Skip to main content

Nanoscale Mechanical Properties – Measuring Techniques and Applications

  • Reference work entry
Book cover Springer Handbook of Nanotechnology

Abstract

The first part of this chapter describes local (at the scale of nanometers) measurements of mechanical properties. It includes detailed state-of-the-art presentation and in-depth analysis of experimental techniques, results, and interpretations.

After a short introduction, the second part describes local mechanical spectroscopy using coupled Atomic Force Microscopy and ultrasound. This technique allows us to map quickly not only spatial distribution of the elasticity but anelastic properties as well. At one point in the sample, semi-quantitative measurements can be made as a function of the temperature. On the nanometer scale, results have close similitudes to bulk measurements and interpretable differences. Local elasticity and damping were measured during phase transition of polymer samples and shape-memory alloys.

The third part describes the “nano-Swiss cheese” method of measuring the elastic properties of such tubular nanometer size objects as carbon nanotubes and microtubules. It is probably the only experiment in which properties of single-wall nanotube ropes were measured as a function of the rope diameter. We extended this idea to biological objects, microtubules, and successfully solved major experimental difficulties. We not only measured the temperature dependency of microtubule modulus in pseudo-physiological conditions but also estimated shear modulus using the same microtubule with several lengths of suspended segments.

The fourth section demonstrates the scanning nanoindentation technique as applied to human bone tissue. This instrument allows performing topography scans and indentation tests using the identical tip. The available surface scan allows a high positioning precision of the indenter tip on the structure of interest. For very inhomogeneous samples, such as bone tissue, this tool provides a probe to detect local variations of the mechanical properties. The indentation test supplies quantitative parameters like elastic modulus and hardness on the submicron level. Local mechanical properties of compact and trabecular bone lamellae were tested under both dry and pseudo-physiological conditions.

Finally, last part is given to a discussion of future prospects and conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AFM:

atomic force microscope/microscopy

CNT:

carbon nanotube

CVD:

chemical vapor deposition

DSC:

differential scanning calorimetry

EFC:

electrostatic force constant

FMM:

force modulation mode

PMMA:

poly(methylmethacrylate)

SAM:

scanning acoustic microscopy

SEM:

scanning electron microscope/microscopy

SFM:

scanning force microscopy

SLAM:

scanning local-acceleration microscopy

SN:

scanning nanoindentation

SPM:

scanning probe microscopy

SWNT:

single-wall nanotubes

T-SLAM:

variable-temperature SLAM

TEM:

transmission electron microscopy

References

  1. M. Radmacher: Measuring the elastic properties of biological samples with the AFM, IEEE Eng. Med. Biol. Mag. 16(2) (1997) 47–57

    Article  CAS  Google Scholar 

  2. G. Binnig, C. F. Quate, C. Gerber: Atomic force microscope, Phys. Rev. Lett. 56 (1986) 930–933

    Article  Google Scholar 

  3. P. Maivald, H. J. Butt, S. A. C. Gould, C. B. Prater, B. Drake, J. A. Gurley, V. B. Elings, P. K. Hansma: Using force modulation to image surface elasticities with the atomic force microscope, Nanotechnology 2 (1991) 103–106

    Article  Google Scholar 

  4. T. Kajiyama, K. Takata, I. Ohki, S.-R. Ge, J.-S. Yoon, A. Takahara: Imaging of dynamic viscoelstic properties of a phase-separated polymer by forced oscillation atomic force microscopy, Macromolecules 27 (1994) 7932–7934

    Article  CAS  Google Scholar 

  5. B. Nysten, R. Legras, J.-L. Costa: Atomic force microscopy imaging of viscoelastic properties in toughened polypropylene resins, J. Appl. Phys. 78 (1995) 5953–5958

    Article  CAS  Google Scholar 

  6. P.-E. Mazeran, J.-L. Loubet: Normal and lateral modulation with a scanning force microscope, an analysis: Implication in quantitative elastic and friction imaging, Tribol. Lett. 3 (1997) 125–129

    Article  CAS  Google Scholar 

  7. B. Cretin, F. Sthal: Scanning microdeformation microscopy, Appl. Phys. Lett. 62 (1993) 829–831

    Article  Google Scholar 

  8. N. A. Burnham, A. J. Kulik, G. Gremaud, P.-J. Gallo, F. Oulevey: Scanning local-acceleration microscopy, J. Vac. Sci. Technol. B 14 (1996) 794–799

    Article  CAS  Google Scholar 

  9. F. Oulevey, N. A. Burnham, A. J. Kulik, G. Gremaud, W. Benoit: Mechanical properties studied at the nanoscale using scanning local-acceleration microscopy (SLAM), J. Phys. IV (1996) C8–731–734

    Google Scholar 

  10. U. Rabe, W. Arnold: Acoustic microscopy by atomic force microscopy, Appl.Phys. Lett 64 (1994) 1493–1495

    Article  Google Scholar 

  11. O. Kolosov, K. Yamanaka: Nonlinear detection of ultrasonic vibrations in an atomic force microscope, Jpn. J. Appl. Phys. 32 (1993) 22–25

    Article  Google Scholar 

  12. F. Oulevey: Cartographie et spectrométrie des propriétés mécaniques à l'échelle nanométrique par microscopie acoustique en champ proche. Ph.D. Thesis (EPFL, Lausanne 1999)

    Google Scholar 

  13. F. Oulevey, G. Gremaud, A. Semoroz, A. J. Kulik, N. A. Burnham, E. Dupas, D. Gourdon: Local mechanical spectroscopy with nanometer-scale lateral resolution, Rev. Sci. Instrum. 69 (1998) 2085–2094

    Article  CAS  Google Scholar 

  14. N. A. Burnham, G. Gremaud, A. J. Kulik, P.-J. Gallo, F. Oulevey: Materials' properties measurements: Choosing the optimal scanning probe microscope configuration, J. Vac. Sci. Technol. B 14 (1996) 1308–1312

    Article  CAS  Google Scholar 

  15. F. Oulevey, G. Gremaud, A. J. Kulik, B. Guisolan: Simple low-drift heating stage for scanning probe microscopes, Rev. Sci. Instrum. 70 (1999) 1889–1890

    Article  CAS  Google Scholar 

  16. H. M. Pollock: Nanoindentation. In: Friction lubrication and wear technology, AMS Handbook, Vol. 18 (AMS, Ohio 1992) p. 419

    Google Scholar 

  17. E. Dupas, G. Gremaud, A. Kulik, J.-L. Loubet: High-frequency mechanical spectroscopy with an atomic force microscope, Rev. Sci. Instrum. 72(10) (2001) 3891–3897

    Article  CAS  Google Scholar 

  18. F. Oulevey, N. A. Burnham, G. Gremaud, A. J. Kulik, H. M. Pollock, A. Hammiche, M. Reading, M. Song, D. J. Hourston: Dynamic mechanical analysis at the submicron scale, Polymer 41 (2000) 3087–3092

    Article  CAS  Google Scholar 

  19. W. Wm. Wendlandt: Thermal Analysis in Chemical Analysis, Vol. 19, 3rd edn. (Wiley, New York 1996) p. 360

    Google Scholar 

  20. D. Mari, D. C. Dunand: NiTi and NiTi-TiC composites: Part I. Transformation and thermal cycling behavior, Metall. Mater. Trans. A 26A (1995) 2833–2847

    Article  CAS  Google Scholar 

  21. L. Bataillard: Transformation martensitique multiple dans un alliage à mémoire de forme Ni-Ti. Ph.D. Thesis (EPF, Lausanne 1996)

    Google Scholar 

  22. F. Oulevey, G. Gremaud, D. Mari, A. J. Kulik, N. A. Burnham, W. Benoit: Martensitic transformation of NiTi studied at the nanometer scale by local mechanical spectroscopy, Scripta Mater. 42 (2000) 31–36

    CAS  Google Scholar 

  23. D. Mari, L. Bataillard, D. C. Dunand, R. Gotthardt: Martensitic transformation of NiTi and NiTi-TiC composites, J. Phys. (France) IV (1995) C8–659–664

    Google Scholar 

  24. S. Iijima: Helical microtubules of graphitic carbon, Nature 354 (1991) 56–58

    Article  CAS  Google Scholar 

  25. C.-H. Kiang, M. Endo, P. M. Ajayan, G. Dresselhaus, M. S. Dresselhaus: Size effects in carbon nanotubes, Phys. Rev. Lett. 81 (1998) 1869–1872

    Article  CAS  Google Scholar 

  26. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, Daniel T. Colbert, G. U. Scuseria, D. Tománek, J. E. Fischer, R. E. Smalley: Crystalline ropes of metallic carbon nanotubes, Science 273 (1996) 483–487

    Article  CAS  Google Scholar 

  27. W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, G. Wang: Large-scale synthesis of aligned carbon nanotubes, Science 274 (1996) 1701–1703

    Article  CAS  Google Scholar 

  28. J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, H. J. Dai: Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers, Nature 395 (1998) 878–881

    Article  CAS  Google Scholar 

  29. J. P. Lu: Elastic properties of carbon nanotubes and nanoropes, Phys. Rev. Lett. 79 (1997) 1297–1300

    Article  CAS  Google Scholar 

  30. E. W. Wong, P. E. Sheehan, C. M. Lieber: Nanobeam mechanics: Elasticity, strength and toughness of nanorods and nanotubes, Science 277 (1997) 1971–1975

    Article  CAS  Google Scholar 

  31. J.-P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kulik, L. Forró, W. Benoit, L. Zuppiroli: Mechanical properties of carbon nanotubes, Appl. Phys. A 69 (1999) 255–260

    Article  CAS  Google Scholar 

  32. M.-F. Yu, B. S. Files, S. Arepalli, R. S. Ruoff: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties, Phys. Rev. Lett. 84 (2000) 5552–5555

    Article  CAS  Google Scholar 

  33. S. Iijima, C. Brabec, A. Maiti, J. Bernholc: Structural flexibility of carbon nanotubes, J. Chem. Phys. 104 (1996) 2089–2092

    Article  CAS  Google Scholar 

  34. J.-P. Salvetat, A. J. Kulik, J.-M. Bonard, G. A. D. Briggs, T. Stöckli, K. Méténier, S. Bonnamy, F. Béguin, N. A. Burnham, L. Forró: Elastic modulus of ordered and disordered multiwalled carbon nanotubes, Adv. Mater. 11 (1999) 161–165

    Article  CAS  Google Scholar 

  35. J.-P. Salvetat, G. A. D. Briggs, J.-M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stöckli, N. Burnham, L. Forró: Elastic and shear moduli of single-walled carbon nanotube ropes, Phys. Rev. Lett. 82 (1999) 944–947

    Article  CAS  Google Scholar 

  36. J. M. Gere, S. P. Timoshenko: Mechanics of Materials (PWS-Kent, Boston 1990)

    Google Scholar 

  37. D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert, K. A. Smith, R. E. Smalley: Elastic strain of freely suspended single-wall carbon nanotube ropes, Appl. Phys. Lett. 74 (1999) 3803–3805

    Article  CAS  Google Scholar 

  38. M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science 287 (2000) 637–640

    Article  CAS  Google Scholar 

  39. G.-T. Kim, G. Gu, U. Waizmann, S. Roth: Simple method to prepare individual suspended nanofibers, Appl. Phys. Lett. 80 (2002) 1815–1817

    Article  CAS  Google Scholar 

  40. T. Fujii, M. Suzuki, M. Miyashita, M. Yamaguchi, T. Onuki, H. Nakamura, T. Matsubara, H. Yamada, K. Nakayama: Micropattern measurement with an atomic force microscope, J. Vac. Sci. Technol. B 9 (1991) 666–669

    Article  CAS  Google Scholar 

  41. A. S. K. Kis, B. Babic, A. J. Kulik, W. Benoît, G. A. D. Briggs, C. Schönenberger, S. Catsicas, L. Forró: Nanomechanics of microtubules, Phys. Rev. Lett. 89 (2002) 248101

    Article  CAS  Google Scholar 

  42. M. Kurachi, M. Hoshi, H. Tashiro: Buckling of a single microtubule by optical trapping forces: Direct measurement of microtubule rigidity, Cell. Motil. Cyt. 30 (1995) 221–228

    Article  CAS  Google Scholar 

  43. R. B. Dye, S. P. Fink, R. C. Williams: Taxol-induced flexibillity of microtubules and its reversal by Map-2 and Tau, J. Biol. Chem. 268 (1993) 6847–6850

    CAS  Google Scholar 

  44. F. Gittes, B. Mickey, J. Nettleton, J. Howard: Flexual rigidity of microtubules and actin filaments measured from thermal fluctuations in shape, J. Cell Biol. 120 (1993) 923–934

    Article  CAS  Google Scholar 

  45. M. Elbaum, D. K. Fygenson, A. Libchaber: Buckling microtubules in vesicles, Phys. Rev. Lett. 76 (1996) 4078–4081

    Article  CAS  Google Scholar 

  46. A. Vinckier, C. Dumortier, Y. Engelborghs, L. Hellemans: Dynamical and mechanical study of immobilized microtubules with atomic force microscopy, J. Vac. Sci. Technol. B 14 (1996) 1427–1431

    Article  CAS  Google Scholar 

  47. Hysitron, Incorporated 2010 East Hennepin Avenue Minneapolis, MN 55413,

    Google Scholar 

  48. A. V. Kulkarni, B. Bhushan: Nanoscale mechanical property measurements using modified atomic force microscopy, Thin Solid Films 290-291 (1996) 206–210

    Article  CAS  Google Scholar 

  49. A. V. Kulkarni, B. Bhushan: Nano/picoindentation measurements on single-crystal aluminum using modified atomic force microscopy, Mater. Lett. 29 (1996) 221–227

    Article  CAS  Google Scholar 

  50. M. Chiba, M. Seo: Effects of dichromate treatment on mechanical properties of passivated single crystal iron (100) and (110) surfaces, Corros. Sci. 44 (2002) 2379–2391

    Article  CAS  Google Scholar 

  51. X. C. Lu, B. Shi, L. K. Y. Li, J. Luo, X. Chang, Z. Tian, J. I. Mou: Nanoindentation and microtribological behavior of Fe-N/Ti-N multilayers with different thickness of Ti-N layers, Wear 251 (2001) 1144–1149

    Article  Google Scholar 

  52. P. Peeters, Gvd. Horn, T. Daenen, A. Kurowski, G. Staikov: Properties of electroless and electroplated Ni-P and its application in microgalvanics, Electrochim. Acta 47 (2001) 161–169

    Article  CAS  Google Scholar 

  53. A. Rar, J. N. Zhou, W. J. Liu, J. A. Barnard, A. Bennett, S. C. Street: Dendrimer-mediated growth of very flat ultrathin Au films, Appl. Surf. Sci. 175-176 (2001) 134–139

    Article  CAS  Google Scholar 

  54. R. D. Ott, C. Ruby, F. Huang, M. L. Weaver, J. A. Barnard: Nanotribology and surface chemistry of reactively sputtered Ti-B-N hard coatings, Thin Solid Films 377-378 (2000) 602–606

    Article  CAS  Google Scholar 

  55. T. Malkow, S. J. Bull: Hardness measurements on thin IBAD CN x films – a comparative study, Surf. Coat. Technol. 137 (2001) 197–204

    Article  CAS  Google Scholar 

  56. Y. Shima, H. Hasuyama, T. Kondoh, Y. Imaoka, T. Watari, K. Baba, R. Hatada: Mechanical properties of silicon oxynitride thin films prepared by low energy ion beam assisted deposition, Nucl. Instrum. Methods Phys. Res., Sect. B 148 (1999) 599–603

    Article  CAS  Google Scholar 

  57. M. Göken, M. Kempf, W. D. Nix: Hardness and modulus of the lamellar microstructure in PST-TiAl studied by nanoindentations and AFM, Acta Mater. 49 (2001) 903–911

    Article  Google Scholar 

  58. M. Göken, M. Kempf: Microstructural properties of superalloys investigated by nanoindentations in an atomic force microscope, Acta Mater. 47 (1999) 1043–1052

    Article  Google Scholar 

  59. M. Seo, M. Chiba, K. Suzuki: Nano-mechano-electrochemistry of the iron (100) surface in solution, J. Electroanal. Chem. 473 (1999) 49–53

    Article  CAS  Google Scholar 

  60. Y. Zhang, F. Z. Cui, X. M. Wang, Q. L. Feng, X. D. Zhu: Mechanical properties of skeletal bone in gene-mutated stöpsel dtl28d and wild-type zebrafish (Danio rerio) measured by atomic force microscopy-based nanoindentation, Bone 30 (2002) 541–546

    Article  CAS  Google Scholar 

  61. M. Finke, J. A. Hughes, D. M. Parker, K. D. Jandt: Mechanical properties of in situ demineralised human enamel measured by AFM nanoindentation, Surf. Sci. 491 (2001) 456–467

    Article  CAS  Google Scholar 

  62. S. Habelitz, S. J. Marshall, G. W. Marshall, J. R. Balooch, M. Balooch: The functional width of the dentino–enamel junction determined by AFM-based nanoscratching, J. Struct. Biol. 135 (2001) 294–301

    Article  CAS  Google Scholar 

  63. G. W. Marshall Jr., M. Balooch, R. R. Gallagher, S. A. Gansky, S. J. Marshall: Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture, J. Biomed. Mater. Res. 54 (2001) 87–95

    Article  CAS  Google Scholar 

  64. S. Hengsberger, A. Kulik: Nanoindentation discriminates the elastic properties of individual human bone lamellae under dry and physiological conditions, Bone 30 (2002) 178–184

    Article  CAS  Google Scholar 

  65. E. F. Eriksen, D. W. Axelrod, F. M. Melsen: Bone Histomorphometry, 1st edn. (Raven, New York 1994)

    Google Scholar 

  66. C. E. Hoffler, K. E. Moore, K. Kozloff, P. K. Zysset, M. B. Brown, S. A. Goldstein: Heterogeneity of bone lamellar-level elastic moduli, Bone 26 (2000) 603–609

    Article  CAS  Google Scholar 

  67. C. E. Hoffler, K. E. Moore, K. Kozloff, P. K. Zysset, S. A. Goldstein: Age, gender, and bone lamellae elastic moduli, J. Orth. Res. 18 (2000) 432–437

    Article  CAS  Google Scholar 

  68. P. K. Zysset, X. E. Guo, C. E. Hoffler, K. E. Moore, S. A. Goldstein: Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur, J. Biomech. 32 (1999) 1005–1012

    Article  CAS  Google Scholar 

  69. J. Y. Rho, P. Zioupos, J. D. Currey, G. M. Pharr: Variations in the individual thick lamellar properties within osteons by nanoindentation, Bone 25 (1999) 295–300

    Article  CAS  Google Scholar 

  70. J. Y. Rho, M. E. Roy, T. Y. Tsui, G. M. Pharr: Elastic properties of microstructural components of human bone tissue as measured by nanoindentation, J. Biomed. Mater. Res. 45 (1999) 48–54

    Article  CAS  Google Scholar 

  71. S. Hengsberger, A. Kulik, P. Zysset: A combined atomic force microscopy and nanoindentation technique to investigate the elastic properties of bone structural units, Europ. Cells Mater. 1 (2001) 12–16

    CAS  Google Scholar 

  72. C. H. Turner, J. Y. Rho, Y. Takano, T. Y. Tsui, G. M. Pharr: The elastic properties of trabecular and cortical bone tissues are similar: Results from two microscopic measurement techniques, J. Biomech. 32 (1999) 437–441

    Article  CAS  Google Scholar 

  73. M. E. Roy, J. Y. Rho, T. Y. Tsui, N. S. Evans, G. M. Pharr: Mechanical and morphological variation of the human lumbar vertebral cortical and trabecular bone, J. Biomed. Mater. Res. 44 (1999) 191–199

    Article  CAS  Google Scholar 

  74. J. Y. Rho, G. M. Pharr: Effects of drying on the mechanical properties of bovine femur measured by nanoindentation, J. Mater. Sci.: Mater. Med. 10 (1999) 485–488

    CAS  Google Scholar 

  75. I. N. Sneddon: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile, Int. J. Eng. Sci. 3 (1965) 47–57

    Article  Google Scholar 

  76. W. C. Oliver, G. M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Mat. Res. Soc. 7/6 (1992) 1564–1583

    Article  Google Scholar 

  77. G. M. Pharr, W. C. Oliver, F. R. Brotzen: On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation, J. Mater. Res. 7/3 (1992) 613–617

    Article  Google Scholar 

  78. K. L. Johnson: Contact Mechanics, 1st edn. (Cambridge Univ. Press, Cambridge 1985) pp. 84–106

    Google Scholar 

  79. G. Marotti: A new theory of bone lamellation, Calcif Tissue Int. 53 (1993) 47–56

    Article  Google Scholar 

  80. M. M. Giraud-Guille: Plywood structures in nature, Curr. Op. Solid State Mater. Sci. 3 (1998) 221–227

    Article  CAS  Google Scholar 

  81. G. P. Evans, J. C. Behiri, J. D. Currey, W. Bonfield: Microhardness and Young's modulus in cortical bone exhibiting a wide range of mineral volume fractions, and in a bone analogue, J. Mater. Sci.: Mater. Med. 1 (1990) 38–43

    CAS  Google Scholar 

  82. J. G. Swadener, G. M. Pharr: Indentation of elastically anisotropic half-spaces by cones and parabolae of revolution, Philos. Mag. A 81 (2001) 447–466

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Kulik, A.J., Kis, A., Gremaud, G., Hengsberger, S., Zysset, P.K., Forró, L. (2004). Nanoscale Mechanical Properties – Measuring Techniques and Applications. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29838-X_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-29838-X_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-01218-4

  • Online ISBN: 978-3-540-29838-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics