Skip to main content

Low Temperature Scanning Probe Microscopy

  • Reference work entry
  • 2070 Accesses

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter is dedicated to scanning probe microscopy, one of the most important techniques in nanotechnology. In general, scanning probe techniques allow the measurement of physical properties down to the nanometer scale. Some techniques, such as the scanning tunneling microscope and the scanning force microscope even go down to the atomic scale. The properties that are accessible are various. Most importantly, one can image the arrangement of atoms on conducting surfaces by scanning tunneling microscopy and on insulating substrates by scanning force microscopy. But also the arrangement of electrons (scanning tunneling spectroscopy), the force interaction between different atoms (scanning force spectroscopy), magnetic domains (magnetic force microscopy), the local capacitance (scanning capacitance microscopy), the local temperature (scanning thermo microscopy), and local light-induced excitations (scanning near-field microscopy) can be measured with high spatial resolution. In addition, some techniques even allow the manipulation of atomic configurations.

Probably the most important advantage of the low-temperature operation of scanning probe techniques is that they lead to a significantly better signal-to-noise ratio than measuring at room temperature. This is why many researchers work below 100 K. However, there are also physical reasons to use low-temperature equipment. For example, the manipulation of atoms or scanning tunneling spectroscopy with high energy resolution can only be realized at low temperatures. Moreover, some physical effects such as superconductivity or the Kondo effect are restricted to low temperatures. Here, we describe the design criteria of low-temperature scanning probe equipment and summarize some of the most spectacular results achieved since the invention of the method about 20 years ago. We first focus on the scanning tunneling microscope, giving examples of atomic manipulation and the analysis of electronic properties in different material arrangements. Afterwards, we describe results obtained by scanning force microscopy, showing atomic-scale imaging on insulators, as well as force spectroscopy analysis. Finally, the magnetic force microscope, which images domain patterns in ferromagnets and vortex patterns in superconductors, is discussed. Although this list is far from complete, we feel that it gives an adequate impression of the fascinating possibilities of low-temperature scanning probe instruments.

In this chapter low temperatures are defined as lower than about 100 K and are normally achieved by cooling with liquid nitrogen or liquid helium. Applications in which SPMs are operated close to 0 °C are not covered in this chapter.

This is a preview of subscription content, log in via an institution.

Abbreviations

2-DEG:

two-dimensional electron gas

AFM:

atomic force microscope/microscopy

CDW:

charge density wave

DFM:

dynamic force microscopy

DOS:

density of states

EFM:

electric field gradient microscopy

FM-AFM:

frequency modulation AFM

FM-SFM:

frequency-modulation SFM

FM:

frequency modulation

HTCS:

high temperature superconductivity

HtBDC:

hexa-tert-butyl-decacyclene

LDOS:

local density of states

LN:

liquid nitrogen

LTSPM:

low-temperature SPM

MFM:

magnetic field microscope/microscopy

MRFM:

magnetic resonance force microscopy

NC-AFM:

noncontact atomic force microscopy

PES:

photoemission spectroscopy

SFM:

scanning force microscopy

SFS:

scanning force spectroscopy

SPM:

scanning probe microscopy

STM:

scanning tunneling microscope/microscopy

SWNT:

single-wall nanotubes

TTF:

tetrathiofulvane

UHV:

ultrahigh vacuum

References

  1. G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel: Surface studies by scanning tunneling microscopy, Phys. Rev. Lett. 49 (1982) 57–61

    Google Scholar 

  2. R. Wiesendanger: Scanning Probe Microscopy and Spectroscopy (Cambridge Univ. Press, Cambridge 1994)

    Google Scholar 

  3. M. Tinkham: Introduction to Superconductivity (McGraw-Hill, New York 1996)

    Google Scholar 

  4. J. Kondo: Theory of dilute magnetic alloys, Solid State Phys. 23 (1969) 183–281

    Google Scholar 

  5. T. R. Albrecht, P. Grütter, H. K. Horne, D. Rugar: Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity, J. Appl. Phys. 69 (1991) 668–673

    Google Scholar 

  6. F. J. Giessibl, H. Bielefeld, S. Hembacher, J. Mannhart: Calculation of the optimal imaging parameters for frequency modulation atomic force microscopy, Appl. Surf. Sci. 140 (1999) 352–357

    CAS  Google Scholar 

  7. W. Allers, A. Schwarz, U. D. Schwarz, R. Wiesendanger: Dynamic scanning force microscopy at low temperatures on a van der Waals surface: graphite(0001), Appl. Surf. Sci. 140 (1999) 247–252

    CAS  Google Scholar 

  8. W. Allers, A. Schwarz, U. D. Schwarz, R. Wiesendanger: Dynamic scanning force microscopy at low temperatures on a noble-gas crystal: atomic resolution on the xenon(111) surface, Europhys. Lett. 48 (1999) 276–279

    CAS  Google Scholar 

  9. M. Morgenstern, D. Haude, V. Gudmundsson, C. Wittneven, R. Dombrowski, R. Wiesendanger: Origin of Landau oscillations observed in scanning tunneling spectroscopy on n-InAs(110), Phys. Rev. B 62 (2000) 7257–7263

    CAS  Google Scholar 

  10. D. M. Eigler, P. S. Weiss, E. K. Schweizer, N. D. Lang: Imaging Xe with a low-temperature scanning tunneling microscope, Phys. Rev. Lett. 66 (1991) 1189–1192

    CAS  Google Scholar 

  11. P. S. Weiss, D. M. Eigler: Site dependence of the apparent shape of a molecule in scanning tunneling micoscope images: Benzene on Pt111, Phys. Rev. Lett. 71 (1992) 3139–3142

    Google Scholar 

  12. D. M. Eigler, E. K. Schweizer: Positioning single atoms with a scanning tunneling microscope, Nature 344 (1990) 524–526

    CAS  Google Scholar 

  13. H. Hug, B. Stiefel, P. J. A. van Schendel, A. Moser, S. Martin, H.-J. Güntherodt: A low temperature ultrahigh vacuum scanning force microscope, Rev. Sci. Instrum. 70 (1999) 3627–3640

    Google Scholar 

  14. S. Behler, M. K. Rose, D. F. Ogletree, F. Salmeron: Method to characterize the vibrational response of a beetle type scanning tunneling microscope, Rev. Sci. Instrum. 68 (1997) 124–128

    CAS  Google Scholar 

  15. C. Wittneven, R. Dombrowski, S. H. Pan, R. Wiesendanger: A low-temperature ultrahigh-vacuum scanning tunneling microscope with rotatable magnetic field, Rev. Sci. Instrum. 68 (1997) 3806–3810

    CAS  Google Scholar 

  16. W. Allers, A. Schwarz, U. D. Schwarz, R. Wiesendanger: A scanning force microscope with atomic resolution in ultrahigh vacuum and at low temperatures, Rev. Sci. Instrum. 69 (1998) 221–225

    CAS  Google Scholar 

  17. G. Dujardin, R. E. Walkup, Ph. Avouris: Dissociation of individual molecules with electrons from the tip of a scanning tunneling microscope, Science 255 (1992) 1232–1235

    CAS  Google Scholar 

  18. H. J. Lee, W. Ho: Single-bond formation and characterization with a scanning tunneling microscope, Science 286 (1999) 1719–1722

    CAS  Google Scholar 

  19. R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, M. Tschudy: Photon emission at molecular resolution induced by a scanning tunneling microscope, Science 262 (1993) 1425–1427

    CAS  Google Scholar 

  20. B. G. Briner, M. Doering, H. P. Rust, A. M. Bradshaw: Microscopic diffusion enhanced by adsorbate interaction, Science 278 (1997) 257–260

    CAS  Google Scholar 

  21. J. Kliewer, R. Berndt, E. V. Chulkov, V. M. Silkin, P. M. Echenique, S. Crampin: Dimensionality effects in the lifetime of surface states, Science 288 (2000) 1399–1401

    CAS  Google Scholar 

  22. M. F. Crommie, C. P. Lutz, D. M. Eigler: Imaging standing waves in a two-dimensional electron gas, Nature 363 (1993) 524–527

    CAS  Google Scholar 

  23. B. C. Stipe, M. A. Rezaei, W. Ho: Single-molecule vibrational spectroscopy and microscopy, Science 280 (1998) 1732–1735

    CAS  Google Scholar 

  24. H. J. Lee, W. Ho: Structural determination by single-molecule vibrational spectroscopy and microscopy: Contrast between copper and iron carbonyls, Phys. Rev. B 61 (2000) R16347–R16350

    CAS  Google Scholar 

  25. C. W. J. Beenakker, H. van Houten: Quantum transport in semiconductor nanostructures, Solid State Phys. 44 (1991) 1–228

    Google Scholar 

  26. S. H. Pan, E. W. Hudson, K. M. Lang, H. Eisaki, S. Uchida, J. C. Davis: Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+δ, Nature 403 (2000) 746–750

    CAS  Google Scholar 

  27. R. S. Becker, J. A. Golovchenko, B. S. Swartzentruber: Atomic-scale surface modifications using a tunneling microscope, Nature 325 (1987) 419–42

    CAS  Google Scholar 

  28. J. A. Stroscio, D. M. Eigler: Atomic and molecular manipulation with the scanning tunneling microscope, Science 254 (1991) 1319–1326

    CAS  Google Scholar 

  29. L. Bartels, G. Meyer, K. H. Rieder: Basic steps of lateral manipulation of single atoms and diatomic clusters with a scanning tunneling microscope, Phys. Rev. Lett. 79 (1997) 697–700

    CAS  Google Scholar 

  30. J. J. Schulz, R. Koch, K. H. Rieder: New mechanism for single atom manipulation, Phys. Rev. Lett. 84 (2000) 4597–4600

    CAS  Google Scholar 

  31. T. C. Shen, C. Wang, G. C. Abeln, J. R. Tucker, J. W. Lyding, Ph. Avouris, R. E. Walkup: Atomic-scale desorption through electronic and vibrational excitation mechanisms, Science 268 (1995) 1590–1592

    CAS  Google Scholar 

  32. T. Komeda, Y. Kim, M. Kawai, B. N. J. Persson, H. Ueba: Lateral hopping of molecules induced by excitations of internal vibration mode, Science 295 (2002) 2055–2058

    CAS  Google Scholar 

  33. Y. W. Mo: Reversible rotation of antimony dimers on the silicon(001) surface with a scanning tunneling microscope, Science 261 (1993) 886–888

    CAS  Google Scholar 

  34. B. C. Stipe, M. A. Rezaei, W. Ho: Inducing and viewing the rotational motion of a single molecule, Science 279 (1998) 1907–1909

    CAS  Google Scholar 

  35. F. Moresco, G. Meyer, K. H. Rieder, H. Tang, A. Gourdon, C. Joachim: Conformational changes of single molecules by scanning tunneling microscopy manipulation: a route to molecular switching, Phys. Rev. Lett. 86 (2001) 672–675

    CAS  Google Scholar 

  36. S. W. Hla, L. Bartels, G. Meyer, K. H. Rieder: Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: Towards single molecule engineering, Phys. Rev. Lett. 85 (2000) 2777–2780

    CAS  Google Scholar 

  37. E. Ganz, S. K. Theiss, I. S. Hwang, J. Golovchenko: Direct measurement of diffusion by hot tunneling microscopy: Activations energy, anisotropy, and long jumps, Phys. Rev. Lett. 68 (1992) 1567–1570

    CAS  Google Scholar 

  38. M. Schuhnack, T. R. Linderoth, F. Rosei, E. Laegsgaard, I. Stensgaard, F. Besenbacher: Long jumps in the surface diffusion of large molecules, Phys. Rev. Lett. 88 (2002) 156102, 1–4

    Google Scholar 

  39. L. J. Lauhon, W. Ho: Direct observation of the quantum tunneling of single hydrogen atoms with a scanning tunneling microscope, Phys. Rev. Lett. 85 (2000) 4566–4569

    CAS  Google Scholar 

  40. N. Kitamura, M. Lagally, M. B. Webb: Real-time observation of vacancy diffusion on Si(001)-(2×1) by scanning tunneling microscopy, Phys. Rev. Lett. 71 (1993) 2082–2085

    CAS  Google Scholar 

  41. M. Morgenstern, T. Michely, G. Comsa: Onset of interstitial diffusion determined by scanning tunneling microscopy, Phys. Rev. Lett. 79 (1997) 1305–1308

    CAS  Google Scholar 

  42. K. Morgenstern, G. Rosenfeld, B. Poelsema, G. Comsa: Brownian motion of vacancy islands on Ag(111), Phys. Rev. Lett. 74 (1995) 2058–2061

    CAS  Google Scholar 

  43. B. Reihl, J. H. Coombs, J. K. Gimzewski: Local inverse photoemission with the scanning tunneling microscope, Surf. Sci. 211–212 (1989) 156–164

    Google Scholar 

  44. R. Berndt, J. K. Gimzewski, P. Johansson: Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces, Phys. Rev. Lett. 67 (1991) 3796–3799

    CAS  Google Scholar 

  45. P. Johansson, R. Monreal, P. Apell: Theory for light emission from a scanning tunneling microscope, Phys. Rev. B 42 (1990) 9210–9213

    CAS  Google Scholar 

  46. J. Aizpurua, G. Hoffmann, S. P. Apell, R. Berndt: Electromagnetic coupling on an atomic scale, Phys. Rev. Lett. 89 (2002) 156803, 1–4

    Google Scholar 

  47. G. Hoffmann, J. Kliewer, R. Berndt: Luminescence from metallic quantum wells in a scanning tunneling microscope, Phys. Rev. Lett. 78 (2001) 176803, 1–4

    Google Scholar 

  48. A. Downes, M. E. Welland: Photon emission from Si(111)-(7×7) induced by scanning tunneling microscopy: atomic scale and material contrast, Phys. Rev. Lett. 81 (1998) 1857–1860

    CAS  Google Scholar 

  49. M. Kemerink, K. Sauthoff, P. M. Koenraad, J. W. Geritsen, H. van Kempen, J. H. Wolter: Optical detection of ballistic electrons injected by a scanning-tunneling microscope, Phys. Rev. Lett. 86 (2001) 2404–2407

    CAS  Google Scholar 

  50. J. Tersoff, D. R. Hamann: Theory and application for the scanning tunneling microscope, Phys. Rev. Lett. 50 (1983) 1998–2001

    CAS  Google Scholar 

  51. C. J. Chen: Introduction to Scanning Tunneling Microscopy (Oxford Univ. Press, Oxford 1993)

    Google Scholar 

  52. J. Winterlin, J. Wiechers, H. Brune, T. Gritsch, H. Hofer, R. J. Behm: Atomic-resolution imaging of close-packed metal surfaces by scanning tunneling microscopy, Phys. Rev. Lett. 62 (1989) 59–62

    Google Scholar 

  53. A. L. Vazquez de Parga, O. S. Hernan, R. Miranda, A. Levy Yeyati, N. Mingo, A. Martin-Rodero, F. Flores: Electron resonances in sharp tips and their role in tunneling spectroscopy, Phys. Rev. Lett. 80 (1998) 357–360

    Google Scholar 

  54. S. H. Pan, E. W. Hudson, J. C. Davis: Vacuum tunneling of superconducting quasiparticles from atomically sharp scanning tunneling microscope tips, Appl. Phys. Lett. 73 (1998) 2992–2994

    CAS  Google Scholar 

  55. J. T. Li, W. D. Schneider, R. Berndt, O. R. Bryant, S. Crampin: Surface-state lifetime measured by scanning tunneling spectroscopy, Phys. Rev. Lett. 81 (1998) 4464–4467

    CAS  Google Scholar 

  56. L. Bürgi, O. Jeandupeux, H. Brune, K. Kern: Probing hot-electron dynamics with a cold scanning tunneling microscope, Phys. Rev. Lett. 82 (1999) 4516–4519

    Google Scholar 

  57. J. W. G. Wildoer, C. J. P. M. Harmans, H. van Kempen: Observation of Landau levels at the InAs(110) surface by scanning tunneling spectroscopy, Phys. Rev. B 55 (1997) R16013–R16016

    CAS  Google Scholar 

  58. M. Morgenstern, V. Gudmundsson, C. Wittneven, R. Dombrowski, R. Wiesendanger: Nonlocality of the exchange interaction probed by scanning tunneling spectroscopy, Phys. Rev. B 63 (2001) 201301(R), 1–4

    Google Scholar 

  59. M. V. Grishin, F. I. Dalidchik, S. A. Kovalevskii, N. N. Kolchenko, B. R. Shub: Isotope effect in the vibrational spectra of water measured in experiments with a scanning tunneling microscope, JETP Lett. 66 (1997) 37–40

    Google Scholar 

  60. A. Hewson: From the Kondo Effect to Heavy Fermions (Cambridge Univ. Press, Cambridge 1993)

    Google Scholar 

  61. V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, N. S. Wingreen: Tunneling into a single magnetic atom: Spectroscopic evidence of the Kondo resonance, Science 280 (1998) 567–569

    CAS  Google Scholar 

  62. J. Li, W. D. Schneider, R. Berndt, B. Delley: Kondo scattering observed at a single magnetic impurity, Phys. Rev. Lett. 80 (1998) 2893–2896

    CAS  Google Scholar 

  63. T. W. Odom, J. L. Huang, C. L. Cheung, C. M. Lieber: Magnetic clusters on single-walled carbon nanotubes: the Kondo effect in a one-dimensional host, Science 290 (2000) 1549–1552

    CAS  Google Scholar 

  64. M. Ouyang, J. L. Huang, C. L. Cheung, C. M. Lieber: Energy gaps in metallic single-walled carbon nanotubes, Science 292 (2001) 702–705

    CAS  Google Scholar 

  65. U. Fano: Effects of configuration interaction on intensities and phase shifts, Phys. Rev. 124 (1961) 1866–1878

    CAS  Google Scholar 

  66. H. C. Manoharan, C. P. Lutz, D. M. Eigler: Quantum mirages formed by coherent projection of electronic structure, Nature 403 (2000) 512–515

    CAS  Google Scholar 

  67. O. Y. Kolesnychenko, R. de Kort, M. I. Katsnelson, A. I. Lichtenstein, H. van Kempen: Real-space observation of an orbital Kondo resonance on the Cr(001) surface, Nature 415 (2002) 507–509

    CAS  Google Scholar 

  68. H. A. Mizes, J. S. Foster: Long-range electronic perturbations caused by defects using scanning tunneling microscopy, Science 244 (1989) 559–562

    CAS  Google Scholar 

  69. P. T. Sprunger, L. Petersen, E. W. Plummer, E. Laegsgaard, F. Besenbacher: Giant Friedel oscillations on beryllium (0001) surface, Science 275 (1997) 1764–1767

    CAS  Google Scholar 

  70. P. Hofmann, B. G. Briner, M. Doering, H. P. Rust, E. W. Plummer, A. M. Bradshaw: Anisotropic two-dimensional Friedel oscillations, Phys. Rev. Lett. 79 (1997) 265–268

    CAS  Google Scholar 

  71. E. J. Heller, M. F. Crommie, C. P. Lutz, D. M. Eigler: Scattering and adsorption of surface electron waves in quantum corrals, Nature 369 (1994) 464–466

    Google Scholar 

  72. M. C. M. M. van der Wielen, A. J. A. van Roij, H. van Kempen: Direct observation of Friedel oscillations around incorporated SiGa dopants in GaAs by low-temperature scanning tunneling microscopy, Phys. Rev. Lett. 76 (1996) 1075–1078

    Google Scholar 

  73. O. Millo, D. Katz, Y. W. Cao, U. Banin: Imaging and spectroscopy of artificial-atom states in core/shell nanocrystal quantum dots, Phys. Rev. Lett. 86 (2001) 5751–5754

    CAS  Google Scholar 

  74. L. C. Venema, J. W. G. Wildoer, J. W. Janssen, S. J. Tans, L. J. T. Tuinstra, L. P. Kouwenhoven, C. Dekker: Imaging electron wave functions of quantized energy levels in carbon nanotubes, Nature 283 (1999) 52–55

    CAS  Google Scholar 

  75. S. G. Lemay, J. W. Jannsen, M. van den Hout, M. Mooij, M. J. Bronikowski, P. A. Willis, R. E. Smalley, L. P. Kouwenhoven, C. Dekker: Two-dimensional imaging of electronic wavefunctions in carbon nanotubes, Nature 412 (2001) 617–620

    CAS  Google Scholar 

  76. C. Wittneven, R. Dombrowski, M. Morgenstern, R. Wiesendanger: Scattering states of ionized dopants probed by low temperature scanning tunneling spectroscopy, Phys. Rev. Lett. 81 (1998) 5616–5619

    CAS  Google Scholar 

  77. D. Haude, M. Morgenstern, I. Meinel, R. Wiesendanger: Local density of states of a three-dimensional conductor in the extreme quantum limit, Phys. Rev. Lett. 86 (2001) 1582–1585

    CAS  Google Scholar 

  78. R. Joynt, R. E. Prange: Conditions for the quantum Hall effect, Phys. Rev. B 29 (1984) 3303–3317

    Google Scholar 

  79. M. Morgenstern, J. Klijn, C. Meyer, M. Getzlaff, R. Adelung, R. A. Römer, K. Rossnagel, L. Kipp, M. Skibowski, R. Wiesendanger: Direct comparison between potential landscape and local density of states in a disordered two-dimensional electron system, Phys. Rev. Lett. 89 (2002) 136806, 1–4

    Google Scholar 

  80. E. Abrahams, P. W. Anderson, D. C. Licciardello, T. V. Ramakrishnan: Scaling theory of localization: absence of quantum diffusion in two dimensions, Phys. Rev. Lett. 42 (1979) 673–676

    Google Scholar 

  81. M. Morgenstern, J. Klijn, R. Wiesendanger: Real space observation of drift states in a two-dimensional electron system at high magnetic fields, Phys. Rev. Lett. 90 (2003) 056804, 1–4

    Google Scholar 

  82. R. E. Peierls: Quantum Theory of Solids (Clarendon, Oxford 1955)

    Google Scholar 

  83. C. G. Slough, W. W. McNairy, R. V. Coleman, B. Drake, P. K. Hansma: Charge-density waves studied with the use of a scanning tunneling microscope, Phys. Rev. B 34 (1986) 994–1005

    CAS  Google Scholar 

  84. X. L. Wu, C. M. Lieber: Hexagonal domain-like charge-density wave of TaS2 determined by scanning tunneling microscopy, Science 243 (1989) 1703–1705

    CAS  Google Scholar 

  85. T. Nishiguchi, M. Kageshima, N. Ara-Kato, A. Kawazu: Behaviour of charge density waves in a one-dimensional organic conductor visualized by scanning tunneling microscopy, Phys. Rev. Lett. 81 (1998) 3187–3190

    CAS  Google Scholar 

  86. X. L. Wu, C. M. Lieber: Direct observation of growth and melting of the hexagonal-domain charge-density-wave phase in 1 T-TaS2 by scanning tunneling microscopy, Phys. Rev. Lett. 64 (1990) 1150–1153

    CAS  Google Scholar 

  87. J. M. Carpinelli, H. H. Weitering, E. W. Plummer, R. Stumpf: Direct observation of a surface charge density wave, Nature 381 (1996) 398–400

    CAS  Google Scholar 

  88. H. H. Weitering, J. M. Carpinelli, A. V. Melechenko, J. Zhang, M. Bartkowiak, E. W. Plummer: Defect-mediated condensation of a charge density wave, Science 285 (1999) 2107–2110

    CAS  Google Scholar 

  89. H. W. Yeom, S. Takeda, E. Rotenberg, I. Matsuda, K. Horikoshi, J. Schäfer, C. M. Lee, S. D. Kevan, T. Ohta, T. Nagao, S. Hasegawa: Instability and charge density wave of metallic quantum chains on a silicon surface, Phys. Rev. Lett. 82 (1999) 4898–4901

    CAS  Google Scholar 

  90. K. Swamy, A. Menzel, R. Beer, E. Bertel: Charge-density waves in self-assembled halogen-bridged metal chains, Phys. Rev. Lett. 86 (2001) 1299–1302

    CAS  Google Scholar 

  91. J. J. Kim, W. Yamaguchi, T. Hasegawa, K. Kitazawa: Observation of Mott localization gap using low temperature scanning tunneling spectroscopy in commensurate 1 T-TaSe2, Phys. Rev. Lett. 73 (1994) 2103–2106

    CAS  Google Scholar 

  92. J. Bardeen, L. N. Cooper, J. R. Schrieffer: Theory of superconductivity, Phys. Rev. 108 (1957) 1175–1204

    CAS  Google Scholar 

  93. A. Yazdani, B. A. Jones, C. P. Lutz, M. F. Crommie, D. M. Eigler: Probing the local effects of magnetic impurities on superconductivity, Science 275 (1997) 1767–1770

    CAS  Google Scholar 

  94. S. H. Tessmer, M. B. Tarlie, D. J. van Harlingen, D. L. Maslov, P. M. Goldbart: Probing the superconducting proximity effect in NbSe2 by scanning tunneling micrsocopy, Phys. Rev. Lett 77 (1996) 924–927

    Google Scholar 

  95. K. Inoue, H. Takayanagi: Local tunneling spectroscopy of Nb/InAs/Nb superconducting proximity system with a scanning tunneling microscope, Phys. Rev. B 43 (1991) 6214–6215

    CAS  Google Scholar 

  96. H. F. Hess, R. B. Robinson, R. C. Dynes, J. M. Valles, J. V. Waszczak: Scanning-tunneling-microscope observation of the Abrikosov flux lattice and the density of states near and inside a fluxoid, Phys. Rev. Lett. 62 (1989) 214–217

    CAS  Google Scholar 

  97. H. F. Hess, R. B. Robinson, J. V. Waszczak: Vortex-core structure observed with a scanning tunneling microscope, Phys. Rev. Lett. 64 (1990) 2711–2714

    Google Scholar 

  98. N. Hayashi, M. Ichioka, K. Machida: Star-shaped local density of states around vortices in a type-II superconductor, Phys. Rev. Lett. 77 (1996) 4074–4077

    CAS  Google Scholar 

  99. H. Sakata, M. Oosawa, K. Matsuba, N. Nishida: Imaging of vortex lattice transition in YNi2B2C by scanning tunneling spectroscopy, Phys. Rev. Lett. 84 (2000) 1583–1586

    CAS  Google Scholar 

  100. S. Behler, S. H. Pan, P. Jess, A. Baratoff, H.-J. Güntherodt, F. Levy, G. Wirth, J. Wiesner: Vortex pinning in ion-irrediated NbSe2 studied by scanning tunneling microscopy, Phys. Rev. Lett. 72 (1994) 1750–1753

    CAS  Google Scholar 

  101. R. Berthe, U. Hartmann, C. Heiden: Influence of a transport current on the Abrikosov flux lattice observed with a low-temperature scanning tunneling microscope, Ultramicroscopy 42–44 (1992) 696–698

    Google Scholar 

  102. A. Polkovnikov, S. Sachdev, M. Vojta: Impurity in a d-wave superconductor: Kondo effect and STM spectra, Phys. Rev. Lett. 86 (2001) 296–299

    CAS  Google Scholar 

  103. E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, S. Uchida, J. C. Davis: Interplay of magnetism and high-T c superconductivity at individual Ni impurity atoms in Bi2Sr2CaCu2O8+δ, Nature 411 (2001) 920–924

    CAS  Google Scholar 

  104. K. M. Lang, V. Madhavan, J. E. Hoffman, E. W. Hudson, H. Eisaki, S. Uchida, J. C. Davis: Imaging the granular structure of high-Tc superconductivity in underdoped Bi2Sr2CaCu2O8+δ, Nature 415 (2002) 412–416

    CAS  Google Scholar 

  105. I. Maggio-Aprile, C. Renner, E. Erb, E. Walker, Ø. Fischer: Direct vortex lattice imaging and tunneling spectroscopy of flux lines on YBa2Cu3O7-δ, Phys. Rev. Lett. 75 (1995) 2754–2757

    CAS  Google Scholar 

  106. C. Renner, B. Revaz, K. Kadowaki, I. Maggio-Aprile, Ø. Fischer: Observation of the low temperature pseudogap in the vortex cores of Bi2Sr2CaCu2O8+δ, Phys. Rev. Lett. 80 (1998) 3606–3609

    CAS  Google Scholar 

  107. S. H. Pan, E. W. Hudson, A. K. Gupta, K. W. Ng, H. Eisaki, S. Uchida, J. C. Davis: STM studies of the electronic structure of vortex cores in Bi2Sr2CaCu2O8+δ, Phys. Rev. Lett. 85 (2000) 1536–1539

    CAS  Google Scholar 

  108. D. P. Arovas, A. J. Berlinsky, C. Kallin, S. C. Zhang: Superconducting vortex with antiferromagnetic core, Phys. Rev. Lett. 79 (1997) 2871–2874

    CAS  Google Scholar 

  109. J. E. Hoffmann, E. W. Hudson, K. M. Lang, V. Madhavan, H. Eisaki, S. Uchida, J. C. Davis: A four unit cell periodic pattern of quasi-particle states surrounding vortex cores in Bi2Sr2CaCu2O8+δ, Science 295 (2002) 466–469

    Google Scholar 

  110. M. Fäth, S. Freisem, A. A. Menovsky, Y. Tomioka, J. Aaarts, J. A. Mydosh: Spatially inhomogeneous metal–insulator transition in doped manganites, Science 285 (1999) 1540–1542

    Google Scholar 

  111. C. Renner, G. Aeppli, B. G. Kim, Y. A. Soh, S. W. Cheong: Atomic-scale images of charge ordering in a mixed-valence manganite, Nature 416 (2000) 518–521

    Google Scholar 

  112. M. Bode, M. Getzlaff, R. Wiesendanger: Spin-polarized vacuum tunneling into the exchange-split surface state of Gd(0001), Phys. Rev. Lett. 81 (1998) 4256–4259

    CAS  Google Scholar 

  113. A. Kubetzka, M. Bode, O. Pietzsch, R. Wiesendanger: Spin-polarized scanning tunneling microscopy with antiferromagnetic probe tips, Phys. Rev. Lett. 88 (2002) 057201, 1–4

    Google Scholar 

  114. O. Pietzsch, A. Kubetzka, M. Bode, R. Wiesendanger: Observation of magnetic hysteresis at the nanometer scale by spin-polarized scanning tunneling spectroscopy, Science 292 (2001) 2053–2056

    CAS  Google Scholar 

  115. S. Heinze, M. Bode, A. Kubetzka, O. Pietzsch, X. Xie, S. Blügel, R. Wiesendanger: Real-space imaging of two-dimensional antiferromagnetism on the atomic scale, Science 288 (2000) 1805–1808

    CAS  Google Scholar 

  116. A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern, R. Wiesendanger: Internal spin-structure of magnetic vortex cores observed by spin-polarized scanning tunneling microscopy, Science 298 (2002) 577–580

    CAS  Google Scholar 

  117. M. D. Kirk, T. R. Albrecht, C. F. Quate: Low-temperature atomic force microscopy, Rev. Sci. Instrum. 59 (1988) 833–835

    Google Scholar 

  118. D. Pelekhov, J. Becker, J. G. Nunes: Atomic force microscope for operation in high magnetic fields at milliKelvin temperatures, Rev. Sci. Instrum. 70 (1999) 114–120

    CAS  Google Scholar 

  119. J. Mou, Y. Jie, Z. Shao: An optical detection low temperature atomic force microscope at ambient pressure for biological research, Rev. Sci. Instrum. 64 (1993) 1483–1488

    CAS  Google Scholar 

  120. H. J. Mamin, D. Rugar: Sub-attoNewton force detection at milliKelvin temperatures, Appl. Phys. Lett. 79 (2001) 3358–3360

    CAS  Google Scholar 

  121. A. Schwarz, W. Allers, U. D. Schwarz, R. Wiesendanger: Dynamic mode scanning force microscopy of n-InAs(110)-(1×1) at low temperatures, Phys. Rev. B 61 (2000) 2837–2845

    CAS  Google Scholar 

  122. W. Allers, S. Langkat, R. Wiesendanger: Dynamic low-temperature scanning force microscopy on nickel oxide(001), Appl. Phys. A 72 (2001) S27–S30

    Google Scholar 

  123. F. J. Giessibl: Atomic resolution of the silicon(111)-(7×7) surface by atomic force microscopy, Science 267 (1995) 68–71

    CAS  Google Scholar 

  124. M. A. Lantz, H. J. Hug, P. J. A. van Schendel, R. Hoffmann, S. Martin, A. Baratoff, A. Abdurixit, H.-J. Güntherodt: Low temperature scanning force microscopy of the Si(111)-(7×7) surface, Phys. Rev. Lett. 84 (2000) 2642–2465

    CAS  Google Scholar 

  125. K. Suzuki, H. Iwatsuki, S. Kitamura, C. B. Mooney: Development of low temperature ultrahigh vacuum force microscope/scanning tunneling microscope, Jpn. J. Appl. Phys. 39 (2000) 3750–3752

    CAS  Google Scholar 

  126. N. Suehira, Y. Sugawara, S. Morita: Artifact and fact of Si(111)-(7×7) surface images observed with a low temperature noncontact atomic force microscope (LT-NC-AFM), Jpn. J. Appl. Phys. 40 (2001) 292–294

    Google Scholar 

  127. R. Peréz, M. C. Payne, I. Štich, K. Terakura: Role of covalent tip-surface interactions in noncontact atomic force microscopy on reactive surfaces, Phys. Rev. Lett. 78 (1997) 678–681

    Google Scholar 

  128. S. H. Ke, T. Uda, R. Pérez, I. Štich, K. Terakura: First principles investigation of tip-surface interaction on GaAs(110): Implication for atomic force and tunneling microscopies, Phys. Rev. B 60 (1999) 11631–11638

    CAS  Google Scholar 

  129. J. Tobik, I. Štich, R. Peréz, K. Terakura: Simulation of tip-surface interactions in atomic force microscopy of an InP(110) surface with a Si tip, Phys. Rev. B 60 (1999) 11639–11644

    CAS  Google Scholar 

  130. A. Schwarz, W. Allers, U. D. Schwarz, R. Wiesendanger: Simultaneous imaging of the In and As sublattice on InAs(110)-(1×1) with dynamic scanning force microscopy, Appl. Surf. Sci. 140 (1999) 293–297

    CAS  Google Scholar 

  131. G. Schwarz, A. Kley, J. Neugebauer, M. Scheffler: Electronic and structural properties of vacancies on and below the GaP(110) surface, Phys. Rev. B 58 (1998) 1392–1499

    CAS  Google Scholar 

  132. H. Hölscher, W. Allers, U. D. Schwarz, A. Schwarz, R. Wiesendanger: Interpretation of `true atomic resolution' images of graphite (0001) in noncontact atomic force microscopy, Phys. Rev. B 62 (2000) 6967–6970

    Google Scholar 

  133. H. Hölscher, W. Allers, U. D. Schwarz, A. Schwarz, R. Wiesendanger: Simulation of NC-AFM images of xenon(111), Appl. Phys. A 72 (2001) S35–S38

    Google Scholar 

  134. H. Hölscher, W. Allers, U. D. Schwarz, A. Schwarz, R. Wiesendanger: Determination of tip-sample interaction potentials by dynamic force spectroscopy, Phys. Rev. Lett. 83 (1999) 4780–4783

    Google Scholar 

  135. H. Hölscher, U. D. Schwarz, R. Wiesendanger: Calculation of the frequency shift in dynamic force microscopy, Appl. Surf. Sci. 140 (1999) 344–351

    Google Scholar 

  136. B. Gotsman, B. Anczykowski, C. Seidel, H. Fuchs: Determination of tip-sample interaction forces from measured dynamic force spectroscopy curves, Appl. Surf. Sci. 140 (1999) 314–319

    Google Scholar 

  137. U. Dürig: Extracting interaction forces and complementary observables in dynamic probe microscopy, Appl. Phys. Lett. 76 (2000) 1203–1205

    Google Scholar 

  138. M. A. Lantz, H. J. Hug, R. Hoffmann, P. J. A. van Schendel, P. Kappenberger, S. Martin, A. Baratoff, H.-J. Güntherodt: Quantitative measurement of short-range chemical bonding forces, Science 291 (2001) 2580–2583

    CAS  Google Scholar 

  139. S. M. Langkat, H. Hölscher, A. Schwarz, R. Wiesendanger: Determination of site specific forces between an iron coated tip and the NiO(001) surface by force field spectroscopy, Surf. Sci. (2002) in press

    Google Scholar 

  140. H. Hölscher, S. M. Langkat, A. Schwarz, R. Wiesendanger: Measurement of three-dimensional force fields with atomic resolution using dynamic force spectroscopy, Appl. Phys. Lett. (2002) in press

    Google Scholar 

  141. B. C. Stipe, H. J. Mamin, T. D. Stowe, T. W. Kenny, D. Rugar: Noncontact friction and force fluctuations between closely spaced bodies, Phys. Rev. Lett. 87 (2001)

    Google Scholar 

  142. C. Sommerhalter, T. W. Matthes, T. Glatzel, A. Jäger-Waldau, M. C. Lux-Steiner: High-sensitivity quantitative Kelvin probe microscopy by noncontact ultra-high-vacuum atomic force microscopy, Appl. Phys. Lett. 75 (1999) 286–288

    CAS  Google Scholar 

  143. A. Schwarz, W. Allers, U. D. Schwarz, R. Wiesendanger: Dynamic mode scanning force microscopy of n-InAs(110)-(1×1) at low temperatures, Phys. Rev. B 62 (2000) 13617–13622

    CAS  Google Scholar 

  144. K. L. McCormick, M. T. Woodside, M. Huang, M. Wu, P. L. McEuen, C. Duruoz, J. S. Harris: Scanned potential microscopy of edge and bulk currents in the quantum Hall regime, Phys. Rev. B 59 (1999) 4656–4657

    Google Scholar 

  145. P. Weitz, E. Ahlswede, J. Weis, K. v. Klitzing, K. Eberl: Hall-potential investigations under quantum Hall conditions using scanning force microscopy, Physica E 6 (2000) 247–250

    CAS  Google Scholar 

  146. E. Ahlswede, P. Weitz, J. Weis, K. v. Klitzing, K. Eberl: Hall potential profiles in the quantum Hall regime measured by a scanning force microscope, Physica B 298 (2001) 562–566

    CAS  Google Scholar 

  147. M. T. Woodside, C. Vale, P. L. McEuen, C. Kadow, K. D. Maranowski, A. C. Gossard: Imaging interedge-state scattering centers in the quantum Hall regime, Phys. Rev. B 64 (2001) 041310-1–041310-4

    Google Scholar 

  148. K. Moloni, B. M. Moskowitz, E. D. Dahlberg: Domain structures in single crystal magnetite below the Verwey transition as observed with a low-temperature magnetic force microscope, Geophys. Res. Lett. 23 (1996) 2851–2854

    CAS  Google Scholar 

  149. Q. Lu, C. C. Chen, A. de Lozanne: Observation of magnetic domain behavior in colossal magnetoresistive materials with a magnetic force microscope, Science 276 (1997) 2006–2008

    CAS  Google Scholar 

  150. G. Xiao, J. H. Ross, A. Parasiris, K. D. D. Rathnayaka, D. G. Naugle: Low-temperature MFM studies of CMR manganites, Physica C 341–348 (2000) 769–770

    Google Scholar 

  151. M. Liebmann, U. Kaiser, A. Schwarz, R. Wiesendanger, U. H. Pi, T. W. Noh, Z. G. Khim, D. W. Kim: Domain nucleation and growth of La07Ca0.3MnO3-δ/LaAlO3 films studied by low temperature MFM, J. Appl. Phys. 93 (2003) 8319–8321

    CAS  Google Scholar 

  152. A. Moser, H. J. Hug, I. Parashikov, B. Stiefel, O. Fritz, H. Thomas, A. Baratoff, H. J. Güntherodt, P. Chaudhari: Observation of single vortices condensed into a vortex-glass phase by magnetic force microscopy, Phys. Rev. Lett. 74 (1995) 1847–1850

    CAS  Google Scholar 

  153. C. W. Yuan, Z. Zheng, A. L. de Lozanne, M. Tortonese, D. A. Rudman, J. N. Eckstein: Vortex images in thin films of YBa2Cu3O7-x and Bi2Sr2Ca1Cu2O8-x obtained by low-temperature magnetic force microscopy, J. Vac. Sci. Technol. B 14 (1996) 1210–1213

    CAS  Google Scholar 

  154. A. Volodin, K. Temst, C. van Haesendonck, Y. Bruynseraede: Observation of the Abrikosov vortex lattice in NbSe2 with magnetic force microscopy, Appl. Phys. Lett. 73 (1998) 1134–1136

    CAS  Google Scholar 

  155. A. Moser, H. J. Hug, B. Stiefel, H. J. Güntherodt: Low temperature magnetic force microscopy on YBa2Cu3O7-δ thin films, J. Magn. Magn. Mater. 190 (1998) 114–123

    CAS  Google Scholar 

  156. A. Volodin, K. Temst, C. van Haesendonck, Y. Bruynseraede: Imaging of vortices in conventional superconductors by magnetic force microscopy images, Physica C 332 (2000) 156–159

    CAS  Google Scholar 

  157. M. Roseman, P. Grütter: Estimating the magnetic penetration depth using constant-height magnetic force microscopy images of vortices, New J. Phys. 3 (2001) 24.1–24.8

    Google Scholar 

  158. A. Volodin, K. Temst, C. van Haesendonck, Y. Bruynseraede, M. I. Montero, I. K. Schuller: Magnetic force microscopy of vortices in thin niobium films: Correlation between the vortex distribution and the thickness-dependent film morphology, Europhys. Lett. 58 (2002) 582–588

    CAS  Google Scholar 

  159. U. H. Pi, T. W. Noh, Z. G. Khim, U. Kaiser, M. Liebmann, A. Schwarz, R. Wiesendanger: Vortex dynamics in Bi2Sr2CaCu2O8 single crystal with low density columnar defects studied by magnetic force microscopy, J. Low Temp. Phys. 131 (2003) 993–1002

    CAS  Google Scholar 

  160. M. Roseman, P. Grütter, A. Badia, V. Metlushko: Flux lattice imaging of a patterned niobium thin film, J. Appl. Phys. 89 (2001) 6787–6789

    CAS  Google Scholar 

  161. K. Nakamura, H. Hasegawa, T. Oguchi, K. Sueoka, K. Hayakawa, K. Mukasa: First-principles calculation of the exchange interaction and the exchange force between magnetic Fe films, Phys. Rev. B 56 (1997) 3218–3221

    CAS  Google Scholar 

  162. A. S. Foster, A. L. Shluger: Spin-contrast in non-contact AFM on oxide surfaces: Theoretical modeling of NiO(001) surface, Surf. Sci. 490 (2001) 211–219

    CAS  Google Scholar 

  163. H. Hoisoi, M. Kimura, K. Hayakawa, K. Sueoka, K. Mukasa: Non-contact atomic force microscopy of an antiferromagnetic NiO(100) surface using a ferromagnetic tip, Appl. Phys. A 72 (2001) S23–S26

    Google Scholar 

  164. J. A. Sidles, J. L. Garbini, G. P. Drobny: The theory of oscillator-coupled magnetic resonance with potential applications to molecular imaging, Rev. Sci. Instrum. 63 (1992) 3881–3899

    CAS  Google Scholar 

  165. J. A. Sidles, J. L. Garbini, K. J. Bruland, D. Rugar, O. Züger, S. Hoen, C. S. Yannoni: Magnetic resonance force microscopy, Rev. Mod. Phys. 67 (1995) 249–265

    CAS  Google Scholar 

  166. D. Rugar, C. S. Yannoni, J. A. Sidles: Mechanical detection of magnetic resonance, Nature 360 (1992) 563–566

    Google Scholar 

  167. K. Wago, D. Botkin, O. Züger, R. Kendrick, C. S. Yannoni, D. Rugar: Force-detected electron spin resonance: Adiabatic inversion, nutation and spin echo, Phys. Rev. B 57 (1998) 1108–1114

    CAS  Google Scholar 

  168. D. Rugar, O. Züger, S. Hoen, C. S. Yannoni, H. M. Vieth, R. D. Kendrick: Force detection of nuclear magnetic resonance, Science 264 (1994) 1560–1563

    CAS  Google Scholar 

  169. Z. Zhang, P. C. Hammel, P. E. Wigen: Observation of ferromagnetic resonance in a microscopic sample using magnetic resonance force microscopy, Appl. Phys. Lett. 68 (1996) 2005–2007

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Morgenstern, M., Schwarz, A., Schwarz, U.D. (2004). Low Temperature Scanning Probe Microscopy. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29838-X_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-29838-X_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-01218-4

  • Online ISBN: 978-3-540-29838-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics