contributions to the work on servo control.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Binnig, G.K. et al. (2004). The “Millipede” – A Nanotechnology-Based AFM Data-Storage System. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29838-X_31

Download citation

  • DOI: https://doi.org/10.1007/3-540-29838-X_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-01218-4

  • Online ISBN: 978-3-540-29838-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics