Skip to main content

Atomistic Computer Simulations of Nanotribology

  • Reference work entry
Book cover Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

Molecular dynamics (MD) and related simulation techniques are powerful tools for improving our understanding of nanotribology. In simulations, materials properties and boundary conditions can be varied at will, and the resulting changes in both macroscopic variables and the dynamics of individual atoms can be observed. This allows one to study systematically the effects of many different factors on friction and wear at the nano-scale. Some examples that are considered in this chapter are (i) the symmetry of contacting surfaces (disordered vs. crystalline and with or without common periods), (ii) surface elasticity, (iii) surface curvature or topology, (iv) interfacial adhesion, and (v) lubricant and/or contaminant molecules present at the interface. Results from simulations and experiments on isolated nano-scale contacts often contradict our experience from macroscopic systems. Kinetic friction coefficients can be orders of magnitude smaller than those observed in macroscopic experiments. Detailed calculations even suggest that there should be no static friction between most pairs of clean, chemically passivated surfaces unless the load is large enough to produce wear. Simulations that test a series of possible mechanisms for static friction are described. Geometrical interlocking can produce static friction in contacts containing only a few atoms, such as an atomic force microscope tip. Larger contacts only exhibit static friction when there is wear, or when the surfaces are separated by a glassy contaminant layer that locks them together. Most surfaces are coated by such films and they are shown to yield friction forces that agree with both nanoscale and macroscopic experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AFM:

atomic force microscope/microscopy

EAM:

embedded atom method

MD:

molecular dynamics

QCM:

quartz-crystal microbalance

SFA:

surface forces apparatus

UHV:

ultrahigh vacuum

References

  1. C. M. Mate, G. M. McClelland, R. Erlandsson, S. Chiang: Atomic-scale friction of a tungsten tip on a graphite surface, Phys. Rev. Lett. 59 (1987) 1942–1945

    CAS  Google Scholar 

  2. R. W. Carpick, M. Salmeron: Scratching the surface: Fundamental investigations of tribology with atomic force microscopy, Chem. Rev. 97 (1997) 1163–1194

    CAS  Google Scholar 

  3. J. Krim: Friction at the atomic scale, Sci. Am. 275(4) (1996) 74–80

    CAS  Google Scholar 

  4. M. L. Gee, P. M. McGuiggan, J. N. Israelachvili, A. M. Homola: Liquid to solid transitions of molecularly thin films under shear, J. Chem. Phys. 93 (1990) 1895–1906

    CAS  Google Scholar 

  5. S. Granick: Motions and relaxations of confined liquids, Science 253 (1992) 1374–1379

    Google Scholar 

  6. M. Cieplak, E. D. Smith, M. O. Robbins: Molecular origins of friction: The force on adsorbed layers, Science 265 (1994) 1209–1212

    CAS  Google Scholar 

  7. M. Schoen, C. L. Rhykerd, D. J. Diestler, J. H. Cushman: Fluids in micropores: I. Structure of a simple classical fluid in a slit-pore, J. Chem. Phys. 87 (1987) 5464–5476

    CAS  Google Scholar 

  8. M. O. Robbins, M. H. Müser: Computer simulations of friction, lubrication and wear. In: Modern Tribology Handbook, ed. by B. Bhushan (CRC, Boca Raton 2001) pp. 717–765

    Google Scholar 

  9. M. H. Müser, M. Urbakh, M. O. Robbins: Statistical mechanics of static and low-velocity kinetic friction, Adv. Chem. Phys. 126 (2003) 187–272

    Google Scholar 

  10. J. A. Harrison, S. J. Stuart, D. W. Brenner: Atomic-scale simulation of tribological and related phenomena. In: Handbook of Micro/Nanotribology, ed. by B. Bhushan (CRC, Boca Raton 1999) pp. 525–594

    Google Scholar 

  11. J. A. Harrison, G. T. Gao, R. J. Harrison, G. M. Chateauneuf, P. T. Mikulski: The friction of model self-assembled monolayers. In: Encyclopedia of Nanoscience and Nanotechnology, ed. by H. S. Nalwa (American Scientific, Los Angeles 2004)

    Google Scholar 

  12. M. P. Allen, D. J. Tildesley: Computer Simulation of Liquids (Clarendon, Oxford 1987)

    Google Scholar 

  13. D. Frenkel, B. Smit: Understanding Molecular Simulation: From Algorithms to Applications (Academic, San Diego 1996)

    Google Scholar 

  14. J. P. Ryckaert, A. Bellemans: Molecular dynamics of liquid alkanes, Faraday Discuss. 66 (1978) 95–106

    Google Scholar 

  15. W. Paul, D. Y. Yoon, G. D. Smith: An optimized united atom model for simulations of polymethylene melts, J. Chem. Phys. 103 (1995) 1702–1709

    CAS  Google Scholar 

  16. W. Tschöp, K. Kremer, J. Batoulis, T. Bürger, O. Hahn: Simulation of polymer melts. I. Coarse graining procedure for polycarbonates, Acta Polym. 49 (1998) 61–74

    Google Scholar 

  17. W. Tschöp, K. Kremer, J. Batoulis, T. Bürger, O. Hahn: Simulation of polymer melts. II. From coarse grained models back to atomistic description, Acta Polym. 49 (1998) 75–79

    Google Scholar 

  18. P. Flory: Statistical Mechanics of Chain Molecules (Hanser, München 1988)

    Google Scholar 

  19. K. Binder: Monte Carlo and Molecular Dynamics Simulations in Polymer Science (Oxford, New York 1995)

    Google Scholar 

  20. D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, S. B. Sinnot: Second generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys. C 14 (2002) 783–802

    CAS  Google Scholar 

  21. S. J. Stuart, A. B. Tutein, J. A. Harrison: A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys. 112 (2000) 6472–6486

    CAS  Google Scholar 

  22. M. S. Daw, M. I. Baskes: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B 29 (1984) 6443–6453

    CAS  Google Scholar 

  23. S. Nosé: Constant temperature molecular dynamics methods, Prog. Theor. Phys. Supp. 103 (1991) 1–46

    Google Scholar 

  24. T. Schneider, E. Stoll: Molecular dynamics study of a three-dimensional one-component model for distortive phase transitions, Phys. Rev. B 17 (1978) 1302–1322

    CAS  Google Scholar 

  25. G. S. Grest, K. Kremer: Molecular dynamics simulations for polymers in the presence of a heat bath, Phys. Rev. A 33 (1986) 3628–3631

    CAS  Google Scholar 

  26. S. S. Sarman, D. J. Evans, P. T. Cummings: Recent developments in non-Newtonian molecular dynamics, Phys. Rep. 305 (1998) 1–92

    CAS  Google Scholar 

  27. D. J. Evans, G. P. Morriss: Shear thickening and turbulence in simple fluids, Phys. Rev. Lett. 56 (1986) 2172–2175

    Google Scholar 

  28. W. Loose, G. Ciccotti: Temperature and temperature control in nonequilibrium-molecular-dynamics simulations of the shear flow of dense liquids, Phys. Rev. A 45 (1992) 3859–3866

    CAS  Google Scholar 

  29. M. J. Stevens, M. O. Robbins: Simulations of shear-induced melting and ordering, Phys. Rev. E 48 (1993) 3778–3792

    CAS  Google Scholar 

  30. F. P. Bowden, D. Tabor: The Friction and Lubrication of Solids (Clarendon, Oxford 1986)

    Google Scholar 

  31. R. Khare, J. J. de Pablo, A. Yethiraj: Rheology of confined polymer melts, Macromolecules 29 (1996) 7910–7918

    CAS  Google Scholar 

  32. E. Rabinowicz: Friction and Wear of Materials (Wiley, New York 1965)

    Google Scholar 

  33. M. O. Robbins, A. R. C. Baljon: Response of thin oligomer films to steady and transient shear. In: Microstructure and Microtribology of Polymer Surfaces, ed. by V. V. Tsukruk, K. J. Wahl (American Chemical Society, Washington 2000) pp. 91–117

    Google Scholar 

  34. P. A. Thompson, G. S. Grest, M. O. Robbins: Phase transitions and universal dynamics in confined films, Phys. Rev. Lett. 68 (1992) 3448–3451

    Google Scholar 

  35. P. A. Thompson, M. O. Robbins: Origin of stick-slip motion in boundary lubrication, Science 250 (1990) 792–794

    CAS  Google Scholar 

  36. P. A. Thompson, M. O. Robbins, G. S. Grest: Structure and shear response in nanometer-thick films, Israel J. Chem. 35 (1995) 93–106

    CAS  Google Scholar 

  37. M. Porto, V. Zaloj, M. Urbakh, J. Klafter: Macroscopic versus microscopic description of friction: From Tomlinson model to shearons, Tribol. Lett. 9 (2000) 45–54

    CAS  Google Scholar 

  38. B. N. J. Persson: Sliding Friction: Physical Principles and Applications (Springer, Berlin 1998)

    Google Scholar 

  39. M. H. Müser: Nature of mechanical instabilities and their effect on kinetic friction, Phys. Rev. Lett. 89 (2002) 224301: 1–4

    Google Scholar 

  40. M. H. Müser: Dry friction between flat surfaces: Wearless multistable elasticity vs. material transfer and plastic deformation, Tribol. Lett. 10 (2001) 15–22

    Google Scholar 

  41. J. B. Sokoloff: Static friction between elastic solids due to random asperities, Phys. Rev. Lett. 86 (2001) 3312–3315

    CAS  Google Scholar 

  42. B. N. J. Persson, E. Tosatti: Theory of friction: Elastic coherence length and earthquake dynamics, Solid State Commun. 109 (1999) 739–744

    CAS  Google Scholar 

  43. F. F. Abraham, N. Bernstein, J. Q. Broughton, D. Hess: Dynamic fracture of silicon: Concurrent simulation of quantum electrons, classical atoms, and the continuum solid, MRS Bull. 25 (2000) 27–32

    CAS  Google Scholar 

  44. L. Wenning, M. H. Müser: Friction laws for elastic nano-scale contacts, Europhys. Lett. 54 (2001) 693–699

    CAS  Google Scholar 

  45. U. Landman, W. D. Luedtke, N. A. Burnham, R. J. Colton: Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture, Science 248 (1990) 454–461

    CAS  Google Scholar 

  46. D. Dowson: History of Tribology (Longman, New York 1979)

    Google Scholar 

  47. M. H. Müser, L. Wenning, M. O. Robbins: Simple microscopic theory of Amontons's laws for static friction, Phys. Rev. Lett. 86 (2001) 1295–1298

    Google Scholar 

  48. M. Enachescu, R. J. A. van den Oetelaar, R. W. Carpick, D. F. Ogletree, C. J. F. Flipse, M. Salmeron: An AFM study of an ideally hard contact: The diamond (111)/tungsten carbide interface, Phys. Rev. Lett. 81 (1998) 1877–1880

    CAS  Google Scholar 

  49. C. A. J. Putman, M. Igarashi, R. Kaneko: Single-asperity friction in friction force microscope: The composite model, Appl. Phys. Lett. 66 (1995) 3221–3223

    CAS  Google Scholar 

  50. P. Schwarz, O. Zwörner, P. Köster, R. Wiesendanger: Quantitative analysis of the frictional properties of solid materials at low loads. II. Mica and germanium sulfide, Phys. Rev. B 56 (1997) 6987–7000

    CAS  Google Scholar 

  51. L. Prandtl: Ein Gedankenmodell zur kinetischen Theorie der festen Körper, Z. Angew. Math. Mech. 8 (1928) 85–106

    Google Scholar 

  52. G. A. Tomlinson: A molecular theory of friction, Philos. Mag. Series 7 (1929) 905–939

    CAS  Google Scholar 

  53. G. M. McClelland, S. R. Cohen: Tribology at the atomic scale. In: Chemistry and Physics of Solid Surfaces, Vol. VII, ed. by R. Vanselow, R. Rowe (Springer, Berlin, Heidelberg 1990) pp. 419–445

    Google Scholar 

  54. Y. I. Frenkel, T. Kontorova: On the theory of plastic deformation and twinning, Zh. Eksp. Teor. Fiz. 8 (1938) 1340

    Google Scholar 

  55. O. M. Braun, Y. S. Kivshar: Nonlinear dynamics of the Frenkel–Kontorova model, Phys. Rep. 306 (1998) 1–108

    Google Scholar 

  56. M. O. Robbins: Jamming, friction, and unsteady rheology. In: Jamming and Rheology: Constrained Dynamics on Microscopic and Macroscopic Scales, ed. by A. J. Liu, S. R. Nagel (Taylor and Francis, London 2000)

    Google Scholar 

  57. L. W. Bruch, M. W. Cole, E. Zaremba: Physical Adsorption: Forces and Phenomena (Oxford, New York 1997)

    Google Scholar 

  58. F. C. Frank, J. H. van der Merwe: One-dimensional dislocations. I. Static theory, Proc. R. Soc. A 198 (1949) 205–225

    CAS  Google Scholar 

  59. S. Aubry: The new concept of transitions by breaking of analyticity in a crystallographic model. In: Solitons and Condensed Matter Physics, ed. by A. R. Bishop, T. Schneider (Springer, Berlin, Heidelberg 1979) pp. 264–290

    Google Scholar 

  60. M. Hirano, K. Shinjo: Atomistic locking and friction, Phys. Rev. B 41 (1990) 11837–11851

    CAS  Google Scholar 

  61. J. Belak, I. F. Stowers: The indentation and scraping of a metal surface: A molecular dynamics study. In: Fundamentals of Friction: Macroscopic and Microscopic Processes, ed. by I. L. Singer, H. M. Pollock (Kluwer, Dordrecht 1992) pp. 511–520

    Google Scholar 

  62. M. R. Sørensen, K. W. Jacobsen, P. Stoltze: Simulations of atomic-scale sliding friction, Phys Rev. B 53 (1996) 2101–2113

    Google Scholar 

  63. A. N. Kolmogorov, V. H. Crespi: Smoothest bearings: Interlayer sliding in multiwalled carbon nanotubes, Phys. Rev. Lett. 85 (2000) 4727–4730

    CAS  Google Scholar 

  64. A. Volmer, T. Natterman: Towards a statistical theory of solid dry friction, Z. Phys. B 104 (1997) 363–371

    CAS  Google Scholar 

  65. C. Mak, J. Krim: Quartz-crystal microbalance studies of disorder induced lubrication, Faraday Discuss. 107 (1997) 389–397

    CAS  Google Scholar 

  66. K. W. Jacobsen, J. K. Norskov, M. J. Puska: Interatomic interactions in the effective-medium theory, Phys. Rev. B 35 (1987) 7423–7442

    CAS  Google Scholar 

  67. M. H. Müser, M. O. Robbins: Conditions for static friction between flat crystalline surfaces, Phys. Rev. B 61 (2000) 2335–2342

    Google Scholar 

  68. P. A. Thompson, M. O. Robbins: Shear flow near solids: Epitaxial order and flow boundary conditions, Phys. Rev. A 41 (1990) 6830–6837

    CAS  Google Scholar 

  69. F. Lancon: Aubry transition in a real material: Prediction for its existence in an incommensurate gold/gold interface, Eur. Phys. Lett. 57 (2002) 74–79

    CAS  Google Scholar 

  70. D. Dowson, G. R. Higginson: Elastohydrodynamic Lubrication (Pergamon, Oxford 1968)

    Google Scholar 

  71. L. Bocquet, J.-L. Barrat: Hydrodynamic boundary conditions and correlation functions of confined fluids, Phys. Rev. Lett. 70 (1993) 2726–2729

    Google Scholar 

  72. P. A. Thompson, M. O. Robbins: Simulations of contact-line motion: Slip and the dynamic contact angle, Phys. Rev. Lett. 63 (1989) 766–769

    CAS  Google Scholar 

  73. J.-L. Barrat, L. Bocquet: Large slip effect at a nonwetting fluid-solid interface, Phys. Rev. Lett. 82 (1999) 4671–4674

    CAS  Google Scholar 

  74. M. J. Stevens, M. O. Robbins: Melting of Yukawa systems: A test of phenomenological melting criteria, J. Chem. Phys. 98 (1993) 2319–2324

    CAS  Google Scholar 

  75. J. Gao, W. D. Luedtke, U. Landman: Structure and solvation forces in confined films: Linear and branched alkanes, J. Chem. Phys. 106 (1997) 4309–4318

    CAS  Google Scholar 

  76. A. Koike, M. Yoneya: Chain length effects on frictional behavior of confined ultrathin films of linear alkanes under shear, J. Phys. Chem. B 102 (1998) 3669–3675

    CAS  Google Scholar 

  77. E. D. Smith, M. Cieplak, M. O. Robbins: The friction on adsorbed monolayers, Phys. Rev. B 54 (1996) 8252–8260

    CAS  Google Scholar 

  78. I. Bitsanis, S. A. Somers, H. T. Davis, M. Tirrell: Microscopic dynamics of flow in molecularly narrow pores, J. Chem. Phys. 93 (1990) 3427–3431

    CAS  Google Scholar 

  79. A. L. Demirel, S. Granick: Glasslike transition of a confined simple fluid, Phys. Rev. Lett. 77 (1996) 2261–2264

    CAS  Google Scholar 

  80. A. R. C. Baljon, M. O. Robbins: Energy dissipation during rupture of adhesive bonds, Science 271 (1996) 482–484

    CAS  Google Scholar 

  81. M. O. Robbins, E. D. Smith: Connecting molecular-scale and macroscopic tribology, Langmuir 12 (1996) 4543–4547

    CAS  Google Scholar 

  82. G. He, M. H. Müser, M. O. Robbins: Adsorbed layers and the origin of static friction, Science 284 (1999) 1650–1652

    CAS  Google Scholar 

  83. J. H. Dieterich, B. D. Kilgore: Direct observation of frictional contacts: New insights for state-dependent properties, Pure Appl. Geophys. 143 (1994) 238–302

    Google Scholar 

  84. P. Berthoud, T. Baumberger: Shear stiffness of a solid-solid multicontact interface, Proc. R. Soc. Lond. A 454 (1998) 1615–1634

    CAS  Google Scholar 

  85. A. L. Demirel, S. Granick: Transition from static to kinetic friction in a model lubricated system, J. Chem. Phys. 109 (1998) 6889–6897

    CAS  Google Scholar 

  86. I. L. Singer: Solid lubrication processes. In: Fundamentals of Friction: Macroscopic and Microscopic Processes (Elsevier, Amsterdam 1992) pp. 237–261

    Google Scholar 

  87. B. J. Briscoe: Friction and wear of organic solids and the adhesion model of friction, Philos. Mag. A 43 (1981) 511–527

    CAS  Google Scholar 

  88. B. J. Briscoe, A. C. Smith: The interfacial shear strength of molybdenum disulphide and graphite films, Trans. ASLE 25 (1982) 349–354

    CAS  Google Scholar 

  89. A. Berman, C. Drummond, J. N. Israelachvili: Amontons's law at the molecular level, Tribol. Lett. 4 (1998) 95–101

    CAS  Google Scholar 

  90. G. He, M. O. Robbins: Simulations of the static friction due to adsorbed molecules, Phys. Rev. B 64 (2001) 035413

    Google Scholar 

  91. J. Gao, X. C. Zeng, D. J. Diestler: Nonlinear effects of physisorption on static friction, J. Chem. Phys. 113 (2000) 11293–11296

    CAS  Google Scholar 

  92. G. He, M. O. Robbins: Simulations of the kinetic friction due to adsorbed molecules, Tribol. Lett. 10 (2001) 7–14

    CAS  Google Scholar 

  93. F. Heslot, T. Baumberger, B. Perrin, B. Caroli, C. Caroli: Creep, stick-slip, and dry-friction dynamics: Experiments and a heuristic model, Phys. Rev. E 49 (1994) 4973–4988

    Google Scholar 

  94. A. Ruina: Slip instability and state variable friction laws, J. Geophys. Res. 88 (1983) 10359–10370

    Google Scholar 

  95. M. G. Rozman, M. Urbakh, J. Klafter: Stick-slip motion and force fluctuations in a driven two-wave potential, Phys. Rev. Lett. 77 (1996) 683–686

    CAS  Google Scholar 

  96. M. G. Rozman, M. Urbakh, J. Klafter: Stick-slip dynamics as a probe of frictional forces, Europhys. Lett. 39 (1997) 183–188

    CAS  Google Scholar 

  97. M. G. Rozman, M. Urbakh, J. Klafter, F. J. Elmer: Atomic scale friction and different phases of motion of embedded systems, J. Phys. Chem. B 102 (1998) 7924–7930

    CAS  Google Scholar 

  98. H. Yoshizawa, J. N. Israelachvili: Fundamental mechanisms of interfacial friction. 1. Stick-slip friction of spherical and chain molecules, J. Phys. Chem. 97 (1993) 11300–11313

    CAS  Google Scholar 

  99. D. E. McCumber: Effect of ac impedance on the dc voltage-current characteristics of superconductor weak-link junctions, J. App. Phys. 39(7) (1968) 3113–3118

    Google Scholar 

  100. J. H. Dieterich: Modeling of rock friction. 2. Simulation of pre-seismic slip, J. Geophys. Res. 84 (1979) 2169–2175

    Google Scholar 

  101. A. A. Batista, J. M. Carlson: Bifurcations from steady sliding to stick slip in boundary lubrication, Phys. Rev. E 57 (1998) 4986–4996

    CAS  Google Scholar 

  102. J. H. Dieterich, B. D. Kilgore: Implications of fault constitutive properties for earthquake prediction, Proc. Natl. Acad. Sci. USA 93 (1996) 3787–3794

    CAS  Google Scholar 

  103. A. Dhinojwala, S. C. Bae, S. Granick: Shear-induced dilation of confined liquid films, Tribol. Lett. 9 (2000) 55–62

    CAS  Google Scholar 

  104. P. A. Thompson, G. S. Grest: Granular flow: Friction and the dilatancy transition, Phys. Rev. Lett. 67 (1991) 1751–1754

    Google Scholar 

  105. H. M. Jaeger, S. R. Nagel, R. P. Behringer: Granular solids, liquids, and gases, Rev. Mod. Phys. 68 (1996) 1259–1273

    Google Scholar 

  106. S. Nasuno, A. Kudrolli, J. P. Gollub: Friction in granular layers: Hysteresis and precursors, Phys. Rev. Lett. 79 (1997) 949–952

    CAS  Google Scholar 

  107. A. R. C. Baljon, M. O. Robbins: Stick-slip motion, transient behavior, and memory in confined films. In: Micro/Nanotribology and Its Applications, ed. by B. Bhushan (Kluwer, Dordrecht 1997) pp. 533–553

    Google Scholar 

  108. A. L. Demirel, S. Granick: Friction fluctuations and friction memory in stick-slip motion, Phys. Rev. Lett. 77 (1996) 4330–4333

    Google Scholar 

  109. B. J. Ackerson, J. B. Hayter, N. A. Clark, L. Cotter: Neutron scattering from charge stabilized suspensions undergoing shear, J. Chem. Phys. 84 (1986) 2344–2349

    CAS  Google Scholar 

  110. M. Lupowski, F. van Swol: Ultrathin films under shear, J. Chem. Phys. 95 (1991) 1995–1998

    Google Scholar 

  111. A. Buldum, S. Ciraci: Interplay between stick-slip motion and structural phase transitions in dry sliding friction, Phys. Rev. B 55 (1997) 12892–12895

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Müser, M.H., Robbins, M.O. (2004). Atomistic Computer Simulations of Nanotribology. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29838-X_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-29838-X_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-01218-4

  • Online ISBN: 978-3-540-29838-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics