Skip to main content

Psychotropic and neurotropic activity1

  • Reference work entry
Drug Discovery and Evaluation

1 E.1 Effects on behavior and muscle coordination

1.1 E.1.1 Spontaneous behavior

1.1.1 E.1.1.1 General considerations

The effects of drugs on the central and peripheral nervous systems can be easily recognized in normal animals. This does not necessarily mean that these effects can be used in therapy. Observing the global effects of drugs during LD50-determinations, pharmacologists can detect psychotropic activity. Only, if these effects occur also in doses considerably below the LD50, are further evaluations justified. This basic experience resulted in the development of a variety of observational tests and activity measurements.

1.1.2 E.1.1.2 Observational assessment

1.1.2.1 PURPOSE AND RATIONALE

A systematic, quantitative procedure assessing the behavioral state of mice for the evaluation of drugs has been described by Irwin (1964, 1968). The method is applied in the beginning of pharmacological screening to detect psychotropic activities. It allows to identify and differentiate the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

References

  • Crawley JN (2000) Behavioral phenotyping of mutant mice. New technologies for life sciences: a trends guide 1:18–22

    Google Scholar 

  • Crawley JN, Paylor R (1997) A proposed test battery and constellations of specific behavioral paradigms to investigate the behavioral phenotypes of transgenic and knockout mice. Hormones Behav 31:197–211

    CAS  Google Scholar 

  • Haggerty GC (1991) Strategy for and experience with neurotoxicity testing of new pharmaceuticals. J Am Coll Toxicol 10:677–687

    Google Scholar 

  • Irwin S (1964) Drug screening and evaluation of new compounds in animals. In: Nodin JH, Siegler PE (eds) Animal and clinical techniques in drug evaluation. Year Book Medical Publishers, Chicago, 36–54

    Google Scholar 

  • Irwin S (1968) Comprehensive observational assessment: I a. A systematic, quantitative procedure for assessing the behavioural and physiologic state of the mouse. Psychopharmacologia (Berl.) 13:222–257

    PubMed  CAS  Google Scholar 

  • Mattsson JL, Spencer PJ, Albee RR (1996) A performance standard for clinical and functional observation battery examination of rats. J Am Coll Toxicol 15:239–254

    Google Scholar 

  • Murray AM, Waddington JL (1990) The interaction of clozapine with dopamine D1 versus dopamine D2 receptor-mediated function: behavioural indices. Eur J Pharmacol 186:79–86

    PubMed  CAS  Google Scholar 

  • Rambert FA (2000) Pharmacologie de sécurité: système nerveux central. Thérapie 55:55–61

    PubMed  CAS  Google Scholar 

  • Silverman P (1978) Drug screening and brain pharmacology. In: Animal behaviour in the laboratory. Chapman and Hall, London, pp 58–78

    Google Scholar 

  • United States Environmental Protection Agency (USEPA) (1991) Pesticide Assessment Guidelines. Subdivision F, Hazard Evaluation: Human and Domestic Animals. Addendum 10, Neurotoxicity Series 81, 82 and 83, PB 91-154617, Washington, DC: United States Environmental Protection Agency

    Google Scholar 

References

  • ICH Harmonized Tripartite Guideline (M3) (1997) “Timing of Non-clinical Safety Studies for the Conduct of Human Clinical Trial for Pharmaceuticals”

    Google Scholar 

  • Rambert FA (2000) Pharmacologie de sécuritè: système nerveux central. Thérapie 55:55–61

    PubMed  CAS  Google Scholar 

  • The European Agency for the Evaluation of Medicinal Product. Human Medicines Evaluation Unit. (2000) ICH Topic S7. Safety Pharmacology Studies for Human Pharmaceuticals. Note for Guidance on Safety Pharmacology Studies in Human Pharmaceuticals

    Google Scholar 

References

  • Barnett SH (1963) “The Rat, A Study in Behavior.” Chicago: Aldine Publishing Co., pp 31–32

    Google Scholar 

  • Geyer MA (1990) Approaches to the characterization of drug effects on locomotor activity in rodents. Modern Methods in Pharmacology, Vol. 6, Testing and Evaluation of Drugs of Abuse, pp 81–99, Wiley-Liss, Inc

    Google Scholar 

  • Kinnard WJ, Watzman N (1966) Techniques utilized in the evaluation of psychotropic drugs on animal activity. J Pharm Sci 55:995–1012

    Google Scholar 

  • Silverman P (1978) Motor activity. In: Animal behaviour in the laboratory. Chapman and Hall, London, pp 79–92

    Google Scholar 

  • Turner RA (1965) Depressants of the central nervous system. In: Turner RA (ed) Screening Methods in Pharmacology, Vol. 1, Academic Press, New York and London, pp 69–86

    Google Scholar 

References

  • Koek W, Woods JH, Ornstein P (1987) A simple and rapid method for assessing similarities among directly observable behavioural effects of drugs: PCP-like effects of 2-amino-5-phosphonovalerate in rats. Psychopharmacology 91:297–304

    PubMed  CAS  Google Scholar 

  • Meyer HJ (1962) Pharmakologie der wirksamen Prinzipien des Kawa-Rhizoms (Piper methysticum Frost) Arch Int Pharmacodyn 138:505–536

    PubMed  CAS  Google Scholar 

  • Schaumann W, Stoepel K (1961) Zur quantitativen Beurteilung von zentraler Erregung und Dämpfung im Tierversuch. Naunyn-Schmiedeberg's Arch exp Path Pharmakol 241:383–392

    CAS  Google Scholar 

  • Ther L (1953) Über eine einfache Methode zur Bestimmung von Weck-und Beruhigungsmitteln im Tierversuch. Dtsch Apoth Ztg 93:292–294

    Google Scholar 

  • Vogel G, Ther L (1963) Zur Wirkung der optischen Isomeren von Aethyltryptamin-acetat auf die Lagekatalepsie des Huhnes und auf die Motilität der Maus. Arzneim Forsch/Drug Res 13:779–783

    CAS  Google Scholar 

References

  • Barros HMT, Tannhauser MAL, Tannhauser SL, Tannhauser M (1991) Enhanced detection of hyperactivity after drug withdrawal with a simple modification of the open-field apparatus. J Pharmacol Meth 26:269–275

    CAS  Google Scholar 

  • Becker H, Randall CL (1989) Effects of prenatal ethanol exposure in C57BL mice on locomotor activity and passive avoidance behavior. Psychopharmacol 97:40–44

    CAS  Google Scholar 

  • Carlezon WA, Cornfeldt ML, Szewczak MR, Fielding S, Dunn RW (1991) Reversal of both QNX-induced locomotion and habituation decrement is indicative of M1 agonist properties. Drug Dev Res 23:333–339

    CAS  Google Scholar 

  • Choi OH, Shamin MT, Padgett WL, Daly JW (1988) Caffeine and theophylline analogues: correlation of behavioral effects with activity as adenosine receptor antagonists and as phosphodiesterase inhibitors. Life Sci 43:387–398

    PubMed  CAS  Google Scholar 

  • Crabbe JC, Young ER, Deutsch CM, Tam BR, Kosobud A (1987) Mice genetically selected for differences in open-field activity after ethanol. Pharmacol Biochem Behav 27:577–581

    PubMed  CAS  Google Scholar 

  • Crabbe JC, Deutsch CM, Tam BR, Young ER (1988) Environmental variables differentially affect ethanol-stimulated activity in selectively bred mouse lines. Psychopharmacology 95:103–108

    PubMed  CAS  Google Scholar 

  • Crunelli V, Bernasconi S (1979) A new device to measure different size movements: Studies on d-amphetamine-induced locomotion and stereotypy. J Pharmacol Meth 2:43–50

    CAS  Google Scholar 

  • Dauge V, Corringer PJ, Roques BP (1995) CCKA, but not CCKB, antagonists suppress the hyperlocomotion induced by endogenous enkephalins, protected from enzymatic degradation by systemic RB 101. Pharmacol Biochem Behav 50:133–139

    PubMed  CAS  Google Scholar 

  • Dews PB (1953) The measurement of the influence of drugs on voluntary activity in mice. Br J Pharmacol 8:46–48

    CAS  Google Scholar 

  • Ericson E, Samuelsson J, Ahlenius S (1991) Photocell measurements of rat motor activity. J Pharmacol Meth 25:111–122

    CAS  Google Scholar 

  • Fontenay M, Le Cornec J, Zaczinska M, Debarele M, Simon P, Boissier J (1970) De trois tests de comportement du rat pour l'etude des medicaments psychotropes. J Pharmacol (Paris) 1:243–254

    Google Scholar 

  • Georgiev V, Getova D, Opitz M (1991) Mechanism of the angiotensin II effects on exploratory behavior of rats in open field. III. Modulatory role of GABA. Meth Find Exp Clin Pharmacol 13:5–9

    CAS  Google Scholar 

  • Ghelardini C, Galeotti N, Gualtieri F, Marchese V, Bellucci C, Bartolini A (1998) Antinociceptive and antiamnesic properties of the presynaptic cholinergic amplifier PG-9. J Pharmacol Exp Ther 284:806–816

    PubMed  CAS  Google Scholar 

  • Gillies DM, Mylecharane EJ, Jackson DM (1996) Effects of 5-HT3 receptor-selective agents on locomotor activity in rats following injection into the nucleus accumbens and the ventral tegmental area. Eur J Pharmacol 303:1–12

    PubMed  CAS  Google Scholar 

  • Honma S, Honma KI, Hiroshige T (1991) Methamphetamine effects on rat circadian clock depend on actograph. Physiol Behav 49:787–795

    PubMed  CAS  Google Scholar 

  • Irifune M, Sato T, Nishikawa T, Masuyama T, Nomoto M, Fukada T, Kawahara M (1997) Hyperlocomotion during recovery from isoflurane anesthesia is associated with increased dopamine turnover in the nucleus accumbens and striatum in mice. Anesthesiology 86:464–475

    PubMed  CAS  Google Scholar 

  • Ivens I (1990) Neurotoxicity testing during long-term studies. Neurotoxicol Teratol 12:637–641

    PubMed  CAS  Google Scholar 

  • Kádár T, Telegdy G, Schally AV (1992) Behavioral effect of centrally administered LH-RH agonist in rats. Physiol Behav 51:601–605

    PubMed  Google Scholar 

  • Kauppila T, Tanila H, Carlson S, Taira T (1991) Effects of atipamezole, a novel α2-adrenoreceptor antagonist, in open-field, plus-maze, two compartment exploratory, and forced swimming tests in rats. Eur J Pharmacol 205:177–182

    PubMed  CAS  Google Scholar 

  • Kulig BM (1989) A neurofunctional test battery for evaluating the effects of long-term exposure to chemicals. J Am Coll Toxicol 8:71–83

    CAS  Google Scholar 

  • Laviola G, Alleva E (1990) Ontogeny of muscimol effects on locomotor activity, habituation, and pain reactivity in mice. Psychopharmacol 102:41–48

    CAS  Google Scholar 

  • Liu HJ, Sato K, Shih HC, Shibuya T, Kawamoto H, Kitagawa H (1985) Pharmacological studies of the central action of zopiclone: effects on locomotor activity and brain monoamines in rats. Int J Clin Pharmacol Ther Toxicol 23:121–128

    PubMed  CAS  Google Scholar 

  • Magnus-Ellenbroek B, Havemann-Reinicke U (1993) Morphine-induced hyperactivity in rats — A rebound effect? Naunyn-Schmiedeberg's Arch Pharmacol 635–642

    Google Scholar 

  • Masuo Y, Matsumoto Y, Morita S, Noguchi J (1997) A novel method for counting spontaneous motor activity in rats. Brain Res Protoc 1:321–326

    CAS  Google Scholar 

  • Nakatsu K, Owen JA (1980) A microprocessor-based animal monitoring system. J Pharmacol Meth 3:71–82

    CAS  Google Scholar 

  • Nieminen SA, Lecklin A, Heikkinen O, Ylitalo P (1990) Acute behavioral effects of the organophosphates Sarin and Soman in rats. Pharmacol Toxicol 67:36–40

    PubMed  CAS  Google Scholar 

  • Nikodijevic O, Sarges R, Daly JW, Jacobson KA (1991) Behavioral effects of A1-and A2-selective adenosine agonists and antagonists: evidence for synergism and antagonism. J Pharm Exp Ther 259:286–294

    CAS  Google Scholar 

  • Okada K, Oishi R, Saeki K (1990) Inhibition by antimanic drugs of hyperactivity induced by methamphetamine-chlordiaze poxide mixture in mice. Pharmacol Biochem Behav 35:897–901

    PubMed  CAS  Google Scholar 

  • Petkov VD, Belcheva S, Konstatinova E (1995) Anxiolytic effects of dotarizine, a possible antimigraine drug. Meth Find Exp Clin Pharmacol 17:659–668

    CAS  Google Scholar 

  • Rex A, Stephens DN, Fink H (1996) 'Anxiolytic’ action of diazepam and abecarnil in a modified open field test. Pharmacol Biochem Behav 53:1005–11011

    PubMed  CAS  Google Scholar 

  • Rex A, Voigt JP, Voits M, Fink H (1998) Pharmacological evaluation of a modified open-field test sensitive to anxiolytic drugs. Pharmacol Biochem Behav 59:677–683

    PubMed  CAS  Google Scholar 

  • Rosenthal MJ, Morley JE (1989) Corticotropin releasing factor (CRF) and age-related differences in behavior of mice. Neurobiol Aging 10:167–171

    PubMed  CAS  Google Scholar 

  • Saelens JK, Kovacsics GB, Allen MP (1986) The influence of the adrenergic system on the 24-hour locomotor activity pattern in mice. Arch Int Pharmacodyn 173:411–416

    Google Scholar 

  • Silverman P (1978) Exploration. In: Animal behaviour in the laboratory. Chapman and Hall, London, pp 230–253

    Google Scholar 

  • Steiner H, Fuchs S, Accili D (1997) D3 dopamine receptor-deficient mouse: Evidence of reduced anxiety. Physiol Behav 63:137–141

    PubMed  CAS  Google Scholar 

  • Strömberg C (1988) Interactions of antidepressants and ethanol on spontaneous locomotor activity and rotarod performance in NMRI and C57BL/6 mice. J Psychopharmacol 2:61–66

    PubMed  Google Scholar 

  • Sugita R, Sawa Y, Nomura S, Zorn SH, Yamauchi T (1989) Effects of reserpine on dopamine metabolite in the nucleus accumbens and locomotor activity in freely moving rats. Neurochem Res 14:267–270

    PubMed  CAS  Google Scholar 

  • Surmann A, Havemann-Reinicke U (1995) Injection of apomorphine — A test to predict individual different dopaminergic sensitivity? J Neural Transm Suppl 45:143–155

    PubMed  CAS  Google Scholar 

  • Tanger HJ, Vanwersch RAP, Wolthuis OL (1978) Automated TV-based system for open field studies: Effects of methamphetamine. Pharmacol Biochem Behav 9:557–557

    Google Scholar 

  • VanHaaren F, Meyer ME (1991) Sex differences in locomotor activity after acute and chronic cocaine administration. Pharmacol Biochem Behav 39:923–927

    CAS  Google Scholar 

  • Vorhees CV, Acuff-Smith KD, Mink DR, Butcher RE (1992) A method of measuring locomotor behavior in rodents: Contrast-sensitive computer-controlled video tracking activity assessment in rats. Neurotoxicol Teratol 14:43–49

    PubMed  CAS  Google Scholar 

  • Wolffgramm J, Lechner J, Coper H (1988) Interaction or two barbiturates and an antihistamine on body temperature and motor performance in mice. Arzneim Forsch/Drug Res 38:885–891

    CAS  Google Scholar 

References

  • Boissier JR, Simon P (1964) Dissociation de deux composantes dans le comportement d'investigation de la souris. Arch Int Pharmacodyn 147:372–388

    CAS  Google Scholar 

  • Boissier JR, Simon P, Wolff J-ML (1964) L'utilisation d'une reaction particuliere de la souris (Methode de la planche atrous) pour l'etude des medicaments psychotropes. Therapie 19:571–586

    PubMed  CAS  Google Scholar 

  • Clark G, Koester AG, Pearson DW (1971) Exploratory behavior in chronic disulfoton poisoning in mice. Psychopharmacologia (Berl.) 20:169–171

    CAS  Google Scholar 

References

  • Adams LM, Geyer MA (1982) LSD-induced alterations of locomotor patterns and exploration in rats. Psychopharmacology 77:179–185

    PubMed  CAS  Google Scholar 

  • Barbier P, Breteaudeau J, Autret E, Bertrand P, Foussard-Blampin O, Breteau M (1991) Effects of prenatal exposure to diazepam on exploration behavior and learning retention in mice. Dev Pharmacol Ther 17:35–43

    PubMed  CAS  Google Scholar 

  • Geyer MA (1982) Variational and probabilistic aspects of exploratory behavior in space: Four stimulant styles. Psychopharmacology Bulletin 18:48–51

    CAS  Google Scholar 

  • Geyer MA, Rosso PV, Masten VL (1986) Multivariate assessment of locomotor behavior: Pharmacological and behavioral analyses. Pharmacol. Biochem. Behav. 25:277–288

    PubMed  CAS  Google Scholar 

  • Krsiak M, Steinberg H, Stoleman IP (1970) Uses and limitations of photocell activity cages for assessing effects of drugs. Psychopharmacologia (Berl.) 17:258–274

    CAS  Google Scholar 

  • Ljungberg T, Ungerstedt U (1977) Different behavioural patters induced by apomorphine: evidence that the method of administration determines the behavioural response to the drug. Eur J Pharmacol 46:41–50

    PubMed  CAS  Google Scholar 

  • Matsumoto K, Bing C, Sasaki K, Watanabe H (1990) Methylamphetamine-and apomorphine-induced changes in spontaneous motor activity using a new system to detect and analyze motor activity in mice. J Pharmacol Meth 24:111–119

    CAS  Google Scholar 

  • Schwarting RKW, Goldenberg R, Steiner H, Fornaguera J, Huston HP (1993) A video image analyzing system for open-field behavior in the rat focusing on behavioral asymmetries. J Neurosci Meth 49:199–210

    CAS  Google Scholar 

  • Weischer ML (1976) Eine einfache Versuchsanordnung zur quantitativen Beurteilung von Motilitaet und Neugierverhalten bei Maeusen. Psychopharmacology 50:275–279

    PubMed  CAS  Google Scholar 

  • Wolffgramm J, Lechner J, Coper H (1988) Interaction of two barbiturates and an antihistamine on body temperature and motor performance of mice. Arzneim Forsch/Drug Res, 38:885–891

    CAS  Google Scholar 

References

  • de Simoni MG, de Luigi A, Imeri L, Algerin S (1990) Miniaturized optoelectronic system for telemetry of in vivo voltammetric signals. J Neurosci Meth 33:233–240

    Google Scholar 

  • Dimpfel W, Spüler M, Nickel B (1986) Radioelectroencephalography (Tele-Stereo-EEG) in the rat as a pharmacological model to differentiate the central action of flupirtine from that of opiates, diazepam and phenobarbital. Neuropsychobiol 16:163–168

    CAS  Google Scholar 

  • Dimpfel W, Spüler M, Nichols DE (1989) Hallucinogenic and stimulatory amphetamine derivatives: fingerprinting DOM, DOI, DOB, MDMA, and MBDB by spectral analysis of brain field potentials in the freely moving rat (Tele-Stereo-EEG). Psychopharmacol 98:297–303

    CAS  Google Scholar 

  • Dimpfel W, Spüler M, Bonke (1990) Influence of repeated vitamin B administration on the frequency pattern analyzed from rat brain electrical activity (Tele-Stereo-EEG). Klin Wschr 68:136–141

    PubMed  CAS  Google Scholar 

  • Dimpfel W, Wedekind W, Spüler M (1992) Field potential analysis in the freely moving rat during the action of cyclandelate or flunarizine. Pharmacol Res 25:287–297

    PubMed  CAS  Google Scholar 

  • Justice JB Jr. (1987) Introduction to in vivo voltammetry. In: J.B. Justice (ed) Voltammetry in the Neurosciences: Principles, Methods and Applications. Humana Press, Clifton, New Jersey, pp 3–102

    Google Scholar 

  • Kropf W, Kuschinsky K, Krieglstein J (1991) Conditioning of apomorphine effects: simultaneous analysis of the alterations in cortical electroencephalogram and behaviour. Naunyn-Schmiedeberg's Arch Pharmacol 343:559–567

    CAS  Google Scholar 

References

  • Allmark MG, Bachinski WM (1949) A method of assay for curare using rats. J. Am. Pharm. Ass 38:43–45

    CAS  Google Scholar 

  • Randall LO, Heise GA, Schallek W, Bagdon RE, Banzinger R, Boris A, Moe RA, Abrams WB (1961) Pharmacological and clinical studies on Valium™. A new psycho-therapeutic agent of the benzodiazepine class. Curr Ther Res 3:405–425

    PubMed  CAS  Google Scholar 

  • Rivlin A, Tator C (1977) Objective clinical assessment of motor function after experimental spinal cord injury in the rat. J Neurosurg 47:577–581

    PubMed  CAS  Google Scholar 

  • Ther L, Vogel G, Werner P (1959) Zur pharmakologischen Differenzierung und Bewertung von Neuroleptica. Arzneim Forsch/Drug Res 9:351–354

    CAS  Google Scholar 

References

  • Boissier JR, Tardy J, Diverres JC (1960) Une novelle méthode simple pour explorer l'action “tranquillisante”: le test de la cheminée. Med. exp 3:81–84

    CAS  Google Scholar 

  • Simiand J, Keane PE, Biziere K, Soubrie P (1989) Comparative study in mice of Tetrazepam and other centrally active skeletal muscle relaxants. Arch Int Pharmacodyn 297:272–285

    PubMed  CAS  Google Scholar 

  • Turner RA (1965) Ataractic (tranquillizing, neuroleptic) agents. In: Screening Methods in Pharmacology. Chapter 7, pp 87–100, Academic Press, New York and London

    Google Scholar 

References

  • Barclay LL, Gibson GE, Blass JP (1981) The string test: an early behavioral change in thiamine deficiency. Pharmacol Biochem Behav 14:153–157

    PubMed  CAS  Google Scholar 

  • Boissier JR, Simon P (1960) L'utilisation du test de la traction, (Test de JULOU-COURVOISIER) pour l'etude des psycholeptiques. Therapie 15:1170–1174

    Google Scholar 

  • Deacon RMJ, Gardner CR (1984) The pull-up test in rats: a simple method for testing muscle relaxation. J Pharmacol Meth 11:119–124

    CAS  Google Scholar 

  • Fleury C (1957) Nouvelle technique pour mesurer l'effortmusculaire de la souris, dite test de l'agrippement. Arch. Sci. 10:107–112

    Google Scholar 

  • Kondziella W (1964) Eine neue Methode zur Messung der muskulaeren Relaxation bei weissen Maeussen. Arch Int Pharmacodyn 152:277–284

    PubMed  CAS  Google Scholar 

  • Kulig BM (1989) A neurofunctional test battery for evaluating the effects of long-term exposure to chemicals. J Am Coll Toxicol 8:71–83

    CAS  Google Scholar 

  • Meyer OA, Tilson HA, Bird WC, Riley MT (1979) A method for the routine assessment of fore-and hind limb grip strength of rats and mice. Neurobehav Toxicol 1:233–236

    PubMed  CAS  Google Scholar 

  • Miquel J, Blasco M (1978) A simple technique for evaluation of vitality loss in aging mice, by testing their muscular coordination and vigor. Exp Geront 13:389–396

    CAS  Google Scholar 

  • Novack GD, Zwolshen JM (1983) Predictive value of muscle relaxant models in rats and cats. J Pharmacol Meth 10:175–183

    CAS  Google Scholar 

  • Simiand J, Keane, PA, Biziere K, Soubrie P (1989) Comparative study in mice of Tetrazepam and other centrally active skeletal muscle relaxants. Arch Int Pharmacodyn 297:272–285

    PubMed  CAS  Google Scholar 

  • Tilson HA (1990) Behavioral indices of neurotoxicity. Toxicol Pathol 18:96–104

    PubMed  CAS  Google Scholar 

References

  • Cartmell SM, Gelgor L, Mitchell D (1991) A revised rotarod procedure for measuring the effect of antinociceptive drugs on motor function in the rat. J Pharmacol Meth 26:149–159

    CAS  Google Scholar 

  • Dunham NW, Miya TS (1957) A note on a simple apparatus for detecting neurological deficit in rats and mice. J Am Pharmaceut Assoc 46:208–210

    CAS  Google Scholar 

  • Novack GD, Zwolshen JM (1983) Predictive value of muscle relaxant models in rats and cats. J Pharmacol Meth 10:175–183

    CAS  Google Scholar 

  • Rozas G, Labandeira-Garcia JL (1997) Drug-free evaluation of rat models of Parkinsonism and nigral grafts using a new automated rotarod test. Brain Res 749:188–199

    PubMed  CAS  Google Scholar 

  • Saeed Dar M, Wooles WR (1986) Effect of chronically administered methylxanthines on ethanol-induced motor incoordination in mice. Life Sci 39:1429–1437

    Google Scholar 

References

  • Block F, Schwarz M (1994) The depressant effect of GYKI 52466 on spinal reflex transmission is mediated via non-NMDA and benzodiazepine receptors. Eur J Pharmacol 256:149–153

    PubMed  CAS  Google Scholar 

  • Farkas S, Ono H (1995) Participation of NMDA and non-NMDA excitatory amino acid receptors in the mediation of spinal reflex potentials: an in vivo study. Br J Pharmacol 114:1193–1205

    PubMed  CAS  Google Scholar 

  • Farkas S, Tarnawa I, Berzsenyi P (1989) Effects of some centrally acting muscle relaxants on spinal root potentials: a comparative study. Neuropharmacol 21:161–170

    Google Scholar 

  • Hasegawa Y, Ono H (1996) Effect of (±)-8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide on spinal motor systems in anesthetized intact and spinalized rats. Eur J Pharmacol 295:211–213

    PubMed  CAS  Google Scholar 

  • Klockgether T, Pardowitz I, Schwarz M (1985) Evaluation of the muscle relaxant properties of a novel β-carboline, ZK 93423 in rats and cats. Br J Pharmacol 86:357–366

    PubMed  CAS  Google Scholar 

  • Ono H, Saito KI, Kondo M, Morishita SI, Kato K, Hasebe Y, Nakayama M, Kato F, Nakamura T, Satoh M, Oka JI, Goto M, Fukuda H (1990) Effects of the new centrally acting muscle relaxant 7-chloro-N,N,3-trimethylbenzo[b]furan-2-carbox-amide on motor and central nervous systems in rats. Arzneim Forsch/Drug Res 40:730–735

    CAS  Google Scholar 

  • Otsu T, Nagao T, Ono H (1998) Muscle relaxant action of MS-322, a new centrally acting muscle relaxant in rats. Gen Pharmacol 30:393–398

    PubMed  CAS  Google Scholar 

  • Pittermann W, Sontag KH, Wand P, Rapp K, Deerberg F (1976) Spontaneous occurrence of spastic paresis in Han-Wistar rats. Neurosci Lett 2:45–49

    PubMed  CAS  Google Scholar 

  • Sakitama K, Ozawa Y, Aoto N, Tomita H, Ishikawa M (1997) Effects of a new centrally acting muscle relaxant, NK433 (lamperisone hydrochloride) on spinal reflexes. Eur J Pharmacol 337:175–187

    PubMed  CAS  Google Scholar 

  • Schwarz M, Block F, Pergande G (1994) N-Methyl-D-aspartate (NMDA)-mediated muscle relaxant action of flupirtine in rats. Neuroreport 5:1981–194

    PubMed  CAS  Google Scholar 

  • Schwarz M, Schmitt T, Pergande G, Block F (1995) N-Methyl-D-aspartate and α2-adrenergic mechanisms are involved in the depressant action of flupirtine on spinal reflexes in rats. Eur J Pharmacol 276:247–255

    PubMed  CAS  Google Scholar 

  • Suzuki T, Sekikawa T, Nemoto T, Moriya H, Nakaya H (1995) Effects of nicorandil on the recovery of reflex potentials after spinal cord ischemia in cats. Br J Pharmacol 116:1815–1820

    PubMed  CAS  Google Scholar 

  • Tarnawa I, Farkas S, Berzsenyi P, Pataki A, Andrási F (1989) Electrophysiological studies with a 2,3-benzodiazepine muscle relaxant: GYKI 52466. Eur J Pharmacol 167:193–199

    PubMed  CAS  Google Scholar 

  • Turski L, Stevens DN (1993) Effect of the b-carboline Abecarnil on spinal reflexes in mice and on muscle tone in genetically spastic rats: a comparison with diazepam. J Pharmacol Exp Ther 267:1215–1220

    PubMed  CAS  Google Scholar 

  • Turski L, Klockgether T, Schwarz M, Turski WA, Sontag KH (1990) Substantia nigra: a site of action of muscle relaxant drugs. Ann Neurol 28:341–348

    PubMed  CAS  Google Scholar 

References

  • Alia S, Azerad J, Pollin B (1998) Effects of RPR 100893, a potent NK1 antagonist, on the jaw-opening reflex in the guinea pig. Brain Res 787:99–106

    PubMed  CAS  Google Scholar 

  • Bakke M, Hu JW, Sessle BJ (1998) Involvement of NK1 and NK2 tachykinin receptor mechanisms in jaw muscle activity reflexly evoked by inflammatory irritant application to the rat temporomandibular joint. Pain 75:219–227

    PubMed  CAS  Google Scholar 

  • Boucher Y, Pollin B, Azerad J (1993) Microinfusions of excitatory amino acid antagonists into the trigeminal sensory complex antagonize the jaw opening reflex in freely moving rats. Brain Res 614:155–163

    PubMed  CAS  Google Scholar 

  • Funakoshi M, Amano N (1974) Periodontal jaw muscle reflexes in the albino rat. J Dent Res 53:598–603

    Google Scholar 

  • Huopaniemi T, Pertovaara A, Jyvasjavi E, Carlson C (1988) Effect of naloxone on tooth pulp-evoked jaw-opening reflex in the barbiturate-anaesthetized cat. Acta Physiol Scand 134:327–331

    PubMed  CAS  Google Scholar 

  • Laskin DM, Block S (1986) Diagnosis and treatment of myofascial pain-dysfunction (MPD) syndrome. J Prosthet Dent 56:75–83

    PubMed  CAS  Google Scholar 

  • Ozawa Y, Komai C, Sakitama K, Ishikawa M (1996) Effects of NK433, a new centrally acting muscle relaxant, on masticatory muscle reflexes in rats. Eur J Pharmacol 298:57–62

    PubMed  CAS  Google Scholar 

References

  • Boissier JR, Simon P (1969) Evaluation of experimental techniques in the psycho-pharmacology of emotion. Ann NY Acad Sci 159:898–914

    PubMed  CAS  Google Scholar 

  • Costa E, Corda MG, Epstein B, Forchetti C, Guidotti A (1983) GABA-benzodiazepine interactions. In: Costa E (ed) The Benzodiazepines. From Molecular Biology to Clinical Practice. Raven Press, New York, pp 117–136

    Google Scholar 

  • Costall B, Naylor RJ, Tyers MB (1988) Recent advances in the neuropharmacology of 5-HT3 agonists and antagonists. Rev Neuroscience 2:41–65

    CAS  Google Scholar 

  • Cotman CW, Iversen LL (1987) Excitatory amino acids in the brain-focus on NMDA receptors. Trends in Neurosci 10:263–265.

    CAS  Google Scholar 

  • Fonnum F (1987) Biochemistry, anatomy, and pharmacology of GABA neurons. In: Meltzer HY (ed) Psychopharmacology: The Third Generation of Progress. Raven Press, New York, pp 173–182

    Google Scholar 

  • Lippa AS, Priscilla A, Nash BA, Greenblatt EN (1979) Pre-clinical neuropharmacological testing procedures for anxiolytic drugs. In: Fielding St, Lal H (eds) Anxiolytics, Futura Publ. Comp. New York, pp 41–81

    Google Scholar 

  • Lloyd KG, Morselli PL (1987) Psychopharmacology of GABAergic drugs. In: Meltzer HY (ed) Psychopharmacology: The Third Generation of Progress. Raven Press, New York, pp 183–195

    Google Scholar 

  • Peroutka SJ (1988) 5-Hydroxytryptamine receptor subtypes: Molecular, biochemical and physiological characterization. Trends Neuroscience 11:496–500

    CAS  Google Scholar 

  • Watkins JC, Olverman HJ (1987) Agonists and antagonists for excitatory amino acid receptors. Trends in Neurosci 10:265–272

    CAS  Google Scholar 

  • Zukin SR, Young AB, Snyder SH (1974) Gamma-aminobutyric acid binding to receptor sites in the rat central nervous system. Proc Natl Acad Sci, USA, 71:4801–4807

    Google Scholar 

References

  • Enna SJ, Möller H (1987) γ-aminobutyric acid (GABA) receptors and their association with benzodiazepine recognition sites. In: Meltzer HY (ed) Psychopharmacology: The Third Generation of Progress, Raven Press, New York, pp 265–272

    Google Scholar 

  • Enna SJ, Snyder SH (1975) Properties of γ-aminobutyric acid (GABA) receptor binding in rat brain synaptic membrane fractions. Brain Res. 100:81–97

    PubMed  CAS  Google Scholar 

  • Enna SJ, Snyder SH (1977) Influence of ions, enzymes, and detergents on γ-aminobutyric acid-receptor binding in synaptic membranes of rat brain. Mol Pharmacol 13:442–453

    PubMed  CAS  Google Scholar 

  • Enna SJ, Collins JF, Snyder SH (1977) Stereo specificity and structure-activity requirements of GABA receptor binding in rat brain. Brain Res. 124:185–190

    PubMed  CAS  Google Scholar 

  • Knott C, Bowery NG (1991) Pharmacological characterization of GABAA and GABAB receptors in mammalian CNS by receptor binding assays. In: Greenstein B (ed) Neuroendocrine Research Methods. Vol 2, Harwood Academic Publ., Chur, pp 699–722

    Google Scholar 

  • Lüddens H, Korpi ER (1995) Biological function of GABAA/benzodiazepine receptor heterogeneity. J Psychiat Res 29:77–94

    PubMed  Google Scholar 

  • Matsumoto RR (1989) GABA receptors: are cellular differences reflected in function? Brain Res Rev 14:203–225

    PubMed  CAS  Google Scholar 

  • Möhler H (1992) GABAergic synaptic transmission. Arzneim Forsch/Drug Res 42:211–214

    Google Scholar 

  • Zukin SR, Young AB, Snyder SH (1974) Gamma-aminobutyric acid binding to receptor sites in the rat central nervous system. Proc Nat Acad Sci, USA 71:4802–4807

    CAS  Google Scholar 

References

  • Alexander S, Peters J, Mathie A, MacKenzie G, Smith A (2001) TiPS Nomenclature Supplement 2001

    Google Scholar 

  • Barnard EA (1998) Multiple subtypes of the GABAA receptors. Naunyn-Schmiedeberg's Arch Pharmacol 358, Suppl 2, R 570

    Google Scholar 

  • Barnard EA (2000) The molecular architecture of GABAA receptors. In: Möhler H (ed) Handbook of Experimental Pharmacology, Pharmacology of GABA and Glycine Neurotransmission (Vol 150). pp 79–100, Springer Heidelberg

    Google Scholar 

  • Barnard EA, Langer SZ (1998) GABAA receptors. NC-IUPHAR Subcommittee on GABAA receptors. The IUPHAR Compendium of Receptor Characterization and Classification 1998

    Google Scholar 

  • Beaumont K, Chilton WS, Yamamura HI, Enna, SJ (1978) Muscimol binding in rat brain: Association with synaptic GABA receptors. Brain Res. 148:153–162

    PubMed  CAS  Google Scholar 

  • Bormann J (2000) The ‘ABC’ of GABA receptors. Trends Pharmacol Sci 21:16–19

    PubMed  CAS  Google Scholar 

  • Bormann J, Feigenspan A (1995) GABAC receptors. Trends Neurosci 18:515–519

    PubMed  CAS  Google Scholar 

  • Chambon JP, Feltz P, Heaulme M, Restle S, Schlichter R, Biziere K, Wermuth CG (1985) An arylaminopyridazine derivative of γ-aminobutyric acid (GABA) is a selective and competitive antagonist of the GABAA receptor site. Proc. Natl. Acad. Sci. USA 82:1832–1836

    PubMed  CAS  Google Scholar 

  • Cheng YC, Prusoff WH (1973) Relationship between the inhibition constant (K i ) and the concentration of inhibitor which causes 50 per cent inhibition (I 50) of an enzymatic reaction. Biochem. Pharmacol. 22:3099–3108

    PubMed  CAS  Google Scholar 

  • Costa E (1998) From GABAA receptor diversity emerges a unified vision of GABAergic inhibition. Ann Rev Pharmacol Toxicol 38:321–350

    CAS  Google Scholar 

  • Enna SJ, Möller H (1987) γ-aminobutyric acid (GABA) receptors and their association with benzodiazepine recognition sites. In: Meltzer HY (ed) Psychopharmacology: The Third Generation Schwartz RD, Mindlin MC (1988) Inhibition of the GABA receptor-gated chloride ion channel in brain by non-competitive inhibitors of the nicotinic receptor-gated cation channel. J Pharmacol Exp Ther 244:963–970

    Google Scholar 

  • Enna SJ, Snyder SH (1976) Influence of ions, enzymes, and detergents on γ-aminobutyric acid-receptor binding in synaptic membranes of rat brain. Mol Pharmacol 13:442–453

    Google Scholar 

  • Gusti P, Ducic I, Puia G, Arban R, Walser A, Guidotti A, Costa E (1993) Imidazenil: A new partial positive allosteric modulator of γ-aminobutyric acid (GABA) action at GABAA receptors. J Pharmacol Exp Ther 266:1018–1028

    Google Scholar 

  • Heaulme M, Chambon JP, Leyris R, Molimard JC, Wermuth CG, Biziere K (1986) Biochemical characterization of the interaction of three pyridazinyl-GABA derivatives with the GABAA receptor site. Brain Res 384:224–231

    PubMed  CAS  Google Scholar 

  • Heaulme M, Chambon JP, Leyris R, Wermuth CG, Biziere K (1987) Characterisation of the binding of [3H]SR 95531, a GABAA antagonist, to rat brain membranes. J Neurochem 48:1677–1686

    PubMed  CAS  Google Scholar 

  • Johnston GAR (1996) GABAC receptors: relatively simple transmitter-gated ion channels? Trends Pharmacol Sci 17:319–323

    PubMed  CAS  Google Scholar 

  • Kleingoor C, Ewert M, von Blankenfeld G, Seeburg PH, Kettenmann H (1991) Inverse but not full benzodiazepine agonists modulate recombinant α6β2γ2 GABAA receptors in transfected human embryonic kidney cells. Neurosci Lett 130:169–172

    PubMed  CAS  Google Scholar 

  • Krogsgaard-Larsen P, Frølund B, Jørgensen FS, Schousboe A (1994) GABAA receptor agonists, partial agonists, and antagonists. Design and therapeutic prospects. J Med Chem 37:2489–2505

    PubMed  CAS  Google Scholar 

  • Lambert JJ, Belelli D, Hill-Venning C, Peters JA (1995) Neurosteroids and GABAA receptor function. Trends Pharmacol Sci 16:295–303

    PubMed  CAS  Google Scholar 

  • Lewin AH, de Costa BR, Rice KC, Solnick P (1989) meta-and para-Isothiocyanato-t-butylbicycloorthobenzoate: irreversible ligand of the γ-aminobutyric acid-regulated chloride ionophore. Mol Pharmacol 35:189–194

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J. Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Martini C, Rigacci T, Lucacchini A (1983) [3H]muscimol binding site on purified benzodiazepine receptor. J Neurochem 41:1183–1185

    PubMed  CAS  Google Scholar 

  • Mohler H, Malherbe P, Draguhn A, Richards JG (1990) GABAA-receptors: structural requirements and sites of gene expression in mammalian brain. Neurochem Res 15:199–207

    PubMed  CAS  Google Scholar 

  • Rudolph U, Crestani F, Möhler H (2001) GABAA receptor subtypes: dissecting their pharmacological functions. Trends Pharmacol Sci 22:188–194

    PubMed  CAS  Google Scholar 

  • Sieghart W (2000) Unraveling the function of GABAA receptor subtypes. Trends Pharmacol Sci 21:411–416

    PubMed  CAS  Google Scholar 

  • Smith GB, Olsen RW (1995) Functional domains and GABAA receptors. Trends Pharmacol Sci 16:162–168

    PubMed  CAS  Google Scholar 

  • Snodgrass SR (1978) Use of 3H-muscimol for GABA receptor studies. Nature 273:392–394

    PubMed  CAS  Google Scholar 

  • Turner DM, Sapp DW, Olsen RW (1991) The benzodiazepine/alcohol antagonist Ro 15-4513: binding to a GABAA receptor subtype that is insensitive to diazepam. J Pharmacol Exp Ther 257:1236–1242

    PubMed  CAS  Google Scholar 

  • Vicini S (1991) Pharmacologic significance of the structural heterogeneity of the GABAA receptor-chloride ion channel complex. Neuropsychopharmacol 4:9–15

    CAS  Google Scholar 

  • Williams M, Risley EA (1978) Characterization of the binding of [3H]muscimol, a potent γ-aminobutyric acid antagonist, to rat synaptosomal membranes using a filtration assay. J Neurochem 32:713–718

    Google Scholar 

  • Zhang D, Pan Z-H, Awobuluyi M, Lipton SA (2001) Structure and function of GABAC receptors: a comparison of native versus recombinant vectors. Trends Pharmacol Sci 22:121–132

    PubMed  CAS  Google Scholar 

References

  • Bittiger H, Bernasconi R, Froestl W, Hall R, Jaekel J, Klebs K, Krueger L, Mickel SJ, Mondadori C, Olpe HR, Pfannkuch F, Pozza M, Probst A, van Riezen H, Schmutz M, Schuetz H, Steinmann MW, Vassout A, Waldmeyer P, Bieck P, Farger G, Gleiter C, Schmidt EK, Marescuax C (1992) GABAB antagonists: potential new drugs. Pharmacol Commun 2:70–74

    CAS  Google Scholar 

  • Bittiger H, Froestl W, Mickel SJ, Olpe HR (1993) GABA3 receptor antagonists: From synthesis to therapeutic applications. Trends Pharmacol Sci 14:391–394

    PubMed  CAS  Google Scholar 

  • Bonanno G, Raiteri M (1992) Functional evidence for multiple γ-aminobutyric acidB receptor subtypes in the rat cerebral cortex. J Pharmacol Exp Ther 262:114–118

    PubMed  CAS  Google Scholar 

  • Bonanno G, Raiteri M (1993a) Multiple GABAB receptors. Trends Pharmacol Sci 14:259–261

    PubMed  CAS  Google Scholar 

  • Bonanno G, Raiteri M (1993b) γ-aminobutyric acid (GABA) autoreceptors in rat cerebral cortex and spinal cord represent pharmacologically distinct subtypes of the GABAB receptor. J Pharmacol Exp Ther 265:765–770

    PubMed  CAS  Google Scholar 

  • Bowery G, Hill DR, Hudson AL (1983) Characterization of GABAB receptor binding sites on rat whole brain synaptic membranes. Br J Pharmacol 78:191–206

    PubMed  CAS  Google Scholar 

  • Bowery NG (1993) GABAB receptor pharmacology. Annu Rev Pharmacol Toxicol 33:109–147

    PubMed  CAS  Google Scholar 

  • Bowery NG, Hill DR, Hudson AL (1985) (3H)(−)baclofen: An improved ligand for GABAB sites. Neuropharmacol 24:207–210

    CAS  Google Scholar 

  • Cheng YC, Prusoff WH (1973) Relationship between the inhibition constant (K i) and the concentration of inhibitor which causes 50 per cent inhibition (IC 50) of an enzymatic reaction. Biochem. Pharmacol. 22:3099–3108

    PubMed  CAS  Google Scholar 

  • Drew CA, Johnston GAR, Weatherby RP (1984) Bicucculineinsensitive GABA receptors: Studies on the binding of (−)-baclofen to rat cerebellar membranes. Neurosci Lett 52:317–321

    PubMed  CAS  Google Scholar 

  • Enna SJ, Möller H (1987) γ-aminobutyric acid (GABA) receptors and their association with benzodiazepine recognition sites. In: Meltzer HY (ed) Psychopharmacology: The Third Generation of Progress. Raven Press, New York, pp 265–272

    Google Scholar 

  • Froestl W, Mickel SJ, Schmutz M, Bittiger H (1996) Potent, orally active GABAB receptor antagonists. Pharmacol Commun 8:127–133

    CAS  Google Scholar 

  • Hill DR, Bowery NG (1981) 3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain. Nature 290:149–152

    PubMed  CAS  Google Scholar 

  • Kato K, Goto M, Fukuda H (1983) Regulation by divalent cations of 3H-baclofen binding to GABAB sites in rat cerebellar membranes. Life Sci 32:879–887

    PubMed  CAS  Google Scholar 

  • Kaupmann K, Huggel K, Held J, Flor PJ, Bischoff S, Mickel SJ, McMaster G, Angst C, Bittiger H, Froesti W, Bettler B (1997) Expression cloning of GABAB receptors uncovers similarity to metabotropic receptors. Nature 386:239–246

    PubMed  CAS  Google Scholar 

  • Kerr DIB, Ong J, Prager RH. Gynther BD, Curtis DR (1987) Phaclofen: a peripheral and central baclofen antagonist. Brain Res 405:150–154

    PubMed  CAS  Google Scholar 

  • Kerr DIB, Ong J, Johnston GAR, Abbenante J, Prager RH (1988) 2-Hydroxy-saclofen: am improved antagonist at central and peripheral GABAB receptors. Neurosci Lett 92:92–96

    PubMed  CAS  Google Scholar 

  • Kerr DIB, Ong J, Johnston GAR, Abbenante J, Prager RH (1989) Antagonism of GABAB receptors by saclofen and related sulphonic analogues of baclofen and GABA. Neurosci Lett 107:239–244

    PubMed  CAS  Google Scholar 

  • Lanza M, Fassio A, Gemignani A, Bonanno G, Raiteri M (1993) CGP 52432: a novel potent and selective GABAB autoreceptor antagonist in rat cerebral cortex. Eur J Pharmacol 237:191–195

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Olpe HR, Karlsson G, Pozza MF, Brugger F, Steinman M, van Riezen H, Fagg G, Hall RG, Froestl W, Bittiger H (1990) CGP 35348: a centrally active blocker of GABAB receptors. Eur J Pharmacol 187:27–38

    PubMed  CAS  Google Scholar 

  • Paredes RG, Ågmo A (1992) GABA and behavior: The role of receptor subtypes. Neurosci Behav Rev 16:145–170

    CAS  Google Scholar 

  • Robinson TM, Cross AJ, Green AR, Toczek JM, Boar BR (1989) Effects of the putative antagonists phaclofen and δ-aminovaleric acid on GABAB receptor biochemistry. Br J Pharmacol 98:833–840

    PubMed  CAS  Google Scholar 

  • Scherer RA, Ferkany JW, Enna SJ (1988) Evidence for pharmacologically distinct subsets of GABAB receptors. Brain Res Bull 21:439–443

    PubMed  CAS  Google Scholar 

  • Shank RP, Baldy WJ, Mattucci LC, Vilani FJ Jr. (1990) Ion and temperature effects on the biding of γ-aminobutyrate to its receptors and the high-affinity transport system. J Neurochem 54:2007–2015

    PubMed  CAS  Google Scholar 

  • Shoulson I, Odoroff Ch, Oakes D, Behr J, Goldblatt D, Caine E, Kennedy J, Miller Ch, Bamford K, Rubin A, Plumb S, Kurlan R (1989) A controlled clinical trial of baclofen as protective therapy in early Huntington's disease. Ann Neurol 25:252–259

    PubMed  CAS  Google Scholar 

  • Wilkin GP, Hudson AL, Hill DR, Bowery NG (1981) Autoradiographic localisation of GABAB receptors in rat cerebellum. Nature 294:584–587

    PubMed  CAS  Google Scholar 

References

  • Byrnes JJ, Greenblatt DJ, Miller LG (1992) Benzodiazepine receptor binding of nonbenzodiazepines in vivo: Alpidem, Zolpidem and Zopiclone. Brain Res Bull 29:905–908

    PubMed  CAS  Google Scholar 

  • Chang RSL, Snyder SH (1978) Benzodiazepine receptors: labelling in intact animals with [3H]-flunitrazepam. Eur J Pharmacol 48:213–218

    PubMed  CAS  Google Scholar 

  • Damm HW, Müller WE, Schläfer U, Wollert U (1978) [3H]Flunitrazepam: its advantages as a ligand for the identification of benzodiazepine receptors in rat brain membranes. Res Commun Chem Pathol Pharmacol 22:597–600

    PubMed  CAS  Google Scholar 

  • Davies MF, Onaivi ES, Chen SW, Maguire PA, Tsai NF, Loew GH (1994) Evidence for central benzodiazepine receptor heterogeneity from behavior tests. Pharmacol Biochem Behav 49:47–56

    PubMed  CAS  Google Scholar 

  • Gardner CR (1988) Pharmacological profiles in vivo of benzodiazepine receptor ligands. Drug Dev Res 12:1–28

    CAS  Google Scholar 

  • Griebel G, Perrault G, Letang V, Granger P, Avenet P, Schoemaker H, Sanger DJ (1999a) New evidence that the pharmacological effects of benzodiazepine receptor ligands can be associated with activities at different BZ (omega) receptor subtypes. Psychopharmacology (Berl) 146:205–213

    PubMed  CAS  Google Scholar 

  • Griebel G, Perrault G, Tan S, Schoemaker H, Sanger DJ (1999b) Comparison of the pharmacological properties of classical and novel BZ-omega receptor ligands. Behav Pharmacol 10:483–495

    PubMed  CAS  Google Scholar 

  • Hafely WE, Martin JR, Richard JG, Schoch P (1993) The multiplicity of actions of benzodiazepine receptor ligands. Can J Psychiatry 38, Suppl 4:S102–S108

    Google Scholar 

  • Iversen LL (1983) Biochemical characterisation of benzodiazepine receptors. In: Trimble MR (ed) Benzodiazepines Divided. John Wiley & Sons Ltd. pp 79–85

    Google Scholar 

  • Jacqmin P, Wibo M, Lesne M (1986) Classification of benzodiazepine receptor agonists, inverse agonists and antagonists using bicuculline in an in vitro test. J Pharmacol (Paris) 17:139–145

    PubMed  CAS  Google Scholar 

  • Klepner CA, Lippa AS, Benson DI, Sano MC, Beer B (1979) Resolution in two biochemically and pharmacologically distinct benzodiazepine receptors. Pharmacol Biochem Behav 11:457–462

    PubMed  CAS  Google Scholar 

  • Langer SZ, Arbilla S (1988) Limitations of the benzodiazepine receptor nomenclature: a proposal for a pharmacological classification as omega receptor subtypes. Fundam Clin Pharmacol 2:159–170

    PubMed  CAS  Google Scholar 

  • Langer SZ, Arbilla S, Tan S, Lloyd KG, George P, Allen J, Wick AE (1990) Selectivity of omega-receptor subtypes as a strategy for the development of anxiolytic drugs. Pharmacopsychiatry 23:103–107

    PubMed  Google Scholar 

  • Lüddens H, Korpi ER, Seeburg PH (1995) GABAA/benzodiazepine receptor heterogeneity: neurophysiological implications. Neuropharmacol 34:245–254

    Google Scholar 

  • Mennini T, Garattini A (1982) Benzodiazepine receptors: Correlation with pharmacological responses in living animals. Life Sci 31:2025–2035

    PubMed  CAS  Google Scholar 

  • Möhler H, Okada T (1977a) Benzodiazepine receptor: Demonstration in the central nervous system. Science 198:849–851

    PubMed  Google Scholar 

  • Möhler H, Okada T (1977b) Properties of 3H-diazepam binding to benzodiazepine receptors in rat cerebral cortex. Life Sci 20:2101–2110

    PubMed  Google Scholar 

  • Möhler H, Richards JG (1983) Benzodiazepine receptors in the central nervous system. In: Costa E (ed) The Benzodiazepines: From Molecular Biology to Clinical Practice. Raven Press, New York, pp 93–116

    Google Scholar 

  • Olsen RW (1981) GABA-benzodiazepine-barbiturate receptor interactions. J Neurochem 37:1–13

    PubMed  CAS  Google Scholar 

  • Schacht U, Baecker G (1982) Effects of clobazam in benzodiazepine-receptor binding assays Drug Dev. Res. Suppl. 1:83–93

    Google Scholar 

  • Sieghart W (1989) Multiplicity of GABAA-benzodiazepine receptors. Trends Pharmacol Sci 10:407–410

    PubMed  CAS  Google Scholar 

  • Speth RC, Wastek GJ, Johnson PC, Yamamura HI (1978) Benzodiazepine binding in human brain: characterization using [3H]flunitrazepam. Life Sci 22:859–866

    PubMed  CAS  Google Scholar 

  • Speth RC, Wastek GJ, Yamamura HI (1979) Benzodiazepine receptors: Temperature dependence of 3H-diazepam binding. Life Sci 24:351–358

    PubMed  CAS  Google Scholar 

  • Squires RF, Braestrup C (1977) Benzodiazepine receptors in rat brain. Nature 266:732–734

    PubMed  CAS  Google Scholar 

  • Supavilai P, Karobath M (1980) Heterogeneity of benzodiazepine receptors in rat cere bellum and hippocampus. Eur J Pharmacol 64:91–93

    PubMed  CAS  Google Scholar 

  • Sweetnam PM, Tallman JF (1985) Regional difference in brain benzodiazepine receptor carbohydrates. Mol Pharmacol 29:299–306

    Google Scholar 

  • Takeuchi T, Tanaka S, Rechnitz GA (1992) Biotinylated 1012-S conjugate as a probe ligand for benzodiazepine receptors: characterization of receptor binding sites and receptor assay for benzodiazepine drugs. Anal Biochem 203:158–162

    PubMed  CAS  Google Scholar 

  • Tallman JF (1980) Interaction between GABA and benzodiazepines. Brain Res Bull 5:829–832

    CAS  Google Scholar 

References

  • Allen AR, Singh A, Zhuang Z P, Kung M P, Kung HF, Lucki I (1997) The 5-HT1A receptor antagonist p-MPPI blocks responses mediated by postsynaptic and presynaptic 5-HT1A receptors

    Google Scholar 

  • Ansanay H, Sebben M, Bockaert J, Dumuis A (1996) Pharmacological comparisons between [3H]-GR113808 binding sites and functional 5-HT4 receptors in neurons. Eur J Pharmacol 298:165–174

    PubMed  CAS  Google Scholar 

  • Bockaert J, Fagni L, Dumuis A (1997) 5-HT4 receptors: An update. In: Baumgarten HG, Göthert M (eds) Handbook of Experimental Pharmacology, Vol. 129, Serotoninergic Neurons and 5-HT Receptors in the CNS. Springer-Verlag Berlin Heidelberg, pp 439–474

    Google Scholar 

  • Boess FG, Martin LL (1994) Molecular biology of 5-HT receptors. Neuropharmacol 33:275–317

    CAS  Google Scholar 

  • Boess FG, Riemer C, Bos M, Bentley J, Bourson A, Sleight AJ (1998) The 5-hydroxytryptamine6 receptor-selective radioligand [3H]Ro 63-0563 labels 5-hydroxytryptamine receptor binding sites in rat and porcine striatum. Mol Pharmacol 54:577–583

    PubMed  CAS  Google Scholar 

  • Bourson A, Borroni E, Austin RH, Monsma FJ Jr., Sleight AJ (1995) Determination of the role of the 5-ht6 receptor in the rat brain: A study using antisense oligonucleotides. J Pharmacol Exp Ther 274:173–180

    PubMed  CAS  Google Scholar 

  • Branchek TA (1995) 5-HT4, 5-HT6, 5-HT7; molecular pharmacology of adenylate cyclase stimulating receptors. Neurosci 7:375–382

    CAS  Google Scholar 

  • Branchek TA, Zgombick (1997) Molecular biology and potential role of 5-HT5, 5-HT6, and 5-HT7 receptors. In: Baumgarten HG, Göthert M (eds) Handbook of Experimental Pharmacology, Vol 129, Serotoninergic Neurons and 5-HT Receptors in the CNS. Springer-Verlag Berlin Heidelberg, pp 475–498

    Google Scholar 

  • Briley M, Chopin P, Marien M, Moret C (1997) Functional neuropharmacology of compounds acting on 5-HT1B/1D receptors. In: Baumgarten HG, Göthert M (eds) Handbook of Experimental Pharmacology, Vol 129, Serotoninergic Neurons and 5-HT Receptors in the CNS. Springer-Verlag Berlin Heidelberg, pp 269–306

    Google Scholar 

  • Bühlen M, Fink K, Böing C, Göthert M (1996) Evidence for presynaptic localization of inhibitory 5-HT1Dβ-like autoreceptors in the guinea-pig brain cortex. Naunyn-Schmiedeberg's Arch Pharmacol 353:281–289

    Google Scholar 

  • Carey JE, Wood MD, Blackburn TP, Browne MJ, Gale DG, Glen A, Flanigan TP, Hastwell C, Muir A, Robinson JH; Wilson S (1996) Pharmacological characterization of a recombinant human 5HT2C receptor expressed in HEK293 cells. Pharmacol Commun 7:165–173

    CAS  Google Scholar 

  • Chen K, Yang W, Grimsby J, Shih JC (1992) The human 5-HT2 receptor is encoded by a multiple intron-exon gene. Mol Brain Res 14:20–26

    PubMed  CAS  Google Scholar 

  • Clitherow JW, Scopes DIC, Skingle M, Jordan CC; Feniuk W, Campbell IB, Carter MC, Collington EW, Connor HE, Higgins GA, Beattie D, Kelly HA, Mitchell WL, Oxford AW, Wadsworth AH, Tyers MB (1994) Evolution of a new series of [(N,N-dimethylamino)propyl]-and piperazinylbenzanilides as the first selective 5-HT1D antagonists. J Med Chem 37:2253–2257

    PubMed  CAS  Google Scholar 

  • Costal B, Naylor RJ (1997) Neuropharmacology of 5-HT3 receptor ligands. In: Baumgarten HG, Göthert M (eds) Handbook of Experimental Pharmacology, Vol 129, Serotoninergic Neurons and 5-HT Receptors in the CNS. Springer-Verlag Berlin Heidelberg, pp 409–438

    Google Scholar 

  • Cushing DJ, Baez M, Kursar JD, Schenk K, Cohen ML (1994) Serotonin-induced contraction in canine coronary artery and saphenous vein: role of a 5-HT1D-like receptor. Life Sci 54:1671–1680

    PubMed  CAS  Google Scholar 

  • De Vries P, Heilgers JPC, Villalón CM, Saxena PR (1996) Blockade of porcine carotid vascular responses to sumatripan by GR127935, a selective 5-HT1D receptor antagonist. Br J Pharmacol 118:85–92

    PubMed  Google Scholar 

  • De Vries P, Apayadin S, Villalón CM, Heiligers JPC, Saxena PR (1997) Interactions of GR127935, a 5-HT1B/D receptor ligand, with functional 5-HT receptors. Naunyn-Schmiedeberg's Arch Pharmacol 355:423–430

    Google Scholar 

  • de Vry J (1995) 5-HT1A Receptor agonists: Recent developments and controversial issues. Psychopharmacology 121:1–26

    PubMed  Google Scholar 

  • de Vry J, Glaser T, Schuurman T, Schreiber R, Traber J (1991) 5-HT1A receptors in anxiety. In: Briley M, File SE (eds) New Concepts in Anxiety. McMillan Press Ltd., London, pp 94–129

    Google Scholar 

  • Domenech T, Beleta J, Fernandez AG, Gristwood RW, Sanchez FC, Tolasa E, Palacios JM (1994) Identification and characterization of serotonin central 5-HT4 receptor binding sites in human brain: Comparison with other mammalian species. Mol Brain Res 21:176–180

    PubMed  CAS  Google Scholar 

  • Eglen RM (1967) 5-Hydroxytryptamine (5-HT)4 receptors and central nervous system function: an update. Prog Drug Res 49:9–24

    Google Scholar 

  • Eglen RM, Hegde SS (1966) 5-Hydroxytryptamine (5-HT)4 receptors: physiology, pharmacology and therapeutic potential. Exp Opin Invest Drugs 5:373–388

    Google Scholar 

  • Eglen RM, Wong EHF, Dumuis A, Bockaert J (1995) Central 5-HT4 receptors. Trends Pharmacol Sci 16:391–398

    PubMed  CAS  Google Scholar 

  • Fink K, Zentner J, Göthert M (1995) Subclassification of presynaptic 5-HT autoreceptors in the human cerebral cortex as 5-HT1Dβ receptors. Naunyn-Schmiedeberg's Arch Pharmacol 352:451–454

    CAS  Google Scholar 

  • Ford APDW, Clarke DW (1993) The 5-HT4 receptor. Med Res Rev 13:633–662

    PubMed  CAS  Google Scholar 

  • Foreman MM, Fuller RW, Rasmussen K, Nelson DL, Calligaro DO, Zhang L, Barrett JE, Booher RN, Paget CJ Jr., Flaugh ME (1994) Pharmacological characterization of LY293284: a 5-HT1A receptor agonist with high potency and selectivity. J Pharmacol Exp Ther 270:1270–1291

    PubMed  CAS  Google Scholar 

  • Gaster LM, Joiner GF, King FD, Wyman PA, Sutton JM, Bingham S, Ellis ES, Sanger GJ, Wardle KA (1995) N-[(1-Butyl-4-piperidinyl)methyl]-3,4-dihydro-2H-[1,3]oxazino[3,2-α]-indole-10-carboxamide hydrochloride: the first potent and selective 5-HT4 receptor antagonist amide with oral activity. J Med Chem 38:4760–4763

    PubMed  CAS  Google Scholar 

  • Gerald C, Adham N, Kao HT, Olsen MA, Laz TM, Schechter LE, Bard JA, Vaysse PJJ, Hartig PR, Branchek TA, Weinshank RL (1995) The 5-HT4 receptor: molecular cloning and pharmacological characterization of two splice variants. EMBO J 14:2806–2815

    PubMed  CAS  Google Scholar 

  • Glennon RA, Dukat M (1997) 5-HT1 receptor ligands: Update 1997. Serotonin ID Research Alert 2:351–372

    Google Scholar 

  • Glennon RA, Dukat M, Westkaemper RB, Ismaiel AM, Izzarelli DG, Parker EM (1996) The binding of propranolol at 5-hydroxytryptamine1Dβ T355N mutant receptors may involve formation of two hydrogen bonds to asparagine. Mol Pharmacol 49:198–206

    PubMed  CAS  Google Scholar 

  • Göthert M, Schlicker E (1997) Regulation of 5-HT release in the CNS by presynaptic 5-HT autoreceptors and by 5-HT heteroreceptors. In: Baumgarten HG, Göthert M (eds) Handbook of Experimental Pharmacology, Vol 129, Serotoninergic Neurons and 5-HT Receptors in the CNS. Springer-Verlag Berlin Heidelberg, pp 307–350

    Google Scholar 

  • Gobbi M, Parotti L, Mennini T (1996) Are 5-hydroxytryptamine7 receptors involved in [3H]5-hydroxytryptamine binding to 5-hydroxytryptamine1nonA-nonB receptors in rat hypothalamus? Mol Pharmacol 49:556–559

    PubMed  CAS  Google Scholar 

  • Grossman CJ, Kilpatrick GJ, Bunce KT (1993) Development of a radioligand binding assay for 5-HT4 receptors in guineapig and rat brain. Br J Pharmacol 109:618–624

    PubMed  CAS  Google Scholar 

  • Gustafson EL, Durkin MM, Bard JA, Zgombick J, Branchek TA (1996) A receptor autoradiographic and hybridization analysis of the distribution of the 5-HT7 receptor in rat brain. Br J Pharmacol 117:657–666

    PubMed  CAS  Google Scholar 

  • Hamon M (1997) The main features of central 5-HT1A receptor. In: Baumgarten HG, Göthert M (eds) Handbook of Experimental Pharmacology, Vol 129, Serotoninergic Neurons and 5-HT Receptors in the CNS. Springer-Verlag Berlin Heidelberg, pp 239–268

    Google Scholar 

  • Hartig PR (1997) Molecular biology and transductional characteristics of 5-HT receptors. In: Baumgarten HG, Göthert M (eds) Handbook of Experimental Pharmacology, Vol 129, Serotoninergic Neurons and 5-HT Receptors in the CNS. Springer-Verlag Berlin Heidelberg, pp 175–212

    Google Scholar 

  • Hartig PR, Hoyer D, Humphrey PPA, Martin GR (1996) Alignment of receptor nomenclature with the human genome: classification of 5-HT1B and 5-HT1D receptor subtypes. Trends Pharmacol Sci 17:103–105

    PubMed  CAS  Google Scholar 

  • Hoyer D, Martin GR (1997) 5-HT receptor classification and nomenclature: towards a harmonization with the human genome. Neuropharmacol 36:419–428

    CAS  Google Scholar 

  • Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PP (1994) VII. International Union of Pharmacology Classification of Receptors for 5-Hydroxytryptamine (Serotonin). Pharmacol Rev 46:157–203

    PubMed  CAS  Google Scholar 

  • Humphrey PPA, Hartig P, Hoyer D (1993) A proposed new nomenclature for 5-HT receptors. Trends Pharmacol Sci 14:233–236

    PubMed  CAS  Google Scholar 

  • Jacobs BL, Fornal CA (1997) Physiology and pharmacology of brain serotoninergic neurons. In: Baumgarten HG, Göthert M (eds) Handbook of Experimental Pharmacology, Vol 129, Serotoninergic Neurons and 5-HT Receptors in the CNS. Springer-Verlag Berlin Heidelberg, pp 91–116

    Google Scholar 

  • Johnson MP, Baez M, Kursar JD, Nelson DL (1995) Species differences in 5-HT2A receptors: cloned pig and monkey 5-HT2A receptors reveal conserved transmembrane homology to the human rather than rat sequence. Biochem Biophys Acta 1236:201–206

    PubMed  Google Scholar 

  • Katayama K, Morio Y, Haga K, Fukuda T (1995) Cisapride, a gastroprokinetic agent, binds to 5-HT4 receptors. Folia Pharmacol Jpn 105:461–468

    CAS  Google Scholar 

  • Kaumann AJ (1994) Do human atrial 5-HT4 receptors mediate arrhythmias? Trends Pharmacol Sci 15:451–455

    PubMed  CAS  Google Scholar 

  • Kebabian JW, Neumeyer JL (1994) The Handbook of Receptor Classification. Research Biochemicals International, Natick, MA, pp 58–61

    Google Scholar 

  • Lovenberg TW, Baron BM, de Lecea L, Miller JD, Prosser RA, Rea MA, Foye PE, Racke M, Slone AL, Siegel BW, Danielson PE, Sutcliffe JG, Erlander MG (1993) A novel adenyl cyclase-activating serotonin receptor (5-HT7) implicated in the regulation of mammalian circadian rhythms. Neuron 11:449–458

    PubMed  CAS  Google Scholar 

  • Macor JE, Blank DH, Fox CB, Lebel LA, Newman ME, Post RJ, Ryan K, Schmidt AW, Schulz DW, Koe BK (1994) 5-[(3-Nitropyrid-2-yl)amino]indoles: Novel serotonin antagonists with selectivity for the 5-HT1D receptor. Variation of the C3 substituent on the indole template leads to increased 5-HT1D receptor selectivity. J Med Chem 37:2509–2512

    PubMed  CAS  Google Scholar 

  • Malone HM, Peters JA, Lambert JJ (1991) Physiological and pharmacological properties of 5-HT3 receptors a patch-clamp study. Neuropeptides 19 (Suppl):S25–S30

    Google Scholar 

  • Martin GR (1998) 5-Hydroxytryptamine receptors. NC-IUPHAR subcommittee for 5-hydroxytryptamine (serotonin) receptors. In Gridlestone D (ed) The IUPHAR Compendium of Receptor Characterization and Classification. IUPHAR Media, London, pp 167–184

    Google Scholar 

  • Martin GR, Eglen RM (1998) 5-Hydroxytryptamine receptors. Trends Pharmacol Sci: Receptor and Ion Channel Nomenclature Supplement

    Google Scholar 

  • Martin GR, Humphrey PPA (1994) Classification review. Receptors for 5-hydroxytryptamine: Current perspectives on classification and nomenclature. Neuropharmacol 33:261–273

    CAS  Google Scholar 

  • Murphy DL, Wichems C, Li Q, Heils A (1999) Molecular manipulations as tools for enhancing our understanding of 5-HT neurotransmission. Trends Pharmacol Sci 20:246–252

    PubMed  CAS  Google Scholar 

  • Peroutka SH (1993) 5-Hydroxytryptamine receptors. J Neurochem 60:408–418

    PubMed  CAS  Google Scholar 

  • Porsolt RD, Lenègre A, Caignard DH, Pfeiffer B, Mocaër E, Gardiola-Lemaître B (1992) Pharmacological profile of a new chroman derivative with 5-hydroxytryptamine1A agonist properties: S20499(+). Drug Dev Res 27:389–402

    CAS  Google Scholar 

  • Price GW, Roberts C, Watson J, Burton M, Mulholland K, Middlemiss DN, Jones BJ (1996) Species differences in 5-HT autoreceptors. Behav Brain Res 73:79–82

    PubMed  CAS  Google Scholar 

  • Roberts C, Watson J, Burton M, Price GW, Jones BJ (1996) Functional characterization of the 5-HT terminal autoreceptor in the guinea-pig brain cortex. Br J Pharmacol 117:384–388

    PubMed  CAS  Google Scholar 

  • Rollema H, Clarke T, Sprouse JS, Schulz DW (1996) Combined administration of a 5-hydroxytryptamine (5-HT)1D antagonist and a 5-HT reuptake inhibitor synergistically increases 5-HT release in guinea pig hypothalamus in vivo. J Neurochem 67:2204–2207

    PubMed  CAS  Google Scholar 

  • Roth BL, Hyde EG (1997) Pharmacology of 5-HT2 receptors. In: Baumgarten HG, Göthert M (eds) Handbook of Experimental Pharmacology, Vol 129, Serotoninergic Neurons and 5-HT Receptors in the CNS. Springer-Verlag Berlin Heidelberg, pp 367–394

    Google Scholar 

  • Rousselle JC, Massot O, Delepierre M, Zifa M, Rousseau B, Fillion G (1996) Isolation and characterization of an endogenous peptide from rat brain interacting specifically with the serotonergic 1B receptor subtypes. J Biol Chem 271:726–735

    PubMed  CAS  Google Scholar 

  • Ruat M, Traiffort E, Arrang JM, Tradivel-Lacombe J, Diaz J, Leurs R, Schwartz CJ (1993) A novel rat serotonin (5-HT6) receptor: Molecular cloning, localization and stimulation of cAMP accumulation. Biochem Biophys Res Commun 193:268–276

    PubMed  CAS  Google Scholar 

  • Saxena PR (1994) Modern 5-HT receptor classification and 5-HT based drugs. Exp Opin Invest Drugs 3:513–523

    CAS  Google Scholar 

  • Saxena PR, de Vries P, Villalón CM (1998) 5-HTa-like receptors: a time to bid goodbye. Trends Pharmacol Sci 19:311–316

    PubMed  CAS  Google Scholar 

  • Schiavi GB, Brunet S, Rizzi CA, Ladinsky H (1994) Identification of serotonin 5-HT4 recognition sites in the porcine caudate nucleus by radioligand binding. Neuropharmacol 33:543–549

    CAS  Google Scholar 

  • Shen Y, Monsma FJ Jr., Metcalf MA, Jose PA, Hamblin MW, Sibley DR (1993) Molecular cloning and expression of a 5-hydroxytryptamine7 serotonin receptor subtype. J Biol Chem 268:18200–18204

    PubMed  CAS  Google Scholar 

  • Shi H, Chen K, Gallaher TK (1994) Structure and function of serotonin 5-HT2 receptors. NIDA Res Monograph Series 146:284–297

    Google Scholar 

  • Sills MA, Wolfe BB, Frazer A (1984) Determination of selective and nonselective compounds for the 5-HT1A and 5-HT1B receptor subtypes in rat frontal cortex. J Pharmacol Exp Ther 231:480–487

    PubMed  CAS  Google Scholar 

  • Silverstone PH, Greenshaw AJ (1996) 5-HT3 receptor antagonists. Expert Opin Ther Pat 6:471–481

    CAS  Google Scholar 

  • Sleight AJ, Boess FG, Bourson A, Sibley DR, Monsma FJ (1995) 5-HT6 and 5-HT7 serotonin receptors: Molecular biology and pharmacology. Neurotransmiss 11,(3):1–5

    Google Scholar 

  • Starke K, Göthert M, Kilbinger H (1989) Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol Rev 69:864–989

    PubMed  CAS  Google Scholar 

  • Stowe RL, Barnes NM (1998) Selective labelling of receptor recognition sites in rat brain using [3H]5-carboxamidotryptamine. Neuropharmacol 37:1611–1619

    CAS  Google Scholar 

  • Tricklebank MD (1996) The antipsychotic potential of subtype-selective 5-HT-receptor ligands based on interactions with mesolimbic dopamine systems. Behav Brain Res 73:15–15

    PubMed  CAS  Google Scholar 

  • Uphouse L (1997) Multiple serotonin receptors: Too many, not enough, or just the right number? Neurosci Biobehav Rev 5:679–698

    Google Scholar 

  • Valentin JP, Bonnafous R, John GW (1996) Influence of the endothelium and nitric oxide on the contractile response evoked by 5-HT1D receptor agonists in the rabbit isolated saphenous vein. Br J Pharmacol 119:35–42

    PubMed  CAS  Google Scholar 

  • Vanhoenacker P, Haegeman G, Leysen JE (2000) The 5-HT7 receptors: current knowledge and future prospects. Trends Pharmacol Sci 21:70–77

    PubMed  CAS  Google Scholar 

  • Van Lommen G, de Bruyn M, Schroven M, Verschueren W, Jansses W, Verrelst J, Leysen J (1995) The discovery of a series of new non-indole 5-HT1D agonists. Bioorgan Med Chem Lett 5:2649–2654

    Google Scholar 

  • Villalón CM, Centurión D, Luján-Estrada M, Terrón JA, Sánchez-López A (1997) Mediation of 5-HT-induced external carotid vasodilatation in GR 127935-pretreated vagosympathectomized dogs by the putative 5-HT7 receptor. Br J Pharmacol 120:1319–1327

    PubMed  Google Scholar 

  • Watts SW, Cohen ML (1999) Vascular 5-HT receptors: Pharmacology and pathophysiology of 5-HT1B, 5-HT1D, 5-HT1F, 5-HT2B, and 5-HT7 receptors. Neurotransmiss 15:3–15

    Google Scholar 

  • Wolff MC, Benvenga MJ, Calligaro DO, Fuller RW, Gidda JS, Hemrick-Luecke S, Lucot JB, Nelson DL, Overshiner CD, Leander JD (1997) Pharmacological profile of LY301317, a potent and selective 5-HT1A agonist. Drug Develop Res 40:17–34

    CAS  Google Scholar 

References

  • Artais I, Romero G, Zazpe A, Monge A, Caldero JM, Roca J, Lasheras B, del Rio J (1995) The pharmacology of VA21B7: An atypical 5-HT3 receptor antagonist with anxiolytic-like properties in animal models. Psychopharmacology 117:137–148

    Google Scholar 

  • Bradley PB (1991) Serotonin: Receptors and subtypes. In: Idzikowski C, Cowen PJ (eds) Serotonin, Sleep and Mental Disorder. Wrightson Biomedical Publishing Ltd., Petersfield, pp 9–22

    Google Scholar 

  • Briley M, Chopin P, Moret C (1991) The role of serotonin in anxiety: Behavioural approaches. In: Briley M, File SE (eds) New Concepts in Anxiety. McMillan Press Ltd., London, pp 56–73

    Google Scholar 

  • Cao B J, Rodgers RJ (1998) Comparative effects of novel 5-HT1A receptor ligands, LY293284, LY315712 and LY297996 on plusmaze anxiety in mice. Psychopharmacology 139:185–194

    PubMed  CAS  Google Scholar 

  • Cowen PJ (1991) Serotonin receptor subtypes: Implications for psychopharmacology. Br J Psychiatry 159 (Suppl 12):7–14

    Google Scholar 

  • Deakin JFW (1991) Serotonin subtypes and affective disorders. In: Idzikowski C, Cowen PJ (eds) Serotonin, Sleep and Mental Disorder. Wrightson Biomedical Publishing Ltd., Petersfield, pp 161–178

    Google Scholar 

  • Dourish CT, Hutson PH, Curzon G (1986) Putative anxiolytics 8-OH-DPAT, buspirone and TVX Q 7821 are agonists at 5-HT1A autoreceptors in the raphe nucleus. TIPS 7:212–214

    CAS  Google Scholar 

  • Dugovic C, Leysen JE, Wauquier A (1991) Serotonin and sleep in the rat: the role of 5-HT2 receptors. In: Idzikowski C, Cowen PJ (eds) Serotonin, Sleep and Mental Disorder. Wrightson Biomedical Publishing Ltd., Petersfield, pp 77–88

    Google Scholar 

  • Fabre V, Boni C, Mocaer E, Lesourd M, Hamon M, Laporte AM (1997) [3H]Alnespirone: A novel specific radioligand for 5-HT1A receptors in the rat brain. Eur J Pharmacol 337:297–308

    PubMed  CAS  Google Scholar 

  • Fletcher A, Pike VW, Cliffe IA (1995) Visualization and characterization of 5-HT receptors and transporters in vivo and in man. Semin Neurosci 7:421–431

    CAS  Google Scholar 

  • Fozard JR (1984) MDL 72222: a potent and highly selective antagonist at neuronal 5-hydroxytryptamine receptors. Naunyn-Schmiedeberg's Arch Pharmacol 326:36–44

    CAS  Google Scholar 

  • Frazer A, Maayani S, Wolfe BB (1990) Subtypes of receptors for serotonin. Annu Rev Pharmacol Toxicol 30:307–348

    PubMed  CAS  Google Scholar 

  • Fuller RW (1990) Serotonin receptors and neuroendocrine responses. Neuropsychopharmacol 3:495–502

    CAS  Google Scholar 

  • Glennon RA (1991) Serotonin receptors and site-selective agents. J Physiol Pharmacol 42:49–60

    PubMed  CAS  Google Scholar 

  • Göthert M (1990) Presynaptic serotonin receptors in the central nervous system. Ann NY Acad Sci 604:102–112

    PubMed  Google Scholar 

  • Gozlan H, El Mestikawy S, Pichat L, Glowinsky J, Hamon M (1983) Identification of presynaptic serotonin autoreceptors using a new ligand: 3H-PAT. Nature 305:140–142

    PubMed  CAS  Google Scholar 

  • Gozlan H, Thibault S, Laporte AM, Lima L, Hamon M (1995) The selective 5-HT1A antagonist radioligand [3H]WAY-100635 labels both G-protein-coupled and free 5-HT1A receptors in rat brain membranes. Eur J Pharmacol Mol Pharmacol Sect 288:173–186

    CAS  Google Scholar 

  • Grahame-Smith DG (1991) The neurophamacology of 5-HT in anxiety. In: Briley M, File SE (eds) New Concepts in Anxiety. McMillan Press Ltd., London, pp 46–55

    Google Scholar 

  • Griebel G (1996) Variability in the effects of 5-HT-related compounds in experimental models of anxiety: Evidence for multiple mechanisms of 5-HT in anxiety or never ending story? Pol J Pharmacol 48:129–136

    PubMed  CAS  Google Scholar 

  • Griebel G, Misslin R, Pawlowski M, Lemaître BG, Guillaumet G, Bizot-Espiard J (1992) Anxiolytic-like effects of a selective 5-HT1A agonist, S20244, and its enantiomers in mice. NeuroReport 3:84–86

    PubMed  CAS  Google Scholar 

  • Hall MD, El Mestikawy S, Emerit MB, Pichat L, Hamon M, Gozlan H (1985) [3H]-8-Hydroxy-2-(di-n-propylamino)-tetralin binding to pre-and postsynaptic 5-hydroxytryptamine sites in various regions of rat brain. J Neurochem 44:1685–1696

    PubMed  CAS  Google Scholar 

  • Handley SL (1991) Serotonin in animal models of anxiety: The importance of stimulus and response. In: Idzikowski C, Cowen PJ (eds) Serotonin, Sleep and Mental Disorder. Wrightson Biomedical Publishing Ltd., Petersfield, pp 89–115

    Google Scholar 

  • Handley SL, McBlane JM (1993) 5-HT drugs in animal models of anxiety. Psychopharmacology 112:13–20

    PubMed  CAS  Google Scholar 

  • Hascoet M, Bourin M, Todd KG, Couetoux du Tertre A (1994) Anti-conflict effect of 5-HT1A receptor agonists in rats: A new model for evaluating anxiolytic-like activity. J Psychopharmacol 8:227–237

    PubMed  CAS  Google Scholar 

  • Heuring RE, Peroutka SJ (1987) Characterization of a novel 3H-5-hydroxytryptamine binding site subtype in bovine brain membranes. J Neurosci 7:894–903

    PubMed  CAS  Google Scholar 

  • Hume SP, Ashworth S, Opacka-Juffry J, Ahier RG, Lammertsma AA, Pike VW, Cliffe IA, Fletcher A, White AC (1995) Evaluation of [O-methyl-3H]WAY-100635 as an in vivo radiolig-and for 5-HT1A receptors in rat brain. Eur J Pharmacol 271:515–523

    Google Scholar 

  • Iversen SD (1984) 5-HT and anxiety. Neuropharmacol 23:1553–1560

    CAS  Google Scholar 

  • Jenck F, Bos M, Wichmann J, Stadler H, Martin JR, Moreau JL (1998) The role of 5-HT2C receptors in affective disorders. Expert Opin Invest Drugs 7:1587–1599

    CAS  Google Scholar 

  • Jerning E, Svantesson GT, Mohell N (1998) Receptor binding characteristics of [3H]NAD-299, a new selective HT1A receptor antagonist. Eur J Pharmacol 360:219–225

    PubMed  CAS  Google Scholar 

  • Khawaja X (1995) Quantitative autoradiographic characterization of the binding of [3H]WAY-100635, a selective 5-HT1A receptor antagonist. Brain Res 673:217–225

    PubMed  CAS  Google Scholar 

  • Khawaja X, Ennis C, Minchin MCW (1997) Pharmacological characterization of recombinant human 5-hydroxytryptamine1A receptors using a novel antagonist ligand [3H]WAY-100635. Life Sci 60:653–665

    PubMed  CAS  Google Scholar 

  • Kennett GA, Bright F, Trail B, Blackburn TB, Sanger GJ (1997) Anxiolytic-like actions of the selective 5-HT4 receptor antagonists SB204070A and SB207266A in rats. Neuropharmacol 36:707–712

    CAS  Google Scholar 

  • Kleven MS, Assié MB, Koek W (1997) Pharmacological characterization of in vivo properties of putative mixed 5-HT1A agonist/5-HT2A/2C antagonist anxiolytics. II. Drug discrimination and behavioral observation studies in rats. J Pharmacol Exp Ther 282:747–759

    PubMed  CAS  Google Scholar 

  • Kung HF, Kung MP, Clarke W, Maayani S, Zhuang ZP (1994a) A potential 5-HT1A receptor antagonist: p-MPPI. Life Sci 55:1459–1462

    PubMed  CAS  Google Scholar 

  • Kung M P, Zhuang Z P, Frederick D, Kung HF (1994b) In vivo binding of [123I]4-(2′-Methoxyphenyl)-1-[2′-(N-2″-pyridinyl)-p-iodobenzamido]-ethyl-piperazine, p-MPPI, to 5-HT1A receptors in rat brain. Synapse 18:359–366

    PubMed  CAS  Google Scholar 

  • Kung MP, Frederick D, Mu M, Zhuang ZP, Kung HF (1995) 4-(2′-Methoxyphenyl)-1-[2′-(n-2″-pyridinyl)-p-iodobenzamido]-ethyl-piperazine ([125I]p-MPPI) as a new selective radioligand on serotonin-1A sites in rat brain: In vitro binding and autoradiographic studies. J Pharmacol Exp Ther 272:429–437

    PubMed  CAS  Google Scholar 

  • Laporte AM, Lima L, Gozlan H, Hamon M (1994) Selective in vivo labelling of brain HT1A receptors by [3H]WAY-100635 in the mouse. Eur J Pharmacol 271:505–514

    PubMed  CAS  Google Scholar 

  • Larkman PM Rainnie DG, Kelly JS (1991) Serotonin receptor electrophysiology and the role of potassium channels in neuronal excitability. In: Idzikowski C, Cowen PJ (eds) Serotonin, Sleep and Mental Disorder. Wrightson Biomedical Publishing Ltd., Petersfield, pp 41–64

    Google Scholar 

  • Meert TF, Awouters F (1991) Serotonin 5-HT2 antagonists: a preclinical evaluation of possible therapeutic effects. In: Idzikowski C, Cowen PJ (eds) Serotonin, Sleep and Mental Disorder. Wrightson Biomedical Publishing Ltd., Petersfield, pp 65–76

    Google Scholar 

  • Middlemiss DN, Fozard JR (1983) 8-Hydroxy-2-(di-n-propylamino)-tetralin discriminates between subtypes of the 5-HT1 recognition site. Eur J Pharmacol 90:151–153

    PubMed  CAS  Google Scholar 

  • Misslin R, Griebel G, Saffroy-Spittler M, Vogel E (1990) Anxiolytic and sedative effects of 5-HT1A ligands, 8-OH-DPAT and MDL 73005EF, in mice. NeuroReport 1:267–270

    PubMed  CAS  Google Scholar 

  • New JS (1990) The discovery and development of buspirone: a new approach to the treatment of anxiety. Med Res Rev 10:283–326

    PubMed  CAS  Google Scholar 

  • Newman ME, Lerer B, Shapira B (1992) 5-HT-1A receptor-mediated effects of antidepressants. Progr Neuropsychopharmacol Biol Psychiat 17:1–19

    Google Scholar 

  • Newman-Tancredi A, Verrièle L, Chaput C, Millan MJ (1998a) Labelling of recombinant human and native rat serotonin HT1A receptors by a novel, selective radioligand, [3H]S 15535: Definition of its binding profile using agonists, antagonists and inverse agonists. Naunyn-Schmiedeberg's Arch Pharmacol 357:205–217

    CAS  Google Scholar 

  • Newman-Tancredi A, Chaput C, Touzart M, Verrièle L, Millan MJ (1998b) Parallel evaluation of 5-HT1A receptor localization and functionality: autoradiographic studies with [35S]-GTPγS and the novel, selective radioligand [3H]S 15535. In: Martin GR, Eglen RM, Hoyer D, Hamblin MW, Yocca F (eds) Advances in Serotonin Research. Molecular Biology, Signal Transduction, and Therapeutics. Ann New York Acad Sci 861:263–264

    CAS  Google Scholar 

  • Pazos A, Hoyer D, Palacios JM (1984) The binding of serotonergic ligands to the porcine choroid plexus: characterization of a new type of serotonin recognition site. Eur J Pharmacol 106:539–546

    PubMed  CAS  Google Scholar 

  • Pedigo NW, Yammamura HI, Nelson DL (1981) Discrimination of multiple [3H]5-hydroxytryptamine binding sites by the neuroleptic spiperone in rat brain. J Neurochem 36:220–226

    PubMed  CAS  Google Scholar 

  • Peroutka SJ (1985) Selective interaction of novel anxiolytics with 5-hydroxytryptamine1A receptors. Biol Psychiatry 20:971–979

    PubMed  CAS  Google Scholar 

  • Peroutka SJ (1986) Pharmacological differentiation and characterization of 5-HT1A, 5-HT1B and 5-HT1C binding sites in rat frontal cortex. J Neurochem 47:29–540

    Google Scholar 

  • Peroutka SJ (1988) 5-Hydroxytryptamine receptor subtypes: molecular, biochemical and physiological characterization Trends Neurosci 11:496–500

    PubMed  CAS  Google Scholar 

  • Pike VW, Halldin C, McCarron JA, Lundkvist C, Hirani E, Olsson H, Hume SP, Karlsson P, Osman S, Swahn CG, Hall H, Wikstrom H, Mensonidas M, Poole KG, Farde L (1998) [Carbonyl11C]-Desmethyl-WAY 100635 (DWAY) is a potent and selective radioligand for central 5-HT1A receptors in vitro and in vivo. Eur J Nucl Med 25:338–346

    PubMed  CAS  Google Scholar 

  • Raymond JR, El Mestikawy S, Fargin A (1992) The 5-HT1A receptor: from molecular characteristics to clinical correlates. In: Brann MR (ed) Molecular Biology of G-Protein-coupled receptors. Birkhäuser Boston Basel Berlin pp 113–141

    Google Scholar 

  • Roca J, Artaiz I, del Rio J (1995) 5-HT3 Receptor antagonists in development of anxiolytics. Expert Opin Invest Drugs 4:333–342

    CAS  Google Scholar 

  • Sanell J, Halldin C, Hall H, Thorberg SO, Werner T, Sohn D, Sedvall G, Farde L (1999) Radiosynthesis and autoradiographic evaluation of [11C]NAD-299, a radioligand for visualisation of the 5-HT1A receptor. Nucl Med Biol 26:159–164

    Google Scholar 

  • Saxena PR, Lawang A (1985) A comparison of cardiovascular and smooth muscle effects of 5-hydroxytryptamine and 5-carboxamidotryptamine, a selective agonist of 5-HT1 receptors. Arch Int Pharmacodyn 277:235–252

    PubMed  CAS  Google Scholar 

  • Schlegel JR, Peroutka SJ (1986) Nucleotide interactions with 5-HT1A binding sites directly labeled by [3H]-8-hydroxy-2-(di-n-propylamino)tetralin ([3H]-8-OH-DPAT). Biochem Pharmacol 35:1943–1949

    PubMed  CAS  Google Scholar 

  • Stanhope KJ, Dourish CT (1996) Effects of 5-HT1A receptor agonists, partial agonists and a silent antagonists on the performance of the conditioned emotional response test in the rat. Psychopharmacology 128:293–303

    PubMed  CAS  Google Scholar 

  • Sundaram H, Turner JD, Strang PG (1995) Characterization of recombinant serotonin 5-HT1A receptors expressed in Chinese hamster ovary cells: The agonist [3H]lisuride labels free receptor and receptor coupled to G protein. J Neurochem 65:1909–1016

    PubMed  CAS  Google Scholar 

  • Traber J, Glaser T (1987) 5-HT1A receptor-related anxiolytics. TIPS 8:432–437

    CAS  Google Scholar 

  • Verge D, Daval G, Marcinkiewicz M, Patey A, El Mestikawy H, Gozlan Hamon M (1986) Quantitative autoradiography of multiple 5-HT1 receptor subtypes in the brain of control of 5,7-dihydroxytryptamine-treated rats. J Neurosci 6:3474–3482

    PubMed  CAS  Google Scholar 

  • Yocca FD, Hyslop DK, Smith DW, Maayani S (1987) BMY 7378, a buspirone analog with high affinity, selectivity and low intrinsic activity at the 5-HT1A receptor in rat and guinea pig hippocampal membranes. Eur J Pharmacol 137:293–294

    PubMed  CAS  Google Scholar 

References

  • Boulenguez P, Chauveau J, Segu L, Morel A, Lanoir J, Delaage M (1992) Biochemical and pharmacological characterization of serotonin-O-carboxymethylglycyl[125I]iodotyrosinamide, a new radioligand probe for 5-HT1B and 5-HT1D binding sites. J Neurochem 58:951–959

    PubMed  CAS  Google Scholar 

  • Domenech T, Beleta J, Palacios JM (1997) Characterization of human serotonin 1D and 1B receptors using [3H]-GR-125743, a novel radiolabelled serotonin 5-HT1D/1B receptor antagonist. Naunyn-Schmiedeberg's Arch Pharmacol 356:328–334

    CAS  Google Scholar 

  • Hartig PR, Branchek TA, Weinshank RL (1992) A subfamily of 5-HT1D receptor genes. Trends Pharmacol Sci 13:152–159

    PubMed  CAS  Google Scholar 

  • Hoyer D, Engel G, Kalkman HO (1985) Molecular pharmacology of 5-HT1 and 5-HT2 recognition sites in rat and pig brain membranes: radioligand binding studies with [3H]5-HT, [3H]8OH-DPAT, (−)I[125I]iodocyanopindolol, [3H]mesulergine and [3H]ketanserin. Eur J Pharmacol 118:13–23

    PubMed  CAS  Google Scholar 

  • Hoyer D, Schoeffter P, Waeber C, Palacios JM (1990) Serotonin 5-HT1D receptors. Ann NY Acad Sci 600:168–181

    PubMed  CAS  Google Scholar 

  • Humphrey PPA, Feniuk W, Marriott AS, Tanner RJN, Jackson MR, Tucker ML (1991) Preclinical studies on the anti-migraine drug, Sumatriptan. Eur Neurol 31:282–290

    PubMed  CAS  Google Scholar 

  • Jenck F, Moreau JL, Mutel V, Martin JR, Haefely WE (1993) Evidence for a role of 5-HT1C receptors in the antiserotoninergic properties of some antidepressant drugs. Eur J Pharmacol 231:223–229

    PubMed  CAS  Google Scholar 

  • Jenck F, Moreau JL, Mutel V, Martin JR (1994) Brain 5-HT1C receptors and antidepressants. Progr Neuropsychopharmacol Biol Psychiat 18:563–574

    CAS  Google Scholar 

  • Koe BK, Lebel LA, Fox CB, Macor JE (1992) Characterization of [3H]CP-96,501 as a selective radioligand for the serotonin 5-HT1B receptor: Binding studies in rat brain membranes. J Neurochem 58:1268–1276

    PubMed  CAS  Google Scholar 

  • Lebel LA, Koe BK (1992) Binding studies with the 5-HT1B receptor agonist [3H]CP-96,501 in brain tissues. Drug Dev Res 27:253–264

    CAS  Google Scholar 

  • Mahle CD, Nowak HP, Mattson RJ, Hurt SD, Yocca FD (1991) [3H]-carboxamidotryptamine labels multiple high affinity 5-HT1D-like sites in guinea pig brain. Eur J Pharmacol 205:323–324

    PubMed  CAS  Google Scholar 

  • Massot O, Rousselle JC, Grimaldi B, Cloët-Tayarani I, Fillion MP, Plantefol M, Bonnin A, Prudhomme N, Fillion G (1998) Molecular, cellular and physiological characteristics of 5-HT-moduline, a novel endogenous modulator of 5-HT1B receptor subtype. In: Martin GR, Eglen RM, Hoyer D, Hamblin MW, Yocca F (eds) Advances in Serotonin Research. Molecular Biology, Signal Transduction, and Therapeutics. Ann New York Acad Sci 861:174–182

    CAS  Google Scholar 

  • Middlemiss DN (1984) Stereoselective blockade at [3H]5-HT binding sites and at the 5-HT autoreceptor by propranolol. Eur J Pharmacol 101:289–293

    PubMed  CAS  Google Scholar 

  • Middlemiss DN, Fozard JR (1983) 8-Hydroxy-2-(di-n-propyl-amino)-tetralin discriminates between subtypes of the 5-HT1 recognition site. Eur J Pharmacol 90:151–153

    PubMed  CAS  Google Scholar 

  • Nowak HP, Mahle CD, Yocca FD (1993) [3H]-carboxamidotryptamine labels 5-HT1D binding sites in bovine substantia nigra. Br J Pharmacol 109:1206–1211

    PubMed  CAS  Google Scholar 

  • Palacios JM, Waeber C, Bruinvels AT, Hoyer D (1992) Direct visualisation of serotonin1D receptors in the human brain using a new iodinated ligand. Mol Brain Res 346:175–179

    Google Scholar 

  • Pedigo NW, Yammamura HI, Nelson DL (1981) Discrimination of multiple [3H]5-hydroxytryptamine binding sites by the neuroleptic spiperone in rat brain. J Neurochem 36:220–226

    PubMed  CAS  Google Scholar 

  • Peroutka SJ (1986) Pharmacological differentiation and characterization of 5-HT1A, 5-HT1B and 5-HT1C binding sites in rat frontal cortex. J Neurochem 47:529–540

    PubMed  CAS  Google Scholar 

  • Peroutka SJ (1988) 5-Hydroxytryptamine receptor subtypes: molecular, biochemical and physiological characterization. TINS 11:496–500

    PubMed  CAS  Google Scholar 

  • Peroutka S, Snyder SH (1979) Multiple serotonin receptors: differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiroperidol. Mol Pharmacol 16:687–699

    PubMed  CAS  Google Scholar 

  • Schlicker E, Werner U, Hamon M, Gozlan H, Nickel B, Szelenyi I, Göthert M (1992) Anpirtoline, a novel highly potent 5-HT1B receptor agonist with antinociceptive/antidepressant-like actions in rodents. Br J Pharmacol 105:732–738

    PubMed  CAS  Google Scholar 

  • Segu L, Chauveau J, Boulenguez P, Morel A, Lanoir J, Delaage M (1991) Synthesis and pharmacological study of radioiodinated serotonin derivative specific for 5-HT1B and 5-HT1D binding sites in the central nervous system. C R Acad Sci (Paris) 312:655–661

    CAS  Google Scholar 

References

  • Azukawa S, Miyata K, Fukutomi H (1995) Characterization of [3H]YM060, a potent and selective 5-HT3 receptor radioligand, in the cerebral cortex of rats. Eur J Pharmacol 281:37–42

    Google Scholar 

  • Barnes JM, Barnes NM, Champaneria S, Costall B (1990) Characterization and autoradiographic localization of 5-HT3 receptor recognition sites identified with [3H]-(S)-zacopride in the forebrain of the rat. Neuropharmacol 29:1037–1045

    CAS  Google Scholar 

  • Barnes JM, Barnes NM, Costall B, Jagger SM, Naylor RJ, Robertson DW, Roe SY (1992) Agonist interactions with 5-HT3 receptor recognition sites in the rat entorhinal cortex labelled by structurally diverse radioligands. Br J Pharmacol 105:500–504

    PubMed  CAS  Google Scholar 

  • Barnes NM, Costall B, Naylor RJ (1988) [3H]Zacopride: Ligand for the identification of 5-HT3 recognition sites. J Pharm Pharmacol 40:548–551

    PubMed  CAS  Google Scholar 

  • Bonhaus DW, Loury DN, Jakeman LB, To Z, deSouza A, Eglen RM, Wong EHF (1993) [3H]BIMU-1, a 5-hydroxytryptamine3 receptor ligand in NG 108 cells, selectively labels sigma-2 binding sites in guinea pig hippocampus. J Pharmacol Exp Ther 267:961–970

    PubMed  CAS  Google Scholar 

  • Bönisch H, Barann M, Graupner J, Göthert M (1993) Characterization of 5-HT3 receptors of N1E-115 mouse neuroblastoma cells by the use of the influx of the organic cation [14C]-guanidinium. Br J Pharmacol 108:436–442

    PubMed  Google Scholar 

  • Butler A, Hill JM, Ireland SJ, Jordan CD, Tyres MB (1988) Pharmacological properties of GR38032F, a novel antagonist at 5-HT3 receptors. Br J Pharmacol 94:397–412

    PubMed  CAS  Google Scholar 

  • Costall B, Naylor RJ, Tyers MB (1988) Recent advances in the neuropharmacology of 5-HT3 agonists and antagonists. Rev Neuroscience 2:41–65

    CAS  Google Scholar 

  • Costall B, Naylor RT, Tyers MB (1990) The psychopharmacology of 5-HT3 receptors. Pharmac Ther 47:181–202

    CAS  Google Scholar 

  • Davies PA, Pistis M, Hanna MC, Peters JA, Lambert JJ, Hales TG, Kirkness EF (1999) The 5-HT3B subunit is a major determinant of serotonin receptor function. Nature 397:359–363

    PubMed  CAS  Google Scholar 

  • Dunn RW, Carlezon WA Jr., Corbett R (1991) Preclinical anxiolytic versus antipsychotic profiles of the 5-HT3 antagonists ondansetron, zacopride, 3α-tropanyl-1H-indole-3-carboxylic ester, and 1αH, 3αH, 5αH-tropan-3-yl-3,5-dihydrochlorobenzoate. Drug Dev Res 23:289–300

    CAS  Google Scholar 

  • Emerit MB, Riad M, Fattacini CM, Hamon M (1993) Characteristics of [14C]guanidium accumulation in NG 108-15 cells exposed to serotonin 5-HT3 receptor ligands and substance P. J Neurochem 60:2059–2067

    PubMed  CAS  Google Scholar 

  • Gehlert DR, Schober DA, Gackenheimer SL, Mais DE, Ladouceur G, Robertson DW (1993) Synthesis and evaluation of [125I]-(S)-iodozacopride, a high affinity radioligand for 5-HT3 receptors. Neurochem Int 23:373–383

    PubMed  CAS  Google Scholar 

  • Hewlett WA, Trivedi BL, Zhang ZJ, de Paulis T, Schmidt DE, Lovinger DM, Sib Ansari M, Ebert MH (1999) Characterization of (S)-des-4-amino-3-[125I]iodozacopride ([125I]DAIZAC), a selective high affinity ligand for 5-hydroxytryptamine3 receptors. J Pharm Exp Ther 288:221–231

    CAS  Google Scholar 

  • Hovius R, Schmid EL, Tairi AP, Blasey H, Bernard AR, Lundstrom K, Vogel H (1999) Fluorescence techniques for fundamental and applied studies of membrane protein receptors: The serotonin 5-HT3 receptor. J Recept Signal Transduction 19:533–545

    CAS  Google Scholar 

  • Hoyer D (1990) Serotonin 5-HT3, 5-HT4 and 5-HT-M receptors. Neuropsychopharmacol 3:371–383

    CAS  Google Scholar 

  • Hoyer D, Neijt HC (1988) Identification of serotonin 5-HT3 recognition sites in membranes of N1E-115 neuroblastoma cells by radioligand binding. Mol Pharmacol 33:303–309

    PubMed  CAS  Google Scholar 

  • Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PP (1994) VII. International Union of Pharmacology Classification of Receptors for 5-Hydroxytryptamine (Serotonin). Pharmacol Rev 46:157–203

    PubMed  CAS  Google Scholar 

  • Jansen FP, Wu TS, Voss HP, Steinbusch HWM, Vollinga RC, Rademaker B, Bast A, Timmerman H (1994) Characterization of the binding of the first selective radiolabelled histamine H3 receptor antagonist, [125I]iodophenpropit. Br J Pharmacol 113:355–362

    PubMed  CAS  Google Scholar 

  • Kilpatrick GJ, Jones BJ, Tyers MB (1987) Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature 330:746–748

    PubMed  CAS  Google Scholar 

  • Kilpatrick GJ, Jones BJ, Tyers MB (1989) Binding of the 5-HT3 ligand, [3H]-GR 65630, to rat area postrema, vagus nerve and the brains of several species. Eur J Pharmacol 159:157–164

    PubMed  CAS  Google Scholar 

  • Kilpatrick GJ, Bunce KT, Tyer MB (1990) 5-HT3 Receptors. Med Res Rev 10:441–475

    PubMed  CAS  Google Scholar 

  • Kooyman AR, Zwart R, Vanderheijden PML, van Hooft JA, Vijverberg HPM (1994) Interaction between enatiomers of mianserin and ORG3770 at 5-HT3 receptors in cultured mouse neuroblastoma cells. Neuropharmacol 33:501–507

    CAS  Google Scholar 

  • Leurs R, Vollinga RC, Timmerman H (1995) The medicinal chemistry and therapeutic potentials of ligands of the histamine H3 receptor. Progr Drug Res 45:107–165

    CAS  Google Scholar 

  • Leurs R, Blandina P, Tedford C, Timmerman H (1998) Therapeutic potentials of histamine H3 receptor agonists and antagonists. Trends Pharmacol Sci 19:177–183

    PubMed  CAS  Google Scholar 

  • Ligneau X, Garbag M, Vizueta ML, Diaz J, Purand K, Stark H, Schunack W, Schwartz JC (1994) [125I]Iodoproxyfan, a new antagonist to label and visualize cerebral histamine H3 receptors. J Pharmacol Exp Ther 271:452–459

    PubMed  CAS  Google Scholar 

  • Martin GR, Humphrey PPA (1994) Classification review. Receptors for 5-hydroxytryptamine: Current perspectives on classification and nomenclature. Neuropharmacol 33:261–273

    CAS  Google Scholar 

  • Mason NS, Hewlett WA, Ebert MH, Schmidt DE, de Paulis T (1996) Labeling of (S)-Des-4-amino-3-[125I]iodozacopride (DAIZAC), a high affinity radioligand for the 5-HT3 receptor. J Label Compd Radiopharm 38:955–961

    CAS  Google Scholar 

  • Miller K, Weisberg E, Fletcher PW, Teitler M (1992) Membrane bound and solubilized 5-HT3 receptors: Improved radioligand binding assays using bovine area postrema or rat cortex and the radioligands [3H]-GR 65630, [3H]-BRL43694, and [3H]-Ly278584. Synapse 11:58–66

    PubMed  CAS  Google Scholar 

  • Peroutka SJ (1988) 5-Hydroxytryptamine receptor subtypes: Molecular, biochemical and physiological characterization. Trends Neuroscience 11:496–500

    CAS  Google Scholar 

  • Peroutka SJ (1991) Serotonin receptor subtypes and neuropsychiatric diseases: Focus on 5-HT1D and 5-HT3 receptor agents. Pharmacol Rev 43:579–586

    PubMed  CAS  Google Scholar 

  • Perry DC (1990) Autoradiography of [3H]quipazine in rat brain. Eur J Pharmacol 187:75–85

    PubMed  CAS  Google Scholar 

  • Pinkus LM, Sarbin NS, Barefoot DS, Gordon JC (1989) Association of [3H]zacopride with 5-HT3 binding sites. Eur J Pharmacol 168:355–362

    PubMed  CAS  Google Scholar 

  • Reiser G, Hamprecht B (1989) Substance P and serotonin act synergistically to activate a cation permeability in a neuronal cell line. Brain Res 479:40–48

    PubMed  CAS  Google Scholar 

  • Robertson DW, Bloomquist W, Cohen ML, Reid LR, Schenk K, Wong DT (1990) Synthesis and biochemical evaluation of tritium-labeled 1-methyl-N-[8-methyl-8-azabicyclo[3.2.1]oct-3-yl)-1H-indazole-3-carboxamide, a useful radioligand for 5-HT3 receptors. J Med Chem 33:3176–3181

    PubMed  CAS  Google Scholar 

  • Saxena PR (1994) Modern 5-HT receptor classification and 5-HT based drugs. Exp Opin Invest Drugs 3:513–523

    CAS  Google Scholar 

  • Stark H, Schlicker E, Schunack W (1996) Development of histamine H3 receptor antagonists. Drugs Future 21:507–520

    CAS  Google Scholar 

  • Steward LJ, Ge J, Bentley KR, Barber PC, Hope FG, Lambert FJ, Peters JA, Blackburn TP, Barnes NM (1995) Evidence that the atypical 5-HT3 receptor ligand, [3H]-BRL46470, labels additional 5-HT3 binding sites compared to [3H]-granisetron. Br J Pharmacol 116:1781–1788

    PubMed  CAS  Google Scholar 

  • Tairi AP, Hovius R, Pick H, Blasey H, Bernard A, Surprenant A, Lundstrom K, Vogel H (1998) Ligand binding to the serotonin 5-HT3 receptor studied with a novel fluorescent ligand. Biochemistry 37:15850–15864

    PubMed  CAS  Google Scholar 

  • Watling KJ (1989) 5-HT3 Receptor agonists and antagonists. Neurotransmission 3:1–4

    Google Scholar 

  • Watling KJ, Aspley S, Swain CJ, Saunders J (1988) [3H]Quaternised ICS 205-930 labels 5-HT3 receptor binding sites in rat brain. Eur. J. Pharmacol. 149:397–39

    PubMed  CAS  Google Scholar 

References

  • Arrang JM, Garbarg M, Schwartz JC (1985) Autoregulation of histamine release in brain by presynaptic H3-receptors. Neurosci 15:533–562

    Google Scholar 

  • Arrang JM, Garbarg M, Lancelot JC, Lecomte JM, Pollard H, Robba M, Schunack W, Schwartz JC (1987) Highly potent and selective ligands for histamine H3-receptors. Nature 327:117–123

    PubMed  CAS  Google Scholar 

  • Arrang JM, Roy J, Morgat JL, Schunack W, Schwartz JC (1990) Histamine H3-receptor binding sites in rat brain membranes: modulation by guanine nucleotides and divalent cations. Eur J Pharmacol 188:219–227

    PubMed  CAS  Google Scholar 

  • Haaksma EEJ, Leurs R, Timmerman H (1990) Histamine receptors: subclasses and specific ligands. Pharmac Ther 47:73–104

    CAS  Google Scholar 

  • Hew KWS, Hodgkinson CR, Hill SJ (1990) Characterization of histamine H3-receptors in guinea-pig ileum with H3-selective ligands. Br J Pharmacol 101:621–624

    PubMed  CAS  Google Scholar 

  • Hill SJ (1990) Distribution, properties, and functional characteristics of three classes of histamine receptor. Pharmacol Rev 42:45–83

    PubMed  CAS  Google Scholar 

  • Hill SJ (1992) Histamine receptor agonists and antagonists. Neurotransmiss 8 (1):1–5

    Google Scholar 

  • Hill SJ, Ganellin CR, Timmerman H, Schwartz JC, Shankley NP, Young JM, Schunack W, Levi R, Haas HL (1997) International Union of Pharmacology. XIII. Classification of histamine receptors. Pharmacol Rev 49:253–278

    PubMed  CAS  Google Scholar 

  • Jansen FP, Rademaker B, Bast A, Timmerman H (1992) The first radiolabeled histamine H3 receptor antagonist, [125I]iodophenpropit: saturable and reversible binding to rat cortex membranes. Eur J Pharmacol 217:203–205

    PubMed  CAS  Google Scholar 

  • Korte A, Myers J, Shih NY, Egan RW, Clark MA (1990) Characterization and tissue distribution of H3 histamine receptors in guinea pigs by α-methylhistamine. Biochem Biophys Res Commun 168:979–986

    PubMed  CAS  Google Scholar 

  • Leurs R, van der Goot H, Timmerman H (1991) Histaminergic agonists and antagonists. Recent developments. Adv Drug Res 20:217–304

    CAS  Google Scholar 

  • Leurs R, Blandina P, Tedford C, Timmerman H (1998) Therapeutic potential of histamine H3 receptor agonists and antagonists. Trends Pharmacol Sci 19:177–183

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Schlicker E, Betz R, Göthert M (1988) Histamine H3-receptormediated inhibition of serotonin release in the rat brain cortex. Naunyn Schmiedeberg's Arch Pharmacol 337:588–590

    CAS  Google Scholar 

  • Timmerman H (1990) Histamine H3 ligands: just pharmacological tools or potential therapeutic agents? J Med Chem 33:4–11

    PubMed  CAS  Google Scholar 

  • Van der Goot H, Schepers MJP, Sterk GJ, Timmerman H (1992) Isothiourea analogues of histamine as potent agonists or antagonists of the histamine H3-receptor. Eur J Med Chem 27:511–517

    Google Scholar 

  • Van der Werf JF, Timmerman H (1989) The histamine H3 receptor: a general presynaptic regulatory system? Trends Pharmacol Sci 10:159–162

    PubMed  Google Scholar 

  • West RE Jr., Zweig A, Shih NY, Siegel MI, Egan RW, Clark MA (1990) Identification of two H3-histamine receptor subtypes. Mol Pharmacol 38:610–613

    PubMed  CAS  Google Scholar 

References

  • Bastian JW, Krause WE, Ridlon SA, Ercoli N (1959) CNS drug specificity as determined by the mouse intravenous pentylenetetrazole technique. J Pharmacol Exp Ther 127:75–80

    PubMed  CAS  Google Scholar 

  • Domino EF (1964) Centrally acting skeletal muscle relaxants. In: Laurence DR, Bacharach AL (eds) Evaluation of Drug Activities: Pharmacometrics. Academic Press, London and New York, pp 313–324

    Google Scholar 

  • Lippa AS, Priscilla A, Nash, BA, Greenblatt EN (1979) Pre-clinical neuro-psychopharmacological testing procedures for anxiolytic drugs. In: Fielding St, Lal H (eds) Anxiolytics, Futura Publishing Comp. Inc., New York, pp 41–81

    Google Scholar 

  • Löscher W, Hönack D, Fassbender CP, Nolting B (1991) The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. III. Pentylentetrazole seizure models. Epilepsy Res 8:171–189

    PubMed  Google Scholar 

  • Starzl TE, Niemer WT, Dell M, Forgrave PR (1953) Cortical and subcortical electrical activity in experimental seizures induced by Metrazol. J Neuropath Exp Neurol 12:262–276

    PubMed  CAS  Google Scholar 

References

  • Bigler ED (1977) Comparison of effects of bicuculline, strychnine, and picrotoxin with those of pentylenetetrazol on photically evoked afterdischarges. Epilepsia 18:465–470

    PubMed  CAS  Google Scholar 

  • Costa E, Guidotti A, Mao CC (1975) New concepts in the mechanism of action of benzodiazepines. Life Sci. 17:167–186

    PubMed  CAS  Google Scholar 

  • Lambert DM, Poupaert JH, Maloteaux JM, Dumont P (1994) Anticonvulsant activities of N-benzyloxycarbonylglycine after parenteral administration. Neuro Report 5:777–780

    CAS  Google Scholar 

  • McAllister KH (1992) N-Methyl-D-aspartate receptor antagonists and channel blockers have different effects upon a spinal seizure model in mice. Eur J Pharmacol 211:105–108

    PubMed  CAS  Google Scholar 

References

  • Buckett WR (1981) Intravenous bicuculline test in mice: Characterisation with Gabaergic drugs. J Pharmacol Meth 5:35–41

    CAS  Google Scholar 

  • Costa E, Guidotti A, Mao CC, Suria A (1975) New concepts in the mechanism of action of benzodiazepines. Life Sci 17:167–186

    PubMed  CAS  Google Scholar 

  • Enna SJ, Möhler H (1987) γ-aminobutyric acid (GABA) receptors and their association with benzodiazepine recognition sites. In: Meltzer HY (ed) Psychopharmacology: The Third Generation of Progress. Raven Press New York, pp 265–272

    Google Scholar 

  • Usunoff G, Atsev E, Tchavdarov D (1969) On the mechanisms of picrotoxin epileptic seizure (macro-and micro-electrode investigations). Electroencephalogr Clin Neurophysiol 27:444

    PubMed  CAS  Google Scholar 

References

  • Costa E, Guidotti A, Mao CC (1975) Evidence for involvement of GABA in the action of benzodiazepines: Studies on rat cerebellum. In: Costa E, Greengard P (eds) Mechanisms of Action of Benzodiazepines. Advances in Biochemical Psychopharmacology, Vol 14. Raven Press, New York, pp 113–151

    Google Scholar 

References

  • Litchfield J, Wilcoxon F (1949) A simplified method of evaluating dose effect experiments. J Pharmacol Exp Ther 96:99–113

    PubMed  CAS  Google Scholar 

  • Dunn R, Fielding S (1987) Yohimbine-induced seizures in mice: A model predictive of potential anxiolytic and GABA-mimetic agents. Drug Dev Res 10:177–188

    CAS  Google Scholar 

  • Dunn RW, Corbett R (1992) Yohimbine-induced convulsions involve NMDA and GABAergic transmission. Neuropharmacol 31:389–395

    CAS  Google Scholar 

  • Dunn RW, Corbett R, Martin LL, Payack JF, Laws-Ricker L, Wilmot CA, Rush DK, Cornfeldt ML, Fielding S (1990) Preclinical anxiolytic profiles of 7189 and 8319, novel non-competitive NMDA antagonists. Current and Future Trends in Anticonvulsant, Anxiety, and Stroke Therapy, Wiley-Liss, Inc., pp 495–512

    Google Scholar 

References

  • Brady JV, Nauta WJH (1953) Subcortical mechanisms in emotional behavior: Affective changes following septal forebrain lesions in the albino rat. J Comp Physiol Psychol 46:339–346

    PubMed  CAS  Google Scholar 

  • Blanchard RJ, Blanchard DC (1977) Aggressive behavior in the rat. Behav Biol 21:197–224

    PubMed  CAS  Google Scholar 

  • Chen G, Bohner B, Bratten AC (1963) The influence of certain central depressants on fighting behavior of mice. Arch Int Pharmacodyn 142:30–34

    PubMed  CAS  Google Scholar 

  • Heise GA, Boff E (1961) Taming action of chlordiazepoxide. Fed Proc 20:393–397

    Google Scholar 

  • Irwin S, Kinohi R, Van Sloten M, Workman MP (1971) Drug effects on distress-evoked behavior in mice: Methodology and drug class comparisons. Psychopharmacologia (Berl.) 20:172–185

    PubMed  CAS  Google Scholar 

  • Kruk MR, van der Poel AM, de Vos-Frerichs TP (1979) The induction of aggressive behaviour by electrical stimulation in the hypothalamus of male rats. Behaviour 70:292–322

    PubMed  CAS  Google Scholar 

  • Mos J, Olivier B (1991) Concepts in animal models for pathological aggressive behaviour in humans. In: Olivier B, Mos J, Slangen JL (eds) Animal Models in Psychopharmacology. Advances in Pharmacological Sciences. Birkhäuser Verlag, Basel, pp 297–316

    Google Scholar 

  • Randall LO, Heise GA, Schalleck W, Bagdon RE, Banziger R, Boris A, Moe A, Abrams WB (1961) Pharmacological and clinical studies on Valium(T.M.). A new psychotherapeutic agent of the benzodiazepine class. Current Ther Res 9:405–425

    Google Scholar 

  • Rudzik AD, Hester JB, Tang AH, Straw RN, Friis W (1973) Triazolobenzazepines, a new class of central nervous system-depressant compounds. In: Garattini S, Mussini E, Randall LO (eds) The Benzodiazepines, Raven Press New York, pp 285–297

    Google Scholar 

  • Tedeschi RE, Tedeschi DH, Mucha A, Cook L, Mattis PA, Fellows EJ (1959) Effects of various centrally acting drugs on fighting behavior of mice. J Pharmacol Exp Ther 125:28–34

    PubMed  CAS  Google Scholar 

  • Tedeschi DH, Fowler PJ, Miller RB, Macko E (1969) Pharmacological analysis of footshock-induced fighting behaviour. In: Garattini S, Sigg EB (eds) Aggressive behaviour. Excerpta Medica Foundation Amsterdam, pp 245–252

    Google Scholar 

  • Ulrich R, Symannek B (1969) Pain as a stimulus for aggression In: Garattini S, Sigg EB (eds) Aggressive behaviour. Excerpta Medica Foundation Amsterdam, pp 59–69

    Google Scholar 

References

  • Anrade ML, Benton D, Brain PF, Ramirez JM, Walmsley SV (1988) A reexamination of the hypoglycemia-aggression hypothesis in laboratory mice. Intern J Neuroscience 41:179–186

    Google Scholar 

  • Caharperntier J (1969) Analysis and measurement of aggressive behaviour in mice. In: Garattini S, Sigg EB (eds) Aggressive Behaviour. Excerpta Medica Foundation, Amsterdam, pp 86–100

    Google Scholar 

  • Davbanzo JP (1969) Observations related to drug-induced alterations in aggressive behaviour. In: Garattini S, Sigg EB (eds) Aggressive Behaviour. Excerpta Medica Foundation, Amsterdam, pp 263–272

    Google Scholar 

  • Francès H (1988) New animal model of social behavioral deficit: Reversal by drugs. Pharmacol Biochem Behav 29:467–470

    PubMed  Google Scholar 

  • Francès H, Monier C (1991) Tolerance to the behavioural effect of serotonergic (5-HT1B) agonists in the isolation-induced social behavioural deficit test. Neuropharmacol 30:623–627

    Google Scholar 

  • Francès H, Khidichian F, Monier C (1990) Increase in the isolation-induced social behavioural deficit by agonists at 5-HT1A receptors. Neuropharmacol 29:103–107

    Google Scholar 

  • Hoffmeister F, Wuttke W (1969) On the actions of psychotropic drugs on the attack-and aggressive-defensive behaviour of mice and cats. In: Garattini S, Sigg EB (eds) Aggressive Behaviour. Excerpta Medica Foundation, Amsterdam, pp 273–280

    Google Scholar 

  • Krsiak M (1974) Behavioral changes and aggressivity evoked by drugs in mice. Res Commun Chem Pathol Pharmacol 7:237–257

    PubMed  CAS  Google Scholar 

  • Krsiak M (1975) Timid singly-house mice: their value in prediction of psychotropic activity of drugs. Br J Pharmacol 55:141–150

    PubMed  CAS  Google Scholar 

  • Krsiak M (1979) Effects of drugs on behaviour of aggressive mice. Br J Pharmacol 65:525–533

    PubMed  CAS  Google Scholar 

  • Krsiak M, Janku I (1969) The development of aggressive behaviour in mice by isolation. In: Garattini S, Sigg EB (eds) Aggressive behaviour. Excerpta Medica Foundation, Amsterdam pp 101–105

    Google Scholar 

  • Lagerspetz KMJ (1969) Aggression and aggressiveness in laboratory mice. In: Garattini S, Sigg EB (eds) Aggressive Behaviour. Excerpta Medica Foundation, Amsterdam, pp 77–85

    Google Scholar 

  • Le Douarec JC, Broussy L (1969) Dissociation of the aggressive behaviour in mice produced by certain drugs. In: Garattini S, Sigg EB (eds) Aggressive Behaviour. Excerpta Medica Foundation, Amsterdam, pp 281–295

    Google Scholar 

  • McMillen BA, Scott SM, Williams HL, Sanghera MK (1987) Effects of gespirone, an aryl-piperazine anxiolytic drug, on aggressive behavior and brain monoaminergic neurotrans-mission. Naunyn Schmiedeberg's Arch Pharmacol 335:454–464

    CAS  Google Scholar 

  • McMillen BA, Wooten MH, King SW, Scott SM, Williams HL (1992) Interaction between subchronic administration of alprazolam and aryl-piperazine anxiolytic drugs in aggressive mice. Biogenic Amines 9:131–140

    CAS  Google Scholar 

  • Oliver B, Mos J (1992) Rodent models of aggressive behavior and serotonergic drugs. Progr Neuro-Psychopharm Biol Psychiat 16:847–870

    Google Scholar 

  • Olivier B, van Dalen D (1982) Social behaviour in rats and mice: an ethologically based model for differentiating psychoactive drugs. Aggress Behav 8:163–168

    CAS  Google Scholar 

  • Sánchez C, Arnt J, Moltzen EK (1996) The antiaggressive potency of (−)-penbutolol involves both 5-HT1A and 5-HT1B receptors and β-adrenoceptors. Eur J Pharmacol 297:1–8

    PubMed  Google Scholar 

  • Scriabine A, Blake M (1962) Evaluation of centrally acting drugs in mice with fighting behavior induced by isolation. Psychopharmacologia 3:224–226

    CAS  Google Scholar 

  • Valzelli L (1967) Drugs and aggressiveness. In: Garratini S, Shore PA (eds) Advances in Pharmacology, Vol. 5, pp 79–108, Academic Press, New York

    Google Scholar 

  • Valzelli L (1969) Aggressive behaviour induced by isolation. In: Garattini S, Sigg EB (eds) Aggressive Behaviour. Excerpta Medica Foundation, Amsterdam, pp 70–76

    Google Scholar 

  • White SM, Kucharik RF, Moyer JA (1991) Effects of serotoninergic agents on isolation-induced aggression. Pharmacol Biochem Behav 39:729–736

    PubMed  CAS  Google Scholar 

  • Yen CY, Stanger RL, Millman N (1959) Ataractic suppression of isolation-induced aggressive behavior. Arch Int Pharmacodyn 123:179–185

    PubMed  CAS  Google Scholar 

References

  • Brain PF, Howell PA, Benton D, Jones SE (1979) Studies on responses by “residents” rats housed in different ways to intruders of differing endocrine status. J Endocrinol 81:135–136

    Google Scholar 

  • Flannelly K, Lore R (1975) Dominace-subordinance in cohabitating pairs of adult rats: Effects on aggressive behavior. Aggress Behav 1:331–340

    Google Scholar 

  • Mos J, Olivier B, Poth M, van Aken H (1992) The effects of intraventricular administration of eltoprazine, 1-(3-trifluoromethylphenyl)piperazine hydrochloride and 8-hydroxy-2-(di-n-propylamino)tetralin on resident intruder aggression in the rat. Eur J Pharmacol 212:295–298

    PubMed  CAS  Google Scholar 

  • Muehlenkamp F, Lucion A, Vogel WH (1995) Effects of selective serotonergic agonists on aggressive behavior in rats. Pharmacol Biochem Behav 50:671–674

    PubMed  CAS  Google Scholar 

  • Sijbesma H, Schipper J, de Kloet ER, Mos J, van Aken H, Olivier B (1991) Postsynaptic 5-HT1 receptors and offensive aggression in rats: A combined behavioural and autoradiographic study with eltoprazine. Pharmacol Biochem Behav 38:447–458

    PubMed  CAS  Google Scholar 

References

  • Baenninger LP (1970) Social dominance orders in the rat: “Spontaneous” food and water competition. J Physiol Psychol 71:202–209

    Google Scholar 

  • Muehlenkamp F, Lucion A, Vogel WH (1995) Effects of selective serotonergic agonists on aggressive behavior in rats. Pharmacol Biochem Behav 50:671–674

    PubMed  CAS  Google Scholar 

  • Syme GJ (1974) Competitive orders a measures of social dominance. Anim Behav 22:931–940

    Google Scholar 

References

  • Kruk MR, Zethof T (1987) Postpartum aggression in rats does not influence threshold currents for EBS-induced aggression. Brain Res 404:263–266.

    PubMed  Google Scholar 

  • Mos J, Olivier B, Van Oorschot R (1984) Different test situations for measuring offensive aggression in male rats do not result in the same wound pattern. Physiol Behav 32:453–456

    PubMed  CAS  Google Scholar 

  • Mos J, Olivier B, Lammers JHCM, van der Poel AM, Kruk MR, Zethof T (1987a) Postpartum aggression in rats does not influence threshold currents for EBS-induced aggression. Brain Res 404:263–266

    PubMed  CAS  Google Scholar 

  • Mos J, Olivier B, van Oorschot R (1987b) Maternal aggression towards different sized male opponents: effect of chlordiazepoxide treatment of the mothers and d-amphetamine treatment of the intruders. Pharmacol Biochem Behav 26:577–584

    PubMed  CAS  Google Scholar 

  • Mos J, Olivier B, van Oorschot R, van Aken H, Zethof T (1989) Experimental and ethological aspect of maternal aggression in rats: five years of observations. In: Blanchard RJ, Brain PF, Blanchard DC, Parmigiani S (eds) Ethoexperimental Approaches to the Study of Behavior. Kluver Acad Publ, Dordrecht, Boston, London, pp 385–398

    Google Scholar 

  • Mos J, Olivier B, van Oorschot R (1990) Behavioural and neuropharmacological aspects of maternal aggression in rodents. Aggress Behav 16:145–163

    CAS  Google Scholar 

  • Olivier B (1981) Selective antiaggressive properties of DU27725: ethological analysis of intermale and territorial aggression in the male rat. Pharmacol Biochem Behav 14, Suppl 1:61–77

    PubMed  CAS  Google Scholar 

  • Olivier B, Mos J (1986) A female aggression paradigm for use in psychopharmacology: maternal agonistic behavior in rats. In: Brain PF, Ramirez JM (eds) Cross-Disciplinary Studies on Aggression. University of Seville Press, Seville, pp 73–111

    Google Scholar 

  • Olivier B, Mos J (1992) Rodent models of aggressive behavior and serotonergic drugs. Progr Neuro-Psychopharm Biol Psychiat 16:847–870

    CAS  Google Scholar 

  • Olivier B, Mos J, van Oorschot R (1985) Maternal aggression in rats: effects of chlordiazepoxide and fluprazine. Psychopharmacology 86:68–76

    PubMed  CAS  Google Scholar 

  • Olivier B, Rasmussen D, Raghoebar M, Mos J (1990) Ethopharmacology: A creative approach to identification and characterization of novel psychotropics. Drug Metabol Drug Interact 8:11–29

    PubMed  CAS  Google Scholar 

  • Olivier B, Mos J, van Oorschot R, Hen R (1995) Serotonin receptors and animal models of aggressive behavior. Pharmacopsychiat 28, Suppl.: 80–90

    Google Scholar 

  • Palanza P, Rodgers RJ, Ferrari PF, Parmigiani S (1996) Effects of chlordiazepoxide on maternal aggression in mice depend on experience of resident and sex of intruder. Pharmacol Biochem Behav 54:175–182

    PubMed  CAS  Google Scholar 

References

  • Glusman M (1974) The hypothalamic 'savage’ syndrome. Res Publ Ass Nerv Ment Dis 52:52–92

    CAS  Google Scholar 

  • Malick JB (1970) Effects of selected drugs on stimulus-bound emotional behaviour elicited by hypothalamic stimulation in the cat. Arch Int Pharmacodyn Ther 186:137–141

    PubMed  CAS  Google Scholar 

  • Murasaki M, Hara T, Oguchi T, Inami M, Ikeda Y (1976) Action of enpiprazole on emotional behaviour induced by hypothalamic stimulation in rats and cats. Psychopharmacologia 49:271–274

    CAS  Google Scholar 

  • Pieri L (1983) Preclinical pharmacology of midazolam. Br J Clin Pharmacol 16:17S–27S

    PubMed  Google Scholar 

  • Siegel A, Schubert K (1995) Neurotransmitters regulating feline aggression. Rev Neurosci 6:47–61

    PubMed  CAS  Google Scholar 

  • Siegel A, Shaikh MB (1997) The neural bases of aggression and rage in the cat. Aggression Violent Behav 1:241–271

    Google Scholar 

  • Siegel A, Schubert K, Shaikh MB (1997) Neurotransmitters regulating defensive rage behavior in the cat. Neurosci Biobeh Rev 21:733–742

    CAS  Google Scholar 

  • Siegel A, Schubert KL, Shaikh MB (1998) Neurotransmitters regulating defensive rage behavior in the cat. Neurosci Biobehav Rev 21:733–742

    Google Scholar 

  • Siegel A, Roeling TAP, Gregg TR, Kruk MR (1999) Neuropharmacology of brain-stimulation-evoked aggression. Neurosci Biobehav Rev 23:359–389

    PubMed  CAS  Google Scholar 

References

  • Barnes NM, Costall B, Domeney AM, Gerrard PA, Kelly ME, Krähling H, Naylor RJ, Tomkins DM, Williams TJ (1991) The effects of umespirone as a potential anxiolytic and antipsychotic agent. Pharmacol Biochem Behav 40:89–96

    PubMed  CAS  Google Scholar 

  • Barnes NM, Cheng CHK, Costall B, Ge J, Kelly ME, Naylor RJ (1992a) Profiles of R(+)/S(−)-Zacopride and anxiolytic agents in a mouse model. Eur J Pharmacol 218:91–100

    PubMed  CAS  Google Scholar 

  • Barnes NM, Costal B, Ge J, Kelly ME, Naylor RJ (1992b) The interaction of R(+)-and S(−)-azcopride with PCPA to modify rodent aversive behavior. Eur J Pharmacol 218:15–25

    PubMed  CAS  Google Scholar 

  • Blumstein LK, Crawley JN (1983) Further characterisation of a simple, automated exploratory model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 18:37–40

    PubMed  CAS  Google Scholar 

  • Broekkamp CLE, Berendsen HHG, Jenk F, van Delft AML (1989) Animal models for anxiety and response to serotonergic drugs. Psychopathology 22(Suppl 1):2–12

    PubMed  Google Scholar 

  • Costall B, Hendrie CA, Kelly ME, Naylor RJ (1987) Actions of sulpiride and tiapride in a simple model of anxiety in mice. Neuropharmacol 26:195–200

    CAS  Google Scholar 

  • Costall B, Kelley ME, Naylor RJ, Onaivi ES (1988) Actions of buspirone in a putative model of anxiety in the mouse. J Pharm Pharmacol 40:494–500

    PubMed  CAS  Google Scholar 

  • Costall B, Jones BJ, Kelly ME, Naylor RJ, Tomkins DM (1989) Exploration of mice in a black and white test box: validation as a model of anxiety. Pharmacol Biochem Behav 32:777–785

    PubMed  CAS  Google Scholar 

  • Crawley JN (1981) Neuropharmacologic specificity of a simple animal model for the behavioral actions of benzodiazepines. Pharmacol Biochem Behav 15:695–699

    PubMed  CAS  Google Scholar 

  • Crawley J, Goodwin KK (1980) Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 13:167–170

    PubMed  CAS  Google Scholar 

  • Griebel G (1995) 5-Hydroxytryptamine-interacting drugs in animal models of anxiety disorders: more than 30 years research. Pharmac Ther 65:319–395

    CAS  Google Scholar 

  • Kilfoil T, Michel A, Montgomery D, Whithing RL (1989) Effects of anxiolytic and anxiogenic drugs on exploratory activity in a simple model of anxiety in mice. Neuropharmacol 28:901–905

    CAS  Google Scholar 

  • Kauppila T, Tanila H, Carlson S, Taira T (1991) Effects of atipamezole, a novel α 2-adrenoreceptor antagonist, in openfield, plus-maze, two compartment exploratory, and forced swimming tests in rats. Eur J Pharmacol 205:177–182

    PubMed  CAS  Google Scholar 

  • Manser CE, Elliott H, Morriss TH, Broom DM (1996) The use of a novel operant test to determine the strength of preference for flooring in laboratory rats. Labor Animals 30:1–6

    CAS  Google Scholar 

  • Sanchez C (1995) Serotonergic mechanisms involved in the exploratory behaviour of mice in a fully automated two-compartment black and white test box. Pharmacol Toxicol 77:71–78

    PubMed  CAS  Google Scholar 

  • Schipper J, Tulp MThM, Berkelmans B, Mos J, Van der Heijden JAM, Olivier B (1991) Preclinical pharmacology of Flesinoxan: A potential anxiolytic and antidepressant drug. Human Psychopharmacol 6:53–61

    Google Scholar 

  • Treit D (1985) Animal models for the study of anti-anxiety agents: A review. Neurosci Biobehav Reviews 9:203–222

    CAS  Google Scholar 

References

  • Borsini F, Lecci A, Volterra G, Meli A (1989) A model to measure anticipatory anxiety in mice? Psychopharmacology 98:207–211

    PubMed  CAS  Google Scholar 

  • Lecci A, Borsini F, Mancinelli A, D'Aranno V, Stasi MA, Volterra G, Meli A (1990a) Effects of serotoninergic drugs on stress-induced hyperthermia (SIH) in mice. J Neur Transmiss 82:219–230

    CAS  Google Scholar 

  • Lecci A, Borsini F, Volterra G, Meli A (1990b) Pharmacological validation of a novel animal model of anticipatory anxiety in mice. Psychopharmacology 101:255–261

    PubMed  CAS  Google Scholar 

  • Tulp M, Olivier B, Schipper J, van der Pel G, Mos J, van der Heyden J (1991) Serotonin reuptake blockers: Is there preclinical evidence for their efficacy in obsessive-compulsive disorder? Human Psychopharmacol 6:S63–S71

    CAS  Google Scholar 

  • Van der Heyden JASM, Zethof TKK, Olivier B (1997) Stress-induced hyperthermia in singly housed mice. Physiol Behav 62:463–470

    PubMed  Google Scholar 

  • Zelthof TJJ, van der Heyden JAM, Olivier B (1991) A new animal model for anticipatory anxiety? In: Olivier B, Mos J, Slangen JL (eds) Animal Models in Psychopharmacology. Advances in Pharmacological Sciences. Birkhäuser Verlag, Basel, pp 65–68

    Google Scholar 

  • Zelthof TJJ, van der Heyden JAM, Tolboom JTBM, Olivier B (1995) Stress-induced hyperthermia as a putative anxiety model. Eur J Pharmacol 294:125–135

    Google Scholar 

References

  • Angelis L, File SE (1979) Acute and chronic effects of three benzodiazepines in the social interaction test in mice. Psychopharmacology (Berlin) 64:127–129

    PubMed  Google Scholar 

  • Barnes NM, Costall B, Domeney AM, Gerrard PA, Kelly ME, Krähling H, Naylor RJ, Tomkins DM, Williams TJ (1991) The effects of umespirone as a potential anxiolytic and antipsychotic agent. Pharmacol Biochem Behav 40:89–96

    PubMed  CAS  Google Scholar 

  • Blackburn TP, Baxter GS, Kennett GA, King FD, Piper DC, Sanger GJ, Thomas DR, Upton N, Wood MD (1993) BRL 46470A: A highly potent, selective and long acting 5-HT3 receptor antagonist with anxiolytic-like properties. Psychopharmacology 110:257–264

    PubMed  CAS  Google Scholar 

  • Carlsson M, Carlsson A (1990) Interactions between glutaminergic and monoaminergic systems within the basal ganglia: implications for schizophrenia and Parkinson's disease. Trends Neural Sci 13:272–276

    CAS  Google Scholar 

  • Corbett R, Dunn RW (1991) Effects of HA-966 on conflict, social interaction, and plus maze behaviors. Drug Dev Res 24:201–205

    CAS  Google Scholar 

  • Corbett R, Fielding S, Cornfeldt M, Dunn RW (1991) GABAmimetic agents display anxiolytic-like effects in the social interaction and elevated plus maze procedures. Psychopharmacology 104:312–316

    PubMed  CAS  Google Scholar 

  • Corbett R, Hartman H, Kerman LL, Woods AT, Strupczewski JT, Helsley GC, Conway PC, Dunn RW (1993) Effects of atypical antipsychotic agents on social behavior in rodents. Pharmacol Biochem Behav 45:9–17

    PubMed  CAS  Google Scholar 

  • Corbett R, Camacho F, Woods AT, Kerman LL, Fishkin RJ, Brooks K, Dunn RW (1995) Antipsychotic agents antagonize non-competitive N-methyl-D-aspartate antagonist-induced behaviors. Psychopharmacology 120:67–74

    PubMed  CAS  Google Scholar 

  • Costall B, Naylor RJ (1992) Anxiolytic potential of 5-HT3 receptor antagonists. Pharmacol Toxicol 70:157–162

    PubMed  CAS  Google Scholar 

  • Costall B, Naylor RJ (1995) Behavioural interactions between 5-hydroxytryptophan, neuroleptic agents and 5-HT receptor antagonists in modifying rodent response to adverse situations. Br J Pharmacol 116:2989–2999

    PubMed  CAS  Google Scholar 

  • Costall B, Kelly ME, Onaivi ES, Naylor RJ (1990) The effect of ketotifen in rodent models of anxiety and on the behavioural consequences of withdrawing from treatment with drugs of abuse. Naunyn-Schmiederg's Arch Pharmacol 341:547–551

    CAS  Google Scholar 

  • Costall B, Domeney AM, Hughes J, Kelly ME, Naylor RJ, Woodruff GN (1991) Anxiolytic effects of CCKB antagonists. Neuropeptides 19/Suppl:65–73

    PubMed  CAS  Google Scholar 

  • Dunn RW, Corbett R, Martin LL, Payack JF, Laws-Ricker L, Wilmot CA, Rush DK, Cornfeldt ML, Fielding S (1990) Preclinical anxiolytic profiles of 7189 and 8319, novel non-competitive NMDA antagonists. Current and Future Trends in Anticonvulsant, Anxiety, and Stroke Therapy, Wiley-Liss, Inc., pp 495–512

    Google Scholar 

  • File SE (1980) The use of social interactions as a method for detecting anxiolytic activity of chloridazepoxide-like drugs. J Neurosci Meth 1:219–238

    Google Scholar 

  • File SE, Hyde RJ (1979) A test of anxiety that distinguishes between the actions of benzodiazepines and those of other minor tranquilizers and stimulants. Pharmacol Biochem Behav 11:65–69

    PubMed  CAS  Google Scholar 

  • File SE, Johnston AL (1989) Lack of effects of 5-HT3 receptor antagonists in the social interaction and elevated plus-maze tests in the rat. Psychopharmacology 99:248–251

    PubMed  CAS  Google Scholar 

  • Gardner C, Guy A (1984) A social interaction model of anxiety sensitive to acutely administered benzodiazepines. Drug Dev Res 4:207–216

    Google Scholar 

  • Gheusi G, Bluthe RM, Goodall G, Dantzer R (1994) Ethological study of the effects of tetrahydroaminoacridine (THA) on social recognition in rats. Psychopharmacology 114:644–650

    PubMed  CAS  Google Scholar 

  • Hughes J, Boden P, Costall B, Domeney A, Kelly E, Horwell DC, Hunter JC, Pinnock RD, Woodruff GN (1990) Development of a class of selective cholecystokinin type B receptor antagonists having a potent anxiolytic activity. Proc Natl Acad Sci USA 87:6728–6732

    PubMed  CAS  Google Scholar 

  • Kennett GA (1992) 5-HT1C Receptors antagonists have anxiolytic-like actions in the rat social interaction model. Psychopharmacology 107:379–384

    PubMed  CAS  Google Scholar 

  • Kennett GA, Whitton P, Shah K, Curzon G (1989) Anxiogenic-like effects of mCPP and TFMPP in animal models are opposed by 5-HT1C receptor antagonists. Eur J Pharmacol 164:445–454

    PubMed  CAS  Google Scholar 

  • Kennett GA, Wood MD, Glen A, Grewal S, Forbes I, Gadre A, Blackburn TP (1994) In vivo properties of SB 200646A, a 5-HT2C/2B receptor antagonist. Br J Pharmacol 111:797–802

    PubMed  CAS  Google Scholar 

  • Kennett GA, Bailey F, Piper DC, Blackburn TP (1995) Effect of SB 200646A, a 5-HT2C/5-HT2B receptor antagonist, in two conflict models of anxiety. Psychopharmacology 118:178–182

    PubMed  CAS  Google Scholar 

  • Kennett GA, Bright F, Trail B, Baxter GS, Blackburn TP (1996a) Effects of the 5-HT2B receptor antagonist, BW 723C86, on three rat models of anxiety. Br J Pharmacol 117:1443–1448

    PubMed  CAS  Google Scholar 

  • Kennett GA, Wood MD, Bright F, Cilia J, Piper DC, Gager T, Thomas D, Baxter GS, Forbes IT, Ham P, Blackburn TP (1996b) In vitro and in vivo profile of SE 206553, a potent 5-HT2C/5-HT2B receptor antagonist with anxiolytic-like properties. Br J Pharmacol 117:427–434

    PubMed  CAS  Google Scholar 

  • Kennett GA, Wood MD, Bright F, Trail B, Riley G, Holland V, Avenell KY, Stean TT, Upton N, Bromidge S, Forbes IT, Brown AM, Middlemiss DN, Blackburn TP (1997a) SE 242084, a selective and brain penetrant 5-HT2C receptor antagonist. Neuropharmacol 36:609–620

    CAS  Google Scholar 

  • Kennett GA, Bright F, Trail B, Blackburn TP, Sanger GJ (1997b) Anxiolytic-like actions of the 5-HT4 receptor antagonists SB 204070A and SB 207266A in rats. Neuropharmacol 36:707–712

    CAS  Google Scholar 

  • Sams-Dodd F (1995) Automation of the social interaction test by a video-tracking system: behavioural effects of repeated phencyclidine treatment. J Neurosci Meth 59:157–167

    CAS  Google Scholar 

  • Sams-Dodd F (1997) Effect of novel antipsychotic drugs on phencyclidine-induced stereotyped behaviour and social isolation in the rat social interaction test. Behav Pharmacol 8:196–215

    PubMed  CAS  Google Scholar 

  • Singh L, Field MJ, Hughes J, Menzies R, Oles RJ, Vass CA, Woodruff GN (191) The behavioural properties of CI-998, a selective cholecystokininB receptor antagonist. Br J Pharmacol 104:239–245

    Google Scholar 

  • Szewczak MR, Cornfeldt, ML, Dunn RW, Wilker JC, Geyer HM, Glamkowski EJ, Chiang Y, Fielding S (1987) Pharmacological evaluation of HP 370, a potential atypical antipsychotic agent. 1. In vivo profile. Drug Dev Res 11:157–168

    CAS  Google Scholar 

  • Treit D (1985) Animal models for the study of anti-anxiety agents: A review. Neurosci Biobehav Reviews 9:203–222

    CAS  Google Scholar 

  • Volke V, Soosaar A, Koks S, Bourin M, Mannisto PT, Vasar E (1997) 7-Nitroindazole, a nitric oxide synthase inhibitor, has anxiolytic-like properties in exploratory models of anxiety. Psychopharmacology 131:399–405

    PubMed  CAS  Google Scholar 

  • Winslow JT, Camacho F (1995) Cholinergic modulation of a decrement in social investigation following repeated contacts between mice. Psychopharmacology 121:164–172

    PubMed  CAS  Google Scholar 

  • Wonwitdecha N, Marsden CA (1996) Social isolation increases aggressive behaviour and alters the effects of diazepam in the rat social interaction test. Behav Brain Res 75:27–32

    Google Scholar 

  • Woodall KL, Domeney AM, Kelly ME (1996) Selective effects of 8-OH-DPAT on social competition in the rat. Pharmacol Biochem Behav 54:169–173

    PubMed  CAS  Google Scholar 

References

  • Brett RR, Pratt JA (1990) Chronic handling modifies the anxiolytic effect of diazepam in the elevated plus-maze. Eur J Pharmacol 178:135–138

    PubMed  CAS  Google Scholar 

  • Corbett R, Fielding St, Cornfeldt M, Dunn RW (1991) GABAmimetic agents display anxiolytic-like effects in the social interaction and elevated plus maze procedures. Psychopharmacology 104:312–316

    PubMed  CAS  Google Scholar 

  • Danks AM, Oestreicher AB, Spruijt Gispen WH, Isaakson RL (1991) Behavioral and anatomical consequences of unilateral fornix lesions and the administration of nimodipine. Brain Res 557:308–312

    PubMed  CAS  Google Scholar 

  • Di Cicco D, Antal S, Ammassari-Teule M (1991) Prenatal exposure to gamma/neutron irradiation: sensorimotor alterations and paradoxical effects on learning. Teratology 43:61–70

    PubMed  Google Scholar 

  • Dunn RW, Carlezon WA, Corbett R (1991) Preclinical anxiolytic versus antipsychotic profiles of the 5-HT3 antagonists ondansetron, zacopride, 3α-tropanyl-1H-indole-3-carboxylic acid ester, and 1αH, 3α, 5αH-Tropan-3-yl-3,5-dichlorobenzoate. Drug Dev Res 23:289–300

    CAS  Google Scholar 

  • File SE, Mabbutt PS, Hitchcott, PH (1990) Characterisation of the phenomenon of “one-trial tolerance” to the anxiolytic effect of chlordiazepoxide in the elevated plus-maze. Psychopharmacology 102:98–101

    PubMed  CAS  Google Scholar 

  • Handley SL, McBlane JW (1993) An assessment of the elevated X-maze for studying anxiety and anxiety-modulating drugs. J Pharm Toxicol Meth 29:129–138

    CAS  Google Scholar 

  • Harro J, Pöld M, Vasar E (1990) Anxiogenic-like action of caerulein, a CCK-8 receptor agonist, in the mouse: influence of acute and subchronic diazepam treatment. Naunyn-Schmiedeberg's Arch Pharmacol 341:62–67

    CAS  Google Scholar 

  • Kauppila T, Tanila H, Carlson S, Taira T (1991) Effects of atipamezole, a novel α2-adrenoreceptor antagonist, in open-field, plus-maze, two compartment exploratory, and forced swimming tests in rats. Eur J Pharmacol 205:177–182

    PubMed  CAS  Google Scholar 

  • Lapin IP (1995) Only controls: effect of handling, sham injection, and intraperitoneal injection of saline on behavior of mice in an elevated plus-maze. J Pharmacol Toxicol Meth 34:73–77

    CAS  Google Scholar 

  • Montgomery KC (1958) The relation between fear induced by novel stimulation and exploratory behaviour. J Comp Physiol Psychol 48:254–260

    Google Scholar 

  • Munn NL (1950) The role of sensory processes in maze behavior. In: Handbook of Psychological Research in the Rat. Houghton Mifflin Comp., Boston, pp 181–225

    Google Scholar 

  • Pellow S (1986) Anxiolytic and anxiogenic drug effects in a novel test of anxiety: Are exploratory models of anxiety in rodents valid? Meth and Find Exp Clin Pharmacol 8:557–565

    CAS  Google Scholar 

  • Pellow S, File SE (1986) Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: a novel test of anxiety in the rat. Pharmacol Biochem Behav 25:525–529

    Google Scholar 

  • Pellow S, Chopin Ph, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Meth 14:149–167

    CAS  Google Scholar 

  • Pokk P, Liljequist S, Zharkovsky A (1996) Ro 15-4513 potentiates, instead of antagonizes, ethanol-induced sleep in mice exposed to small platform stress. Eur J Pharmacol 317:15–20

    PubMed  CAS  Google Scholar 

  • Silverman P (1978) Approach to a conditioned stimulus: mazes. In: Animal behaviour in the laboratory. Chapman and Hall, London, pp 110–119

    Google Scholar 

  • Toubas PL, Abla KA, Cao W, Logan LG, Seale TW (1990) Latency to enter a mirrored chamber: a novel behavioral assay for anxiolytic agents. Pharmacol Biochem Behav 35:121–126

    PubMed  CAS  Google Scholar 

References

  • Bane A, Rojas D, Indermaur K, Bennett T, Avery D (1996) Adverse effects of dextromorphan on the spatial learning of rats in the Morris water maze. Eur J Pharmacol 302:7–12

    PubMed  CAS  Google Scholar 

  • Connor DJ, Langlais PJ, Thal LJ (1991) Behavioral impairments after lesions in the nucleus basalis by ibotenic acid and quisqualic acid. Brain Res 555:84–90

    PubMed  CAS  Google Scholar 

  • McNaughton N, Morris RGM (1987) Chlordiazepoxide, an anxiolytic benzodiazepine, impairs place navigation in rats. Behav Brain Res 24:39–46

    PubMed  CAS  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Meth 11:47–60

    CAS  Google Scholar 

  • Morris RGM (1981) Spatial localization does not require the presence of local cues. Learn Motiv 12:239–260

    Google Scholar 

  • Morris RGM, Anderson E, Lynch GS, Baudry M (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature: 319:774–776

    PubMed  CAS  Google Scholar 

  • Rowan MJ, Culle WK, Moulton B (1990) Buspirone impairment of performance of passive avoidance and spatial learning tasks in the rat. Psychopharmacology 100:393–398

    PubMed  CAS  Google Scholar 

References

  • Emmanouil D, Quock RM (1990) Effects of benzodiazepine antagonist, inverse agonist and antagonist drugs in mouse staircase test. Psychopharmacology 102:95–97

    PubMed  CAS  Google Scholar 

  • Houri D (1985) Staircase test of central nervous system drugs. Pharmacometrics 30:467–479

    CAS  Google Scholar 

  • Keane PE, Simiand J, Morre M, Biziere K (1988) Tetrazepam: A benzodiazepine which dissociates sedation from other benzodiazepine activities. I. Psychopharmacological profile in rodents. J Pharmacol Exper Ther 245:692–698

    CAS  Google Scholar 

  • Porsolt RD, Lenègre A, Avril I, Doumont G (1988) Antagonism by exifone, a new cognitive enhancing agent, of the amnesias induced by four benzodiazepines in mice. Psychopharmacology 95:291–297

    PubMed  CAS  Google Scholar 

  • Simiand J, Keane PE, Morre M (1984) The staircase test in mice: A simple and efficient procedure for primary screening of anxiolytic agents. Psychopharmacology 84:48–53

    PubMed  CAS  Google Scholar 

  • Simiand J, Keane PE, Barnouin MC, Keane M, Soubrié P, Le Fur G (1993) Neurospychopharmacological profile in rodents of SR 57746A, a new, potent 5-HT1A receptor agonist. Fundam Clin Pharmacol 7:413–427

    PubMed  CAS  Google Scholar 

  • Steru L, Thierry B, Chermat R, Millet B, Simon P, Porsolt RD (1987) Comparing benzodiazepines using the staircase test in mice. Psychopharmacology 92:106–109

    PubMed  CAS  Google Scholar 

  • Thiébot MH, Soubrié P, Simon P, Boissier JR (1973) Dissociation de deux composantes du comportement chez le Rat sous l'effet de psychotropes. Application à l'etude des anxiolytiques. Psychopharmacologia 31:77–90

    PubMed  Google Scholar 

References

  • Pollard GT, Howard JL (1991) Cork gnawing in the rat as a screening method for buspirone-like anxiolytics. Drug Dev Res 22:179–187

    CAS  Google Scholar 

  • Pollard GT, Nanry KP, Howard JL (1992) Effects of tandospirone in three behavioral tests for anxiolytics. Eur J Pharmacol 221:297–305

    PubMed  CAS  Google Scholar 

References

  • Gardner CR (1985) Distress vocalisation in rat pups: A simple screening method for anxiolytic drugs. J Pharmacol Meth 14:181–187

    CAS  Google Scholar 

  • Insel TR, Winslow JT (1991) Rat pup ultrasonic vocalizations: an ethologically relevant behaviour response to anxiolytics. In: Olivier B, Mos J, Slangen JL (eds) Animal Models in Psychopharmacology. Advances in Pharmacological Sciences. Birkhäuser Verlag Basel, pp 15–36

    Google Scholar 

  • Lister RG (1990) Ethologically-based animal models of anxiety disorders. Pharmac Ther 46:321–340

    CAS  Google Scholar 

  • Schipper J, Tulp MThM, Berkelmans B, Mos J, Van der Heijden JAM, Olivier B (1991) Preclinical pharmacology of flesinoxan: A potential anxiolytic and antidepressant drug. Human Psychopharmacol 6:53–61

    Google Scholar 

  • Tulp M, Olivier B, Schipper J, van der Poel G, Mos J, van der Heyden J (1991) Serotonin reuptake blockers: Is there preclinical evidence for their efficacy in obsessive-compulsive disorder? Hum Psychopharmacol 6:S63–S71

    CAS  Google Scholar 

  • van der Poel AM, Molewijk E, Mos J, Olivier B (1991) Is clonidine anxiogenic in rat pups? In: Olivier B, Mos J, Slangen JL (eds) Animal Models in Psychopharmacology. Advances in Pharmacological Sciences. Birkhäuser Verlag Basel, pp 107–116

    Google Scholar 

References

  • Didriksen M, Olsen GM, Christensen AV (1993) Effect of clozapine upon schedule-induced polydipsia (SIP) resembles neither the actions of dopamine D1 nor D2 receptor blockade. Psychopharmacol (Berlin) 113:28–34

    Google Scholar 

  • Falk JL (1971) The nature and determinants of adjunctive behavior. Physiol Behav 6:577–588

    PubMed  CAS  Google Scholar 

  • Pellon R, Blackman DE (1992) Effects of drugs on the temporal distribution of schedule-induced polydipsia in rats. Pharmacol Biochem Behav 43:689–695

    PubMed  CAS  Google Scholar 

  • Pitman RK (1989) Animal models of compulsive behavior. Biol Psychiatry 26:189–198

    PubMed  CAS  Google Scholar 

  • Woods A, Smith C, Szewczak M, Dunn RW, Cornfeldt M, Corbett R (1993) Selective re-uptake inhibitors decrease schedule-induced polydipsia in rats: a potential model for obsessive compulsive disorder. Psychopharmacology 112:195–198

    PubMed  CAS  Google Scholar 

  • Woods-Kettelberger AT, Smith CP, Corbett R, Szewczak MR, Roehr JE, Bores GM, Klein JT, Kongsamut S (1996) Besipirdine (HP 749) reduces schedule-induced polydipsia in rats. Brain Res Bull 41:125–130

    PubMed  CAS  Google Scholar 

  • Yadin E, Friedman E, Bridger WH (1991) Spontaneous alternation behavior: An animal model for obsessive-compulsive disorder? Pharmacol Biochem Behav 40:311–315

    PubMed  CAS  Google Scholar 

References

  • Aron C, Simon P, Larousse C, Boissier JR (1971) Evaluation of a rapid technique for detecting minor tranquilizers. Neuropharmacol 10:459–469

    CAS  Google Scholar 

  • Boissier JR, Simon P, Aron C (1968) A new method for rapid screening of minor tranquilizers in mice. Eur J Pharmacol 4:145–151

    PubMed  CAS  Google Scholar 

  • Hascoe M, Bourin M, du Tertre C (1997) Influence of prior experience on mice behavior using the four-plate test. Pharmacol Biochem Behav 58:1131–1138

    Google Scholar 

  • Lenègre A, Chermat R, Avril I, Stéru L, Porsolt RD (1988) Specificity of Piracetam's anti-amnesic activity in three models of amnesia in the mouse. Pharmacol Biochem Behav 29:625–629

    PubMed  Google Scholar 

  • Simon P (1970) Les Anxiolytiques. Possibilités d'étude chez l'animal. Actualités pharmacol. 23:47–78

    PubMed  CAS  Google Scholar 

  • Stephens DN, Schneider HH, Kehr W, Andrews JS, Rettig K-J, Turski L, Schmiechen R, Turner JD, Jensen LH, Petersen EN, Honore T, Bondo Jansen J (1990) Abecarnil, a metabolically stable, anxioselective β-carboline acting at benzodiazepine receptors. J Pharmacol Exper Ther 253:334–343

    CAS  Google Scholar 

References

  • Conti LH, Maciver CR, Ferkany JW, Abreu ME (1990) Foot-shock-induced freezing behavior in rats as a model for assessing anxiolytics. Psychopharmacology 102:492–497

    PubMed  CAS  Google Scholar 

  • De Vry J; Benz U, Traber J (1993) Shock-induced ultrasonic vocalization in young adult rats: a model for testing putative anti-anxiety drugs. Eur J Pharmacol 249:331–339

    PubMed  Google Scholar 

  • Kaltwasser MT (1990) Startle-inducing stimuli evoke ultrasonic vocalization in the rat. Physiol Behav 48:13–17

    PubMed  CAS  Google Scholar 

  • Miczek KA, Tornatzky W, Vivian J (1991) Ethology and neuropharmacology: Rodent ultrasounds. In: Oliver B, Mos J, Sangar J (eds) Animal Models in Psychopharmacology. Birkhäuser Verlag Basel, pp 409–427

    Google Scholar 

  • Nielsen CK, Sánchez C (1995) Effect of chronic diazepam treatment on footshock-induced ultrasonic vocalization in adult male rats. Pharmacol Toxicol 77:177–181

    PubMed  CAS  Google Scholar 

  • Schreiber R, Melon C, De Vry J (1998) The role of 5-HT receptor subtypes in the anxiolytic effects of selective serotonin reuptake inhibitors in the rat ultrasonic vocalization test. Psychopharmacol 135:383–391

    CAS  Google Scholar 

  • Tonoue T, Ashida A, Makino H, Hata H (1986) Inhibition of shock-elicited ultrasonic vocalization by opioid peptides in the rat: A psychotropic effect. Psychoneuroendocrinology 11:177–184

    PubMed  CAS  Google Scholar 

References

  • Ogawa N, Kuwahara K (1966) Psychophysiology of emotion: communication of emotion. Japan J Psychosom Med 6:352–357

    Google Scholar 

  • Ogawa N, Hara C, Ishikawa M (1990) Characteristic of sociopsychological stress induced by the communication box method in mice and rats. In: Manninen O (ed) Environmental Stress, ACES Publishing Ltd., Tampele, pp 417–427

    Google Scholar 

  • Ogawa N, Hara C, Takaki S (1993) Anxiolytic activity of SC-48274 compared with those of buspirone and diazepam in experimental anxiety models. Japan J Pharmacol 61:115–121

    CAS  Google Scholar 

References

  • Aulakh CS, Mazzola-Pomietto P, Murphy DL (1995) Long-term antidepressant treatments alter 5-HT2A and 5-HT2C receptor mediated hyperthermia in Fawn-Hooded rats. Eur J Pharmacol 282:65–70

    PubMed  CAS  Google Scholar 

  • Beckett SRG, Aspley S, Graham M, Marsden CA (1996) Pharmacological manipulation of ultrasound induced defense behaviour in the rat. Psychopharmacology 127:384–390

    PubMed  CAS  Google Scholar 

  • Bilkei-Gorzo A, Gyertyan I, Szabados T (1996) mCPP-induced anxiety — A potential new method for screening anxiolytic drugs. Neurobiology 4:253–255

    PubMed  CAS  Google Scholar 

  • Bilkei-Gorzo A, Gyertyan I, Levay G (1998) mCPP-induced anxiety in the light-dark box in rats — A new method for screening anxiolytic activity. Psychopharmacology 136:291–298

    PubMed  CAS  Google Scholar 

  • Curzon G, Gibson EL, Kennedy AJ, Kennett GA, Sarna GS, Whitton P (1991) Anxiogenic and other effects of mCPP, a 5-HT1C agonist. In: Briley M, File SE (eds) New Concepts in Anxiety. McMillan Press Ltd., London, pp 154–167

    Google Scholar 

  • Czyrak A, Skuza G, Rogóz Z, Frankiewicz T, Maij J (1994) Pharmacological action of zotepine and other antipsychotics on central 5-hydroxytryptamine receptor subtypes. Arzneim Forsch/Drug Res 44:113–118

    CAS  Google Scholar 

  • Dryden S, Wang Q, Frankish HM, Williams G (1996) Differential effects of the 5-HT1B/2C receptor agonist mCPP and the 5-HT1A agonist flexinoxan on neuropeptide Y in the rat: Evidence that NPY may mediate serotonin's effects on food intake. Peptides 17:943–949

    PubMed  CAS  Google Scholar 

  • Gibson EL, Barnfield AMC, Curzon G (1996) Dissociation of effects of chronic diazepam treatment and withdrawal on hippocampal dialysate 5-HT and mCPP-induced anxiety in rats. Behav Pharmacol 7:185–193

    PubMed  CAS  Google Scholar 

  • Griebel G, Misslin R, Pawloaski M, Vogel E (1991) m-Chlorophenylpiperazine enhances neophobic and anxious behaviour in mice. NeuroReport 2:627–629

    PubMed  CAS  Google Scholar 

  • Kennett GA, Whitton P, Shah K, Curzon G (1989) Anxiogenic-like effects of mCPP and TFMPP in animal models are opposed by 5-HT1C receptor antagonists. Eur J Pharmacol 164:445–454

    PubMed  CAS  Google Scholar 

  • Kennett GA, Wood MD, Bright F, Cilia J, Piper DC, Gager T, Thomas D, Baxter GS, Forbes LT, Ham P, Blackburn TP (1996) In vitro and in vivo profile of SB 206553, a potent 5-HT2C/5-HT2B receptor antagonist with anxiolytic-like properties. Br J Pharmacol 117:427–434

    PubMed  CAS  Google Scholar 

  • Kennett GA, Wood MD, Bright F, Trail B, Riley G, Holland V, Avenell KY, Stean T, Upton N, Bromidge S, Forbes IT, Brown AM, Middlemiss DN, Blackburn TP (1997a) SB 242084, a selective and brain penetrant 5-HT2C receptor antagonist. Neuropharmacol 36:609–620

    CAS  Google Scholar 

  • Kennett GA, Ainsworth K, Trail B, Blackburn TP (1997b) BW 723C86, a 5-HT2B receptor agonist, causes hyperphagia and reduced grooming in rats. Neuropharmacol 36:233–239

    CAS  Google Scholar 

  • Meert TF, Melis W, Aerts N, Clinke G (1997) Antagonism of meta-chlorphenylpiperazine-induced inhibition of exploratory activity in an emergence procedure, the open field test, in rats. Behav Pharmacol 8:353–363

    PubMed  CAS  Google Scholar 

  • Robertson DW, Blooquist W, Wong DT, Cohen ML (1992) MCPP but not TFMPP is an antagonist at cardiac 5-HT3 receptors. Life Sci 50:599–605

    PubMed  CAS  Google Scholar 

  • Rocha B, di Scala G, Jenk F, Moreau JL, Sandner G (1993) Conditioned place aversion induced by 5-HT1C receptor antagonists. Behav Pharmacol 4:101–106

    PubMed  CAS  Google Scholar 

  • Samanin R, Mennini T, Ferraris A, Bendotti C, Borsini F, Garattini S (1979) m-Chlorophenylpiperazine: A central serotonin agonist causing powerful anorexia in rats. Naunyn-Schmiedeberg's Arch Pharmacol 308:159–163

    CAS  Google Scholar 

  • Wallis CJ, Lal H (1998) A discriminative stimulus produced by 1-(3-chlorophenyl)-piperazine (mCPP) as a putative animal model of anxiety. Progr Neuropsychopharmacol Biol Psychiatry 22:547–565

    CAS  Google Scholar 

  • Yamada J, Sugimoto Y, Yoshikawa T, Horisaka K (1996) Effects of adrenomedullation and adrenalectomy on the 5-HT2 receptor agonists DOI-and mCPP-induced hypophagia in rats. Neurosci Lett 209:113–116

    PubMed  CAS  Google Scholar 

References

  • Acri JB, Grunberg NE, Morse DA (1991) Effects of nicotine on the acoustic startle reflex amplitude in rats. Psychopharmacology 104:244–248

    PubMed  CAS  Google Scholar 

  • Astrachan DI, Davis M (1981) Spinal modulation of the acoustic startle response: the role of norepinephrine, serotonin and dopamine. Brain Res 206:223–228

    PubMed  CAS  Google Scholar 

  • Cadet JL, Kuyatt B, Fahn S, De Souza EB (1987) Differential changes in 125I-LSD-labeled 5-HT-2 serotonin receptors in discrete regions of brain in the rat model of persistent dyskinesias induced by iminodipropionitrile (IDPN): evidence from autoradiographic studies. Brain Res 437:383–386

    PubMed  CAS  Google Scholar 

  • Davis M (1980) Neurochemical modulation of sensory-motor reactivity: Acoustic and tactile startle reflexes. Neurosci Biobehav Rev 4:241–263

    PubMed  CAS  Google Scholar 

  • Davis M (1982) Agonist-induced changes in behavior as a measure of functional changes in receptor sensitivity following chronic antidepressant treatment. Science 18:137–147

    CAS  Google Scholar 

  • Davis M (1986) Pharmacological and anatomical analysis of fear conditioning using the fear-potentiated startle paradigm. Behav Neurosci 100:814–824

    PubMed  CAS  Google Scholar 

  • Davis M (1992) The role of the amygdala in fear-potentiated startle: implications for animal models of anxiety. Trends Pharmacol Sci 13:35–41

    PubMed  CAS  Google Scholar 

  • Davis M, Astrachan DI, Kass E (1980) Excitatory and inhibitory effects of serotonin on sensomotoric reactivity measured with acoustic startle. Science 209:521–523

    PubMed  CAS  Google Scholar 

  • Hijzen TH, Woudenberg F, Slangen JL (1990) The long-term effects of diazepam and pentylenetetrazol on the potentiated startle response. Pharmacol Biochem Behav 36:35–38

    PubMed  CAS  Google Scholar 

  • Hijzen TH, Houtzager SWJ, Joordens RJE, Olivier B, Slangen JL (1995) Predictive validity of the potentiated startle response as a behavioral model for anxiolytic drugs. Psychopharmacol 118:150–154

    CAS  Google Scholar 

  • Keith VA, Mansbach RS, Geyer MA (1991) Failure of haloperidol to block the effects of phencyclidine and dizocilpine on prepulse inhibition of startle. Biol Psychiatry 30:557–566

    PubMed  CAS  Google Scholar 

  • Mansbach RS, Markou A, Patrick GA (1994) Lack of altered startle response in rats following termination of self-administered or noncontingently infused cocaine. Pharmacol Biochem Behav 48:453–458

    PubMed  CAS  Google Scholar 

  • Rigdon GC, Viik K (1991) Prepulse inhibition as a screening test for potential antipsychotics. Drug Dev Res 23:91–99

    CAS  Google Scholar 

  • Schulz DW, Mansbach RS, Sprouse J, Braselton JP, Collins J, Corman M, Dunaikis A, Faraci S, Schmidt AW, Seeger T, Seymour P, Tingley III FD, Winston EN, Chen YL, Heym J (1996) CP-154-526: A potent and selective nonpeptide antagonist of corticotropin releasing factor receptors. Proc Natl Acad Sci, USA 93:10477–10482

    PubMed  CAS  Google Scholar 

  • Sipes TE, Geyer MA (1995) DOI disruption of prepulse inhibition of startle in the rat is mediated by 5-HT2A and not by 5-HT2C receptors. Behav Pharmacol 6:839–842

    PubMed  CAS  Google Scholar 

  • Taylor MK, Ison JR, Schwarzkopf SB (1995) Effects of single and repeated exposure to apomorphine on the acoustic startle reflex and its inhibition by a visual prepulse. Psychopharmacology 120:117–127

    PubMed  CAS  Google Scholar 

  • Vale AL, Green S (1996) Effects of chlordiazepoxide, nicotine and d-amphetamine in the rat potentiated startle model of anxiety. Behav Pharmacol 7:138–143

    PubMed  CAS  Google Scholar 

  • Varty GB, Higgins GA (1994) Differences between three rat strains in sensitivity to prepulse inhibition of an acoustic startle response: influence of apomorphine and phencyclidine pretreatment. J Psychopharmacol 8:148–156

    PubMed  CAS  Google Scholar 

  • Vivian JA, Farrell WJ, Sapperstein SB, Miczek KA (1994) Diazepam withdrawal: effects of diazepam and gespirone on acoustic startle-induced 22 kHz ultrasonic vocalizations. Psychopharmacology 114:101–108

    PubMed  CAS  Google Scholar 

  • Walker DL, Davis M (1997) Anxiogenic effects of high illumination levels assessed with the acoustic startle response in rats. Biol Psychiatry 42:461–471

    PubMed  CAS  Google Scholar 

  • Weiss GT, Davis M (1976) Automated system for acquisition and reduction of startle response data. Pharmacol Biochem Behav 4:713–720

    PubMed  CAS  Google Scholar 

  • Young BJ, Helmstetter FJ, Rabchenuk SA, Leaton RN (1991) Effects of systemic and intra-amygdaloid diazepam on long-term habituation of acoustic startle in rats. Pharmacol Biochem Behav 39:903–909

    PubMed  CAS  Google Scholar 

  • Zajaczkowski W, Górka Z (1993) The effects of single and repeated administration of MAO inhibitors on acoustic startle response in rats. Pol J Pharmacol 45:157–166

    PubMed  CAS  Google Scholar 

References

  • Miklya I, Knoll J (1988) A new sensitive method which unlike the VOGEL test detects the anxiolytic effect of tofisopam. Pol J Pharmacol Pharm 40:561–572

    PubMed  CAS  Google Scholar 

  • Patel J, Malick JB (1982) Pharmacological properties of tracazolate: a new non-benzodiazepine anxiolytic agent. Eur J Pharmacol 78:323

    PubMed  CAS  Google Scholar 

  • Patel JB, Martin C, Malick JB (1983) Differential antagonism of the anticonflict effects of typical and atypical anxiolytics. Eur J Pharmacol 86:295–298

    Google Scholar 

  • Przegalinski E, Chojnacka-Wojcik E, Filip M (1992) Stimulation of 5-HT1A receptors is responsible for the anticonflict effect of ipsapirone in rats. J Pharm Pharmacol 44:780–782

    PubMed  CAS  Google Scholar 

  • Sanger DJ, Joly D, Zivkovic B (1985) Behavioral effects of nonbenzodiazepine anxiolytic drugs: A comparison of CGS 9896 and zopiclone with chlordiazepoxide. J Pharm Exp Ther 232:831–837

    CAS  Google Scholar 

  • Uyeno ET, Davies MF, Pryor GT, Loew GH (1990) Selective effect on punished versus unpunished responding in a conflict test as the criterion for anxiogenic activity. Life Sci 47:1375–1382

    PubMed  CAS  Google Scholar 

  • Vogel JR, Beer B, Clody DE (1971) A simple and reliable conflict procedure for testing anti-anxiety agents. Psychopharmacologia (Berl.) 21:1–7

    CAS  Google Scholar 

References

  • Bodnoff SR, Suranyi-Cadotte B, Aitken DH, Quirion R, Meaney MJ (1988) The effects of chronic antidepressant treatment in an animal model of anxiety. Psychopharmacology 95:298–302

    PubMed  CAS  Google Scholar 

  • Bodnoff SR, Suranyi-Cadotte B, Quirion R, Meaney MJ (1989) A comparison of the effects of diazepam versus typical and atypical anti-depressant drugs in an animal model of anxiety. Psychopharmacology 97:277–279

    PubMed  CAS  Google Scholar 

  • Borsini F, Brambilla A, Cesana R, Donetti A (1993) The effect of DAU 6215, a novel 5-HT-5 antagonist, in animal models of anxiety. Pharmacol Res 27:151–164

    PubMed  CAS  Google Scholar 

  • Cooper SJ, Crummy YMT (1978) Enhanced choice of familiar food in a food preference test after chlordiazepoxide administration. Psychopharmacology 59:51–56

    PubMed  CAS  Google Scholar 

  • Fletcher PJ, Davies M (1990) Effects of 8-OH-DPAT, buspirone and ICS 205–930 on feeding in a novel environment: comparison with chlordiazepoxide and FG 7142. Psychopharmacology 102:301–308

    PubMed  CAS  Google Scholar 

  • Porschel BPH (1971) A simple and specific screen for benzodiazepine-like drugs. Psychopharmacologia 19:193–198

    Google Scholar 

  • Shephard RA, Broadhurst PL (1982) Hyponeophagia and arousal in rats: effects of diazepam, 5-methoxy-N,N-dimethyltryptamine, d-amphetamine and food deprivation. Psychopharmacology 78:368–378

    PubMed  CAS  Google Scholar 

  • Soubrie P, Kulkarni S, Simon P, Boissier JR (1975) Effets des anxiolytiques sur la prise de norriture de rats et de souris places en situation nouvelle ou familière. Psychopharmacologia 45:203–210

    PubMed  CAS  Google Scholar 

References

  • Meert TF, Colpaert FC (1986) The shock probe conflict procedure. A new assay responsive to benzodiazepines, barbiturates and related compounds. Psychopharmacol 88:445–450

    CAS  Google Scholar 

References

  • Beckett SRG, Marsden CA (1995) Computer analysis and quantification of periaqueductal grey-induced defence behavior. J Neurosci Meth 58:157–161

    CAS  Google Scholar 

  • Beckett SRG, Aspley S, Graham M, Marsden CA (1996) Pharmacological manipulation of ultrasound induced defence behaviour in the rat. Psychopharmacol 127:384–390

    CAS  Google Scholar 

  • Molewijk HE, van der Poel AM, van der Heyden JAM, Olivier B (1995) Conditioned ultrasonic distress vocalization in adult male rats as a behavioural paradigm for screening anti-panic drugs. Psychopharmacology 117:32–40

    PubMed  CAS  Google Scholar 

References

  • Blanchard DC, Hori K, Rodgers RJ, Hendrie CA, Blanchard RJ (1989) Differential effects of benzodiazepines and 5-HT1A agonists on defensive patterns of wild rattus. In: Bean, Cools, Archer (eds) Behavioural Pharmacology of 5-HAT. Erlbaum, Hillsdale, pp 145–147

    Google Scholar 

  • Blanchard RJ, Blanchard DC (1989) Antipredator defensive behaviors in a visible burrow system. J Comp Physiol 103:70–82

    CAS  Google Scholar 

  • Blanchard RJ, Blanchard DC, Flannely KJ, Hori K (1986a) Ethanol changes patterns of defensive behaviour in wild rats. Physiol Behav 38:645–650

    PubMed  CAS  Google Scholar 

  • Blanchard RJ, Flannely HJ, Blanchard DC (1986b) Defensive behaviours of laboratory and wild Rattus norvegicus. J Comp Physiol 100:101–107

    CAS  Google Scholar 

  • Blanchard DC, Blanchard RJ, Tom P, Rodgers RJ (1990) Diazepam changes risk assessment in an anxiety/defense test battery. Psychopharmacology 101:511–518

    PubMed  CAS  Google Scholar 

  • Blanchard DC, Shepherd JK, Rodgers RJ, Blanchard RJ (1992) Evidence for differential effects of 8-OH-DPAT on male and female rats in the anxiety/defense test battery. Psychopharmacology 106:531–539

    PubMed  CAS  Google Scholar 

  • Griebel G, Sanger DJ, Perrault G (1997) Genetic differences in the mouse defense battery. Aggress Behav 23:19–31

    Google Scholar 

  • Griebel G, Curet O, Perrault G, Sanger DJ (1998a) Behavioral effects of phenelzine in an experimental model for screening anxiolytic and anti-panic drugs. Neuropharmacol 37:927–935

    CAS  Google Scholar 

  • Griebel G, Perrault G, Sanger DJ (1998b) Characterization of the behavioral profile of the non-peptide CRF receptor antagonist CP-154,526 in anxiety models of rodents. Comparison with diazepam and buspirone. Psychopharmacology 138:55–66

    PubMed  CAS  Google Scholar 

References

  • Barnes NM, Costall B, Domeney AM, Gerrard PA, Kelly ME, Krahling H, Naylor RJ, Tomkins DM, Williams TJ (1991) The effects of umespirone as a potential anxiolytic and antipsychotic agent. Pharmacol Biochem Behav 40:89–96

    PubMed  CAS  Google Scholar 

  • Borsini F, Brambilla A, Cesana R, Donetti A (1993) The effect of DAU 6215, a novel 5HAT-3 antagonist in animal models of anxiety. Pharmacol Res 27:151–164

    PubMed  CAS  Google Scholar 

  • Cilia J, Piper DC (1997) Marmoset conspecific confrontation: an ethologically-based model of anxiety. Pharmacol Biochem Behav 58:85–91

    PubMed  CAS  Google Scholar 

  • Costall B, Domeney AM, Naylor RJ, Tyers MB (1987) Effects of the 5-HT3 receptor antagonist, GR38032F, on raised dopaminergic activity in the mesolimbic system of the rat and marmoset brain. Br. J Pharmacol 92:881–894

    PubMed  CAS  Google Scholar 

  • Costall B, Domeney AM, Gerrard PA, Kelley ME, Naylor RJ (1988) Zacopride: Anxiolytic profile in rodent and primate models of anxiety. J Pharm Pharmacol 40:302–305

    PubMed  CAS  Google Scholar 

  • Costall B, Domeney AM, Farre AJ, Kelly ME, Martinez L, Naylor RJ (1992) Profile of action of a novel 5-hydroxytrptamine1A receptor ligand E-4424 to inhibit aversive behavior in the mouse, rat and marmoset. J Pharmacol Exp Ther 262:90–98

    PubMed  CAS  Google Scholar 

  • Jones BJ, Costall B, Domeney AM, Kelly ME, Naylor RJ, Oakley NR, Tyers MB (1988) The potential anxiolytic activity of GR38032F, a 5-HT3 receptor antagonist. Br J Pharmacol 93:985–993

    PubMed  CAS  Google Scholar 

  • Stevenson MF, Poole TB (1976) An ethogram of the common marmoset (Callithrix jacchus): general behavioural repertoire. Anim Behav 24:428–451

    PubMed  CAS  Google Scholar 

References

  • Aguiar MS, Brandão ML (1994) Conditioned place aversion produced by microinjection of substance P into the periaqueductal gray of rats. Behav Pharmacol 5:369–373

    PubMed  CAS  Google Scholar 

  • Aguiar MS, Brandão ML (1996) Effects of microinjections of the neuropeptide substance P in the dorsal periaqueductal gray on the behavior of rats in the plus-maze test. Physiol Behav 60:1183–1186

    PubMed  CAS  Google Scholar 

  • Audi EA, de Aguiar JC, Graeff FG (1988) Mediation by serotonin of the antiaversive effect of zimelidine and propranolol injected into the dorsal midbrain central grey. J Psychopharmacol 2:26–32

    PubMed  CAS  Google Scholar 

  • Audi EA, de Oliveira RMW, Graeff FG (1991) Microinjection of propranolol into the dorsal periaqueductal gray causes an anxiolytic effect in the elevated plus-maze antagonized by ritanserin. Psychopharmacology 105:553–557

    PubMed  CAS  Google Scholar 

  • Beckett S, Marsden CA (1997) The effect of central and systemic injection of the 5-HT1A receptor agonist 8-OHDPAT and the 5-HT1A antagonist WAY100635 on periaqueductal grey-induced defensive behaviour. J Psychopharmacol 11:35–40

    PubMed  CAS  Google Scholar 

  • Brandão ML (1993) Involvement of opioid mechanisms in the dorsal periaqueductal gray in drug abuse. Rev Neurosci 4:397–405

    PubMed  Google Scholar 

  • Brandão ML, Lopez-Garcia JA, Roberts HMT (1991) Electrophysiological evidence for the involvement of 5-HT2 receptors in the antiaversive action of 5-HT in the dorsal periaqueductal grey. In: Olivier B, Mos J, Slangen JL (eds) Animal Models in Psychopharmacology. Advances in Pharmacological Sciences. Birkhäuser Verlag, Basel, pp 75–79

    Google Scholar 

  • Bovier P, Broekkamp CLE, Lloyd KG (1982) Enhancing GABAergic transmission reverses the aversive state in rats induced by electrical stimulation of the periaqueductal grey region. Brain Res 248:331–320

    Google Scholar 

  • Broekkamp CL, Dortmans C, Berendsen HHG, Jenk F (1991) Pharmacology of fear, induced by periaqueductal gray stimulation in the rat. In: Olivier B, Mos J, Slangen JL (eds) Animal Models in Psychopharmacology. Advances in Pharmacological Sciences. Birkhäuser Verlag, Basel, pp 69–74

    Google Scholar 

  • Clarke A, File SA (1982) Effects of ACTH, benzodiazepines and 5-HT antagonists on escape from periaqueductal grey stimulation in the rat. Progr Neuro-Psychopharmacol Biol Psychiat 6:27–35

    CAS  Google Scholar 

  • De Araujo JE, Huston JP, Brandão ML (1998) Aversive effects of the C-fragment of substance P in the dorsal periaqueductal gray matter. Exp Brain Res 123:84–89

    PubMed  Google Scholar 

  • Graeff FG (1991) Neurotransmitters in the dorsal periaqueductal grey and animal models of panic anxiety. In: Briley M, File SE (eds) New Concepts in Anxiety. McMillan Press Ltd., London, pp 288–312

    Google Scholar 

  • Graeff FG, Brandão ML, Audi EA, Schütz MTB (1986) Modulation of the brain aversive system by GABAergic and serotoninergic mechanisms. Behav Brain Res 21:65–72

    PubMed  CAS  Google Scholar 

  • Graeff FG, Audi EA, Almeida SS, Graeff EO, Hunziker MHL (1990) Behavioral effects of 5-HT receptor ligands in the aversive brain stimulation, elevated plus-maze and learned helplessness tests. Neurosci Biobehav Rev 14:501–506

    PubMed  CAS  Google Scholar 

  • Graeff FG, Silveira MCL, Nogueira RL, Audi EA, Oliveira RMW (1993) Role of the amygdala and periaqueductal gray in anxiety and panic. Behav Brain Res 58:123–131

    PubMed  CAS  Google Scholar 

  • Graeff FG, Viana MB, Mora PO (1997) Dual role of 5-HT in defense and anxiety. Neurosci Biobehav Rev 21:791–799

    PubMed  CAS  Google Scholar 

  • Jenck F, Broekkamp CLE, von Delft AML (1989) Effects of serotonin receptor antagonists on PAG stimulation induced aversion: different contribution of 5-HT1, 5-HT2 and 5-HT3 receptors. Psychopharmacology 97:489–495

    PubMed  CAS  Google Scholar 

  • Jenck F, Martin JR, Moreau JL (1996) Behavioral effects of CCKB receptor ligands in a validated simulation of panic anxiety in rats. Eur Neuropsychopharmacol 6:291–298

    PubMed  CAS  Google Scholar 

  • Jenck F, Moreau JL, Berendsen HHG, Boes M, Broekkamp CLE, Martin JR, Wichmann J, von Delft AML (1998) Antiaversive effects of 5-HT2c receptor agonists and fluoxetine in a model of panic-like anxiety. Eur Neuropsychopharmacol 8:161–168

    PubMed  CAS  Google Scholar 

  • Melo LL, Brandão ML (1995) Involvement of 5-HT1A and 5-HT2 receptors of the inferior colliculus in aversive states induced by exposure of rats to the elevated plus-maze test. Behav Pharmacol 6:413–417

    PubMed  CAS  Google Scholar 

  • Motta V, Penha K, Brandão ML (1995) Effects of microinjections of m and k receptor agonists into the dorsal periaqueductal gray of rats submitted to the plus maze test. Psychopharmacology 120:470–474

    PubMed  CAS  Google Scholar 

  • Nogueira RL, Graeff FG (1991) 5-HT mediation of the antiaversive effect of isomoltane injected into the dorsal periaqueductal grey. Behav Pharmacol 2:73–77

    PubMed  Google Scholar 

  • Nogueira RL, Graeff FG (1995) Role of 5-HT receptor subtypes in the modulation of dorsal periaqueductal gray generated aversion. Pharmacol Biochem Behav 52:1–6

    PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates. Academic Press, New York

    Google Scholar 

  • Schütz MTB, de Aguiar JC, Graeff FG (1985) Anti-aversive role of serotonin in dorsal periaqueductal grey matter. Psychopharmacology 85:340–345

    PubMed  Google Scholar 

References

  • Balfour DJK (1990) A comparison of the effects of nicotine and(+)-amphetamine on rat behavior in an unsignalled Sidman avoidance schedule. J Pharm Pharmacol 42:257–260

    PubMed  CAS  Google Scholar 

  • Duffield PH, Jamieson DD, Duffield AM (1989) Effect of aqueous and lipid-soluble extracts of Kava on the conditioned avoidance in rats. Arch Int Pharmacodyn 301:81–90

    PubMed  CAS  Google Scholar 

  • Galizio M, Journey JW, Royal SA, Welker JA (1990) Variable-interval schedules of time-out from avoidance: Effects of anxiolytic and antipsychotic drugs in rats. Pharmacol Biochem Behav 37:235–238

    PubMed  CAS  Google Scholar 

  • Heise GA, Boff E (1962) Continuous avoidance as a base-line for measuring behavioral effects of drugs. Psychopharmacologia 3:264–282

    PubMed  CAS  Google Scholar 

  • Patel JB, Migler B (1982) A sensitive and selective monkey conflict test. Pharmacol Biochem Behav 17:645–549

    PubMed  CAS  Google Scholar 

  • Szewczak MR, Corbett R, Rush DK, Wilmot CA, Conway PG, Strupczewski JT, Comfeldt M (1995) The pharmacological profile of iloperidone, a novel atypical antipsychotic agent. J Pharmacol Exp Ther 274:1404–1413

    PubMed  CAS  Google Scholar 

  • Shekar A, Hingtgen JN, DiMicco JA (1987) Selective enhancement of shock avoidance responding elicited by GABA blockade in the posterior hypothalamus of rats. Brain Res 420:118–128

    Google Scholar 

  • Sidman M (1953a) Avoidance conditioning with brief shock and no enteroceptive warning signal. Science 118:157–158

    PubMed  CAS  Google Scholar 

  • Sidman M (1953b) Two temporal parameters of the maintenance of avoidance behavior by the white rat. J Comp Physiol Psychol 46:253–261

    PubMed  CAS  Google Scholar 

  • Wadenberg ML, Young KA, Trompler RA, Zavodny RA, Richter TJ, Hicks OB (1998) A novel computer-controlled conditioned avoidance apparatus for rats. J Pharmacol Toxicol Meth 38:211–215

    Google Scholar 

References

  • Barrett JE (1991) Animal behavior models in the analysis and understanding of anxiolytic drugs acting on serotonin receptors. In: Olivier B, Mos J, Slangen JL (eds) Animal Models in Psychopharmacology, Advances in Pharmacological Sciences, Birkhäuser Verlag Basel, pp 37–52

    Google Scholar 

  • Barrett JE, Gleeson S, Nader MA, Hoffmann SM (1989) Anticonflict effects of the 5-HT1A compound flesinoxan. J Psychopharmacol 3:64–69

    PubMed  CAS  Google Scholar 

  • Barrett JE, Gamble EH, Zhang L, Guardiola-Lemaître B (1994) Anticonflict and discriminative stimulus effect in the pigeon of a new methoxy-chroman 5-HT1A agonist, (+)S 20244 and its enantiomers (+)S 20499 and (−)S 20500. Psychopharmacol 116:73–78

    CAS  Google Scholar 

  • Bignami G (1988) Pharmacology and anxiety: Inadequacies of current experimental approaches and working models. Pharmacol Biochem Behav 29:771–774

    PubMed  CAS  Google Scholar 

  • Broersen LM, Woudenberg F, Slangen JL (1991) The lack of tolerance to the anxiolytic effects of benzodiazepines in the Geller/Seifter conflict test. In: Olivier B, Mos J, Slangen JL (eds) Animal Models in Psychopharmacology, Advances in Pharmacological Sciences, Birkhäuser Verlag Basel, pp 97–101

    Google Scholar 

  • Chipkin RE, Iorio LC, Coffin VL, McQuade RD, Berger JG, Barnett A (1988) Pharmacological profile of SCH39166: A dopamine D1 selective benzonaphthazepine with potential antipsychotic activity. J Pharmacol Exper. Ther 247:1093–1102

    CAS  Google Scholar 

  • Commissaris RL, Fontana DJ (1991) A potential animal model for the study of antipanic treatments. In: Olivier B, Mos J, Slangen JL (eds) Animal Models in Psychopharmacology, Advances in Pharmacological Sciences, Birkhäuser Verlag Basel, pp 59–53

    Google Scholar 

  • Cook L, Davidson AB (1973) Effects of behaviorally active drugs in a conflict-punishment procedure in rats. In: Garattini S, Mussini E, Randall LO (eds) The Benzodiazepines, Raven Press, New York, pp 327–345

    Google Scholar 

  • Cook L, Sepinwall J (1975) Behavioral analysis of the effects and mechanisms of action of benzodiazepines. In: Costa E, Greengard P (eds) Mechanisms of Action of Benzodiazepines. Raven Press, New York, pp 1–28

    Google Scholar 

  • Davidson AB, Cook L (1969) Effects of combined treatment with trifluoperazine-HCl and amobarbital on punished behavior in rats. Psychopharmacologia (Berl.) 15:159–168

    CAS  Google Scholar 

  • Ervin GN, Cooper BR (1988) Use of conditioned taste aversion as a conflict model: Effects of anxiolytic drugs. J Pharmacol Exp Ther 245:137–146

    PubMed  CAS  Google Scholar 

  • Ervin GN, Soroko FS, Cooper BR (1987) Buspirone antagonizes the expression of conditioned taste aversion in rats. Drug Dev Res 11:87–95

    CAS  Google Scholar 

  • Geller I, Seifter J (1960) The effects of meprobamate, barbiturates, d-amphetamine and promazine on experimentally induced conflict in the rat. Psychopharmacologia 1:482–492

    CAS  Google Scholar 

  • Geller I, Kulak JT, Seifter J (1962) The effects of chlordiazepoxide and chlorpromazine on a punishment discrimination. Psychopharmacologia 3:374–385

    PubMed  CAS  Google Scholar 

  • Gleeson S, Ahlers ST, Mansbach RS, Foust JM, Barrett JE (1989) Behavioral studies with anxiolytic drugs: VI. Effects on punished responding of drugs interacting with serotonin receptor subtypes. J Pharmacol Exp Ther 250:809–817

    PubMed  CAS  Google Scholar 

  • Hanson HM, Stone CA (1964) Animal techniques for evaluating antianxiety drugs. In: Nodine JN, Siegler PE (eds) Animal and Clinical Pharmacologic Techniques in Drug Evaluation. Year Book Medical Publ., Chicago, pp 317–324

    Google Scholar 

  • Howard JL, Pollard GT (1990) Effects of buspirone in the Geller-Seifter conflict test with incremental shock. Drug Dev Res 19:37–49

    CAS  Google Scholar 

  • Iorio LC, Barnett A, Billard W, Gold EH (1986) Benzodiazepines: Structure-activity relationships between D1 receptor blockade and selected pharmacological effects. In: Breese GR, Creese I (eds) Neurobiology of central D1-dopamine receptors. pp 1–14, Plenum Press, New York

    Google Scholar 

  • Iversen S (1983) Animal models of anxiety. In: Trimble RM (ed) Benzodiazepines Divided. John Wiley & Sons Ltd., pp 87–99

    Google Scholar 

  • Koene P, Vossen JMH (1991) Drug effects on speed of conflict resolution in the Skinnerbox. In: Olivier B, Mos J, Slangen JL (eds) Animal Models in Psychopharmacology, Advances in Pharmacological Sciences, Birkhäuser Verlag Basel, pp 53–59

    Google Scholar 

  • Keane PE, Siminand J, Morre M, Biziere K (1988) Tetrazepam: A benzodiazepine which dissociates sedation from other benzodiazepine activities. I. Psychopharmacological profile in rodents. J Pharmacol Exper Ther 245:692–698

    CAS  Google Scholar 

  • Mc Millan DE (1973) Drugs and punished responding. I: Rate-dependent effects under multiple schedules. J Exp Anal Behav 19:133–145

    PubMed  CAS  Google Scholar 

  • Morse WH (1964) Effect of amobarbital and chlorpromazine on punished behavior in the pigeon. Psychopharmacologia 6:286–294

    PubMed  CAS  Google Scholar 

  • Mos J, van Hest A, van Drimmelen M, Herremans AHJ, Olivier B (1997) The putative 5-HT1A receptor antagonist DU125530 blocks the discriminative stimulus of the 5-HT1A receptor agonist flesinoxan in pigeons. Eur J Pharmacol 325:145–153

    PubMed  CAS  Google Scholar 

  • Patel JB, Migler B (1982) A sensitive and selective monkey conflict test. Pharmacol Biochem Behav 17:645–649

    PubMed  CAS  Google Scholar 

  • Pollard GT, Nanry KP, Howard JL (1992) Effects of tandospirone in three behavioral tests for anxiolytics. Eur J Pharmacol 221:297–305

    PubMed  CAS  Google Scholar 

  • Prado de Carvalho L, Venault P, Potier MC, Dodd RH, Brown CL, Chapoutier G, Rossier RH (1986) 3-(Methoxycarbonyl)-amino-β-carboline, a selective antagonist of the sedative effects of benzodiazepines. Eur J Pharmacol 129:232–233

    Google Scholar 

  • Schipper J, Tulp MThM, Berkelmans B, Mos J, Van der Heijden JAM, Olivier B (1991) Preclinical pharmacology of Flesinoxan: A potential anxiolytic and antidepressant drug. Human Psychopharmacol 6:53–61

    Google Scholar 

  • Silverman P (1978) Operant conditioning. In: Animal behaviour in the laboratory. Chapman and Hall, London, pp 141–178

    Google Scholar 

  • Simiand J, Keane PE, Barnouin MC, Keane M, Soubrié P, Le Fur G (1993) Neurospychopharmacological profile in rodents of SR57746A, a new, potent 5-HT1A receptor agonist. Fundam Clin Pharmacol 7:413–427

    PubMed  CAS  Google Scholar 

  • Slangen JL (1991) Drug discrimination and animal models. In: Olivier B, Mos J, Slangen JL (eds) Animal Models in Psychopharmacology. Advances in Pharmacological Sciences. Birkhäuser Verlag, Basel, pp 359–373

    Google Scholar 

  • Thiébot MH, Dangoumau L, Richard G, Puech AJ (1991) Safety signal withdrawal: a behavioral paradigm sensitive to both “anxiolytic” and “anxiogenic” drugs under identical experimental conditions. Psychopharmacology 103:415–424

    PubMed  Google Scholar 

  • van Heest A, Slangen JL, Olivier B (1991) Is the conditioned taste aversion procedure a useful tool in the drug discrimination research? In: Olivier B, Mos J, Slangen JL (eds) Animal Models in Psychopharmacology. Advances in Pharmacological Sciences. Birkhäuser Verlag, Basel, pp 399–405

    Google Scholar 

  • Wuttke W, Kelleher RT (1970) Effects of some benzodiazepines on punished and unpunished behavior in the pigeon. J Pharmacol Exper Ther 172:397–405

    CAS  Google Scholar 

References

  • Broekkamp CL, Rijk HW, Joly-Gelouin D, Lloyd KL (1986) Major tranquillizers can be distinguished from minor tranquillizers on the basis of effects on marble burying and swim-induced grooming in mice. Eur J Pharmacol 126:223–229

    PubMed  CAS  Google Scholar 

  • Craft RM, Howard JL, Pollard GT (1988) Conditioned defensive burying as a model for identifying anxiolytics. Pharmacol Biochem Behav 30:775–780

    PubMed  CAS  Google Scholar 

  • deBoer SF, Slangen JL, van der Gugten J (1990) Plasma catecholamine and corticosterone levels during active and passive shock-prod avoidance behavior in rats: Effects of chlordiazepoxide. Physiol Behav 47:1089–1098

    CAS  Google Scholar 

  • deBoer SF van der Gugten J, Slangen Jl (1991) Behavioural and hormonal indices of anxiolytic and anxiogenic drug action in the shock prod defensive burying/avoidance paradigm. In: Olivier B, Mos J, Slangen JL (eds) Animal Models in Psychopharmacology, Birkhäuser Verlag Basel, pp 137–159

    Google Scholar 

  • Diamant M, Croiset G, de Zwart N, de Wied D (1991) Shock-prod burying test in rats: autonomic and behavioral responses. Physiol Behav 50:23–31

    PubMed  CAS  Google Scholar 

  • Fernandez-Guasti A, Lopez-Rubalcava C (1998) Modification of the anxiolytic action of 5-HT1A compounds by GABA-benzodiazepine agents in rats. Pharmacol Biochem Behav 60:27–32

    PubMed  CAS  Google Scholar 

  • Gacsályi I, Schmidt E, Gyertyán I, Vasar E, Lang A, Haapalinna A, Fekete M, Hietala J, Syvälahti E, Tuomainen P, Männistö P (1997) Receptor binding profile and anxiolytic-type activity of deramciclane (EGIS-3886) in animal models. Drug Dev Res 40:333–348

    Google Scholar 

  • Njung'e K, Handley SL (1991a) Evaluation of marble-burying behavior as a model of anxiety. Pharmacol Biochem Behav 38:63–67

    PubMed  Google Scholar 

  • Njung'e K, Handley SL (1991b) Effects of 5-HT uptake inhibitors, agonists and antagonists on the burying of harmless objects by mice; a putative test for anxiolytic agents. Br J Pharmacol 104:105–112

    PubMed  Google Scholar 

  • Pinel JPJ, Treit D (1978) Burying as a defensive response in rats. J Compar Physiol Psychol 92:708–712

    Google Scholar 

  • Pinel JPJ, Treit D (1983) The conditioned defensive burying paradigm and behavioral neuroscience. In: Robinson T (ed) Behavioral approaches to brain research. pp 212–234. Oxford Press

    Google Scholar 

  • Treit D (1985) Animal models for the study of anti-anxiety agents. A review. Neurosci Biobehav Rev 9:203–222

    PubMed  CAS  Google Scholar 

  • Treit D, Pinel JPJ, Fibiger HC (1981) Conditioned defensive burying: A new paradigm for the study of anxiolytic agents. Pharmacol Biochem Behav 15:619–626

    PubMed  CAS  Google Scholar 

  • Wiersma A, Bohus B, Koolhaas JM, Nobel A, (1996) Corticotropin-releasing hormone microinfusion of in the central amygdala enhances active behavior responses in the conditioned defensive burying paradigm. Stress 1:113–122

    CAS  Google Scholar 

References

  • Agüero A, Amedo M, Gallo M, Puerto A (1993) The functional relevance of the lateral parabrachial nucleus in lithium chloride-induced aversion learning. Pharmacol Biochem Behav 45:973–978

    PubMed  Google Scholar 

  • Agüero A, Gallo M, Arnedo M, Molina F, Puerto A (1996) Effects of lesions of the medial parabrachial nucleus (PBNm): Taste discrimination and lithium-chloride-induced aversion learning after delayed and contiguous interstimulus intervals. Psychobiology 24:265–280

    Google Scholar 

  • Bardo MT, Valone JM (1994) Morphine-conditioned analgesia using a taste cue: Dissociation of taste aversion and analgesia. Psychopharmacology 114:269–274

    PubMed  CAS  Google Scholar 

  • Bevins RA, Delzer TA, Bardo MT (1996) Characterization of the conditioned taste aversion produced by 7-OH-DPAT in rats. Pharmacol Biochem Behav 53:695–599

    PubMed  CAS  Google Scholar 

  • Bienkowski P, Kuca P, Piasecki J, Kostowski W (1997) 5-HT3 receptor antagonist, tropisetron, does not influence ethanol-induced conditioned taste aversion and conditioned place aversion. Alcohol 14:63–69

    PubMed  CAS  Google Scholar 

  • Brockwell NT, Eikelboom R, Beninger RJ (1991) Caffeine-induced place and taste conditioning: Production of dose-dependent preference and aversion. Pharmacol Biochem Behav 38:513–517

    PubMed  CAS  Google Scholar 

  • Davies BT, Wellman PJ (1990) Conditioned taste reactivity in rats after phenylpropanolamine, d-amphetamine or lithium chloride. Pharmacol Biochem Behav 36:973–977

    PubMed  CAS  Google Scholar 

  • De Beun R, Lohmann A, de Vry J (1996) Conditioned taste aversion and place preference induced by the calcium channel antagonist nimodipine in rats. Pharmacol Biochem Behav 54:657–663

    PubMed  Google Scholar 

  • Ervin GN, Birkemo LS, Johnson MF, Conger LK, Mosher JT, Menius JA Jr. (1995) The effects of anorectic and aversive agents on deprivation-induced feeding and taste aversion conditioning in rats. J Pharmacol Exp Ther 273:1203–1210

    PubMed  CAS  Google Scholar 

  • Exton MS, von Horsten S, Voge J, Westermann J, Schult M, Nagel E, Schedlowski M (1998) Conditioned taste aversion produced by cyclosporine A: concomitant reduction of lymphoid organ weight and splenocyte proliferation. Physiol Behav 63:241–247

    PubMed  CAS  Google Scholar 

  • Gauvin DV, Holloway FA (1992) Ethanol tolerance developed during intoxicated operant performance in rats prevents subsequent ethanol-induced conditioned taste aversion. Alcohol 9:167–170

    PubMed  CAS  Google Scholar 

  • Glowa JR, Shaw AE, Riley AL (1994) Cocaine-induced conditioned taste aversion: Comparisons between effects in LEW/N and F344/N rat strains. Psychopharmacology 114:229–232

    PubMed  CAS  Google Scholar 

  • June HL, June PL, Domangue KR, Hicks LH, Lummis GH, Lewis MJ (1992) Failure of Ro15-4513 to alter an ethanol-induced taste aversion. Pharmacol Biochem Behav 41:455–460

    PubMed  CAS  Google Scholar 

  • Land CL, Riccio DC (1997) D-Cycloserine, a positive modulator of the NMDA receptor, enhances acquisition of a conditioned taste aversion. Psychobiology 25:210–216

    CAS  Google Scholar 

  • Lin HQ, McGregor IS, Atrens DM, Christie MJ, Jackson DM (1994) Contrasting effects of dopamine blockade on MDMA and d-amphetamine conditioned taste aversion. Pharmacol Biochem Behav 47:369–374

    PubMed  CAS  Google Scholar 

  • Lipinski WJ, Rusiniak KW, Hilliard M, Davis RE (1995) Nerve growth factor facilitates conditioned taste aversion learning in normal rats. Brain Res 692:143–153

    PubMed  CAS  Google Scholar 

  • McAllister KHM, Pratt JA (1998) GR205171 blocks apomorphine and amphetamine-induced conditioned taste aversions. Eur J Pharmacol 353:141–148

    PubMed  CAS  Google Scholar 

  • Mele PC, McDonough JR, McLean DB, O'Halloran KP (1992) Cisplatin-induced conditioned taste aversion: attenuation by dexamethasone but not by zacopride or GR38032F. Eur J Pharmacol 218:229–236

    PubMed  CAS  Google Scholar 

  • Miller JS, Kelly KS, Neisewander JL, McCoy DF, Bardo MT (1990) Conditioning of morphine-induced taste aversion and analgesia. Psychopharmacology 101:472–480

    PubMed  CAS  Google Scholar 

  • Mosher JT, Hohnson MF, Birkemo LS, Ervin GN (1996) Several roles of CCKA and CCKB receptor subtypes in CCK-8-induced and LiCl-induced taste aversion conditioning. Peptides 17:483–488

    PubMed  CAS  Google Scholar 

  • Mucha RF (1997) Preference for tastes paired with a nicotine antagonist in rats chronically treated with nicotine. Pharmacol Biochem Behav 56:175–179

    PubMed  CAS  Google Scholar 

  • Neisewander JL, McDougall SA, Bowling SL, Bardo MT (1990) Conditioned taste aversion and place preference with buspirone and gespirone. Psychopharmacology 100:485–490

    PubMed  CAS  Google Scholar 

  • Parker LA (1994) Aversive taste reactivity: Reactivity to quinine predicts aversive reactivity to lithium-paired sucrose solution. Pharmacol Biochem Behav 47:73–75

    PubMed  CAS  Google Scholar 

  • Parker LA, Gillies T (1995) THC-induced place and taste aversions in Lewis and Sprague-Dawley rats. Behav Neurosci 109:71–78

    PubMed  CAS  Google Scholar 

  • Rabin BM, Hunt WA (1992) Relationship between vomiting and taste aversion learning in ferrets: studies with ionizing radiation, lithium chloride, and amphetamine. Behav Neural Biol 58:83–93

    PubMed  CAS  Google Scholar 

  • Rudd JA, Ngan MP, Wai MK (1998) 5-HT3 receptors are not involved in conditioned taste aversions induced by 5-hydroxy-tryptamine, ipecacuanha or cisplatin. Eur J Pharmacol 352:143–149

    PubMed  CAS  Google Scholar 

  • Shoaib M, Stolerman IP (1996) The NMDA antagonist dizocilpine (MK801) attenuates tolerance to nicotine in rats. J Psychopharmacol 10:214–218

    PubMed  CAS  Google Scholar 

  • Sobel BFX, Wetherington CL, Riley AL (1995) The contribution of within-session averaging of drug-and vehicle-appropriate responding to the graded dose-response function in drug discriminating learning. Behav Pharmacol 6:348–358

    PubMed  CAS  Google Scholar 

  • Swank MW, Schafe GE, Bernstein IL (1995) c-Fos induction in response to taste stimuli previously paired with amphetamine or LiCl during taste aversion learning. Brain Res 673:251–261

    PubMed  CAS  Google Scholar 

  • Thiele TE, Roitman MF, Bernstein IL (1996) c-Fos induction in rat brainstem in response to ethanol-and lithium chloride-induced conditioned taste aversions. Alcohol Clin Exp Res 20:1023–1028

    PubMed  CAS  Google Scholar 

  • Turenne SD, Miles C, Parker LA, Siegel S (1996) Individual differences in reactivity to the rewarding/aversive properties of drugs: assessment by taste and place conditioning. Pharmacol Biochem Behav 53:511–516

    PubMed  CAS  Google Scholar 

  • Van Haaren F, Hughes CE (1990) Cocaine-induced conditioned taste aversions in male and female Wistar rats. Pharmacol Biochem Behav 37:693–696

    PubMed  Google Scholar 

  • Willner J, Gallagher M, Graham PW, Crooks GB Jr. (1992) N-methyl-D-aspartate antagonist D-APV selectively disrupts taste-potentiated odor aversion learning. Behav Neurosci 106:315–323

    PubMed  CAS  Google Scholar 

  • Yamamoto T (1993) Neural mechanisms of taste aversion learning. Neurosci Res 16:181–185

    PubMed  CAS  Google Scholar 

References

  • deBoer SF, deBeun R, Slangen JL, van der Gugten J (1990a) Dynamics of plasma catecholamine and corticosterone concentrations during reinforced and extinguished operant behavior in rats. Physiol Behav 47:691–698

    CAS  Google Scholar 

  • deBoer SF, Slangen JL, van der Gugten J (1990b) Plasma catecholamine and corticosterone levels during active and passive shock-prod avoidance behavior in rats: effects of chlordiazepoxide. Physiol Behav 47:1089–1098

    CAS  Google Scholar 

  • Krieman MJ, Hershock DM, Greenberg IJ, Vogel WH (1992) Effects of adinazolam on plasma catecholamine, heart rate and blood pressure responses in stressed and non-stressed rats. Neuropharmacol 31:33–38

    CAS  Google Scholar 

  • Livesey GT, Miller JM, Vogel WH (1985) Plasma norepine-phrine, epinephrine and corticosterone stress responses to restraint in individual male and female rats. Neurosci Lett 62:51–56

    Google Scholar 

  • Natelson BH, Creighton D, McCarty R, Tapp WN, Pittman D, Ottenweller JE (1987) Adrenal hormonal indices of stress in laboratory rats. Physiol Behav 39:117–125

    PubMed  CAS  Google Scholar 

  • Taylor J, Harris N, Krieman M, Vogel WH (1989) Effects of buspirone on plasma catecholamines, heart rate and blood pressure in stressed and non-stressed rats. Pharmacol Biochem Behav 34:349–353

    PubMed  CAS  Google Scholar 

  • Vogel WH, Miller J, DeTurck KH, Routzahn BK (1984) Effects of psychoactive drugs on plasma catecholamines during stress in rats. Neuropharmacology 23:1105–1109

    PubMed  CAS  Google Scholar 

References

  • Aulakh CS, Wozniak KM, Hill JL, DeVane CL, Tolliver TJ, Murphy DL (1988) Differential neuroendocrine responses to the 5-HT agonist m-chlorophenylpiperazine in fawn-hooded rats relative to Wistar and Sprague-Dawley rats. Neuroendocrinol 48:401–406

    CAS  Google Scholar 

  • Aulakh CS, Hill JL, Murphy DL (1993) Attenuation of hypercortisolemia in fawn-hooded rats by antidepressant drugs. Eur J Pharmacol 240:85–88

    PubMed  CAS  Google Scholar 

  • Broqua P, Baudrie V, Laude D, Chaouloff F (1992) Influence of the novel antidepressant tianeptine on neurochemical, neuroendocrinological, and behavioral effects of stress in rats. Biol Psychiatry 31:391–400

    PubMed  CAS  Google Scholar 

  • Groenink L, Van der Gugten J, Mos J, Maes RAA, Olivier B (1995) The corticosterone-enhancing effects of the 5-HT1A receptor antagonist, (S)-UH301, are not mediated by the 5-HT1A receptor. Eur J Pharmacol 272:177–183

    PubMed  CAS  Google Scholar 

  • Koenig JI, Gudelsky GA, Meltzer HY (1987) Stimulation of corticosterone and ß-endorphin secretion in the rat by selective 5-HT receptor subtype activation. Eur J Pharmacol 137:1–8

    PubMed  CAS  Google Scholar 

  • Korte SM, Smit J, Bouws GAH, Koolhaas JM, Bohus B (1991) Neuroendocrine evidence for hypersensitivity in serotonergic neuronal system after psychological stress of defeat. In: Olivier B, Mos J, Slangen JL (eds) Animal Models in Psychopharmacology. Advances in Pharmacological Sciences. Birkhäuser Verlag, Basel, pp 199–203

    Google Scholar 

  • Nash JF, Meltzer HY, Gudelsky GA (1988) Antagonism of serotonin receptor mediated neuroendocrine and temperature responses by atypical neurolpetics in the rat. Eur J Pharmacol 151:463–469

    PubMed  CAS  Google Scholar 

  • Rittenhouse PA, Bakkum EA, O'Connor PA, Carnes M, Bethea CL, van de Kar LD (1992) Comparison of neuroendocrine and behavioral effects of ipsapirone, a 5-HT1A agonist, in three stress paradigms: immobilization, forced swim and conditioned fear. Brain Res 580:205–214

    PubMed  CAS  Google Scholar 

References

  • File SE, Hitcott PK (1991) Benzodiazepine dependence. In: Briley M, File SE (eds) New Concepts in Anxiety. McMillan Press Ltd., London, pp 237–255

    Google Scholar 

References

  • Boisse NR, Periana RM, Guarino JJ, Kruger HS, Samorski GM (1986) Pharmacological characterization of acute chlordiazepoxide dependence in the rat. J Pharmacol Exp Ther 239:775–783

    PubMed  CAS  Google Scholar 

  • Bonnafous C, Lefevre P, Bueno L (1995) Benzodiazepine-with-drawal-induced gastric emptying disturbances in rats: Evidence for serotonin receptor involvement. J Pharmacol Exp Ther 273:995–1000

    PubMed  CAS  Google Scholar 

  • File SE (1985) Tolerance to the behavioral actions of benzodiazepines. Neurosci Biobehav Rev 9:113–121

    PubMed  CAS  Google Scholar 

  • France CP, Gerak LR (1997) Discriminative stimulus effects of flumazenil in Rhesus monkeys treated chronically with chlordiazepoxide. Pharmacol Biochem Behav 56:447–455

    PubMed  CAS  Google Scholar 

  • Gallaher EJ, Henauer SA, Jacques CJ, Hollister LE (1986) Benzodiazepine dependence in mice after ingestion of drug-containing food pellets. J Pharmacol Exp Ther 237:462–467

    PubMed  CAS  Google Scholar 

  • Goudie AJ, Leathley MJ, Cowgill J (1994) Assessment of the benzodiazepine-like dependence potential in rats of a putative 5-HT1A agonist anxiolytic S-20499. Behav Pharmacol 5:131–140

    PubMed  CAS  Google Scholar 

  • Lamb RJ, Griffiths RR (1984) Precipitated and spontaneous withdrawal in baboons after chronic dosing with lorazepam and CGS 9896. Drug Alc Depend 14:11–17

    CAS  Google Scholar 

  • Lukas SE, Griffiths RR (1982) Precipitated withdrawal by a benzodiazepine receptor antagonist (Ro 15-1788) after 7 days of diazepam. Science 217:1161–1163

    PubMed  CAS  Google Scholar 

  • Löscher W, Hönack D, Faßbender CP (1989) Physical dependence on diazepam in the dog: precipitation of different abstinence syndromes by the benzodiazepine receptor antagonists Ro 15-1788 and ZK 93426. Br J Pharmacol 97:843–852

    PubMed  Google Scholar 

  • McNicholas LF, Martin WR, Sloan JW, Wala E (1988) Precipitation of abstinence in nordiazepam-and diazepam-dependent dogs. J Pharmacol Exp Ther 245:221–224

    PubMed  CAS  Google Scholar 

  • Nath C, Patnaik GK, Saxena RC, Gupta MB (199/) Evaluation of inhibitory effect of diphenhydramine on benzodiazepine dependence in rats. Indian J Physiol Pharmacol 41:42–46

    Google Scholar 

  • Nutt DJ, Costello MJ (1988) Rapid induction of lorazepam dependence with flumazenil. Life Sci 43:1045–1053

    PubMed  CAS  Google Scholar 

  • Patel JB, Rinarelli CA, Malick JB (1988) A simple and rapid method of inducing physical dependence with benzodiazepines in mice. Pharmacol Biochem Behav 29:753–754

    PubMed  CAS  Google Scholar 

  • Piot O, Betschart J, Stutzmann JM, Blanchard JC (1990) Cyclopyrrolones, unlike some benzodiazepines, do not induce physical dependence in mice. Neurosci Lett 117:140–143

    PubMed  CAS  Google Scholar 

  • Ryan GP, Boisse NR (1983) Experimental induction of benzodiazepine tolerance and physical dependence. J Pharmacol Exp Ther 226:100–107

    PubMed  CAS  Google Scholar 

  • Stephens DN, Schneider HH (1985) Tolerance to the benzodiazepine diazepam in an animal model of anxiolytic activity. Psychopharmacol 87:322–327

    CAS  Google Scholar 

  • Treit D (1985) Evidence that tolerance develops to the anxiolytic effect of diazepam in rats. Pharmacol Biochem Behav 22:383–387

    PubMed  CAS  Google Scholar 

  • Vellucci SV, File SE (1979) Chordiazepoxide loses its anxiolytic action with long-term treatment. Psychopharmacology 62:61–65

    PubMed  CAS  Google Scholar 

  • Yanagita T (1983) Dependence potential of zopiclone studied in monkeys. Pharmacology 27, Suppl 2:216–227

    PubMed  Google Scholar 

References

  • Cotman CW, Iversen LL (1987) Excitatory amino acids in the brainfocus on NMDA receptors. Trends in Neurosci 10:263–265

    CAS  Google Scholar 

  • Fisher RS (1989) Animal models of the epilepsies. Brain Res Rev 14:245–278

    PubMed  CAS  Google Scholar 

  • Gale K (1992) GABA and epilepsy: Basic concepts from preclinical research. Epilepsia 33 (Suppl. 5):S3–S12

    PubMed  CAS  Google Scholar 

  • Hout J, Raduoco-Thomas S, RaduocoThomas C (1973) Qualitative and quantitative evaluation of experimentally induced seizures. In: Anticonvulsant Drugs, Vol 1, Pergamon Press, Oxford, New York, pp 123–185

    Google Scholar 

  • Koella WP (1985) Animal experimental methods in the study of antiepileptic drugs. In: Frey HH, Janz D (eds) Antiepileptic Drugs. Handbook of Experimental Pharmacology Vol 74, pp 283–339, Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  • Löscher W, Schmidt D (1988) Which animal models should be used in the search for new antiepileptic drugs? A proposal based on experimental and clinical considerations. Epilepsy Res 2:145–181

    PubMed  Google Scholar 

  • MacDonald RL, McLean MJ (1986) Anticonvulsant drugs: Mechanisms of action. Adv Neurol 44:713–736

    PubMed  CAS  Google Scholar 

  • Meldrum BS (1986) Pharmacological approaches to the treatment of epilepsy. In: Meldrum BS, Porter RJ (eds) New Anticonvulsant Drugs. John Libbey, London Paris, pp 17–30

    Google Scholar 

  • Meldrum BS (1989) GABAergic mechanisms in the pathogenesis and treatment of epilepsy. Br J Pharmacol 27:3S–11S

    CAS  Google Scholar 

  • Porter RJ, Rogawski MA (1992) New antiepileptic drugs: From serendipity to rational discovery. Epilepsia 33, (Suppl. 1):S1–S6

    PubMed  CAS  Google Scholar 

  • Rogawski MA, Porter RJ (1990) Antiepileptic drugs: Pharmacological mechanisms and clinical efficacy with consideration of promising developmental stage compounds. Pharmacol Rev 42:223–286

    PubMed  CAS  Google Scholar 

  • Rump S, Kowalczyk M (1987) Effects of antiepileptic drugs in electrophysiological tests. Pol J Pharmacol Pharm 39:557–566

    PubMed  CAS  Google Scholar 

  • Swinyard EA (1973) Assay of antiepileptic drug activity in experimental animals: standard tests. In: Anticonvulsant Drugs, Vol 1, Pergamon Press, Oxford, New York, pp 47–65

    Google Scholar 

  • Toman JEP, Everett GM (1964) Anticonvulsants. In: Laurence DR, Bacharach AL (eds) Evaluation of Drug Activities: Pharmacometrics. pp 287–300. Academic Press, London and New York

    Google Scholar 

  • Woodbury DM (1972) Applications to drug evaluations. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental Models of Epilepsy — A Manual for the Laboratory Worker. Raven Press, New York, pp 557–583

    Google Scholar 

  • Watkins JC, Olverman HJ (1987) Agonists and antagonists for excitatory amino acid receptors. Trends Neurosci 10:265–272

    CAS  Google Scholar 

References

  • Fonnum F (1987) Biochemistry, anatomy, and pharmacology of GABA neurons. In: Meltzer HY (ed) Psychopharmacology: The Third Generation of Progress. Raven Press, New York, pp 173–182

    Google Scholar 

  • Lloyd KG, Morselli PL (1987) Psychopharmacology of GABAergic drugs. In: Meltzer HY (ed) Psychopharmacology: The Third Generation of Progress. Raven Press, New York pp 183–195

    Google Scholar 

References

  • Brehm L et al. (1979) GABA uptake inhibitors and structurally related “pro-drugs”. In: Krogsgaard-Larsen P et al. (eds) GABA-Neurotransmitters. pp 247–261, Academic Press, New York

    Google Scholar 

  • Fjalland B (1978) Inhibition by neuroleptics of uptake of 3H GABA into rat brain synaptosomes. Acta Pharmacol et Toxicol 42:73–76 (1978)

    CAS  Google Scholar 

  • Gray EG, Whittaker VP (1962) The isolation of nerve endings from brain: an electron microscopic study of cell fragments derived by homogenization and centrifugation. J Anat (Lond) 96:79–88

    PubMed  CAS  Google Scholar 

  • Iversen LL, Bloom FE. (1972) Studies of the uptake of 3H-GABA and 3H-glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography. Brain Res 41:131–143

    PubMed  CAS  Google Scholar 

  • Korgsgaard-Larsen P (1985) GABA agonist and uptake inhibitors. Research Biochemicals Incorporated — Neurotransmissions, Vol 1

    Google Scholar 

  • Meldrum B et al. (1982) GABA-uptake inhibitors as anticonvulsant agents. In: Okada Y, Roberts E (eds) Problems in GABA Research from Brain to Bacteria. pp 182–191, Excerpta Medica, Princeton

    Google Scholar 

  • Roberts E (1974) γ-aminobutyric acid and nervous system function — a perspective. Biochem. Pharmacol. 23:2637–2649

    PubMed  CAS  Google Scholar 

  • Roskoski R (1978) Net uptake of L-glutamate and GABA by high affinity synaptosomal transport systems. J Neurochem 31:493–498

    PubMed  CAS  Google Scholar 

  • Ryan L, Roskoski R (1977) Net uptake of γ-aminobutyric acid by a high affinity synaptosomal transport system. J Pharm Exp Ther 200:285–291

    CAS  Google Scholar 

  • Snodgrass SR GABA and GABA neurons: Controversies, problems, and prospects. In: Receptor Site Analysis, NEN, pp 23–33

    Google Scholar 

  • Tapia R (1975) Blocking of GABA uptake. In: Iversen I, Iversen S, Snyder S (eds) Handbook of Psychopharmacology. 4:33–34, Plenum Press, New York

    Google Scholar 

References

  • Falch E, Larsson OM, Schousboe A, Krogsgard-Larsen P (1990) GABA-A agonists and GABA uptake inhibitors. Drug Dev Res 21:169–188

    CAS  Google Scholar 

  • Huger FP, Smith CP, Chiang Y, Glamkowski EJ, Ellis DB (1987) Pharmacological evaluation of HP 370, a potential atypical antipsychotic agent. 2. in vitro profile. Drug Dev Res 11:169–175

    CAS  Google Scholar 

  • Lajtha A, Sershen H (1975) Inhibition of amino acid uptake by the absence of Na+ in slices of brain. J Neurochem 24:667–672

    PubMed  CAS  Google Scholar 

  • Lüddens H, Korpi ER (1995) Biological function of GABAA/benzodiazepine receptor heterogeneity. J Psychiat Res 29:77–94

    PubMed  Google Scholar 

  • Möhler H (1992) GABAergic synaptic transmission. Arzneim Forsch/Drug Res 42:211–214

    Google Scholar 

  • Nilsson M, Hansson E, Rönnbäck L (1990) Transport of valproate and its effects on GABA uptake in astroglial primary culture. Neurochem Res 15:763–767

    PubMed  CAS  Google Scholar 

  • Nilsson M, Hansson E, Rönnbäck L (1992) Interactions between valproate, glutamate, aspartate, and GABA with respect to uptake in astroglial primary cultures. Neurochem Res 17:327–332

    PubMed  CAS  Google Scholar 

  • Roskoski R (1978) Net uptake of L-glutamate and GABA by high affinity synaptosomal transport systems. J Neurochem 31:493–498

    PubMed  CAS  Google Scholar 

  • Suzdak PD, Jansen JA (1995) A review of the preclinical pharmacology of tiagabine: a potent and selective anticonvulsant GABA uptake inhibitor. Epilepsia 36:612–626

    PubMed  CAS  Google Scholar 

  • Taylor CP (1990) GABA receptors and GABAergic synapses as targets for drug development. Drug Dev Res 21:151–160

    CAS  Google Scholar 

  • Taylor CP, Vartanian MG, Schwarz RD, Rock DM, Callahan MJ, Davis MD (1990) Pharmacology of CI-966:a potent GABA uptake inhibitor, in vitro and in experimental animals. Drug Dev Res 21:195–215

    CAS  Google Scholar 

  • Walton NY, Gunnawan S, Treiman DM (1994) Treatment of experimental status epilepticus with the GABA uptake inhibitor, tiagabine. Epilepsy Res 19:237–244

    PubMed  CAS  Google Scholar 

References

  • Becker J, Li Z, Noe CR (1998) Molecular and pharmacological characterization of recombinant rat/mice N-methyl-D-aspartate receptor subtypes in the yeast Saccharomyces cerevisiae. Eur J Biochem 256:427–435

    PubMed  CAS  Google Scholar 

  • Bettler B, Mulle C (1995) Review: Neurotransmitter receptors. II. AMPA and kainate receptors. Neuropharmacol 34:123–139

    CAS  Google Scholar 

  • Carlsson M, Carlsson A (1990) Interactions between glutaminergic and monoaminergic systems within the basal ganglia — implications for schizophrenia and Parkinson's disease. Trends Neurosci 13:272–276

    PubMed  CAS  Google Scholar 

  • Carter C, Rivy JP, Scatton B (1989) Ifenprodil and SL 82.0715 are antagonists at the polyamine site of the N-methyl-D-aspartate (NMDA) receptor. Eur J Pharmacol 164:611–612

    PubMed  CAS  Google Scholar 

  • Chimirri A, Gitto R, Zappala M (1999) AMPA receptor antagonists. Expert Opin Ther Pat 9:557–570

    CAS  Google Scholar 

  • Chittajallu R, Braithwaite SP, Clarke VRJ, Henley JM (1999) Kainate receptors: subunits, synaptic localization and function. Trends Pharmacol Sci 20:26–35

    PubMed  CAS  Google Scholar 

  • Clarke VRJ, Ballyk BA, Hoo KH, Mandelzys A, Pellizari A, Bath CP, Thomas J, Sharpe EF, Davies CH, Ornstein PL, Schoepp DD, Kamboj RK, Collingridge GL, Lodges D, Bleakman D (1997) A hippocampal GluR5 kainate receptor regulating inhibitory synaptic transmission. Nature 389:599–603

    PubMed  CAS  Google Scholar 

  • Collingridge GL, Lester RAJ (1989) Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev 40:143–210

    Google Scholar 

  • Cotman CW, Iversen LL (1987) Excitatory amino acids in the brain-focus on NMDA receptors. Trends Neurosci 10:263–265

    CAS  Google Scholar 

  • Cunningham MD, Ferkany JW, Enna SH (1994) Excitatory amino acid receptors: a gallery of new targets for pharmacological intervention. Life Sci 54:135–148

    PubMed  CAS  Google Scholar 

  • Danysz W, Parsons CG (1998) Glycine and N-methyl-D-aspartate receptors: Physiological significance and possible therapeutic applications. Pharmacol Rev 50:597–664

    PubMed  CAS  Google Scholar 

  • Davies J, Evans RH, Herrling PL, Jones AW, Olverman HJ, Pook P, Watkins JC (1986) CPP, a new potent and selective NMDA antagonist. Depression of central neuron responses, affinity for [3H]D-AP5 binding sites on brain membranes and anticonvulsant activity. Brain Res 382:169–173

    PubMed  CAS  Google Scholar 

  • Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61

    PubMed  CAS  Google Scholar 

  • Dunn RW, Corbett R, Martin LL, Payack JF, Laws-Ricker L, Wilmot CA, Rush DK, Cornfeldt ML, Fielding S (1990) Preclinical anxiolytic profiles of 7189 and 8319, novel non-competitive NMDA antagonists. Current and Future Trends in Anticonvulsant, Anxiety, and Stroke Therapy, pp 495–512. Wiley-Liss, Inc

    Google Scholar 

  • Ferkany J, Coyle JT (1986) Heterogeneity of sodium-dependent excitatory amino acid uptake mechanisms in rat brain. J Neurosci Res 16:491–503

    PubMed  CAS  Google Scholar 

  • Fleck AW, Bahring R, Patneau DK, Mayer ML (1996) AMPA receptor heterogeneity in rat hippocampal neurons revealed by differential sensitivity to cyclothiazide. J Neurophysiol 75:2322–2333

    PubMed  CAS  Google Scholar 

  • Fletcher EJ, Lodge D (1995) New developments in the molecular pharmacology of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate and kainate receptors. Pharmacol Ther 70:65–89

    Google Scholar 

  • Foster AC, Fagg GE (1984) Acidic amino acid binding sites in mammalian neuronal membranes: Their characteristics and relationship to synaptic receptors. Brain Res Rev 7:103–164

    CAS  Google Scholar 

  • Foster AC, Fagg GE (1987) Comparison of L-[3H]glutamate, D-[3H]aspartate, DL-[3H]AP5 and [3H]NMDA as ligands for NMDA receptors in crude postsynaptic densities from rat brain. Eur J Pharmacol 133:291–300

    PubMed  CAS  Google Scholar 

  • Gallo V, Ghiani CA (2000) Glutamate receptors in glia: new cells, new inputs and new functions. Trends Pharmacol Sci 21:252–258

    PubMed  CAS  Google Scholar 

  • Harris EW, Ganong AH, Monaghan DT, Watkins JC, Cotman CW (1986) Action of 3-((±)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP): a new and highly potentantagonist of N-methyl-D-aspartate receptors in the hippocampus. Brain Res 382:174–177

    PubMed  CAS  Google Scholar 

  • Hatt H (1999) Modification of glutamate receptor channels: Molecular mechanisms and functional consequences. Naturwissensch 86:177–186

    CAS  Google Scholar 

  • Herrling PL (1994) Clinical implications of NMDA receptors. In: Collingridge GL, Watkins JC (eds) The NMDA Receptor. Second Edition. Oxford University Press, pp 376–394

    Google Scholar 

  • Honoré T, Lauridsen J, Krogsgaard-Larsen P (1982) The binding of [3H]AMPA, a structural analogue of glutamic acid to rat brain membranes. J Neurochem 38:173–178

    PubMed  Google Scholar 

  • Honoré T, Davies SN, Drejer J, Fletchner EJ, Jacobsen P, Lodge D, Nielsen FE (1988) Quinoxalidine diones: Potent competitive non-NMDA glutamate receptor antagonists. Science 241:701–703

    PubMed  Google Scholar 

  • Iversen LL; Kemp JA (1994) Non-competitive NMDA antagonists as drugs. In: Collingridge GL, Watkins JC (eds) The NMDA Receptor. Second Edition. Oxford University Press, pp 469–486

    Google Scholar 

  • Jones SM, Snell LD, Johnson KM (1989) Characterization of the binding of radioligands to the N-methyl-D-aspartate, phenylcyclidine and glycine receptors in buffy coat membranes. J Pharmacol Meth 21:161–168

    CAS  Google Scholar 

  • Kemp JA, Foster AC, Wong EHF (1987) Non-competitive antagonists of excitatory amino acid receptors. Trends Neurosci 10:294–298

    CAS  Google Scholar 

  • Kohara A, Okada M, Tsutsumi R, Ohno K, Takahashi M, Shimizu-Sasamata M, Shishikura JI, Inami H, Sakamoto S, Yamaguchi T (1998) In vitro characterization of YM872, a selective, potent and highly water-soluble α-amino-3-hydroxy-5-methyl-isoxazole-4-propionate receptor antagonist. J Pharm Pharmacol 50:795–801

    PubMed  CAS  Google Scholar 

  • Kodama M, Yamada M, Sato K, Kitamura Y, Koyama F, Sato T, Morimoto K, Kuroda S (1999) Effects of YM90K, a selective AMP receptor antagonist, on amgdala-kindling and long-term hippocampal potentiation in rats. Eur J Pharmacol 374:11–19

    PubMed  CAS  Google Scholar 

  • Lees GJ (2000) Pharmacology of AMPA/kainate receptor ligands and their therapeutic potential in neurological and psychiatric disorders. Drug 59:33–78

    CAS  Google Scholar 

  • Lehmann J, Schneider J, McPherson S, Murphy DE, Bernard P, Tsai C, Bennett DA, Pastor G, Steel DJ, Boehm C, Cheney DL, Liebman JM, Williams M, Wood PL (1987) CPP, a selective N-methyl-D-aspartate (NMDA)-type receptor antagonist: characterization in vitro and in vivo. J Pharmacol Exp Ther 240:737–746

    PubMed  CAS  Google Scholar 

  • Lehmann J, Hutchison AJ, McPherson SE, Mondadori C, Schmutz M, Sinton CM, Tsai C, Murphy DE, Steel DJ, Williams M, Cheney DL, Wood PL (1988) CGS 19755, a selective and competitive N-methyl-D-aspartate type excitatory amino acid receptor antagonist. J Pharmacol Exp Ther 246:65–75

    PubMed  CAS  Google Scholar 

  • London ED, Coyle JT (1979) Specific binding of [3H]kainic acid to receptor sites in rat brain. Mol Pharmacol 15:492–505

    PubMed  CAS  Google Scholar 

  • Loscher W (1998) Pharmacology of glutamate receptor antagonists in the kindling model of epilepsy. Progr Neurobiol 54:721–741

    CAS  Google Scholar 

  • Mayer ML, Westbrook GL (1987) The physiology of excitatory amino acids in the vertebrate central nervous system. Progr Neurobiol 28:197–276

    CAS  Google Scholar 

  • Mayer ML, Benveniste M, Patneau DK (1994) NMDA receptor agonists and competitive antagonists. In: Collingridge GL, Watkins JC (eds) The NMDA Receptor. Second Edition. Oxford University Press, pp 132–146

    Google Scholar 

  • Meldrum BS (1998) The glutamate synapse as a therapeutic target: Perspectives for the future. Prog Brain Res 116:441–458

    PubMed  CAS  Google Scholar 

  • Meldrum BS (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130, (4S Suppl):1007S–1015S

    PubMed  CAS  Google Scholar 

  • Meldrum BS, Chapman AG (1994) Competitive NMDA antagonists as drugs. In: Collingridge GL, Watkins JC (eds) The NMDA Receptor. Second Edition. Oxford University Press, pp 457–468

    Google Scholar 

  • Monaghan DT, Buller AL (1994) Anatomical, pharmacological, and molecular diversity of native NMDA receptor subtypes. In: Collingridge GL, Watkins JC (eds) The NMDA Receptor. Second Edition. Oxford University Press, pp 158–176.

    Google Scholar 

  • Monaghan DT, Cotman CW (1982) The distribution of [3H]kainic acid binding sites in rat CNS as determined by autoradiography. Brain Res 252:91–100

    PubMed  CAS  Google Scholar 

  • Monaghan DT, Bridges RJ, Cotman CW (1989) The excitatory amino acid receptors: Their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol 29:365–402

    PubMed  CAS  Google Scholar 

  • Mukhin A, Kovaleva ES, London ED (1997) Two affinity states of N-methyl-D-aspartate recognition sites: Modulation by cations. J Pharmacol Exp Ther 282:945–954

    PubMed  CAS  Google Scholar 

  • Murphy DE, Schneider J, Boehm C, Lehmann J, Williams M (1987a) Binding of [3H]3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid to rat brain membranes: A selective, high-affinity ligand for N-methyl-D-aspartate receptors. J Pharmacol Exp Ther 240:778–784

    PubMed  CAS  Google Scholar 

  • Murphy DE, Snowhill EW, Williams M (1987b) Characterization of quisqualate recognition sites in rat brain tissue using DL-[3H]α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and a filtration assay. Neurochem Res 12:775–782

    PubMed  CAS  Google Scholar 

  • Murphy DE, Hutchinson AJ, Hurt SD, Williams M, Sills MA (1988) Characterization of the binding of [3H]-CGS 19755, a novel N-methyl-D-aspartate antagonist with nanomolar affinity in rat brain. Br J Pharmacol 95:932–938

    PubMed  CAS  Google Scholar 

  • Mutel V, Trube G, Klingelschmidt A, Messer J, Bleuel Z, Humbel U, Clifford MM, Ellis GJ, Richards JG (1998) Binding characteristics of a potent AMPA receptor antagonist [3H]Ro 48-8587 in rat brain. J Neurochem 71:418–426

    PubMed  CAS  Google Scholar 

  • Nakanishi S (1992) Molecular diversity of glutamate receptors and implication for brain function. Science 258:593–603

    Google Scholar 

  • Nielsen EO, Varming T, Mathiesen C, Jensen LH, Moller A, Gouliaev AH, Watjen F, Drejer J (1999) SPD 502: A water-soluble and in vivo long-lasting AMPA antagonist with neuroprotective activity. J Pharmacol Exp Ther 289:1492–1501

    PubMed  CAS  Google Scholar 

  • Olney JW (1990) Excitotoxic amino acids and neuropsychiatric disorders. Annu Rev Pharmacol Toxicol 30:47–71

    PubMed  CAS  Google Scholar 

  • Olsen RW, Szamraj O, Houser CR (1987) [3H]AMPA binding to glutamate receptor subpopulations in rat brain. Brain Res 402:243–254

    PubMed  CAS  Google Scholar 

  • Olverman JH, Monaghan DT, Cotman CW, Watkins JC (1986) [3H]CPP, a new competitive ligand for NMDA receptors. Eur J Pharmacol 131:161–162

    PubMed  CAS  Google Scholar 

  • Parsons CG, Danysz W, Quack G (1998) Glutamate in CNS disorders as a target for drug development. Drug News Perspect 11:523–569

    PubMed  CAS  Google Scholar 

  • Piotrovsky LB, Garyaev AP, Poznyakova LN (1991) Dipeptide analogues of N-acetylaspartylglutamate inhibit convulsive effects of excitatory amino acids in mice. Neurosci Lett 125:227–230

    PubMed  CAS  Google Scholar 

  • Rogawski MA, Porter RJ (1990) Antiepileptic drugs: Pharmacological mechanisms and clinical efficacy with considerations of promising developmental stage compounds. Pharmacol Rev 42:223–286

    PubMed  CAS  Google Scholar 

  • Tauboll E, Gjerstad L (1998) Effects of antiepileptic drugs on the activation of glutamate receptors. Prog Brain Res 116:385–393

    PubMed  CAS  Google Scholar 

  • Thomsen C (1997) The L-AP4 receptor. Gen Pharmacol 29:151–158

    PubMed  CAS  Google Scholar 

  • Toms NJ, Reid ME, Phillips W, Kemp MC, Roberts PJ (1997) A novel kainate receptor ligand [3H]-(2S,4R)-4-methylglutamate. Pharmacological characterization in rabbit brain membranes. Neuropharmacology 36:1483–1488

    PubMed  CAS  Google Scholar 

  • Wahl P, Frandsen A, Madsen U, Schousboe A, Krogsgaard-Larsen P (1998) Pharmacology and toxicology of ATOA, an AMPA receptor antagonist and a partial agonist at GluR5 receptors. Neuropharmacology 37:1205–1210

    PubMed  CAS  Google Scholar 

  • The NMDA receptor concept: origins and development. In: Collingridge GL, Watkins JC (eds) The NMDA Receptor. Second Edition. Oxford University Press, pp 1–30

    Google Scholar 

  • Watkins JC, Olverman HJ (1987) Agonists and antagonists for excitatory amino acid receptors. Trends Neurosci 10:265–272

    CAS  Google Scholar 

  • Worms P, Willigens MT, Lloyd KG (1981) The behavioral effects of systemically administered kainic acid: a pharmacological analysis. Life Sci 29:2215–2225

    PubMed  CAS  Google Scholar 

  • Willis CL, Wacker DA, Bartlett RD, Bleakman D, Lodge D, Chamberlin AR, Bridges RJ (1997) Irreversible inhibition of high affinity [3H]kainate binding by a photoactivatable analogue: (2′S,3′S,4′R)-2′-carboxy-4′-(2-diazo-1-oxo-3,3,3-trifluoropropyl)-3′-pyrrolidinyl acetate. J Neurochem 68:1503–1510

    PubMed  CAS  Google Scholar 

  • Young AB, Fagg GE (1990) Excitatory amino acid receptors in the brain: membrane binding and receptor autoradiographic approaches. Trends Pharmacol Sci 11:126–133

    PubMed  CAS  Google Scholar 

  • Zeman S, Lodge D (1992) Pharmacological characterization of non-NMDA subtypes of glutamate receptor in the neonatal rat hemidissected spinal cord in vitro. Br J Pharmacol 106:367–372

    PubMed  CAS  Google Scholar 

  • Zhou L-L, Gu Z Q, Costa AM, Yamada KA, Mansson PE, Giordano T, Skolnick P, Jones KA (1997) (2S,4R)-4-methylglutamic acid (SYM 2081): A selective, high affinity ligand for kainate receptors. J Pharmacol Exp Ther 280:422–427

    PubMed  CAS  Google Scholar 

References

  • Abe T, Sugihara H, Nawa H, Shigemoto R, Mizuno N, Nakanishi S (1992) Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J Biol Chem 267:13361–13368

    PubMed  CAS  Google Scholar 

  • Bashir ZI, Bortolotto ZA, Davies CH, Berretta M, Irving AJ, Seal AJ, Henley AM, Jane DE, Watkins JC, Collingridge GL (1993) Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature 363:347–350

    PubMed  CAS  Google Scholar 

  • Chenard BL, Menniti FS (1999) Antagonists selective for NMDA receptors containing the NR2B subunit. Curr Pharm Res 5:381–404

    CAS  Google Scholar 

  • Cotman CW, Iversen LL (1987) Excitatory amino acids in the brainfocus on NMDA receptors. Trends Neurosci 10:263–265

    CAS  Google Scholar 

  • Dannhardt G, von Gruchalla M, Elben U (1994) Tools for NMDA-receptor elucidation: Synthesis of spacer-coupled MK-801 derivatives. Pharm Pharmacol Lett 4:12–15

    CAS  Google Scholar 

  • Dunn RW, Corbett R, Martin LL, Payack JF, Laws-Ricker L, Wilmot CA, Rush DK, Cornfeldt ML, Fielding S (1990) Preclinical anxiolytic profiles of 7189 and 8319, novel non-competitive NMDA antagonists. Current and Future Trends in Anticonvulsant, Anxiety, and Stroke Therapy, pp 495–512. Wiley-Liss, Inc

    Google Scholar 

  • Ebert B, Madsen U, Lund TM, Lenz SM, Krogsgaard-Larsen P (1994) Molecular pharmacology of the AMPA agonist, (S)-2-amino-3-(3-hydroxy-5-phenyl-4-isoxazolyl)propionic acid [(S)-APPA] and the AMPA antagonist, (R)-APPA. Neurochem Int 24:507–515

    PubMed  CAS  Google Scholar 

  • Fischer G, Mutel V, Trube G, Malherbe P, Kew JNC, Mohacsi E, Heitz MP, Kemp JA (1997) Ro 25-6981, a highly potent and selective blocker of N-methyl-D-aspartate receptors containing the NRB2 subunit. J Pharmacol Exp Ther 283:1285–1292

    PubMed  CAS  Google Scholar 

  • Goldman ME, Jacobson AE, Rice KC, Paul SM (1985) Differentiation of [3H]phencyclidine and (+)−[3H]SKF-10,047 binding sites in rat cerebral cortex. FEBS Lett 190:333–336

    PubMed  CAS  Google Scholar 

  • Grimwood S, Le Bourdellès B, Atack JR, Barton C, Cockettt W, Cook SM, Gilbert E, Hutson PH, McKernan RM, Myers J, Ragan CI, Wingrove PB, Whiting PJ (1996) Generation and characterization of stable cell lines expressing recombinant human N-methyl-D-aspartate receptor subtypes. J Neurochem 66:2239–2247

    PubMed  CAS  Google Scholar 

  • Hansen JJ, Krogsgaard-Larsen P (1990) Structural, conformational, and stereochemical requirements of central excitatory amino acid receptors. Med Res Rev 10:55–94

    PubMed  CAS  Google Scholar 

  • Ishii T, Moriyoshi K, Sugihara H, Sakurada K, Kadotani H, Yokoi M, Akazawa C, Shigemoto R, Mizuno N, Masu M, Nakanishi S (1993) Molecular characterization of the family of N-methyl-D-aspartate receptor subunits. J Biol Chem 268:2836–2843

    PubMed  CAS  Google Scholar 

  • Iversen LL (1994) MK-801 (Dizocilpine maleate) — NMDA receptor antagonist. Neurotransmiss 10:1:1–4

    Google Scholar 

  • Javitt DC, Zukin SR (1989) Biexponential kinetics of [3H]MK-801 binding: Evidence for access to closed and open N-methyl-D-aspartate receptor channels. Mol Pharmacol 35:387–393

    PubMed  CAS  Google Scholar 

  • Johnson KM, Jones SM (1990) Neuropharmacol of phencyclidine: Basic mechanisms and therapeutic potential. Annu Rev Pharmacol Toxicol 30:707–750

    PubMed  CAS  Google Scholar 

  • Keinänen K, Wisden W, Sommer B, Werner P, Herb A, Verdoorn TA, Sakmann B, Seeburg PH (1990) A family of AMPA-selective glutamate receptors. Science 249:556–560

    PubMed  Google Scholar 

  • Kemp JA, Foster AC Wong EHF (1987) Non-competitive antagonists of excitatory amino acid receptors. Trends Neurosci 10:294–298

    CAS  Google Scholar 

  • Kew JNC, Trube G, Kemp JA (1998) State-dependent NMDA receptor antagonism by Ro 8-4304, a novel NR2B selective, non-competitive, voltage-independent antagonist. Br J Pharmacol 123:463–472

    PubMed  CAS  Google Scholar 

  • Kutsuwada T, Kashiwabuchi N, Mori H, Sakimura K, Kushyia E, Araki K, Meguro H, Masaki H, Kumanishi T, Arakawa M, Mishina M (1992) Molecular diversity of the NMDA receptor channel. Nature 358:36–41

    PubMed  CAS  Google Scholar 

  • Loo P, Braunwalder A, Lehmann J, Williams M (1986) Radioligand binding to central phencyclidine recognition sites is dependent on excitatory amino acid receptor agonists. Eur J Pharmacol 123:467–468

    PubMed  CAS  Google Scholar 

  • Loo PS, Braunwalder AF, Lehmann J, Williams M, Sills MA (1987) Interaction of L-glutamate and magnesium with phencyclidine recognition sites in rats brain: evidence for multiple affinity states of the phencyclidine/N-methyl-D-aspartate receptor complex. Mol Pharmacol 32:820–830

    PubMed  CAS  Google Scholar 

  • Maragos WF, Chu DCM, Greenamyre T, Penney JB, Young AB (1986) High correlation between the localization of [3H]TCP binding and NMDA receptors. Eur J Pharmacol 123:173–174

    PubMed  CAS  Google Scholar 

  • Masu M, Tanabe Y, Tsuchida K, Shigemoto R, Nakanishi S (1991) Sequence and expression of a metabotropic glutamate receptor. Nature 349:760–765

    PubMed  CAS  Google Scholar 

  • Meguro H, Mori H, Araki K, Kushiya E, Katsuwada T, Yamazaki M, Kumanishi T, Arakawa M, Sakimura K, Mishina M (1992) Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature 357:70–74

    PubMed  CAS  Google Scholar 

  • Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH (1992) Heteromeric NMDA receptors: Molecular and functional distinction of subtypes. Science 256:1217–1221

    PubMed  CAS  Google Scholar 

  • Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S (1991) Molecular cloning and characterization of the rat NMDA receptor. Nature 354:31–37

    PubMed  CAS  Google Scholar 

  • Nakajima Y, Iwakabe H, Akazawa C, Nawa H, Shigemoto R, Mizuno N, Nakanishi N (1993) Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate. J Biol Chem 268:11868–11873

    PubMed  CAS  Google Scholar 

  • Nowak G, Remond A, McNamara M, Paul IA (1995) Swim stress increases the potency of glycine at the N-methyl-D-aspartate receptor complex. J Neurochem 64:925–927

    PubMed  CAS  Google Scholar 

  • Reyes M, Reyes A, Opitz T, Kapin MA, Stanton PK (1998) Eliprodil, a non-competitive, NR2B-selective NMDA antagonist, protects pyramidal neurons in hippocampal slides from hypoxic/ischemic damage. Brain Res 782:212–218

    PubMed  CAS  Google Scholar 

  • Reynolds IJ, Miller RJ (1988) Multiple sites for the regulation of the N-methyl-D-aspartate receptor. Mol Pharmacol 33:581–584

    PubMed  CAS  Google Scholar 

  • Rogawski MA, Porter RJ (1990) Antiepileptic drugs: Pharmacological mechanisms and clinical efficacy with considerations of promising developmental stage compounds. Pharmacol Reviews 42:223–286

    CAS  Google Scholar 

  • Sacaan AI, Johnson KM (1989) Spermine enhances binding to the glycine site associated with the N-methyl-D-aspartate receptor complex. Mol Pharmacol 36:836–839

    PubMed  CAS  Google Scholar 

  • Schoepp D, Bockaert J, Sladeczek F (1990) Pharmacological and functional characteristics of metabotropic excitatory amino acid receptors. Trends Pharmacol Sci 11:508–515

    PubMed  CAS  Google Scholar 

  • Sills MA, Fagg G, Pozza M, Angst C, Brundish DE, Hurt SD, Wilusz EJ, Williams M (1991) [3H]CGP 39653: a new N-methyl-D-aspartate antagonist radioligand with low nanomolar affinity in rat brain. Eur J Pharmacol 192:19–24

    PubMed  CAS  Google Scholar 

  • Simon RP, Swan JH, Griffiths T, Meldrum BS (1984) Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 226:850–852

    PubMed  CAS  Google Scholar 

  • Snell LD, Morter RS, Johnson KM (1987) Glycine potentiates N-methyl-D-aspartate-induced [3H]TCP binding to rat cortical membranes. Neurosci Lett 83:313–320

    PubMed  CAS  Google Scholar 

  • Snell LD, Morter RS, Johnson KD (1988) Structural requirements for activation of the glycine receptor that modulates the N-methyl-D-aspartate operated ion channel. Eur J Pharmacol 156:105–110

    PubMed  CAS  Google Scholar 

  • Sugihara H, Moriyoshi K, Ishii T, Masu M, Nakanishi S (1992) Structures and properties of seven isoforms of the NMDA receptor generated by alternative splicing. Biochem Biophys Res Commun 185:826–832

    PubMed  CAS  Google Scholar 

  • Tanabe Y, Nomura A, Masu M, Shigemoto R, Mizuno N, Nakanishi S (1993) Signal transduction, pharmacological properties, and expression patterns of two metabotropic glutamate receptors, mGluR3 and mGluR4. J Neurosci 13:1372–1378

    PubMed  CAS  Google Scholar 

  • Thedinga KH, Benedict MS, Fagg GE (1989) The N-methyl-D-aspartate (NMDA) receptor complex: a stoechiometric analysis of radioligand binding domains. Neurosci Lett 104:217–222

    PubMed  CAS  Google Scholar 

  • Thomson AM (1989) Glycine modulation of the NMDA receptor/channel complex. Trends in Neurosci 12:349–353

    CAS  Google Scholar 

  • Vignon J, Chicheportiche R, Chicheportiche M, Kamenka JM, Geneste P, Lazdunski M (1983) [3H]TPC: a new tool with high affinity to the PCP receptor in rat brain. Brain Res 280:194–197

    PubMed  CAS  Google Scholar 

  • Watkins JC, Olverman HJ (1987) Agonists and antagonists for excitatory amino acid receptors. Trends Neurosci 10:265–272

    CAS  Google Scholar 

  • Watkins JC, Krogsgaard-Larsen P, Honoré T (1990) Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol Sci 11:25–33

    PubMed  CAS  Google Scholar 

  • Williams K, Romano C, Molinoff PB (1989) Effects of polyamines on the binding of [3H]MK-801 to the N-methyl-D-aspartate receptor: pharmacological evidence for the existence of a polyamine recognition site. Mol Pharmacol 36:575–581

    PubMed  CAS  Google Scholar 

  • Wong EHF, Kemp JA (1991) Sites for antagonism on the N-methyl-D-aspartate receptor channel complex. Ann Rev Pharmac Toxic 31:401–425

    CAS  Google Scholar 

  • Wong EHF, Knight AR, Woodruff GN (1988) [3H]MK-801 labels a site on the N-methyl-D-aspartate receptor channel complex in rat brain membranes. J Neurochem 50:274–281

    PubMed  CAS  Google Scholar 

  • Yoneda Y, Ogita K (1991) Neurochemical aspects of the N-methyl-D-aspartate receptor complex. Neurosci Res 10:1–33

    PubMed  CAS  Google Scholar 

References

  • Acher FC, Tellier FJ, Azerad R, Brabet IN, Fagni L, Pin JPR (1997) Synthesis and pharmacological characterization of aminocyclopentanetricarboxylic acids: New tools to discriminate between metabotropic glutamate receptor subtypes. J Med Chem 40:3119–3129

    PubMed  CAS  Google Scholar 

  • Alexander S, Peters J, Mathie A, MacKenzie G, Smith A (2001) TiPS Nomenclature Supplement

    Google Scholar 

  • Annoura H, Fukunaga A, Uesugi M, Tatsuoka T, Horikawa Y (1996) A novel class of antagonists for metabotropic glutamate receptors, 7-(hydroxyimino)-cyclopropa[b]chromen-1a-carboxylates. Bioorg Med Chem Lett 6:763–766

    CAS  Google Scholar 

  • Attwell PJE, Singh-Kent N, Jane D, Croucher MJ, Bradford HF (1998) Anticonvulsant and glutamate release-inhibiting properties of the highly potent metabotropic glutamate receptor agonist (2S, 2'R,3'R)-2-(2′3′-dicarboxycyclopropyl)-glycine (DCG-IV). Brain Res 805:138–143

    PubMed  CAS  Google Scholar 

  • Bedingfield JS, Jane DE, Kemp MC, Toms NJ, Roberts PJ (1996) Novel potent selective phenylglycine antagonists of metabotropic glutamate receptors. Eur J Pharmacol 309:71–78

    PubMed  CAS  Google Scholar 

  • Berridge MJ, Downes CP, Hanley MR (1982) Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem J 206:587–595

    PubMed  CAS  Google Scholar 

  • Brauner-Osborne H, Nielsen B, Krogsgaard-Larsen P (1998) Molecular pharmacology of homologues of ibotenic acid at cloned metabotropic glutamic acid receptors. Eur J Pharmacol 350:311–316

    PubMed  CAS  Google Scholar 

  • Bruno V, Battaglia G, Copani A, Casabona G, Storto M, di Giorgi-Gerevini V, Ngomba R, Nicoletti F (1998) Metabotropic glutamate receptors and neurodegeneration. Prog Brain Res 116:209–221

    PubMed  CAS  Google Scholar 

  • Cartmell J, Adam G, Chaboz S, Henningsen R, Kemp JA, Klingelschmidt A, Metzler V, Monsma F, Schaffhauser H, Wichmann J, Mutel V (1998) Characterization of [3H]-(2S,2'R,3'R)-2-(2′,3′-dicarboxycyclopropyl)glycine ([3H]-DCGIV) binding to metabotropic mGlu2 receptor transfected cell membranes. Br J Pharmacol 123:497–504

    PubMed  CAS  Google Scholar 

  • Christoffersen GRJ, Christensen LH, Hammer P, Vang M (1999) The class I metabotropic glutamate receptor antagonist, AIDA, improves short-term and impairs long-term memory in a spatial task for rats. Neuropharmacol 38:817–823

    CAS  Google Scholar 

  • Conn PJ, Pin JP (1997) Pharmacology and function of metabotropic glutamate receptors. Ann Rev Pharmacol Toxicol 37:205–237

    CAS  Google Scholar 

  • DeBlasi A, Conn PJ, Pin JP, Nicolette F (2001) Molecular determinants of metabotropic glutamate signaling. Trends Pharmacol Sci 22:114–120

    CAS  Google Scholar 

  • Doherty AJ, Palmer MJ, Henley JM, Collingridge GL, Jane DE (1997) (R,S)-2-chloro-5-hydroxyphenylglycine (CHPG) activates mGlu5, but not mGlu1, receptors expressed in CHO cells and potentiates NMDA responses in the hippocampus. Neuropharmacol 36:265–267

    CAS  Google Scholar 

  • Eriksen L, Thomsen C (1995) [3H]-L-2-amino-4-phosphonobutyrate labels a metabotropic glutamate receptor, mGluR4a. Br J Pharmacol 116:3279–3287

    PubMed  CAS  Google Scholar 

  • Gasparini F, Bruno V, Battaglia G, Lukic S, Leonhardt T, Inderbitzin W, Laurie D, Sommer B, Varney MA, Hess SD, Johnson EC, Kuhn R, Urwyler S, Sauer D, Portet C, Schmutz M, Nicoletti F, Flor PJ (1999) (R,S)-4-Phosphonophenylglycine, a potent and selective group III metabotropic glutamate receptor agonist, is anticonvulsive and neuroprotective in vivo. J Pharmacol Exp Ther 289:1678–1687

    PubMed  CAS  Google Scholar 

  • Helton DR, Tizzano JP, Monn JA, Schoepp DD, Kallman MJ (1998) Anxiolytic and side-effect profile of LY354740: A potent and highly selective, orally active agonist for group II metabotropic glutamate receptors. J Pharmacol Exp Ther 284:651–660

    PubMed  CAS  Google Scholar 

  • Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Ann Rev Neurosci 17:31–108

    PubMed  CAS  Google Scholar 

  • Ishida M, Akagi H, Shimamoto K, Ohfune Y, Shinozaki H (1990) A potent metabotropic glutamate receptor agonist: electrophysiological actions of a conformationally restricted glutamate analogue in the rat spinal cord and Xenopus oocytes. Brain Res 537:311–314

    PubMed  CAS  Google Scholar 

  • Ishida M, Saitoh T, Nakamura Y, Kataoka K, Shinozaki H (1994) A novel metabotropic glutamate receptor agonist: (2S,1'S,2'R,3'R)-2-(carboxy-3-methoxymethylcyclopropyl)-glycine (cis-MCG-I). Eur J Pharmacol Mol Pharmacol Sect 268:267–270

    CAS  Google Scholar 

  • Jane D, Doherty A (2000) Muddling through the mGlu maze? Tocris Review No.13

    Google Scholar 

  • Jane DE, Jones PLSJ, Pook PCK, Tse HW, Watkins JC (1994) Actions of two new antagonists showing selectivity for different sub-types of metabotropic glutamate receptor in the neonatal spinal cord. Br J Pharmacol 112:809–816

    PubMed  CAS  Google Scholar 

  • Kingston AE, Ornstein PL, Wright RA, Johnson BG, Mayne NG, Burnett JP, Belagaje R, Wu S, Schoepp DD (1998) LY341495 is a nanomolar potent and selective antagonist of group II metabotropic glutamate receptors. Neuropharmacol 37:1–12

    CAS  Google Scholar 

  • Knöpfel T, Kuhn R, Allgeier H (1995) Metabotropic glutamate receptors: Novel targets for drug development. J Med Chem 38:1417–1425

    PubMed  Google Scholar 

  • Knöpfel T, Madge T, Nicoletti F (1996) Metabotropic glutamate receptors. Expert Opin Ther Pat 6:1061–1067

    Google Scholar 

  • Konieczny J, Ossowska K, Wolfarth S, Pilc A (1998) LY354740, a group II metabotropic glutamate receptor agonist with potential antiparkinsonian properties in rats. Naunyn-Schmiedeberg's Arch Pharmacol 358:500–502

    CAS  Google Scholar 

  • Monn JA, Valli MJ, Massey SM, Hansen MM, Kress TJ, Wepsiec JP, Harkness AR, Grutsch JL Jr., Wright PA, Johnson PG, Andis SL, Kingston A, Tomlinson R, Lewis R, Griffey KR, Tizzano JP, Schoepp DD (1999) Synthesis, pharmacological characterization, and molecular modeling of heterobicyclic amino acids related to (+)-2-aminobicyclo[3.1.0]-hexane-2,6-dicarboxylic acid (LY354740): Identification of two new potent, selective, and systemically active agonists for group II metabotropic glutamate receptors. J Med Chem 42:1027–1040

    PubMed  CAS  Google Scholar 

  • Nakanishi S, Masu M (1994) Molecular diversity and function of glutamate receptors. Ann Rev Biophys Biomol Struct 23:319–348

    CAS  Google Scholar 

  • Nicoletti F, Bruno V, Copani A, Casabona G, Knöpfel T (1996) Metabotropic glutamate receptors: A new target for the treatment of neurodegenerative disorders? Trends Neurosci 19:267–271

    PubMed  CAS  Google Scholar 

  • Okamaoto N, Hori S, Akazawa C, Hayashi Y, Shigemoto R, Mizuno N, Nakanishi S (1994) Molecular characterization of a new metabotropic glutamate receptor mGluR7 coupled to inhibitory cyclic AMP signal transduction. J Biol Chem 269:1231–1236

    Google Scholar 

  • Ornstein PL, Arnold MB, Bleisch TJ, Wright RA, Wheeler WJ, Schoepp DD (1998) [3H]LY341495, a highly potent, selective and novel radioligand for labeling group II metabotropic glutamate receptors. Bioorg Med Chem Lett 8:1919–1922

    PubMed  CAS  Google Scholar 

  • Pin JP, Duvoisin R (1995) The metabotropic glutamate receptors: Structure and functions. Neuropharmacol 34:1–26

    CAS  Google Scholar 

  • Porter RHP, Briggs RSJ, Roberts PJ (1992) L-Aspartate-β-hydroxamate exhibits mixed agonist/antagonist activity at the glutamate metabotropic receptor in rat neonatal cerebrocortical slices. Neurosci Lett 144:87–89

    PubMed  CAS  Google Scholar 

  • Riedel G, Reymann KG (1996) Metabotropic glutamate receptors in hippocampal long-term potentiation and learning and memory. Acta Physiol Scand 157:1–19

    PubMed  CAS  Google Scholar 

  • Schaffhauser H, Richards JG, Cartmell J, Chaboz S, Kemp JA, Klingelschmidt A, Messer J, Stadler H, Woltering T, Mutel V (1998) In vitro binding characteristics of a new selective group II metabotropic glutamate receptor radioligand, [3H]LY354740, in rat brain. Mol Pharmacol 53:228–233

    PubMed  CAS  Google Scholar 

  • Schoepp DD, Conn PJ (1993) Metabotropic glutamate receptors in brain function and pathology. Trends Pharmacol Sci 14:13–20

    PubMed  CAS  Google Scholar 

  • Skerry TM, Genever PG (2001) Glutamate signalling in non-neuronal tissues. Trends Pharmacol Sci 22:174–181

    PubMed  CAS  Google Scholar 

  • Tanabe Y, Masu M, Ishii T, Shigemoto R, Nakanishi S (1992) A family of metabotropic glutamate receptors. Neuron 8:169–179

    PubMed  CAS  Google Scholar 

  • Tanabe Y, Nomura A, Masu M, Shigemoto R, Mizuno N, Nakanishi S (1993) Signal transduction, pharmacological properties, and expression pattern of two rat metabotropic glutamate receptors, mGluR3 and mGluR4. J Neurosci 13:1372–1378

    PubMed  CAS  Google Scholar 

  • Thomsen C, Dalby NO (1998) Roles of metabotropic glutamate receptor subtypes in modulation of pentylenetetrazole-induced seizure activity in mice. Neuropharmacol 37:1465–1473

    CAS  Google Scholar 

  • Thomsen C, Mulvihill ER, Haldeman B, Pickering DS, Hampson DR, Suzdak PD (1993) A pharmacological characterization of the mGluR1α subtype of the metabotropic glutamate receptor expressed in a cloned baby hamster kidney cell line. Brain Res 619:22

    PubMed  CAS  Google Scholar 

  • Thomsen C, Boel E, Suzdak PD (1994) Action of phenylglycine analogs at subtypes of the metabotropic glutamate receptor family. Eur J Pharmacol 267:77–84

    PubMed  CAS  Google Scholar 

  • Thomsen C, Bruno V, Nicoletti F, Marinozzi M, Pelliciari R (1996) (2S,1'S,2'S,3'R)-2-(2′-carboxy-3′-phenylcyclopropyl)-glycine, a potent and selective antagonist of type 2 metabotropic glutamate receptors. Mol Pharmacol 50:6–9

    PubMed  CAS  Google Scholar 

  • Varney MA, Suto CM (2000) Discovery of subtype-selective metabotropic glutamate receptor ligands using functional HTS assays. Drug Disc Today: HTS Suppl 1:20–26

    CAS  Google Scholar 

  • Watkins J, Collingridge G (1994) Phenylglycine derivatives as antagonists of metabotropic glutamate receptors. Trends Pharmacol Sci 15:333–342

    PubMed  CAS  Google Scholar 

References

  • Arriza JL, Fairman WA, Wadiche JI, Murdoch GH, Kavanaugh MP, Amara SG (1994) Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J Neurosci 14:5559–5569

    PubMed  CAS  Google Scholar 

  • Arunlakshana O, Schild HO (1959) Some quantitative uses of drug antagonists. Br J Pharmacol 14:48–58

    CAS  Google Scholar 

  • Robinson MB, Sinor JD, Dowd LA, Kerwin JF Jr. (1993) Subtypes of sodium-dependent high-affinity L-[3H]glutamate transport activity. Pharmacologic specificity and regulation by sodium and potassium. J Neurochem 60:1657–179

    Google Scholar 

  • Seal RP, Amara SG (1999) Excitatory amino acid transporters: A family in Flux. Annu Rev Pharmacol Toxicol 39:431–456

    PubMed  CAS  Google Scholar 

  • Vandenberg RJ (1998) Molecular pharmacology and physiology of glutamate transporters in the central nervous system. Clin Exp Pharmacol Physiol 25:393–400

    PubMed  CAS  Google Scholar 

  • Vandenberg RJ, Arriza JL, Amara SG, Kavanaugh MP (1995) Constitutive ion fluxes and substrate binding domains of human glutamate transporters. J Biol Chem 270:17668–17671

    PubMed  CAS  Google Scholar 

  • Vandenberg RJ, Mitrovic AD, Chebib M, Balcar VJ, Johnston GAR (1997) Contrasting modes of action of methylglutamate derivatives on the excitatory amino acid transporters, EAAT1 and EAAT2. Molec Pharmacol 51:809–815

    CAS  Google Scholar 

  • Woodhull AM (1973) Ion blockage of sodium channels in nerve. J Gen Physiol 61:667–708

    Google Scholar 

References

  • Casida JE, Palmer CJ, Cole LM (1985) Bicycloorthocarboxylate convulsants. Potent GABAA receptor antagonists. Mol Pharmacol 28:246–253

    PubMed  CAS  Google Scholar 

  • Gee KW, Lawrence LJ, Yamamura HI (1986) Modulation of the chloride ionophore by benzodiazepine receptor ligands: influence of gamma-aminobutyric acid and ligand efficacy. Mol Pharmacol 30:218–225

    PubMed  CAS  Google Scholar 

  • Macksay G, Ticku MK (1985a) Dissociation of [35S]-t-butylbicyclophosphorothionate binding differentiates convulsant and depressant drugs that modulate GABAergic transmission. J Neurochem 44:480–486

    Google Scholar 

  • Macksay G, Ticku MK (1985b) GABA, depressants and chloride ions affect the rate of dissociation of [35S]-t-butylbicyclophosphorothionate binding. Life Sci 37:2173–2180

    Google Scholar 

  • Olsen RW, Yang J, King RG, Dilber A, Stauber GB, Ransom RW (1986) Barbiturate and benzodiazepine modulation of GABA receptor binding and function. Life Sci 39:1969–1976

    PubMed  CAS  Google Scholar 

  • Squires RF, Casida JE, Richardson M, Saederup E (1983) [35S]t-Butylbicyclophorothionate binds with high affinity to brain specific sites coupled to γ-aminobutyric acid-A and ion recognition sites. Mol Pharmacol 23:326–336

    PubMed  CAS  Google Scholar 

  • Supavilai P, Karabath M (1984) [35S]-t-Butylbicyclophosphorothionate binding sites are constituents of the γ-aminobutyric acid benzodiazepine receptor complex. J Neurosci 4:1193–1200

    PubMed  CAS  Google Scholar 

  • Trifiletti RR, Snowman AM, Snyder SH (1984) Anxiolytic cyclopyrrolone drugs allosterically modulate the binding of [35S]t-butylbicyclophosphorothionate to the benzodiazepine/γ-aminobutyric acid-A receptor/chloride anionophore complex. Mol Pharmacol 26:470–476

    PubMed  CAS  Google Scholar 

  • Trifiletti RR, Snowman AM, Snyder SH (1985) Barbiturate recognition site on the GABA/Benzodiazepine receptor complex is distinct from the picrotoxin/TBPS recognition site. Eur J Pharmacol 106:441–447

    Google Scholar 

References

  • Baron BM, Harrison BL, Miller FP, McDonald IA, Salituro FG, Schmidt CJ, Sorensen SM, White HS, Palfreyman MG (1990) Activity of 5,7-dichlorokynurenic acid, a potent antagonist at the N-methyl-D-aspartate receptor-associated glycine binding site. Mol Pharmacol 38:554–561

    PubMed  CAS  Google Scholar 

  • Baron BM, Siegel BW, Harrison BL, Gross RS, Hawes C, Towers P (1996) [3H]MDL 105,519, a high affinity radioligand for the N-methyl-D-aspartate receptor-associated glycine recognition site. J Pharmacol Exp Ther 279:62–68

    PubMed  CAS  Google Scholar 

  • Bonhaus DW, Burge BC, McNamara JO (1978) Biochemical evidence that glycine allosterically regulates an NMDA receptor-coupled ion channel. Eur J Pharmacol 142:489–490

    Google Scholar 

  • Bonhaus DW, Yeh G-C, Skaryak L, McNamara JO (1989) Glycine regulation of the N-methyl-D-aspartate receptor-gatedion channel in hippocampal membranes. Mol Pharmacol 36:273–279

    PubMed  CAS  Google Scholar 

  • Chazot PL, Reiss C, Chopra B, Stephenson FA (1998) [3H]MDL 105,519 binds with equal high affinity to both assembled and unassembled NR1 subunits of the NMDA receptor. Eur J Pharmacol 353:137–140

    PubMed  CAS  Google Scholar 

  • Cotman CW, Monaghan DT, Ottersen OP, Storm-Mathisen J (1987) Anatomical organization of excitatory amino acid receptors and their pathways. Trends Neurosci 10:273–280

    CAS  Google Scholar 

  • Danysz W, Wroblewski JT, Brooker G, Costa E (1989) Modulation of glutamate receptors by phencyclidine and glycine in the rat cerebellum: cGMP increase in vivo. Brain Res 479:270–276

    PubMed  CAS  Google Scholar 

  • Foster AC, Kemp JA, Leeson PD, Grimwood S, Donald AE, Marshall GR, Priestley T, Smith JD, Carling RW (1992) Kynurenic acid analogues with improved affinity and selectivity for the glycine site on the N-methyl-D-aspartate receptor from rat brain. Mol Pharmacol 41:914–922

    PubMed  CAS  Google Scholar 

  • Hargreaves RJ, Rigby M, Smith D, Hill RG (1993) Lack of effect of L-687,414 ((+)-cis-4-methyl-HA-966), an NMDA receptor antagonist acting at the glycine site, on cerebral glucose metabolism and cortical neuronal morphology. Br J Pharmacol 110:36–42

    PubMed  CAS  Google Scholar 

  • Hofner G, Wanner KT (1997) Characterization of the binding of [3H]MDL 105,519, a radiolabelled antagonist for the N-methyl-D-aspartate receptor-associated glycine site to pig cortical brain membranes. Neurosci Lett 226:79–82

    PubMed  CAS  Google Scholar 

  • Jansen KLR, Dragunow M, Faull RLM (1989) [3H]Glycine binding sites, NMDA and PCP receptors have similar distributions in the human hippocampus: an autoradiographic study. Brain Res 482:174–1178

    PubMed  CAS  Google Scholar 

  • Kessler M, Terramani T, Lynch B, Baudry M (1989) A glycine site associated with N-methyl-D-aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem 52:1319–1328

    PubMed  CAS  Google Scholar 

  • Monahan JB, Corpus VM, Hood WF, Thomas JW, Compton RP (1989) Characterization of a [3H]glycine recognition site as a modulatory site of the N-Methyl-D-aspartate receptor complex. J Neurochem 53:370–375

    PubMed  CAS  Google Scholar 

  • Oliver MW, Kessler M, Larson J, Schottler F, Lynch G (1990) Glycine site associated with the NMDA receptor modulates long-term potentiation. Synapse 5:265–270

    PubMed  CAS  Google Scholar 

  • Ransom RW, Deschenes NL (1988) NMDA-induced hippocampal [3H]norepinephrine release is modulated by glycine. Eur J Pharmacol 156:149–155

    PubMed  CAS  Google Scholar 

  • Rao TS, Cler JA, Emmet MR, Mick SJ, Iyengar S, Wood PL (1990) Glycine, glycinamide, and D-serine act as positive modulators of signal transduction at the N-methyl-D-aspartate (NMDA) receptor in vivo: differential effects on mouse cerebellar cyclic guanosine monophosphate levels. Neuropharmacol 29:1075–1080

    CAS  Google Scholar 

  • Reynolds IJ, Murphy SN, Miller RJ (1987) 3H-labeled MK-801 binding to the excitatory amino acid receptor complex from rat brain is enhanced by glycine. Proc Natl Acad Sci USA 84:7744–7748

    PubMed  CAS  Google Scholar 

  • Sacaan AI, Johnson KM (1989) Spermine enhances binding to the glycine site associated with N-methyl-D-aspartate receptor complex. Mol Pharmacol 36:836–839

    PubMed  CAS  Google Scholar 

  • Snell LD, Morter RS, Johnson KM (1987) Glycine potentiates N-methyl-D-aspartate induced [3H]TCP binding to rat cortical membranes. Neurosci Lett 83:313–317

    PubMed  CAS  Google Scholar 

  • Snell LD, Morter RS, Johnson KM (1988) Structural requirements for activation of the glycine receptor that modulates the N-methyl-D-aspartate operated ion channel. Eur J Pharmacol 156:105–110

    PubMed  CAS  Google Scholar 

  • Thomson AM (1989) Glycine modulation of the NMDA receptor/channel complex. Trends Neuroscience 12:349–353

    CAS  Google Scholar 

  • White HS, Harmsworth WL, Sofia RD, Wof HH (1995) Felbamate modulates the strychnine-insensitive glycine receptor. Epilepsy Res 20:41–48

    PubMed  CAS  Google Scholar 

References

  • Betz H, Kuhse J, Schmieden V, Laube B, Harvey R (1998) Structure, diversity and pathology of the inhibitory glycine receptor. Naunyn-Schmiedeberg's Arch Pharmacol 358, Suppl 2, R 570

    Google Scholar 

  • Braestrup C, Nielsen M, Krogsgaard-Larsen P (1986) Glycine antagonists structurally related to 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol inhibit binding of [3H]strychnine to rat brain membranes. J Neurochem 47:691–696

    PubMed  CAS  Google Scholar 

  • Bristow DR, Bowery NG, Woodruff GN (1986) Light microscopic autoradiographic localisation of [3H]glycine and [3H]strychnine binding sites in rat brain. Eur J Pharmacol 126:303–307

    PubMed  CAS  Google Scholar 

  • Bruns RF, Welbaum BEA (1985) A sodium chloride shift method to distinguish glycine agonists from antagonists in [3H]strychnine binding. Fed Proc 44:1828

    Google Scholar 

  • Graham D, Pfeiffer F, Simler R, Betz H (1985) Purification and characterization of the glycine receptor of pig spinal cord. Biochemistry 24:990–994

    PubMed  CAS  Google Scholar 

  • Johnson G, Nickell DG, Ortwine D, Drummond JT, Bruns RF, Welbaum BE (1989) Evaluation and synthesis of aminohydroxyisoxazoles and pyrazoles as potential glycine agonists. J Med Chem 32:2116–2128

    PubMed  Google Scholar 

  • Johnson G, Drummond JT, Boxer PA, Bruns RF (1992) Proline analogues as agonists at the strychnine-sensitive glycine receptor. J Med Chem 35:233–241

    PubMed  CAS  Google Scholar 

  • Kishimoto H, Simon JR, Aprison MH (1981) Determination of the equilibrium constants and number of glycine binding sites in several areas of the rat central nervous system, using a sodium-independent system. J Neurochem 37:1015–1024

    PubMed  CAS  Google Scholar 

  • Lambert DM, Poupaert JH, Maloteaux JM, Dumont P (1994) Anticonvulsant activities of N-benzyloxycarbonylglycine after parenteral administration. NeuroReport 5:777–780

    PubMed  CAS  Google Scholar 

  • Marvizón JCG, Vázquez J, Calvo MG, Mayor F Jr., Gómez AR, Valdivieso F, Benavides J (1986) The glycine receptor: Pharmacological studies and mathematical modeling of the allosteric interaction between the glycine-and strychnine-binding sites. Mol Pharmacol 30:590–597

    PubMed  Google Scholar 

  • Saitoh T, Ishida M, Maruyama M, Shinozaki H (1994) A novel antagonist, phenylbenzene-ω-phosphono-a-amino acid, for strychnine-sensitive glycine receptors in the rat spinal cord. Br J Pharmacol 113:165–170

    PubMed  CAS  Google Scholar 

  • Schmieden V, Jezequel S, Beth H (1996) Novel antagonists of the inhibitory glycine receptor derived from quinolinic acid compounds. Mol Pharmacol 48:919–927

    Google Scholar 

  • Simmonds MA, Turner JP (1985) Antagonism of inhibitory amino acids by the steroid derivative RU5135. Br J Pharmacol 84:631–635

    PubMed  CAS  Google Scholar 

  • Young AB, Snyder SH (1974) Strychnine binding in rat spinal cord membranes associated with the synaptic glycine receptor: co-operativity of glycine interactions. Mol Pharmacol 10:790–809

    CAS  Google Scholar 

References

  • Alger BE (1984) Hippocampus. Electrophysiological studies of epileptiform activity in vitro. In: Dingledine R (ed) Brain Slices. Plenum Press, New York, London, pp 155–199

    Google Scholar 

  • Alger BE, Nicoll RA (1982) Pharmacological evidence of two kinds of GABA receptor on rat hippocampal pyramidal cells studied in vitro. J Physiol 328:125–141

    PubMed  CAS  Google Scholar 

  • Alger BE, Dhanjal SS, Dingledine R, Garthwaite J, Henderson G, King GL, Lipton P, North A, Schwartzkroin PA, Sears TA, Segal M, Whittingham TS, Williams J (1984) Brain Slice methods. In: Dingledine R (ed) Brain Slices. Plenum Press, New York, London, pp 381–437

    Google Scholar 

  • Bernard C, Wheal HV (1995) Plasticity of AMP and NMDA receptor mediated epileptiform activity in a chronic model of temporal lobe epilepsy. Epilepsy Res 21:95–107

    PubMed  CAS  Google Scholar 

  • Bingmann D, Speckmann EJ (1986) Actions of pentylenetetrazol (PTZ) on CA3 neurons in hippocampal slices of guinea pigs. Exp Brain Res 64:94–104

    PubMed  CAS  Google Scholar 

  • Blanton MG, Turco JJL, Kriegstein AR (1989) Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex. J Neurosci Meth 30:203–210

    CAS  Google Scholar 

  • Coan EJ, Saywood W, Collingridge GL (1987) MK-801 blocks NMDA receptor-mediated synaptic transmission and long term potentiation in rat hippocampal slices. Neurosci Lett 80:111–114

    PubMed  CAS  Google Scholar 

  • Crain SM (1972) Tissue culture models of epileptiform activity. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental Models of Epilepsy — A Manual for the Laboratory Worker. Raven Press, New York, pp 291–316

    Google Scholar 

  • Dingledine R, Dodd J, Kelly JS (1980) The in vitro brain slice as a useful neurophysiological preparation for intracellular recording. J Neurosci Meth 2:323–362

    CAS  Google Scholar 

  • Fisher RS (1987) The hippocampal slice. Am J EEG Technol 27:1–14

    Google Scholar 

  • Fisher RS, Alger BE (1984) Electrophysiological mechanisms of kainic acid-induced epileptiform activity in the rat hippocampal slice. J Neurosci 4:1312–1323

    PubMed  CAS  Google Scholar 

  • Fredholm BB, Dunwiddie TV, Bergman B, Lindström K (1984) Levels of adenosine and adenine nucleotides in slices of rat hippocampus. Brain Res 295:127–136

    PubMed  CAS  Google Scholar 

  • Gähwiler BH (1988) Organotypic cultures of neuronal tissue. Trends Neurol Sci 11:484–490

    Google Scholar 

  • Harrison NL, Simmonds MA (1985) Quantitative studies on some antagonists of N-methyl-D-aspartate in slices of rat cerebral cortex. Br J Pharmacol 84:381–391

    PubMed  CAS  Google Scholar 

  • Langmoe IA, Andersen P (1981) The hippocampal slice in vitro. A description of the technique and some examples of the opportunities it offers. In: Kerkut GA, Wheal HV (eds) Electrophysiology of Isolated Mammalian CNS Preparations. Academic Press, London, New York, pp 51–105

    Google Scholar 

  • Liu FC, Takahashi H, Mc Kay RDG, Graybiel AM (1995) Dopaminergic regulation of transcription factor expression in organotypic cultures of developing stratum. J Neurosci 15:2367–2384

    PubMed  CAS  Google Scholar 

  • Misgeld U (1992) Hippocampal slices. In: Kettenmann H, Grantyn R (eds) Practical Electrophysiological Methods. John Wiley & Sons, New York, pp 41–44

    Google Scholar 

  • Mosfeldt Laursen A (1984) The contribution of in vitro studies to the understanding of epilepsy. Acta Neurol Scand 69:367–375

    PubMed  CAS  Google Scholar 

  • Müller CM (1992) Extra-and intracellular voltage recording in the slice. In: Kettenmann H, Grantyn R (eds) Practical Electrophysiological Methods. John Wiley & Sons, New York, pp 249–295

    Google Scholar 

  • Oh DJ, Dichter MA (1994) Effect of a γ-aminobutyric acid up-take inhibitor, NNC-711, on spontaneous postsynaptic currents in cultured rat hippocampal neurons: implications for antiepileptic drug development. Epilepsia 35:426–430

    PubMed  CAS  Google Scholar 

  • Okada Y, Ozawa S (1980) Inhibitory action of adenosine on synaptic transmission in the hippocampus of the guinea pig in vitro. Eur J Pharmacol 68:483–492

    PubMed  CAS  Google Scholar 

  • Oliver AP, Hoffer BJ, Wyatt RJ (1977) The hippocampal slice: a model system for studying the pharmacology of seizures and for screening of anticonvulsant drugs. Epilepsia 18:543–548

    PubMed  CAS  Google Scholar 

  • Pandanaboina MM, Sastry BR (1984) Rat neocortical slice preparation for electrophysiological and pharmacological studies. J Pharmacol Meth 11:177–186

    CAS  Google Scholar 

  • Saltarelli MD, Lowenstein PR, Coyle JT (1987) Rapid in vitro modulation of [3H]hemicholinium-3 binding sites in rat striatal slices. Eur J Pharmacol 135:35–40

    PubMed  CAS  Google Scholar 

  • Schlicker E, Fink K, Zentner J, Göthert M (1996) Presynaptic inhibitory serotonin autoreceptors in the human hippocampus. Naunyn-Schmiedeberg's Arch Pharmacol 354:393–396

    CAS  Google Scholar 

  • Schwartzkroin PA (1975) Characteristics of CA1 neurons recorded intracellularly in the hippocampal in vitro slice preparation. Brain Res 85:423–436

    PubMed  CAS  Google Scholar 

  • Siggins GR, Schubert P (1981) Adenosine depression of hippocampal neurons in vitro: an intracellular study of dose-dependent actions on synaptic and membrane potentials. Neurosci Lett 23:55–60

    PubMed  CAS  Google Scholar 

  • Skrede KK, Westgard RH (1971) The transverse hippocampal slice: A well-defined cortical structure maintained in vitro. Brain Res 35:589–659

    PubMed  CAS  Google Scholar 

  • Stoppini L, Buchs PA, Muller D (1991) A simple method for oganotypic cultures of nervous tissue. J Neurosci Meth 37:173–182

    CAS  Google Scholar 

  • Stuart GJ, Dodt HU, Sakmann B (1993) Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. Pflügers Arch 423:511–518

    PubMed  CAS  Google Scholar 

  • Teyler TT (1980) Brain slice preparation: Hippocampus. Brain Res Bull 5:391–40

    PubMed  CAS  Google Scholar 

References

  • Banker GA, Cowan WM (1977) Rat hippocampal neurons in dispersed cell culture. Brain Res 126:397–425

    PubMed  CAS  Google Scholar 

  • Chen Q-X, Stelzer A, Kay AR, Wong RKS (1990) GABAA receptor function is regulated by phosphorylation in acutely dissociated guinea-pig hippocampal neurones. J Physiol 420:207–221

    PubMed  CAS  Google Scholar 

  • Caulfield MP, Brown DA (1992) Cannabinoid receptor agonists inhibit Ca current in NG108-15 neuroblastoma cells via a pertussis toxin-sensitive mechanism. Br J Pharmacol 106:231–232

    PubMed  CAS  Google Scholar 

  • Delmas P, Brown DA, Dayrell M, Abogadie FC, Caulfield MP, Buckley NJ (1998) On the role of endogenous G-protein βγ subunits in N-type Ca2+ current inhibition by neurotransmitters in rat sympathetic neurones. J Physiol 506:319–329

    PubMed  CAS  Google Scholar 

  • Gola M, Niel JP (1993) Electrical and integrative properties of rabbit sympathetic neurons re-evaluated by patch-clamping non-dissociated cells. J Physiol 460:327–349

    PubMed  CAS  Google Scholar 

  • Gola M, Niel JP, Bessone R, Fayolle R (1992) Single channel and whole cell recordings from non dissociated sympathetic neurones in rabbit coeliac ganglia. J Neurosci Meth 43:13–22

    CAS  Google Scholar 

  • Gonzales F, Farbman AI, Gesteland RC (1985) Cell and explant culture of olfactory chemoreceptor cells. J Neurosci Meth 14:77–90

    CAS  Google Scholar 

  • Jirikowski G, Reisert I, Pilgrim C (1981) Neuropeptides in dissociated cultures of hypothalamus and septum; quantification of immunoreactive neurons. Neurosci 6:1953–1960

    CAS  Google Scholar 

  • Kay AR, Wong RKS (1986) Isolation of neurons suitable for patch-clamping from adult mammalian central nervous systems. J Neurosci Meth 16:227–238

    CAS  Google Scholar 

  • McGivern JG, Patmore L, Sheridan RD (1995) Actions of the novel neuroprotective agent, lifarizine (RS-87476), on voltage-dependent sodium currents in the neuroblastoma cell line, NIE-115. Br J Pharmacol 114:1738–1744

    PubMed  CAS  Google Scholar 

  • McLarnon JG (1991) The recording of action potential currents as an assessment for drug actions on excitable cells. J Pharmacol Meth 26:105–111

    CAS  Google Scholar 

  • McLarnon JG, Curry K (1990) Single channel properties of the N-methyl-D-aspartate receptor channel using NMDA and NMDA agonists: On-cell recordings. Exp Brain Res 82:82–88

    PubMed  CAS  Google Scholar 

  • Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799–802

    PubMed  CAS  Google Scholar 

  • Sakmann B, Neher E (1983) Single Channel Recording. Plenum Press, New York

    Google Scholar 

  • Smith PA (1995) Methods for studying neurotransmitter transduction mechanisms. J Pharmacol Toxicol Meth 33:63–73

    CAS  Google Scholar 

  • Stolc S (1994) Pyridoindole stobadine is a nonselective inhibitor of voltage-operated ion channels in rat sensory neurons. Gen Physiol Biophys 13:259–266

    PubMed  CAS  Google Scholar 

References

  • Banker GA, Cowan WM (1977) Rat hippocampal neurons in dispersed cell culture. Brain Res 126:397–425

    PubMed  CAS  Google Scholar 

  • Chen Q-X, Stelzer A, Kay AR, Wong RKS (1990) GABAA receptor function is regulated by phosphorylation in acutely dissociated guinea-pig hippocampal neurones. J Physiol 420:207–221

    PubMed  CAS  Google Scholar 

  • Caulfield MP, Brown DA (1992) Cannabinoid receptor agonists inhibit Ca current in NG108-15 neuroblastoma cells via a pertussis toxin-sensitive mechanism. Br J Pharmacol 106:231–232

    PubMed  CAS  Google Scholar 

  • Delmas P, Brown DA, Dayrell M, Abogadie FC, Caulfield MP, Buckley NJ (1998) On the role of endogenous G-protein βγ subunits in N-type Ca2+ current inhibition by neurotransmitters in rat sympathetic neurones. J Physiol 506:319–329

    PubMed  CAS  Google Scholar 

  • Gola M, Niel JP (1993) Electrical and integrative properties of rabbit sympathetic neurons re-evaluated by patch-clamping non-dissociated cells. J Physiol 460:327–349

    PubMed  CAS  Google Scholar 

  • Gola M, Niel JP, Bessone R, Fayolle R (1992) Single channel and whole cell recordings from non dissociated sympathetic neurones in rabbit coeliac ganglia. J Neurosci Meth 43:13–22

    CAS  Google Scholar 

  • Gonzales F, Farbman AI, Gesteland RC (1985) Cell and explant culture of olfactory chemoreceptor cells. J Neurosci Meth 14:77–90

    CAS  Google Scholar 

  • Jirikowski G, Reisert I, Pilgrim C (1981) Neuropeptides in dissociated cultures of hypothalamus and septum; quantification of immunoreactive neurons. Neurosci 6:1953–1960

    CAS  Google Scholar 

  • Kay AR, Wong RKS (1986) Isolation of neurons suitable for patch-clamping from adult mammalian central nervous systems. J Neurosci Meth 16:227–238

    CAS  Google Scholar 

  • McGivern JG, Patmore L, Sheridan RD (1995) Actions of the novel neuroprotective agent, lifarizine (RS-87476), on voltage-dependent sodium currents in the neuroblastoma cell line, NIE-115. Br J Pharmacol 114:1738–1744

    PubMed  CAS  Google Scholar 

  • McLarnon JG (1991) The recording of action potential currents as an assessment for drug actions on excitable cells. J Pharmacol Meth 26:105–111

    CAS  Google Scholar 

  • McLarnon JG, Curry K (1990) Single channel properties of the N-methyl-D-aspartate receptor channel using NMDA and NMDA agonists: On-cell recordings. Exp Brain Res 82:82–88

    PubMed  CAS  Google Scholar 

  • Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799–802

    PubMed  CAS  Google Scholar 

  • Sakmann B, Neher E (1983) Single Channel Recording. Plenum Press, New York

    Google Scholar 

  • Smith PA (1995) Methods for studying neurotransmitter transduction mechanisms. J Pharmacol Toxicol Meth 33:63–73

    CAS  Google Scholar 

  • Stolc S (1994) Pyridoindole stobadine is a nonselective inhibitor of voltage-operated ion channels in rat sensory neurons. Gen Physiol Biophys 13:259–266

    PubMed  CAS  Google Scholar 

References

  • Araujo DM, Cotman CW (1993) Trophic effects of interleukin-4,-7, and-8 on hippocampal neuronal cultures: potential involvement of glial-derived factors. Brain Res 600:49–55

    PubMed  CAS  Google Scholar 

  • Banker GA, Cowan WM (1977) Rat hippocampal neurons in dispersed cell culture. Brain Res 126:397–425

    PubMed  CAS  Google Scholar 

  • Brewer GJ (1997) Isolation and culture of adult hippocampal neurons. J Neurosci Meth 71:143–155

    CAS  Google Scholar 

  • Brewer GJ (1999) Regeneration and proliferation of embryonic and adult rat hippocampal neurons in culture. Exp Neurol 159:237–247

    PubMed  CAS  Google Scholar 

  • Brewer GJ, Deshmane S, Ponnusamy E (1998) Precocious axons and improved survival of rat hippocampal neurons on lysine-alanine polymer substrate. J Neurosci Meth 85:13–20

    CAS  Google Scholar 

  • Canals S, Casarejos MJ, Rodríguez-Martin E, de Bernardo S, Mena MA (2001) Neurotrophic and neurotoxic effects of nitric oxide on fetal midbrain cultures. J Neurochem 76:56–68

    PubMed  CAS  Google Scholar 

  • Chaudieu I, Privat A (1999) Neuroprotection of cultured foetal rat hippocampal cells against glucose deprivation: are GABAergic neurons less vulnerable or more sensitive to TCP protection? Eur J Neurosci 11:2413–2321

    PubMed  CAS  Google Scholar 

  • Ehret A, Haaf A, Jeltsch H, Heinrich B, Feuerstein TJ, Jakisch R (2001) Modulation of electrically evoked acetylcholine release in cultured septal neurones. J Neurochem 76:555–564

    PubMed  CAS  Google Scholar 

  • Flavin MP, Ho LT (1999) Propentofylline protects neurons in culture from death triggered by macrophage or microglia secretory products. J Neurosci Res 56:54–59

    PubMed  CAS  Google Scholar 

  • Hampson RE, Mu J, Deadwyler SA (2000) Cannabinoid and kappa opioid receptors reduced potassium K current via activation of Gs proteins in cultured hippocampal neurons. J Neurophysiol 84:2356–2364

    PubMed  CAS  Google Scholar 

  • Jirikowski G, Reisert I, Pilgrim Ch (1981) Neuropeptides in dissociated cultures of hypothalamus and septum: quantitation of immunoreactive neurons. Neuroscience 6:1953–1960

    PubMed  CAS  Google Scholar 

  • Li YX, Zhang Y, Lester HA, Schuman EM, Davidson N (1998) Enhancement of neurotransmitter release induced by brain-derived neurotrophic factor in cultured hippocampal neurons. J Neurosci 18:10231–10240

    PubMed  CAS  Google Scholar 

  • López E, Arce C, Vicente S, Oset-Gasque MJ, González MP (2001) Nicotinic receptors mediate the release of amino acid neurotransmitters in cultured cortical neurons. Cerebral Cortex 11:158–163

    PubMed  Google Scholar 

  • May PC, Robison PM, Fuson KS (1999) Stereoselective neuroprotection by a novel 2,3-benzodiazepine non-competitive AMPA antagonist against non-NMDA receptor mediated excitotoxicity in primary rat hippocampal culture. Neurosci Lett 262:219–221

    PubMed  CAS  Google Scholar 

  • Mitoma J, Ito M, Furuya S, Hirabayashi Y (1998) Bipotential roles of ceramide in the growth of hippocampal neurones: Promotion of cell survival and dendritic outgrowth in dose-and developmental stage-dependent manners. J Neurosci Res 51:712–722

    PubMed  CAS  Google Scholar 

  • Noh K-M, Koh J-Y (2000) Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J Neurosci 20: RC111:1–5

    Google Scholar 

  • Novitskaya V, Grigorian M, Kriajevska M, Tarabykina S, Bronstein I, Berezin V, Bock E, Lukanidin E (2000) Oligomeric forms of the metastasis-related Mts1 (S100A4) protein stimulate neuronal differentiation in cultures of rat hippocampal neurons. J Biol Chem 275:41278–41286

    PubMed  CAS  Google Scholar 

  • Pickard L, Noël J, Henley JM; Collingridge GL, Molnar E (2000) Developmental changes in synaptic AMPA and NMDA receptor distribution and AMPA receptor subunit composition in living hippocampal neurons. J Neurosci 20:7922–7931

    PubMed  CAS  Google Scholar 

  • Semkowa I, Wolz P, Krieglstein J (1998) Neuroprotective effect of 5-HT1A receptor agonist, Bay X 3702, demonstrated in vitro and in vivo. Eur J Pharmacol 359:251–260

    Google Scholar 

  • Semkowa I, Häberlein C, Krieglstein J (1999) Ciliary neurotrophic factor protects hippocampal neurons from excitotoxic damage. Neurochem Int 35:1–10

    Google Scholar 

  • Sinor JD, Du S, Venneti S, Blitzblau RC, Leszkiewicz DN, Rosenberg PA, Aizenman E (2000) NMDA and glutamate evoke excitotoxicity at distinct cellular locations in rat cortical neurones in vitro. J Neurosci 20:8831–8837

    PubMed  CAS  Google Scholar 

  • Skaper SD, Facci L, Milani L, Leon A, Toffano G (1990) Culture and use of primary and clonal neural cells. In: Conn PM (ed) Methods in Neuroscience, Vol 2, Academic Press, San Diego, pp 17–33

    Google Scholar 

  • Skaper SD, Leon A, Facci L (1993) Basic fibroblast growth factor modulates sensitivity of cultured hippocampal pyramidal neurones to glutamate cytotoxicity: interaction with ganglioside GM1. Brain Res Dev Brain Res 71:1–8

    PubMed  CAS  Google Scholar 

  • Skaper SD, Facci L, Kee WJ, Strijbos PJLM (2001) Potentiation by histamine of synaptically mediated excitotoxicity in cultured hippocampal neurones: a possible role for mast cells. J Neurochem 76:47–55

    PubMed  CAS  Google Scholar 

  • Tang DG, Tokumoto YM, Apperly JA, Lloyd AC, Raff MC (2001) Lack of replicative senescence in cultured rat oligodendrocyte precursor cells. Science 291:868–871

    PubMed  CAS  Google Scholar 

  • Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 97:14720–14725

    PubMed  CAS  Google Scholar 

  • Vergun O, Sobolevsky AI, Yelshansky MV, Keelan J, Khodorov BI, Duchen MR (2001) Exploration of the role of reactive oxygen species in glutamate neurotoxicity in rat hippocampal neurons in culture. J Physiol 531:147–163

    PubMed  CAS  Google Scholar 

  • Yamagishi S, Yamada M, Ishikawa Y, Matsumoto T, Ikeuchi T, Hatanaka H (2001) p38 Mitogen-activated protein kinase regulates low potassium-induced c-Jun phosphorylation and apoptosis in cultured cerebellar granule neurons. J Biol Chem 276:5129–5133

    PubMed  CAS  Google Scholar 

References

  • Cashin CH, Jackson H (1962) An apparatus for testing anticonvulsant drugs by electroshock seizures in mice. J Pharm Pharmacol 14:445–475

    Google Scholar 

  • Kitano Y, Usui C, Takasuna K, Hirohashi M, Nomura M (1996) Increasing-current electroshock seizure test: a new method for assessment of anti-and pro-convulsant activities of drugs in mice. J Pharmacol Toxicol Meth 35:25–29

    CAS  Google Scholar 

  • Löscher W, Stephens DN (1988) Chronic treatment with diazepam or the inverse benzodiazepine receptor agonist FG 7142 causes different changes in the effects of GABA receptor stimulation. Epilepsy Res. 2:253–259

    PubMed  Google Scholar 

  • Rastogi SA, Ticku MK (1985) Involvement of a GABAergic mechanism in the anticonvulsant effect of phenobarbital against maximal electroshock-induced seizures in rats. Pharmacol Biochem Behav 222:141–146

    Google Scholar 

  • Sohn YJ, Levitt B, Raines A (1970) Anticonvulsive properties of diphenylthiohydantoin. Arch. int. Pharmacodyn. 188:284–289

    PubMed  CAS  Google Scholar 

  • Swinyard EA (1972) Electrically induced convulsions. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental Models of Epilepsy — A Manual for the Laboratory Worker. Raven Press, New York, pp 433–458

    Google Scholar 

  • Swinyard EA, Brown WC, Goodman LS (1952) Comparative assays of antiepileptic drugs in mice and rats. J Pharmacol Exp Ther 106:319–330

    PubMed  CAS  Google Scholar 

  • Toman JEP (1964) Animal techniques for evaluating anticonvulsants. In: Nodin JH and Siegler PE (eds) Animal and Clinical Techniques in Drug Evaluation. Year Book Med Publ, vol 1: 348–352

    Google Scholar 

  • Toman JEP; Everett GM (1964) Anticonvulsants. In: Laurence DR, Bacharach AL (eds) Evaluation of Drug Activities: Pharmacometrics. Academic Press, London, New York, pp 287–300

    Google Scholar 

  • Turner RA (1965) Anticonvulsants. Academic Press, New York, London, pp 164–172

    Google Scholar 

  • Woodbury LA, Davenport VO (1952) Design and use of a new electroshock seizure apparatus and analysis of factors altering seizure threshold and pattern. Arch int Pharmacodyn 92:97–107

    PubMed  CAS  Google Scholar 

References

  • Hahn F, Oberdorf A (1960) Vergleichende Untersuchungen über die Krampfwirkung von Begrimid, Pentetrazol und Pikrotoxin. Arch Int Pharmacodyn 135:9–30

    Google Scholar 

  • Leander JD, Lawson RR, Ornstein PL, Zimmerman DM (1988) N-methyl-D-aspartic acid induced lethality in mice: selective antagonism by phencyclidine-like drugs. Brain Res 448:115–120

    PubMed  CAS  Google Scholar 

  • Pollack GM, Shen DD (1985) A timed intravenous pentylenetetrazol infusion seizure model for quantitating the anticonvulsant effect of valproic acid in the rat. J Pharmacol Meth 13:135–146

    CAS  Google Scholar 

  • Shouse MN, Siegel JM, Wu MF, Szymusiak R, Morrison AR (1989) Mechanism of seizure suppression during rapid-eye-movement (REM) sleep in cats. Brain Res 505:271–282

    PubMed  CAS  Google Scholar 

  • Snead III OC (1988) γ-Hydroxybutyrate model of generalized absence seizures: Further characterization and comparison with other absence models. Epilepsia 29:361–368

    PubMed  CAS  Google Scholar 

  • Stone WE (1972) Systemic chemical convulsants and metabolic derangements. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental Models of Epilepsy — A Manual for the Laboratory Worker. Raven Press, New York, pp 407–432

    Google Scholar 

  • Testa R, Graziani L, Graziani G (1983) Do different anticonvulsant tests provide the same information concerning the profiles of antiepileptic activity? Pharmacol Res Commun 15:765–774

    PubMed  CAS  Google Scholar 

  • Toussi HR, Schatz RAS, Waszczak BL (1987) Suppression of methionine sulfoximine seizures by intranigral γ-vinyl GABA injection. Eur J Pharmacol 137:261–264

    PubMed  CAS  Google Scholar 

  • Tursky WA, Cavalheiro EA, Coimbra C, da Penha Berzaghi M Ikonomidou-Turski C, Turski L (1987) Only certain antiepileptic drugs prevent seizures induced by pilocarpine. Brain Res Rev 12:281–305

    Google Scholar 

References

  • Buckett WR (1981) Intravenous bicuculline test in mice: Characterisation with GABAergig drugs. J Pharmacol Meth 5:35–41

    CAS  Google Scholar 

  • Clineschmidt BV, Martin GE, Bunting PR (1982) Anticonvulsant activity of (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine (MK-801), a substance with potent anticonvulsant, central sympathomimetic, and apparent anxiolytic properties. Drug Dev Res 2:123–134

    CAS  Google Scholar 

  • Czuczwar SJ, Frey HH, Löscher W (1985) Antagonism of N-methyl-D,L-aspartic acid-induced convulsions by antiepileptic drugs and other agents. Eur J Pharmacol 108:273–280

    PubMed  CAS  Google Scholar 

  • Lloyd KG, Morselli PL (1987) Psychopharmacology of GABAergic drugs. In: Meltzer HY (ed) Psychopharmacology: The Third Generation of Progress. Raven Press, New York pp 183–195

    Google Scholar 

  • Mecarelli O, de Feo MR, Rina MF, Ricci GF (1988) Effects of Progabide on bicuculline-induced epileptic seizures in developing rats. Clin Neuropharmacol 11:443–453

    PubMed  CAS  Google Scholar 

References

  • Morales-Villagran A, Urena-Guerrero ME, Tapia R (1996) Protection by NMDA receptor antagonists against seizures induced by intracerebral administration of 4-aminopyridine. Eur J Pharmacol 305:87–93

    PubMed  CAS  Google Scholar 

  • Rogawski MA, Porter RJ (1990) Antiepileptic drugs: pharmacological mechanisms and clinical efficacy with consideration of promising developmental stage compounds. Pharmacol Rev 42:223–286

    PubMed  CAS  Google Scholar 

  • Rutecki PA, Lebeda FJ, Johnston D (1987) 4-aminopyridine produces epileptiform activity in hippocampus and enhances synaptic excitation and inhibition. J Neurophysiol 57:1911–1924

    PubMed  CAS  Google Scholar 

  • Schaefer Jr. EW, Brunton RB, Cunningham DJ (1973) A summary of the acute toxicity of 4-aminopyridine to birds and mammals. Toxicol Appl Pharmacol 26:532–538

    Google Scholar 

  • Yamaguchi SI, Rogawski MA (1992) Effects of anticonvulsant drugs on 4-aminopyridine-induced seizures in mice. Epilepsy Res 11:9–16

    PubMed  CAS  Google Scholar 

References

  • Albe-Fessard D, Stutinsky F, Libouban S (1971) Atlas Stéréotaxique du Diencéphale du Rat Blanc. C.N.R.S., Paris

    Google Scholar 

  • Anderer P, Barbanoj MJ, Saletu B, Semlitsch HV (1993) Restriction to a limited set of EEG-target variables may lead to mis-interpretation of pharmaco-EEG results. Neuropsychobiology 27:112–116

    PubMed  CAS  Google Scholar 

  • Atsev E, Yosiphov T (1969) Changes in evoked perifocal electrical activity with an acute epileptogenic focus in cat's cortex. Electroencephalogr Clin Neurophysiol 27:444

    Google Scholar 

  • Bernhard CG, Bohm E (1955) The action of local anaesthetics on experimental epilepsy in cats and monkeys. Br J Pharmacol 10:288–295

    CAS  Google Scholar 

  • Bernhard CG, Bohm E, Wiesel T (1956) On the evaluation of the anticonvulsive effect of local anaesthetics. Arch Int Pharmacodyn 108:392–407

    PubMed  CAS  Google Scholar 

  • Black RG, Abraham J, Ward AA Jr. (1967) The preparation of tungstic acid gel and its use in the production of experimental epilepsy. Epilepsia 8:58–63

    PubMed  CAS  Google Scholar 

  • Blum B, Liban E (1960) Experimental basotemporal epilepsy in the cat. Discrete epileptogenic lesions produced in the hippocampus or amygdaloid by tungstic acid. Neurology 10:546–554

    PubMed  CAS  Google Scholar 

  • Campell AM, Holmes O (1984) Bicuculline epileptogenesis in the rat. Brain Res 323:239–246

    Google Scholar 

  • Cavalheiro EA, Riche DA, Le Gal la Salle G (1982) Long-term effects of intrahippocampal kainic acid injections in rats: a method for inducing spontaneous recurrent seizures. Electroencephalogr Clin Neurophysiol 53:581–589

    PubMed  CAS  Google Scholar 

  • Daniels JC, Spehlman R (1973) The convulsant effect of topically applied atropine. Electroencephalogr Clin Neurophysiol 34:83–87

    PubMed  CAS  Google Scholar 

  • Dow RS, Fernández-Guardiola A, Manni E (1962) The production of cobalt experimental epilepsy in the rat. Electroencephalogr Clin Neurophysiol 14:399–407

    PubMed  CAS  Google Scholar 

  • Ferguson JH, Jasper HH (1971) Laminar DC studies of acetylcholine-activated epileptiform discharge in cerebral cortex. Electroencephalogr Clin Neurophysiol 30:377–390

    PubMed  CAS  Google Scholar 

  • Feria-Velasco A, Olivares N, Rivas F, Velasco M, Velasco F (1980) Alumina cream-induced focal motor epilepsy in cats. Arch Neurol 37:287–290

    PubMed  CAS  Google Scholar 

  • Fischer J, Holubar J, Malik V (1967) A new method of producing chronic epileptogenic cortical foci in the rat. Physiol Bohemosclov 16:272–277

    CAS  Google Scholar 

  • Hanna GR, Stalmaster RM (1973) Cortical epileptic lesions produced by freezing. Neurology 23:918–925

    PubMed  CAS  Google Scholar 

  • Hawkins CA, Mellanby JH (1987) Limbic epilepsy induced by tetanus toxin: a longitudinal electroencephalographic study. Epilepsia 28:431–444

    PubMed  CAS  Google Scholar 

  • Karpiak SE, Graf L, Rapport MM (1976) Antiserum to brain gangliosides produces recurrent epileptiform activity. Science 194:735–737

    PubMed  CAS  Google Scholar 

  • Karpiak SE, Mahadik SP, Graf L, Rapport MM (1981) An immunological model of epilepsy: seizures induced by antibodies to GM1 ganglioside. Epilepsia 22:189–196

    PubMed  CAS  Google Scholar 

  • Kopeloff LM, Barrera SE, Kopeloff N (1942) Recurrent convulsive seizures in animals produced by immunologic and chemical means. Am J Psychiatry 98:881–902

    CAS  Google Scholar 

  • Kopeloff L, Chusid JG, Kopeloff N (1955) Epilepsy in Maccaca mulatta after cortical or intracerebral alumina. Arch Neurol Psychiatry 74:523–526

    CAS  Google Scholar 

  • Lange SC, Neafsey EJ, Wyler AR (1980) Neuronal activity in chronic ferric chloride epileptic foci in cats and monkey. Epilepsia 21:251–254

    PubMed  CAS  Google Scholar 

  • Loiseau H, Avaret N, Arrigoni E, Cohadon F (1987) The early phase of cryogenic lesions: an experimental model of seizures updated. Epilepsia 28:251–258

    PubMed  CAS  Google Scholar 

  • Marsan CA (1972) Focal electrical stimulation. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental Models of Epilepsy — A Manual for the Laboratory Worker. Raven Press, New York, pp 147–172

    Google Scholar 

  • Matsumoto H, Marsan CA (1964) Cortical cellular phenomena in experimental epilepsy: interictal manifestations. Exper Neurol 9:286–304

    CAS  Google Scholar 

  • Mellanby J, Hawkins C, Mellanby H, Rawlins JNP, Impey ME (1984) Tetanus toxin as a tool for studying epilepsy. J Physiol, Paris 79:207–215

    CAS  Google Scholar 

  • Pei Y, Zhao D, Huang J, Cao L (1983) Zinc-induced seizures: a new experimental model of epilepsy. Epilepsia 24:169–176

    PubMed  CAS  Google Scholar 

  • Racine RJ (1972) Modification of seizure activity by electrical stimulation: I. After-discharge threshold. Electroencephalogr Clin Neurophysiol 32:269–279

    PubMed  CAS  Google Scholar 

  • Reid SA, Sypert GW, Boggs WM, Wilmore LJ (1979) Histopathology of the ferric-induced chronic epileptic focus in cat: a Golgi study. Exper Neurol 66:205–219

    CAS  Google Scholar 

  • Remler MP, Marcussen WH (1986) Systemic focal epileptogenesis. Epilepsia 27:35–42

    PubMed  CAS  Google Scholar 

  • Remler MP, Sigvardt K, Marcussen WH (1986) Pharmacological response of systemically derived focal epileptic lesions. Epilepsia 27:671–6777

    PubMed  CAS  Google Scholar 

  • Stalmaster RM, Hanna GR (1972) Epileptic phenomena of cortical freezing in the cat: Persistent multifocal effects of discrete superficial lesions. Epilepsia 13:313–324

    PubMed  CAS  Google Scholar 

  • Turski WA, Czuczwar SJ, Kleinrok Z, Turski L (1983) Cholinomimetics produce seizures and brain damage in rats. Experientia 39:1408–1411

    PubMed  CAS  Google Scholar 

  • Walton NY, Treiman DM (1989) Phenobarbital treatment of status epilepticus in a rodent model. Epilepsy Res 4:216–222

    PubMed  CAS  Google Scholar 

  • Walton NY, Gunnawan S, Treiman DM (1994) Treatment of experimental status epilepticus with the GABA uptake inhibitor, tiagabine. Epilepsy Res 19:237–244

    PubMed  CAS  Google Scholar 

  • Ward AA Jr. (1972) Topical convulsant metals. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental Models of Epilepsy — A Manual for the Laboratory Worker. Raven Press, New York, pp 13–35

    Google Scholar 

References

  • Babington RG (1975) Antidepressives and the kindling effect. In: Fielding S, Lal H (eds) Industrial Pharmacology, Vol II, Antidepressants, pp 113–124

    Google Scholar 

  • Croucher MJ, Cotterell KL, Bradford HF (1996) Characterization of N-methyl-D-aspartate (NMDA)-induced kindling. Biochem Soc Transact 24:295S

    Google Scholar 

  • Dürmüller N, Craggs M, Meldrum BS (1994) The effect of the non-NMDA receptor antagonists GYKI 52446 and NBQX and the competitive NMDA receptor antagonist D-CPPene on the development of amygdala kindling and on amygdala-kindled seizures. Epilepsy Res 17:167–174

    PubMed  Google Scholar 

  • Girgis M (1981) Kindling as a model for limbic epilepsy. Neurosci 6:1695–1706

    CAS  Google Scholar 

  • Gilbert ME (1994) The phenomenology of limbic kindling. Toxicol Industr Health 10:4–5

    Google Scholar 

  • Goddard GV (1967) Development of epileptic seizures through brain stimulation at low intensity. Nature 214:1020–1021

    PubMed  CAS  Google Scholar 

  • Goddard GV, McIntyre DC, Leech CK (1969) A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 25:295–330

    PubMed  CAS  Google Scholar 

  • Goddard GV, Dragunow M, Maru E, Macleod EK (1986) Kindling and the forces that oppose it. In: Doane BK, Livingston KE (eds) The Limbic System: Functional Organization and Clinical Disorders. Raven Press, New York, pp 95–108

    Google Scholar 

  • Heit MC, Schwark WS (1987) An efficient method for time course studies of antiepileptic drugs using the kindled rat seizure model. J Pharmacol Meth. 18:319–325

    CAS  Google Scholar 

  • Hoenack D, Loescher W (1989) Amygdala-kindling as a model for chronic efficacy studies on antiepileptic drugs: Experiments with carbamazepine. Neuropharmacol 28:599–610

    CAS  Google Scholar 

  • Koella WP (1985) Animal experimental methods in the study of antiepileptic drugs. In: Frey HH, Danz D (eds) Antiepileptic Drugs, Chapter 12, 283–339. Springer-Verlag Heidelberg, New York, Tokyo

    Google Scholar 

  • Le Gal la Salle G (1981) Amygdaloid kindling in the rat: regional differences and general properties. In: Wada JA (ed) Kindling 2, Raven Press, New York, pp 31–47

    Google Scholar 

  • Löscher W, Nolting B, Hönack D (1988) Evaluation of CPP, a selective NMDA antagonist, in various rodent models of epilepsy. Comparison with other NMDA antagonists, and with diazepam and phenobarbital. Eur J Pharmacol 152:9–17

    PubMed  Google Scholar 

  • Lothman EW, Salerno RA, Perlin JB, Kaiser DL (1988) Screening and characterization of anti-epileptic drugs with rapidly recurring hippocampal seizures in rats. Epilepsy Res 2:367–379

    PubMed  CAS  Google Scholar 

  • Mason CR, Cooper RM (1972) A permanent change in convulsive threshold in normal and brain-damaged rats with repeated small doses of pentylenetetrazol. Epilepsia 13:663–674

    PubMed  CAS  Google Scholar 

  • McNamara JO (1984) Kindling: an animal model of complex partial epilepsy. Ann Neurol 16 (Suppl):S72–S76

    PubMed  Google Scholar 

  • McNamara JO (1986) Kindling model of epilepsy. In: Advances in Neurology. Basic Mechanisms of the Epilepsies. Molecular and Cellular Approaches. Delgado-Escueta AV, Ward AA, Woodbury DM, Porter RJ (eds) Vol 44, Chapter 14, 303–318. Raven Press; New York

    Google Scholar 

  • Pellegrino LJ, Pellegrino AS, Cushman AJ (1979) A Stereotactic Atlas of the Brain. 2nd ed. New York: Plenum Press

    Google Scholar 

  • Pinel JPJ, Rovner LI (1978) Experimental epileptogenesis: kindling-induced epilepsy in rats. Exper Neurol 58:190–202

    CAS  Google Scholar 

  • Racine R (1978) Kindling: the first decade. Neurosurg 3:234–252

    CAS  Google Scholar 

  • Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr. Clin Neurophysiol 32:281–294

    CAS  Google Scholar 

  • Schmidt J (1990) Comparative studies on the anticonvulsant effectiveness of nootropic drugs in kindled rats. Biomed Biochim Acta 49:413–419

    PubMed  CAS  Google Scholar 

  • Suzuki K, Mori N, Kittaka H, Iwata Y, Osonoe K, Niwa SI (1996) Anticonvulsant action of metabotropic glutamate receptor agonists in kindled amygdala of rats. Neurosci Lett 204:41–44

    PubMed  CAS  Google Scholar 

  • Wada JA (1977) Pharmacological prophylaxis in the kindling model of epilepsy. Arch Neurol 34:387–395

    Google Scholar 

  • Wada JKA, Osawa T (1976) Spontaneous recurrent seizure state induced by daily amygdaloid stimulation in Senegalese baboons (Papio papio). Neurol 22:273–286

    Google Scholar 

  • Wada JA, Mizoguichi T, Osawa T (1978) Secondarily generalized convulsive seizures induced by daily amygdaloid stimulation in rhesus monkeys. Neurol 28:1026–1036

    CAS  Google Scholar 

  • Wahnschaffe U, Loescher W (1990) Effect of selective bilateral destruction of the substantia nigra on antiepileptic drug actions in kindled rats. Eur J Pharmacol 186:157–167

    PubMed  CAS  Google Scholar 

References

  • Fahn S (1986) Posthypoxic action myoclonus: literature review update. Adv Neurol 43:157–169

    PubMed  CAS  Google Scholar 

  • Jaw SP, Hussong MJ, Matsumoto RR, Truong DD (1994) Involvement of 5-HT2 receptors in posthypoxic stimulus-sensitive myoclonus in rats. Pharmacol Biochem Behav 49:129–131

    PubMed  CAS  Google Scholar 

  • Jaw SP, Dang T, Truong DD (1995) Chronic treatments with 5-HT1A agonists attenuate posthypoxic myoclonus in rats. Pharmacol Biochem Behav 52:577–580

    PubMed  CAS  Google Scholar 

  • Jaw SP, Nguyen B, Vuong QTV, Trinh TA, Nguyen M, Truong DD (1996) Effects of glutamate receptor antagonists in post-hypoxic myoclonus in rats. Brain Res Bull 40:163–166

    PubMed  CAS  Google Scholar 

  • Lance JW (1968) Myoclonic jerks and falls: aetiology, classification and treatment. Med J Aust 1:113–119

    PubMed  CAS  Google Scholar 

  • Lance W, Adams RD (1963) The syndrome of intention or action myoclonus as a sequel to hypoxic encephalopathy. Brain 86:111–136

    PubMed  CAS  Google Scholar 

  • Truong DD, Matsumoto RR, Schwartz PH, Hussong MJ, Wasterlain CG (1994) Novel cardiac arrest model of posthypoxic myoclonus. Movement Disorders 9:201–206

    PubMed  CAS  Google Scholar 

References

  • Bartoszewicz ZP, Noronha AB, Fujita N, Sato S, Bo L, Trapp BD, Quarles RK (1995) Abnormal expression and glycosylation of the large and small isoforms of myelin-associated glycoprotein in dymyelinating quaking mutants. J Neurosci Res 41:27–38

    PubMed  CAS  Google Scholar 

  • Bartoszyk GD, Hamer M (1987) The genetic animal model of reflex epilepsy in the Mongolian gerbil: differential efficacy of new anticonvulsive drugs and prototype antiepileptics. Pharmacol Res Commun 19:429–440

    PubMed  CAS  Google Scholar 

  • Chapman AG, Croucher MJ, Meldrum BS (1984) Evaluation of anticonvulsant drugs in DBA/2 mice with sound-induced seizures. Arzneim Forsch / Drug Res 34:1261–1264

    CAS  Google Scholar 

  • Chapman AG, Dürmüller N, Harrison BL, Baron BM, Parvez N, Meldrum BS (1995) Anticonvulsant activity of a novel NMDA/glycine site antagonist, MDL 104,653, against kindled and sound-induced seizures. Eur J Pharmacol 274:83–88

    PubMed  CAS  Google Scholar 

  • Chermat R, Doaré L, Lachapelle F, Simon P (1981) Effects of drugs affecting the noradrenergic system on convulsions in the quaking mouse. Naunyn-Schmiedeberg's Arch Pharmacol 318:94–99

    CAS  Google Scholar 

  • Collins RL (1972) Audiogenic seizures. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental Models of Epilepsy — A Manual for the Laboratory Worker. Raven Press, New York, pp 347–372

    Google Scholar 

  • Consroe P, Picchioni A, Chin L (1979) Audiogenic seizure susceptible rats. Fed Proc 38:2411–2416

    PubMed  CAS  Google Scholar 

  • Crawford RD (1969) A new mutant causing epileptic seizures in domestic fowl. Poultry Sci 48:1799

    Google Scholar 

  • Crawford RD (1970) Epileptic seizures in domestic fowl. J Hered 61:185–188

    PubMed  CAS  Google Scholar 

  • Cunningham JG (1971) Canine seizure disorders. J Am Vet Med Ass 158:589–598

    CAS  Google Scholar 

  • Edmonds HL, Hegreberg GA, van Gelder NM, Sylvester DM, Clemmons RM, Chatburn CG (1979) Fed Proc 38:2424–2428

    PubMed  Google Scholar 

  • Faingold CL, Naritoku DK (1992) The genetically epilepsy-prone rat: Neuronal networks and actions of amino acid neurotransmitters. In: Faingold CL, Fromm GH (eds) Drugs for Control of Epilepsy: Actions on Neuronal Networks Involved in Seizure Disorders. CRC Press, Boca Raton, Fl, pp 277–308

    Google Scholar 

  • Faingold CL, Randall ME, Boersma Anderson CA (1994) Blockade of GABA uptake with tiagabine inhibits audiogenic seizures and reduces neuronal firing in the inferior colliculus of the genetically epilepsy-prone rat. Exp Neurol 126:225–232

    PubMed  CAS  Google Scholar 

  • Fletcher CF, Lutz CM, O'Sullivan TM, Shaughnessy JD Jr., Hawkes R, Frankel WN, Copeland NG, Jenkins NA (1996) Absence epilepsy in tottering mutant mice is associated with calcium channel deficits. Cell 87:607–617

    PubMed  CAS  Google Scholar 

  • Green MC, Sidman RL (1962) Tottering — A neuromuscular mutation in the mouse. J Hered 53:233–237

    PubMed  CAS  Google Scholar 

  • Heckroth JA, Abbott LC (1994) Purkinje cell loss from alternating sagittal zones in the cerebellum of leaner mutant mice. Brain Res 658:93–104

    PubMed  CAS  Google Scholar 

  • Herrup K, Wilczynsnki SL (1982) Cerebellar cell degeneration in the leaner mutant mouse. Neurosci 7:2185–2196

    CAS  Google Scholar 

  • Hogan EL (1977) Animals models of genetic disorders of myelin. In: Morell P (ed) Myelin. Plenum Press, New York, pp 489–520

    Google Scholar 

  • Imaizumi K, Ito S, Kutukake G, Takizawa T, Fujiwara K, Tutikawa K (1959) Epilepsy like anomaly of mice. Exp Anim (Tokyo) 8:6–10

    Google Scholar 

  • Jobe PC, Mishira PK, Dailey JW (1992) Genetically epilepsyprone rats: Actions of antiepileptic drugs and monoaminergic neurotransmitters. In: Faingold CL, Fromm GH (eds) Drugs for Control of Epilepsy: Actions on Neuronal Networks Involved in Seizure Disorders. CRC Press, Boca Raton, Fl, pp 253–275

    Google Scholar 

  • Johnson DD, Davis HL, Crawford RD (1979) Pharmacological and biochemical studies in epileptic fowl. Fed Proc 38:2417–2423

    PubMed  CAS  Google Scholar 

  • Killam KF, Naquet R, Bert J (1966) Paroxysmal responses to intermittent light stimulation in a population of baboons (Papio papio). Epilepsia 7:215–219

    Google Scholar 

  • Killam KF, Killam EK, Naquet R (1967) An animal model of light sensitivity epilepsy. Electroencephalogr Clin Neurophysiol 22:497–513

    PubMed  CAS  Google Scholar 

  • Li W-X, Kuchler S, Zaepfel M, Badache A, Thomas D, Vincedon G, Baumann N, Zanetta JP (1993) Cerebellar soluble lectin and its glycoprotein ligands in the developing brain of control and dysmyelinating mutant mice. Neurochem Int 22:125–133

    PubMed  CAS  Google Scholar 

  • Löscher W (1984) Genetic animal models of epilepsy as a unique resource for the evaluation of anticonvulsant drugs. A review. Meth Find Exp Clin Pharmacol 6:531–547

    Google Scholar 

  • Löscher W, Frey HH (1984) Evaluation of anticonvulsant drugs in gerbils with reflex epilepsy. Arzneim Forsch/Drug Res 34:1484–1488

    Google Scholar 

  • Löscher W, Meldrum BS (1984) Evaluation of anticonvulsant drugs in genetic animal models of epilepsy. Fed Proc 43:276–284

    PubMed  Google Scholar 

  • Loskota WJ, Lomax P, Rich ST (1974) The gerbil as a model for the study of epilepsies. Epilepsia 15:109–119

    PubMed  CAS  Google Scholar 

  • Majkowski J, Kaplan H (1983) Value of Mongolian gerbils in antiepileptic drug evaluation. Epilepsia 24:609–615

    PubMed  CAS  Google Scholar 

  • Mitrovic N, Le Saux R, Gioanni H, Gioanni Y, Besson MJ, Maurin Y (1992) Distribution of [3H]clonidine binding sites in the brain of the convulsive mutant quaking mouse: A radioauto-graphic analysis. Brain Res 578:26–32

    PubMed  CAS  Google Scholar 

  • Naquet R, Meldrum BS (1972) Photogenic seizures in baboon. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental Models of Epilepsy — A Manual for the Laboratory Worker. Raven Press, New York, pp 373–406

    Google Scholar 

  • Nikulina EM, Skrinskaya JA, Avgustinovich DF, Popova NK (1995) Dopaminergic brain system in the quaking mutant mouse. Pharmacol Biochem Behav 50:333–337

    PubMed  CAS  Google Scholar 

  • Noebels JL (1979) Analysis of inherited epilepsy using single locus mutations in mice. Fed Proc 38:2405–2410

    PubMed  CAS  Google Scholar 

  • Noebels JL, Sidman RL (1979) Inherited epilepsy: Spike-wave and focal motor seizures in the mutant mouse tottering. Science 204:1334–1336

    PubMed  CAS  Google Scholar 

  • Oguro K, Ito M, Tsuda H, Mutoh K, Shiraishi H, Shirasaka Y, Mikawa H (1991) Association of NMDA receptor sites and seizures E1 mice. Epilepsy Res 9:225–230

    PubMed  CAS  Google Scholar 

  • Patel S, Chapman AG, Graham JL, Meldrum BS, Frey P (1990) Anticonvulsant activity of NMDA antagonists, D(−)4-(3-phosphonopropyl)piperazine-2-carboxylic acid (D-CPP) and D(−)(E)-4-(3-phosphonoprop-2-enyl)piperazine-2-carboxylic acid (D-CPPene) in a rodent and a primate model of reflex epilepsy. Epilepsy Res 7:3–10

    PubMed  CAS  Google Scholar 

  • Reigel CE, Dailey JW, Jobe PC (1986) The genetically epilepsyprone rat: an overview of seizure-prone characteristics and responsiveness to anticonvulsant drugs. Life Sci 39:763–774

    PubMed  CAS  Google Scholar 

  • Sasa M, Ohno Y, Ujihara H, Fujita Y, Yoshimura M, Takaori S, Serikawa T, Yamada J (1988) Effects of antiepileptic drugs on absence-like and tonic seizures in the spontaneously epileptic rat, a double mutant rat. Epilepsia 29:505–513

    PubMed  CAS  Google Scholar 

  • Serikawa T, Yamada J (1986) Epileptic seizures in rats homozygous for two mutations, zitter and tremor. J Hered 77:441–444

    PubMed  CAS  Google Scholar 

  • Serikawa T, Kogishi K, Yamada J, Ohno Y, Ujihara H, Fujita Y, Sasa M, Takaori S (1990) Long-term effects of continual intake of phenobarbital on the spontaneously epileptic rat. Epilepsia 31:9–14

    PubMed  CAS  Google Scholar 

  • Seyfried TN (1979) Audiogenic seizures in mice. Fed Proc 38:2399–2404

    PubMed  CAS  Google Scholar 

  • Sidman M, Ray BA, Sidman RL, Klinger JM (1966) Hearing and vision in neurological mutant mice: a method for their evaluation. Exp Neurol 16:377–402

    PubMed  CAS  Google Scholar 

  • Smith SE, Dürmüller N, Meldrum BS (1991) The non-N-methyl-D-aspartate receptor antagonists, GYKI 52466 and NBQX are anticonvulsant in two animal models of reflex epilepsy. Eur J Pharmacol 201:179–183

    PubMed  CAS  Google Scholar 

  • Stark LG, Killam KF, Killam EK (1970) The anticonvulsant effects of phenobarbital, diphenylhydantoin and two benzodiazepines in the baboon, Papio papio. J Pharmacol Exp Ther 173:125–132

    PubMed  CAS  Google Scholar 

  • Stenger A, Boudou JL, Briley M (1991) Anticonvulsant effect of some anxiolytic drugs on two models of sound-induced seizures in mice. In: Briley M, File SE (eds) New Concepts in Anxiety. McMillan Press Ltd., London, pp 326–331

    Google Scholar 

  • Tacke U, Björk E, Tuomisto J (1984) The effect of changes in sound pressure level and frequency on the seizure response of audiogenic seizure susceptible rats. J Pharmacol Meth 11:279–290

    CAS  Google Scholar 

  • Thiessen DD, Lindzey G, Friend HC (1968) Spontaneous seizures in the Mongolian gerbil (Meriones unguiculatus) Psycho Sci 11:227–228

    Google Scholar 

  • Ujihara H, Renming X, Sasa M, Ishihara K, Fujita Y, Yoshimura M, Kishimoto T, Serikawa T, Yamada J, Takaori S (1991) Inhibition by thyrotropin-releasing hormone of epileptic seizures in spontaneously epileptic rats. Eur J Pharmacol 196:15–19

    PubMed  CAS  Google Scholar 

  • Vergnes M, Marescaux C, Micheletti G, Reis J, Depaulis A, Rumbach L, Warter SM (1982) Spontaneous paroxysmal electroclincal patterns in the rat: A model of generalized non-convulsive epilepsy. Neurosci Lett 33:97–101

    PubMed  CAS  Google Scholar 

  • Xie R, Fujita Y, Sasa M, Ishihara K, Ujihara H, Takaori S, Serikawa T, Jamada J (1990) Antiepileptic effect of CNK-602A, a TRH analogue, in the spontaneously epileptic rat (SER), a double mutant. Jap J Pharmacol 52 (Suppl 1):290P

    Google Scholar 

References

  • Balazs T, Grice HC (1963) The relationship between liver necrosis and pentobarbital sleeping time in rats. Toxicol Appl Pharmacol 5:387–391

    CAS  Google Scholar 

  • Harris LS, Uhle FC (1961) Enhancement of amphetamine stimulation and prolongation of barbiturate depression by a substituted pyrid[3,4-b]indole derivative. J Pharmacol Exp Ther 132:251–257

    PubMed  CAS  Google Scholar 

  • Fujimori H (1965) Potentiation of barbital hypnosis as an evaluation method for central nervous system depressants. Psychopharmacologia 7:374–378

    PubMed  CAS  Google Scholar 

  • Lim, RKS (1964) Animal techniques for evaluating hypnotics. In: Nodine JH Siegler PE (eds) Animal and Clinical Pharmacologic Techniques in Drug Evaluation. Year Book Medical Publ., Inc., Chicago, pp 291–297

    Google Scholar 

  • Mason DFJ (1964) Hypnotics and general anaesthetics. In: Laurence DR, Bacharach AL (eds) Evaluation of Drug Activities: Pharmacometrics. Academic Press, London and New York, pp 261–286

    Google Scholar 

  • Simon P, Chermat R, Doaré L, Bourin M, Farinotti R (1982) Interactions imprévues de divers psychotropes avec les effets du barbital et du pentobarbital chez la souris. J Pharmacol (Paris) 13:241–252

    PubMed  CAS  Google Scholar 

References

  • Gardner CR, James V (1987) Activity of some benzodiazepine receptor ligands with reduced sedative and muscle relaxant properties on stress-induced electrocorticogram arousal in sleeping rats. J Pharmacol Meth 18:47–54

    CAS  Google Scholar 

  • James GWL, Piper DC (1978) A method for evaluating potential hypnotic compounds in rats. J Pharmacol Meth 1:145–154

    CAS  Google Scholar 

  • Laval J, Stenger A, Briley M (1991) Effect of anxiolytic and hypnotic drugs on sleep circadian rhythms in the rat. In: Briley M, File SE (eds) New Concepts in Anxiety. McMillan Press Ltd., London, pp 338–346

    Google Scholar 

References

  • Baust W, Heinemann H (1967) The role of the baroreceptors and of blood pressure in the regulation of sleep and wakefulness. Exp Brain Res 3:12–24

    Google Scholar 

  • Jones RD, Greufe NP (1994) A quantitative electroencephalographic method for xenobiotic screening in the canine model. J Pharmacol Toxicol Meth 31:233–238

    CAS  Google Scholar 

  • Hashimoto T, Hamada C, Wada T, Fukuda N (1992) Comparative study on the behavioral and EEG changes induced by diazepam. buspirone and a novel anxioselective anxiolytic, DN-2327, in the cat. Neuropsychobiol 26:89–99

    CAS  Google Scholar 

  • Heinemann H, Stock G (1973) Chlordiazepoxide and its effect on sleep-wakefulness behavior in unrestrained cats. Arzneim Forsch/Drug Res 23:823–825

    CAS  Google Scholar 

  • Heinemann H, Hartmann A, Sturm V (1968) Der Einfluß von Medazepam auf die Schlaf-Wach-Regulation von wachen, unnarkotisierten Katzen. Arzneim Forsch/Drug Res 18:1557–1559

    CAS  Google Scholar 

  • Heinemann H, Hartmann A, Stock G, Sturm V (1970) Die Wirkungen von Medazepam auf Schwellen subcorticaler, limbischer Reizantworten gemessen an unnarkotisierten, frei beweglichen Katzen. Arzneim Forsch/Drug Res 20:413–415

    CAS  Google Scholar 

  • Hirotsu I, Kihara T, Nakamura S, Hattori Y, Hatta M, Kitakaze Y, Takahama K, Hashimoto Y, Miyata T, Ishihara T, Satoh F (1988) General pharmacological studies on N-(2,6-dimethyl-phenyl)-8-pyrrolizidineacetamide hydrochloride hemihydrate. Arzneim Forsch/Drug Res 38:1398–1410

    CAS  Google Scholar 

  • Holm E, Staedt U, Heep J, Kortsik C, Behne F, Kaske A, Mennicke I (1991) Untersuchungen zum Wirkungsprofil von D,L-Kavain. Zerebrale Angriffsorte und Schlaf-Wach-Rhythmus im Tierexperiment. Arzneim Forsch/Drug Res 41:673–683

    CAS  Google Scholar 

  • Krijzer F, van der Molen R, Olivier B, Vollmer F (1991) Antidepressant subclassification based on the quantitatively analyzed electrocorticogram of the rat. In: Olivier B, Mos J, Slangen JL (eds) Animal Models in Psychopharmacology. Advances in Pharmacological Sciences. Birkhäuser Verlag, Basel, pp 237–241

    Google Scholar 

  • Kuhn FJ, Schingnitz G, Lehr E, Montagna E, Hinzen HD, Giachetti A (1988) Pharmacology of WEB 1881-FU, a central cholinergic agent, which enhances cognition and cerebral metabolism. Arch Int Pharmacodyn 292:13–34

    PubMed  CAS  Google Scholar 

  • Lozito RJ, La Marca S, Dunn RW, Jerussi TP (1994) Single versus multiple infusions of fentanyl analogues in a rat EEG model. Life Sci 55:1337–1342

    PubMed  CAS  Google Scholar 

  • Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG: Electroencephalogr Clin Neurophysiol 1:455–473

    CAS  Google Scholar 

  • Ongini E, Parravicini L, Bamonte F, Guzzon V, Iorio LC, Barnett A (1982) Pharmacological studies with Quazepam, a new benzodiazepine hypnotic. Arzneim Forsch/Drug Res 32:1456–1462

    CAS  Google Scholar 

  • Rinaldi-Carmona M, Congy C, Santucci V, Simiand J, Gautret B, Neliat G, Labeeuw B, Le Fur G, Soubrie P, Breliere JC (1929) Biochemical and pharmacological properties of SR 46349B, a new potent and selective 5-hydroxytryptamine2 receptor antagonist. J Pharmacol Exp Ther 262:759–768

    Google Scholar 

  • Ruckert RT, Johnson DN, Robins AH (1983) Effects of antihistaminic agents on sleep pattern in cats: a new method for detecting sedative potential. Pharmacologist 25:180

    Google Scholar 

  • Sarkadi A, Inczeffy Z (1996) Simultaneous quantitative evaluation of visual-evoked responses and background EEG activity in rat: normative data. J Pharmacol Toxicol Meth 35:145–151

    CAS  Google Scholar 

  • Schallek W, Kuehn A (1965) Effects of benzodiazepines on spontaneous EEG and arousal responses of cats. Progr Brain Res 18:231–236

    CAS  Google Scholar 

  • Shibata M, Shingu K, Murakawa M, Adachi T, Osawa M, Nakao S, Mori K (1994) Tetraphasic actions of local anesthetics on central nervous system electrical activities in cats. Regional Anesth 19:255–263

    CAS  Google Scholar 

  • Shouse MN, Siegel JM, Wu MF, Szymusiak R, Morrison AR (1989) Mechanisms of seizure suppression during rapid-eye-movement (REM) sleep in cats. Brain Res 505:271–282

    PubMed  CAS  Google Scholar 

  • Sommerfelt L, Ursin R (1991) Behavioral, sleep-waking and EEG power spectral effects following the two specific 5-HT uptake inhibitors zimeldine and alaproclate in cats. Behav Brain Res 45:105–115

    PubMed  CAS  Google Scholar 

  • Tobler I, Scherschlicht R (1990) Sleep and EEG slow-wave activity in the domestic cat: effect of sleep deprivation. Behav Brain Res 37:109–118

    PubMed  CAS  Google Scholar 

  • Wallach MB, Rogers C, Dawber M (1976) Cat sleep: A unique first night effect. Brain Res Bull 1:425–427

    PubMed  CAS  Google Scholar 

  • Wetzel W (1985) Effects of nootropic drugs on the sleep-waking pattern of the rat. Biomed Biochim Acta 44:1211–1217

    PubMed  CAS  Google Scholar 

  • Yamagushi N, Ling GM, Marczynski TJ (1964) Recruiting responses observed during wakefulness and sleep in unanesthetized chronic cats. Electroenceph Clin Neurophysiol 17:246–254

    Google Scholar 

References

  • De Boer T, Ruigt GSF (1995) The selective α2-adrenoceptor antagonist mirtazapine (Org 3770) enhances noradrenergic and 5-HT1A-mediated serotonergic transmission. CNS Drugs 4, Suppl 1:29–38

    Google Scholar 

  • Fairchild MD, Jenden DJ, Mickey MR (1969) Discrimination of behavioral state in the cat utilizing long-term EEG frequency analysis. Clin Neurophysiol 27:503–513

    CAS  Google Scholar 

  • Fairchild MD, Jenden DJ, Mickey MR (1971) Quantitative analysis of some drug effects on the EEG by long-term frequency analysis. Proc West Pharmacol Soc 14:135–140

    CAS  Google Scholar 

  • Fairchild MD, Jenden DJ, Mickey MR (1975) An application of long-term frequency analysis in measuring drug-specific alterations in the EEG of the cat. Electroenc Clin Neurophysiol 38:337–348

    CAS  Google Scholar 

  • Ruigt GSF, van Proosdij JN (1990) Antidepressant characteristics of Org 3770, Org 4428 and Org 9768 on rat sleep. Eur J Pharmacol 183:1467–1468

    Google Scholar 

  • Ruigt GSF, van Proosdij JN, van Delft AML (1989a) A large scale, high resolution, automated system for rat sleep staging. I. Methodology and technical aspects. Electroencephalogr Clin Neurophysiol 73:52–64

    PubMed  CAS  Google Scholar 

  • Ruigt GSF, van Proosdij JN, van Wezenbeek LACM (1989b) A large scale, high resolution, automated system for rat sleep staging. II. Validation and application. Electroencephalogr Clin Neurophysiol 73:64–71

    PubMed  CAS  Google Scholar 

  • Ruigt GSF, Engelen S, Gerrits A, Verbon F (1993) Computer-based prediction of psychotropic drug classes based on a discriminant analysis of drug effects on rat sleep. Neuropsychobiol 28:138–153

    CAS  Google Scholar 

References

  • Costall B, Domeney AM, Kelly ME, Naylor RJ (1991) Pharmacological models in the development of antipsychotic drugs — new strategies. In: Olivier B, Mos J, Slangen JL (eds) Animal Models in Psychopharmacology. Advances in Pharmacological Sciences. Birkhäuser Verlag, Basel, pp 253–263

    Google Scholar 

  • Courvoisier S (1956) Pharmacodynamic basis for the use of chlorpromazine in psychiatry. J Clin Exp Psychopathol 17:25–37

    PubMed  CAS  Google Scholar 

References

  • Anderson PH, Gronvald FC, Jansen JA (1985) A comparison between dopamine-stimulated adenylate cyclase and 3H-SCH 23390 binding in rat striatum. Life Sci 37:1971–1983

    Google Scholar 

  • Anderson PH, Nielsen EB, Gronvald FC, Breastrup C (1986) Some atypical neuroleptics inhibit [3H]SCH 23390 binding in vivo. Eur J Pharmacol 120:143–144

    Google Scholar 

  • Anderson PH, Gingrich JA, Bates MD, Dearry AD, Falardeau P, Senogles SE, Caron MG (1990) Dopamine receptor subtypes: beyond the D1/D2 classification. Trends Pharmacol Sci 11:213–236

    Google Scholar 

  • Baldessarini RJ, Kula NS, McGrath CR, Bakthavachalam V, Kebabian JW, Neumeyer JL (1993) Isomeric selectivity at dopamine D3 receptors. Eur J Pharmacol 239:269–270

    PubMed  CAS  Google Scholar 

  • Baldessarini RJ, Tarazi FI (1996) Brain dopamine Receptors: A Primer on their current status, basic and clinical. Harvard Rev Psychiat 3:301–325

    CAS  Google Scholar 

  • Billard W, Ruperto V, Crosby G, Iorio LC, Barnett A (1984) Characterisation of the binding of 3H-SCH 23390, a selective D-1 receptor antagonist ligand, in rat striatum. Life Sci 35:1885–1893

    PubMed  CAS  Google Scholar 

  • Chipkin RE, Iorio LC, Coffin VL, McQuade RD, Berger JG, Barnett A (1988) Pharmacological profile of SCH39166: a dopamine D1 selective benzonaphthazepine with potential antipsychotic activity. J Pharmacol Exp Ther 247:1093–1102

    PubMed  CAS  Google Scholar 

  • Civelli O, Bunzow JR, Grandy DK, Zhou QY, Van Tol HHM (1991) Molecular biology of the dopamine receptors. Eur H Pharmacol, Mol Pharmacol Sect 207:277–286

    CAS  Google Scholar 

  • Clement-Cormier YC, Kebabian JW, Petzold GR, Greengard P (1974) Dopamine-sensitive adenylate cyclase in mammalian brain. A possible site of action of anti-psychotic drugs. Proc Natl Acad Sci USA 71:1113–1117

    PubMed  CAS  Google Scholar 

  • Creese I (1987) Biochemical properties of CNS dopamine receptors. In: Meltzer HY (ed) Psychopharmacology: The Third Generation of Progress. Raven Press, New York, pp 257–264

    Google Scholar 

  • Dawson TM, Gehlert DR, Yamamura HI, Barnett A, Wamsley JK (1985) D-1 dopamine receptors in the rat brain: Autoradiographic localisation using [3H]SCH 23390. Eur J Pharmacol 108:323–325

    PubMed  CAS  Google Scholar 

  • Dearry A, Gingrich JA, Falardeau P, Fremeau RT, Bates MD, Caron MG (1990) Molecular cloning and expression of the gene for a human D1 dopamine receptor. Nature 347:72–76

    PubMed  CAS  Google Scholar 

  • DeNinno MP, Schoenleber R, MacKenzie R, Britton DR, Asin KE, Briggs C, Trugman JM, Ackerman M, Artman L, Bednarz L, Bhatt R, Curzon P, Gomez E, Kang CH, Stittsworth J, Kebabian JW (1991) A68930: a potent agonist selective for the dopamine D1 receptor: Eur J Pharmacol 199:209–219

    PubMed  CAS  Google Scholar 

  • Gerhardt S, Gerber R, Liebman JM (1985) SCH 23390 dissociated from conventional neuroleptics in apomorphine climbing and primate acute dyskinesia models. Life Sci 37:2355–2363

    PubMed  CAS  Google Scholar 

  • Ginrich JA, Caron MC (1993) Recent advances in the molecular biology of dopamine receptors. Annu Rev Neurosci 16:299–321

    Google Scholar 

  • Grandy DK, Zhang Y, Bouvier C, Zhou QY, Johnson RA, Allen L, Buck K, Bunzow JR, Salon J, Civelli O (1991) Multiple human dopamine receptor genes: a functional D5 receptor and two pseudogenes. Proc Natl Acad Sci USA 88:9175–9179

    PubMed  CAS  Google Scholar 

  • Hess E, Battaglia G, Norman AB, Iorio LC, Creese I (1986) Guanine nucleotide regulation of agonist Robinson T (ed) Interactions at [3H]SCH 23390-labelled D1 dopamine receptors in rat striatum. Eur J Pharmacol 121:31–38

    PubMed  CAS  Google Scholar 

  • Hyttel J (1983) SCH 23390 — the first selective dopamine D-1 antagonist. Eur J Pharmacol 91:153–154

    PubMed  CAS  Google Scholar 

  • Iorio LC, Barnett A, Leitz FH, Houser VP, Korduba CA (1983) SCH 23390, a potential benzazepine antipsychotic with unique interactions on dopamine systems. J Pharm Exper Ther 226:462–468

    CAS  Google Scholar 

  • Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277:93–96

    PubMed  CAS  Google Scholar 

  • Kebabian JW, Britton DR, DeNinno MP, Perner R, Smith L, Jenner P, Schoenleber R, Williams M (1992) A-77363: a potent and selective D1 receptor antagonist with antiparkinsonian activity in marmosets. Eur J Pharmacol 229:203–209

    PubMed  CAS  Google Scholar 

  • Kilpatrick GJ, Jenner P, Mardsen CD (1986) [3H]SCH 23390 identifies D-1 binding sites in rat striatum and other brain areas. J Pharm Pharmacol 38:907–912

    PubMed  CAS  Google Scholar 

  • Lévesque D, Diaz J, Pilon C, Martres MP, Giros B, Souil E, Schott D, Morgat JL, Schwartz JC (1992) Identification, characterization, and localization of the dopamine D3 receptor in rat brain using 7-[3H]hydroxy-N,N-di-n-propyl-2-aminotetralin. Proc Natl Acad Sci USA 89:8155–8159

    PubMed  Google Scholar 

  • Missale C, Caron MG, Jaber M (1998) Dopamine receptors: From structure to function. Physiol Rev 78:189–225

    PubMed  CAS  Google Scholar 

  • Neumeyer JL, Kula NS, Baldessarini RJ, Baindur (1992) Stereoisomeric probes for the D1 dopamine receptor: Synthesis and characterization of R-(+) and S-(-) enantiomers of 3-allyl-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine and its 6-bromo analogue. J Med Chem 35:1466–1471

    PubMed  CAS  Google Scholar 

  • Niznik HB, Sunahara RK, van Tol HHM, Seeman P, Weiner DM, Stormann TM, Brann MR, O'Dowd BF (1992) The dopamine D1 receptors. In: Brann MR (ed) Molecular Biology of G-Protein Coupled Receptors. Birkhäuser, Boston Basel Berlin, pp 142–159

    Google Scholar 

  • O'Boyle KM, Waddington JL (1992) Agonist and antagonist interaction with D1 dopamine receptors: agonist induced masking of D1 receptors depends on intrinsic activity. Neuropharmacol 31:177–183

    Google Scholar 

  • Schwartz JC, Carlsson A, Caron M, Scatton B, Civelli O, Kebabian JW, Langer SZ, Sedvall G, Seeman P, Spano PF, Sokoloff P, Van Tol H (1998) Dopamine receptors. NC-IUPHAR subcommittee for dopamine receptors. In Gridlestone D (ed) The IUPHAR Compendium of Receptor Characterization and Classification. IUPHAR Media, London, pp 141–151

    Google Scholar 

  • Seeman P (1977) Anti-schizophrenic drugs. Membrane receptor sites of action. Biochem Pharmacol 26:1741–1748

    PubMed  CAS  Google Scholar 

  • Seeman P, Van Tol HHM (1994) Dopamine receptor pharmacology. Trends Pharmacol Sci 15:264–270

    PubMed  CAS  Google Scholar 

  • Seeman P, Chau-Wong C, Tedesco J, Wong K (1975) Binding receptors for antipsychotic drugs and dopamine: direct binding assays. Proc Natl Acad Sci USA 72:4376–4380

    PubMed  CAS  Google Scholar 

  • Snyder SH, Creese I, Burt DR (1975) The brain's dopamine receptor: labeling with [3H]dopamine. Psychopharmacol Commun 1:663–673

    PubMed  CAS  Google Scholar 

  • Stoff JC, Kebabian JW (1982) Independent in vitro regulation by the D-2 dopamine receptor of dopamine-stimulated efflux of cyclic AMP and K+-stimulated release of acetylcholine from rat neostriatum. Brain Res 250:263–270

    Google Scholar 

  • Sugamori KS, Hamdanizadeh SA, Scheideler MA, Hohlweg R, Vernier P, Niznik HB (1998) Functional differentiation of multiple dopamine D1-like receptors by NNC 01-0012. J Neurochem 71:1685–1693

    PubMed  CAS  Google Scholar 

  • Sunahara RK, Niznik HB, Weiner DM, Stormann TM, Brann MR, Kennedy JL, Gelernter JE, Rozmahel R, Yang Y, Israel Y, Seeman P, O'Dowd BF (1990) Human dopamine D1 receptor encoded by an intronless gene on chromosome 5. Nature 347:80–83

    PubMed  CAS  Google Scholar 

  • Todd RD, O'Malley KL (1993) Family ties: The dopamine D2-like receptor genes. Neurotransmiss 9(3):1–4

    Google Scholar 

  • Trampus M, Ongini E, Borea PA (1991) The neutral endopeptidase-24.11 inhibitor SCH 34826 does not change opioid binding but reduces D1 dopamine receptors in rat brain. Eur J Pharmacol 194:17–23

    PubMed  CAS  Google Scholar 

  • Tricklebank MD, Bristow LJ, Hutson PH (1992) Alternative approaches to the discovery of novel antipsychotic agents. Progr Drug Res 38:299–336

    CAS  Google Scholar 

  • Van Tol HHM, Bunzow JR, Guan HC, Sunahara RK, Seeman P, Niznik HB, Civelli O (1991) Cloning of the gene of a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350:610–614

    PubMed  Google Scholar 

  • Waddington JL, Deveney AM (1996) Dopamine receptor multiplicity: ‘D1-like'–'D2-like’ interactions and ‘D1-like’ receptors not linked to adenylate cyclase. Biochem Soc Transact 24:177–182

    CAS  Google Scholar 

  • Wamsley JK, Alburges ME, McQuade RD, Hunt M (1992) CNS distribution of D1 receptors: use of a new specific D1 receptor antagonist, [3H]SCH39166. Neurochem Int 20 (Suppl):123S–128S

    PubMed  CAS  Google Scholar 

  • Weinshank RL, Adham N, Macchi M, Olsen MA, Branchek TA, Hartig PR (1991) Molecular cloning and characterization of a high affinity dopamine receptor (D) and its pseudogene. J Biol Chem 266:22427–22435

    PubMed  CAS  Google Scholar 

  • Zhou QY, Grandy DK, Thambi L, Kusher JA, Van Tol HHM, Cone R, Pribnow D, Salon J, Bunzow JR, Civelli O (1990) Cloning and expression of human and rat dopamine D1 receptors. Nature 347:76–80

    PubMed  CAS  Google Scholar 

References

  • Booze RM, Wallace DR (1995) Dopamine D2 and D3 receptors in the rat striatum and nucleus accumbens: Use of 7-OH-DPAT and [125I]iodosulpiride. Synapse 19:1–13

    PubMed  CAS  Google Scholar 

  • Bunzow JR, Van Tol HHM, Grandy DK, Albert P, Salon J, Christie MD, Machida CA, Neve KA, Civelli O (1988) Cloning and expression of rat D2 dopamine receptor cDNA. Nature 336:783–787

    PubMed  CAS  Google Scholar 

  • Chumpradit S, Kung MP, Vessotskie J, Foulon C Mu M, Kung HF (1994) Iodinated 2-aminotetralins and 3-amino-1-benzopyrans: Ligands for D2 and D3 receptors. J Med Chem 37:4245–4250

    PubMed  CAS  Google Scholar 

  • Civelli O, Bunzow J, Albert P, van Tol HHM, Grandy D (1992) The dopamine D2 receptor. In: Brann MR (ed) Molecular Biology of G-Protein Coupled Receptors. Birkhäuser, Boston Basel Berlin, pp 160–169

    Google Scholar 

  • Dal Toso R, Sommer B, Ewert M, Pritchett DB, Bach A, Chivers BD, Seeberg P (1989) The dopamine D2 receptor: Two molecular forms generated by alternative splicing. EMBO J 8:4025–4034

    Google Scholar 

  • Fields, JZ, Reisine TD, Yamamura HI (1977) Biochemical demonstration of dopaminergic receptors in rat and human brain using [3H]-spiroperidol. Brain Res 136:578–584

    PubMed  CAS  Google Scholar 

  • Gackenheimer SL, Schaus JM, Gehlert DE (1995) [3H]quinelorane binds to D2 and D3 dopamine receptors in the rat brain. J Pharmacol Exper Ther 274:1558–1565

    CAS  Google Scholar 

  • Giros B, Sokoloff P, Matres MP, Riou JF, Emorine LJ, Schwartz JC (1989) Alternative splicing directs the expression of two D2 dopamine receptor isoforms. Nature 342:923–929

    PubMed  CAS  Google Scholar 

  • Grandy DK, Marchionni MA, Makam H, Stofko RE, Alfano M, Frothingham L, Fischer JB, Burke-Howie KJ, Bunzow JR, Server AC, Civelli O (1989) Cloning of the cDNA and gene for a human D2 dopamine receptor. Proc Natl Acad Sci USA 86:9762–9766

    PubMed  CAS  Google Scholar 

  • Hall H, Köhler C, Gawell L (1985) Some in vitro receptor binding properties of [3H]eticlopride, a novel substituted benzamide, selective for dopamine-D2 receptors in the rat brain. Eur J Pharmacol 111:191–199

    PubMed  CAS  Google Scholar 

  • Hayes G, Biden TJ, Selbie LA, Shine J (1992) Structural subtypes of the dopamine D2 receptor are functionally distinct: Expression of the D2A and D2B subtypes in a heterologous cell line. Mol Endocrinol 6:920–926

    PubMed  CAS  Google Scholar 

  • Itokawa M, Toru M, Ito K, Tsuga H, Kameyama K, Haga T, Arinami T, Hamaguchi H (1996) Sequestration of the short and long isoforms of dopamine D2 receptors expressed in Chinese hamster ovary cells. Mol Pharmacol 49:560–566

    PubMed  CAS  Google Scholar 

  • Laduron PM, Janssen PFM, Leysen JE (1978) Spiperone: A ligand of choice for neuroleptic receptors. 2. Regional distribution and in vivo displacement of neuroleptic drugs. Biochem Pharmacol 27:317–328

    PubMed  CAS  Google Scholar 

  • Leysen JE, Gommeren W, Laduron PM (1978) Spiroperone: A ligand of choice for neuroleptic receptors. 1. Kinetics and characteristics of in vitro binding. Biochem Pharmacol 27:307–316

    PubMed  CAS  Google Scholar 

  • Locke KW, Dunn RW, Hubbard JW, Vanselous ChL, Cornfeldt M, Fielding St, Strupczewski JT (1990) HP 818: A centrally acting analgesic with neuroleptic properties. Drug Dev Res 19:239–256

    CAS  Google Scholar 

  • Martres MP, Bouthenet ML, Sales N, Sokoloff P, Schwartz JC (1985) Widespread distribution of brain dopamine receptors evidenced with [125I]iodosulpiride, a highly selective ligand. Science 228:752–755

    PubMed  CAS  Google Scholar 

  • McConnell HM, Rice P, Wada GH, Owicki JC, Parce JW (1991) The microphysiometer biosensor. Curr Opin Struct Biol 1:647–652

    CAS  Google Scholar 

  • McConnell HM, Owicki JC, Parce JW, Miller DL, Baxter GT, Wada HG, Pitchford S (1992) The Cytosensor Microphysiometer: biological applications of silicon technology. Science 257:1906–1912

    PubMed  CAS  Google Scholar 

  • Monsma FJ, McVittie LD, Gerfen CR, Mahan LC Sibley DR (1989) Multiple D2 dopamine receptors produced by alternative RNA splicing. Nature 342:926–929

    PubMed  CAS  Google Scholar 

  • Neve KA, Kozlowski MR, Rosser MP (1992) Dopamine D2 receptor stimulation of Na+/H+ exchange assessed by quantification of extracellular acidification. J Biol Chem 267:25748–25753

    PubMed  CAS  Google Scholar 

  • Niznik HB, Grigoriadis DE, Pri-Bar I, Buchman O, Seeman P (1985) Dopamine D2 receptors selectively labeled by a benzamide neuroleptic: [3H]-YM-09151-2. Naunyn-Schmiedeberg's Arch Pharmacol 329:333–343

    CAS  Google Scholar 

  • Owicki JC, Parce JW. (1992) Biosensors based on the energy metabolism of living cells: The physical chemistry and cell biology of extracellular acidification. Biosensors Bioelectronics 7:255–272

    PubMed  CAS  Google Scholar 

  • Seeman P (1981) Brain dopamine receptors. Pharmacol Rev 32:229–313

    Google Scholar 

  • Seeman P, Schaus JM (1991) Dopamine receptors labelled by [3H]quinpirole. Eur J Pharmacol 203:105–109

    PubMed  CAS  Google Scholar 

  • Seeman P, van Tol HHM (1995) Deriving the therapeutic concentrations for clozapine and haloperidol: The apparent dissociation constant of a neuroleptic at the dopamine D2 and D4 receptors varies with the affinity of the competing radioligand. Eur J Pharmacol Mol Pharmacol Sect 291:59–66

    CAS  Google Scholar 

  • Sibley DR, Monsma FJ Jr. (1992) Molecular biology of dopamine receptors. Trends Pharmacol Sci 13:61–69

    PubMed  CAS  Google Scholar 

  • Strange PG (1992) Studies on the structure and function of D2 dopamine receptors. Biochem Soc Transact 20:126–130

    CAS  Google Scholar 

  • Terai M, Hidaka K, Nakamura Y (1989) Comparison of [3H]YM-09151-2 with [3H]spiperone and [3H]raclopride for dopamine D-2 receptor binding to rat striatum. Eur J Pharmacol 173:177–182

    PubMed  CAS  Google Scholar 

  • Van Vliet LA, Tepper PG, Dijkstra D, Damstoa G, Wickstrom H, Pugsley DA, Akunne HC, Heffner TG, Glase SA, Wise LD (1996) Affinity for dopamine D2, D3, and D4 receptors of 2-aminotetralins. Relevance of agonist binding for determination of receptor subtype selectivity. J Med Chem 39:4233–4237

    PubMed  Google Scholar 

  • Vessotskie JM, Kung MP, Chumpradit S, Kung HF (1997) Characterization of [125I]S(−)5-OH-PIPAT binding to dopamine D2-like receptors expressed in cell lines. Neuropharmacol 36:999–1007

    CAS  Google Scholar 

References

  • Altar CA et al. (1984) Computer-assisted video analysis of [3H]-spiroperidol binding autoradiographs. J Neurosci Meth 10:173–188

    CAS  Google Scholar 

  • Altar CA et al. (1985) Computer imaging and analysis of dopamine (D2) and serotonin (S2) binding sites in rat basal ganglia or neocortex labeled by [3H]-spiroperidol. J Pharmacol Exp Ther 233:527–538

    PubMed  CAS  Google Scholar 

  • Joyce JN, Marshall JF (1987) Quantitative autoradiography of dopamine D2 sites in rat caudate-putamen: Localization to intrinsic neurons and not to neocortical afferents. Neurosci 20:773–795

    CAS  Google Scholar 

  • Joyce JN, Loeschen SK, Marshall JF (1985) Dopamine D2 receptors in rat caudate-putamen: The lateral to medial gradient does not correspond to dopaminergic innervation. Brain Res 378:209–218

    Google Scholar 

  • Kobayashi Y, Ricci A, Rossodivita I, Amenta F (1994) Autoradiographic localization of dopamine D2-like receptors in the rabbit pulmonary vascular tree. Naunyn-Schmiedeberg's Arch Pharmacol 349:5598–564

    Google Scholar 

  • Palacios JM, Niehoff DL, Kuhar MJ (1981) [3H]Spiperone binding sites in brain: autoradiographic localization of multiple receptors. Brain Res 213:277–289

    PubMed  CAS  Google Scholar 

  • Tarazi FI, Campbell A, Yeghiayan SK, Balldessarini RJ (1998) Localization of dopamine receptor subtypes in corpus striatum and nucleus accumbens septi of rat brain. Comparison of D1, D2 and D4-like receptors. Neurosci 83:169–176

    CAS  Google Scholar 

  • Trugman JM et al. (1986) Localization of D2 dopamine receptors to intrinsic striatal neurons by quantitative autoradiography. Nature 323:267–269

    PubMed  CAS  Google Scholar 

References

  • Akunne HC, Towers P, Ellis GJ, Dijkstra D, Wikstrom H, Heffner TG, Wise LD, Pugsley TA (1995) Characterization of binding of [3H]PD 128907, a selective dopamine D3 receptor agonist ligand to CHO-K1 cells. Life Sci 57:1401–1410

    PubMed  CAS  Google Scholar 

  • Baldessarini RJ, Kula NS, McGrath CR, Bakthavachalam V, Kebabian JW, Neumeyer JL (1993) Isomeric selectivity at dopamine D3 receptors. Eur J Pharmacol 239:269–270

    PubMed  CAS  Google Scholar 

  • Brücke T, Wenger S, Podreka I, Asenbaum S (1991) Dopamine receptor classification, neuroanatomical distribution and in vivo imaging. Wien Klin Wochenschr 103:639–646

    PubMed  Google Scholar 

  • Chio CL, Lajiness ME, Huff RM (1993) Activation of heterologously expressed D3 dopamine receptors: Comparison with D2 dopamine receptors. Mol Pharmacol 45:51–60

    Google Scholar 

  • Damsma G, Bottema T, Westerink BHC, Tepper PG, Dijkstra D, Pugsley TA, Mackenzie RG, Heffner TG, Wickstrom H (1993) Pharmacological aspects of R-(+)-7-OH-DPAT, a putative dopamine D3 receptor ligand. J Pharmacol 249:R9–R10

    CAS  Google Scholar 

  • Ginrich JA, Caron MC (1993) Recent advances in the molecular biology of dopamine receptors. Annu Rev Neurosci 16:299–321

    Google Scholar 

  • Kung MP, Fung HF, Chumpradit S, Foulon C (1993) In vitro binding of a novel dopamine D3 receptor ligand: [125I]trans-7-OH-PIPAT-A. Eur J Pharmacol 235:165–166

    PubMed  CAS  Google Scholar 

  • Lévesque D, Diaz J, Pilon C, Martres MP, Giros B, Souil E, Schott D, Morgat JL, Schwartz JC (1992) Identification, characterization, and localization of the dopamine D3 receptor in rat brain using 7-[3H]hydroxy-N,N-di-n-propyl-2-amino-tetralin. Proc Natl Acad Sci USA 89:8155–8159

    PubMed  Google Scholar 

  • MacKenzie RG, Van Leeuwen D, Pugsley TA, Shih YH, Demattos S, Tang L, Todd RD, O'Malley KL (1994) Characterization of the human dopamine D3 receptor expressed in transfected cell lines. Eur J Pharmacol, Mol Pharmacol Sect 266:79–85

    CAS  Google Scholar 

  • Millan MJ, Peglion JL, Vian J, Rivet JM, Brocco M, Gobert A, Newman-Tancredi A, Dacquet C, Bervoets K, Girardon S, Jacques V, Chaput C, Audinot V (1995) Functional correlates of dopamine D3 receptor activation in the rat in vivo and their modulation by the selective agonist, (+)-S 14297: 1. Activation of postsynaptic D3 receptors mediates hypothermia, whereas blockade of D2 receptors elicits prolactin secretion and catalepsy. J Pharm Exp Ther 275:885–898

    CAS  Google Scholar 

  • Pagliusi S, Chollet-Daemerius A, Losberger C, Mills A, Kawashima E (1993) Characterization of a novel exon within the D3 receptor gene giving rise to an mRNA isoform expressed in rat brain. Biochem Biophys Res Commun 194:465–471

    PubMed  CAS  Google Scholar 

  • Sibley DR (1991) Cloning of a ‘D3’ receptor subtype expands dopamine receptor family. Trend Pharmacol Sci 12:7–9

    CAS  Google Scholar 

  • Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347:146–151

    PubMed  CAS  Google Scholar 

  • Todd RD, O'Malley KL (1993) Family ties: The dopamine D2-like receptor genes. Neurotransmiss 9(3):1–4

    Google Scholar 

References

  • Birstow LJ, Collinson N, Cook GP, Curtis N, Freedman SB, Kulagowski JJ; Leeson PD, Patel S, Ragan CI, Ridgill M, Saywell KL, Tricklebank MD (1997) L-745,870, a subtype selective dopamine D4 receptor antagonist, does not exhibit a neuroleptic-like profile in rodent behavior tests. J Pharmacol Exp Ther 283:1256–1263

    Google Scholar 

  • Ginrich JA, Caron MC (1993) Recent advances in the molecular biology of dopamine receptors. Annu Rev Neurosci 16:299–321

    Google Scholar 

  • Hidaka K, Tada S, Matsumoto M, Ohmori J, Maeno K, Yamaguchi T (1996) YM-50001: a novel, potent and selective dopamine D4 receptor antagonist. NeuroReport 7:2543–2546

    PubMed  CAS  Google Scholar 

  • Kula NS, Baldessarini RJ, Kebabian JW, Bakthavachalam V, Xu L (1997) RBI 257: A highly potent, dopamine D4 receptor-selective ligand. Eur H Pharmacol 331:333–336

    CAS  Google Scholar 

  • Merchant KM, Gill KS, Harris DW, Huff RM, Eaton MJ, Lookingland K, Lutzke BS, McCall RB, Piercey MF, Schreur PJKD, Sethy VH, Smith MW, Svensson KA, Tang AH, von Voigtlander PF, Tenbrink RE (1996) Pharmacological characterization of U-101387, a dopamine D4 receptor selective antagonist. J Pharmacol Exp Ther 279:1392–1403

    PubMed  CAS  Google Scholar 

  • Mrzljak L, Bergson C, Pappy M, Huff R, Levenson R, Goldman-Rakic PS (1996) Localization of dopamine D4 receptors in GABAergic neurons of the primate brain. Nature 381:245–248

    PubMed  CAS  Google Scholar 

  • Primus J; Thurkauf A, Xu J, Yevich E, McInerney S, Shaw K, Tallman JF, Gallager DW (1997) Localization and characterization of dopamine D4 binding sites in rat and human brain by use of the novel D4 receptor-selective ligand [3H]NGD 94-1. J Pharmacol Exp Ther 282:1020–1027

    PubMed  CAS  Google Scholar 

  • Ricci A, Bronzetti E, Rossodivita I, Amenta F (1997a) Use of [3H]clozapine as a ligand of the dopamine D4 receptor subtype in peripheral tissues. J Auton Pharmacol 17:261–267

    PubMed  CAS  Google Scholar 

  • Ricci A, Bronzetti E, Felici L, Tayebati SK, Amenta F (1997b) Dopamine D4 receptor in human peripheral blood lymphocytes: A radioligand binding assay study. Neurosci Lett 229:130–134

    PubMed  CAS  Google Scholar 

  • Rowley M, Broughton HB, Collins I, Baker R, Emms F, Marwood R, Patel S, Ragan CI, Freedman SB, Leeson PD (1996) 5-(4-Chlorophenyl)-4-methyl-3-(1-(2-phenylethyl)piperidin-4-yl) isoxazole: A potent, selective antagonist at cloned dopamine D4 receptors. J Med Chem 39:1943–1945

    PubMed  CAS  Google Scholar 

  • Sunahara RK, Guan HC, O'Dowd BF, Seeman P, Laurier LG, Ng G, George SR, Torchia J, Van Tol HHM, Niznik HB (1991) Cloning of the gene for a human D5 receptor with higher affinity for dopamine than D1. Nature 350:614–619

    PubMed  CAS  Google Scholar 

  • Thurkauf A (1997) The synthesis of tritiated 2-phenyl-4-[4-(2-pyrimidyl)piperazinyl]methylimidazole ([3H]NGD 94-1), a ligand selective for the dopamine D4 receptor subtype. J Label Comp Radiopharm 39:123–128

    CAS  Google Scholar 

  • Todd RD, O'Malley KL (1993) Family ties: The dopamine D2-like receptor genes. Neurotransmiss 9(3):1–4

    Google Scholar 

  • Van Tol HHM, Bunzow JR, Guan HC, Sunahara RK, Seeman P, Niznik HB, Civelli O (1991) Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350:610–614

    PubMed  Google Scholar 

  • Van Tol HHM, Wu CM, Guan HC, Ohara K, Bunzow JR, Civelli O, Kennedy J, Seeman P, Niznik HB, Jovanovic V (1992) Multiple dopamine D4 receptor variants in the human population. Nature 358:149–152

    PubMed  Google Scholar 

References

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem 72:248–254

    PubMed  CAS  Google Scholar 

  • Magnusson O, Mohringe B, Fowler CJ (1987) Comparison of the effects of dopamine D1 and D2 receptor antagonists on rat striatal, limbic and nigral dopamine synthesis and utilization. J Neural Transm 69:163–177

    PubMed  CAS  Google Scholar 

  • Reinhard JF, Perry JA (1984) Fast analysis of tissue catechols using a short, high-efficiency (3 µM) LC column and amperometric detection. J. Chromatography 7:1211–1220

    CAS  Google Scholar 

  • Wagner J, et al. (1979) Determination of DOPA, dopamine, DOPAC, epinephrine, norepinephrine, α-monofluoromethyldopa and α-difluoromethyldopa in various tissues of mice and rats using reversed-phase ion-pair liquid chromatography with electrochemical detection. J Chromatography 164:41–54

    CAS  Google Scholar 

  • Walters JR, Roth RH (1976) Dopaminergic neurons: An in vivo system for measuring drug interactions with presynaptic receptors. Naunyn-Schmiedeberg's Arch. Pharmacol. 296:5–14

    CAS  Google Scholar 

References

  • Broaddus WC, Bennett JP Jr. (1990) Postnatal development of striatal dopamine function. I. An examination of D1 and D2 receptors, adenylate cyclase regulation and presynaptic dopamine markers. Develop Brain Res 52:265–271

    CAS  Google Scholar 

  • Clement-Cormier YC, Kebabian JW, Petzold GL, Greengard P (1974) Dopamine-sensitive adenylate cyclase in mammalian brain: a possible site of action of antipsychotic drugs. Proc Natl Acad Sci USA 71:1113–1117

    PubMed  CAS  Google Scholar 

  • Clement-Cormier YC, Parrish RG, Petzold GL, Kebabian JW, Greengard P (1975) Characterisation of a dopamine-sensitive adenylate cyclase in the rat caudate nucleus. J Neurochem 25:143–149

    PubMed  CAS  Google Scholar 

  • Creese I (1987) Biochemical properties of CNS dopamine receptors. In: Meltzer HY (ed) Psychopharmacology; The Third Generation of Progress. Raven Press New York, pp 257–264

    Google Scholar 

  • Gale K, Giudotti A, Costa E (1977) Dopamine-sensitive adenylate cyclase: Location in substantia nigra. Science 195:503–505

    PubMed  CAS  Google Scholar 

  • Horn S, Cuello AC, Miller RJ (1974) Dopamine in the mesolimbic system of the rat brain: endogenous levels and the effect of drugs on the uptake mechanism and stimulation of adenylate cyclase activity. J Neurochem 22:265–270

    PubMed  CAS  Google Scholar 

  • Iversen LL (1975) Dopamine receptors in the brain. Science 188:1084–1089

    PubMed  CAS  Google Scholar 

  • Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277:93–96

    PubMed  CAS  Google Scholar 

  • Kebabian JW, Petzold GL, Greengard P (1972) Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the “dopamine receptor” Proc Nat Acad Sci USA 69:2145–2149

    PubMed  CAS  Google Scholar 

  • Magnusson O, Mohringe B, Fowler CJ (1987) Comparison of the effects of dopamine D1 and D2 receptor antagonists on rat striatal, limbic and nigral dopamine synthesis and utilisation. J Neural Transm 69:163–177

    PubMed  CAS  Google Scholar 

  • Setler PE, Rarau HM, Zirkle CL, Saunders HL (1978) The central effects of a novel dopamine agonist. Eur J Pharmacol 50:419–430

    PubMed  CAS  Google Scholar 

References

  • Creese I (1978) Receptor binding as a primary drug screening device. In: (HI Yamamura et al. eds) Neurotransmitter receptor binding pp 141–170, Raven Press, New York

    Google Scholar 

  • Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483

    PubMed  CAS  Google Scholar 

  • Greenberg DA, U'Prichard DC, Snyder SH (1976) Alpha-noradrenergic receptor binding in mammalian brain: Differential labelling of agonist and antagonist states. Life Sci 19:69–76

    PubMed  CAS  Google Scholar 

  • Huger FP, Smith CP, Chiang Y, Glamkowski EJ, Ellis DB (1987) Pharmacological evaluation of HP 370, a potential atypical antipsychotic agent. Drug Dev Res 11:169–175

    CAS  Google Scholar 

  • Janowsky A, Sulser F (1987) Alpha and beta adrenoreceptors in brain. In: Meltzer HY (ed) Psychopharmacology: The Third Generation of Progress. pp 249–256, Raven Press, New York

    Google Scholar 

  • Mottram DR, Kapur H (1975) The α-adrenoceptor blocking effects of a new benzodioxane. J Pharm Pharmacol 27:295–296

    PubMed  CAS  Google Scholar 

  • Peroutka SJ, U'Prichard DC, Greenberg DA, Snyder SH (1977) Neuroleptic drug interactions with norepinephrine alpha receptor binding sites in rat brain. Neuropharmacol 16:549–566

    CAS  Google Scholar 

  • U'Prichard DC, Snyder SH (1979) Distinct α-noradrenergic receptors differentiated by binding and physiological relationships. Life Sci 24:79–88

    PubMed  Google Scholar 

  • U'Prichard DC, Greenberg DA, Shehan PP, Snyder SH (1978) Tricyclic antidepressants: Therapeutic properties and affinity for α-noradrenergic receptor binding sites in the brain. Science 199:197–198

    PubMed  Google Scholar 

  • Yamada S et al. (1980) Characterisation of alpha-1 adrenergic receptors in the heart using [3H]-WB 4101: Effect of 6-hydroxydopamine treatment. J Pharmacol Exper Ther 215:176–185

    CAS  Google Scholar 

References

  • Altar CA, Wasley AM, Neale RF, Stone GA (1986) Typical and atypical antipsychotic occupancy of D2 and S2 receptors: an autoradiographic analysis in rat brain. Brain Res Bull 16:517–525

    PubMed  CAS  Google Scholar 

  • Bennett JP Jr., Snyder SH (1976) Serotonin and lysergic acid diethylamide binding in rat brain membranes: Relationship to postsynaptic serotonin receptors. Mol Pharmacol 12:373–389

    PubMed  CAS  Google Scholar 

  • Costall B, Fortune DH, Naylor RJ, Marsden CD, Pycock C (1975) Serotonergic involvement with neuroleptic catalepsy. Neuropharmacol 14:859–868

    CAS  Google Scholar 

  • Dugovic C, Leysen JE, Wauquier A (1991) Serotonin and sleep in the rat: the role of 5-HT2 receptors. In: Idzikowski C, Cowen PJ (eds) Serotonin, Sleep and Mental Disorder. Wrightson Biomedical Publishing Ltd., Petersfield, pp 77–88

    Google Scholar 

  • Fajolles C, Boireau A, Pochant M, Laduron PM (1992) [3H]RP 62203, a ligand of choice to label in vivo brain 5-HT2 receptors. Eur J Pharmacol 216:53–57

    PubMed  CAS  Google Scholar 

  • Gelders YG, Heylen SLE (1991) Serotonin 5-HT2 receptor antagonism in schizophrenia. In: Idzikowski C, Cowen PJ (eds) Serotonin, Sleep and Mental Disorder. Wrightson Biomedical Publishing Ltd., Petersfield, pp 179–192

    Google Scholar 

  • Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PP (1994) VII. International Union of Pharmacology Classification of Receptors for 5-Hydroxytryptamine (Serotonin). Pharmacol Rev 46:157–203

    PubMed  CAS  Google Scholar 

  • Humphrey PPA, Hartig P, Hoyer D (1993) A proposed new nomenclature for 5-HT receptors. Trends Pharmacol Sci 14:233–236

    PubMed  CAS  Google Scholar 

  • Kehne JK; Baron BM, Carr AA; Chaney SF, Elands J, Feldman DJ, Frank RA, van Giersbergen PLM, McCloskey TC, Johnson MP, McCarty DR, Poirot M, Senyah Y, Siegel BW, Widmaier C (1996) Preclinical characterization of the potential of the putative atypical antipsychotic MDL 100,907 as a potent 5-HT2A antagonist with a favorable CNS safety profile. J Pharmacol Exp Ther 277:968–981

    PubMed  CAS  Google Scholar 

  • Lever JR, Scheffel UA, Musachio JL, Stathis M, Wagner HN Jr. (1991) Radioiodinated D-(+)-N1-ethyl-2-iodolysergic acid diethylamide: A ligand for in vitro and in vivo studies of serotonin receptors. Life Sci 48:PL–73–PL–78

    CAS  Google Scholar 

  • Leysen JE, Niemegeers CJE, Tollenaere JP, Laduron PM (1978) Serotonergic component of neuroleptic receptors. Nature 272:168–171

    PubMed  CAS  Google Scholar 

  • Leysen JE, Niemegeers CJE, van Nueten JM, Laduron PM (1981) [3H]Ketanserin (R 41 468), a selective 3H-ligand for serotonin2 receptor binding sites. Binding properties, brain distribution, and functional role. Mol Pharmacol 21:301–314

    Google Scholar 

  • Leysen JE, Niemegeers CJE, Van Nueten JM, Laduron PM (1982) [3H]Ketanserin (R41 468) a selective 3H-ligand for serotonin2 receptor binding sites. Mol Pharmacol 21:301–314

    PubMed  CAS  Google Scholar 

  • Leysen JE, de Chaffoy de Courcelles D, de Clerck F, Niemegeers CJE, van Nueten JM (1984) Serotonin-S2 receptor binding sites and functional correlates. Neuropharmacol 23:1493–1501

    CAS  Google Scholar 

  • Leysen JE, Gommeren W, van Gompel P, Wynants J Janssen PFM, Laduron PM (1985) Receptor-binding properties in vitro and in vivo by ritanserin. A very potent and long acting serotonin-S2 antagonist. Mol Pharmacol 27:600–611

    PubMed  CAS  Google Scholar 

  • List SJ, Seeman P (1981) Resolution of dopamine and serotonin receptor components of [3H]spiperone binding of rat brain regions. Proc Natl Acad Sci USA 78:2620–2624

    PubMed  CAS  Google Scholar 

  • Lopez-Gimenez JF, Vilaro MT, Palacios JM, Mengod G (1998) [3H]-MDL100,907 labels serotonin 5-HT2A receptors selectively in primate brain. Neuropharmacology 37:1147–1158

    PubMed  CAS  Google Scholar 

  • Martin GR, Humphrey PPA (1994) Classification review. Receptors for 5-hydroxytryptamine: Current perspectives on classification and nomenclature. Neuropharmacol 33:261–273

    CAS  Google Scholar 

  • Meert TF, Awouters F (1991) Serotonin 5-HT2 antagonists: a preclinical evaluation of possible therapeutic effects. In: Idzikowski C, Cowen PJ (eds) Serotonin, Sleep and Mental Disorder. Wrightson Biomedical Publishing Ltd., Petersfield, pp 65–76

    Google Scholar 

  • Meltzer HV, Matsubara S, Lee JC (1989) Classification of typical and atypical antipsychotic drugs on the basis of dopamine D1, D2 and serotonin2 pKi values. J Pharmacol Exp Ther 251:238–246

    PubMed  CAS  Google Scholar 

  • Morgan DG, Marcusson JO, Finch CE (1984) Contamination of serotonin-2 binding sites with an alpha-1 adrenergic component in assays with (3H)spiperone. Life Sci 34:2507–2514

    PubMed  CAS  Google Scholar 

  • Muramatsu M, Tamaki-Ohashi J, Usuki C, Araki H, Aihara H (1988) Serotonin-2 receptor mediated regulation of release of acetylcholine by minaprine in cholinergic nerve terminal of hippocampus of rat. Neuropharmacol 27:603–609

    CAS  Google Scholar 

  • Palacios JM, Niehoff DL, Kuhar MJ (1981) [3H]Spiperone binding sites in brain: autoradiographic localization of multiple receptors. Brain Res 213:277–289

    PubMed  CAS  Google Scholar 

  • Pazos A, Cortés R, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res 2346:231–249

    Google Scholar 

  • Pedigo NW, Yamamura HI, Nelson DL (1981) Discrimination of multiple [3H]5-hydroxytryptamine binding sites by the neuroleptic spiperone in rat brain. J Neurochem 36:220–226

    PubMed  CAS  Google Scholar 

  • Peroutka SJ, Snyder SH (1979) Multiple serotonin receptors: Differential binding of [3H]5-hydroxytryptamine, [3H]-lysergic acid diethylamide and [3H]spiroperidol. Mol Pharmacol 16:687–699

    PubMed  CAS  Google Scholar 

  • Peroutka SJ, Lebovitz RM, Snyder SH (1979) Serotonin receptors binding sites affected differentially by guanine nucleotides. Mol Pharmacol 16:700–708

    PubMed  CAS  Google Scholar 

  • Rastogi RB, Singhal RL, Lapierre YD (1981) Effects of short-and long-term neuroleptic treatment on brain serotonin synthesis and turnover: Focus on the serotonin hypothesis of schizophrenia. Life Sci. 29:735–741

    PubMed  CAS  Google Scholar 

  • Samanin R, Quattrone A, Peri G, Ladinsky H, Consolo S (1978) Evidence of an interaction between serotonergic and cholinergic neurons in the corpus striatum and hippocampus of the rat brain. Brain Res 151:73–82

    PubMed  CAS  Google Scholar 

  • Saxena PR (1994) Modern 5-HT receptor classification and 5-HT based drugs. Exp Opin Invest Drugs 3:513–523

    CAS  Google Scholar 

  • Siegel BW, Freedman J, Vaal MJ, Baron BM (1996) Activities of novel aryloxyalkylimidazolines on rat 5-HT2A and 5-HT2C receptors. Eur J Pharmacol 296:307–318

    PubMed  CAS  Google Scholar 

  • Tricklebank MD (1996) The antipsychotic potential of subtype-selective 5-HT-receptor ligands based on interactions with mesolimbic dopamine systems. Behav Brain Res 73:15–15

    PubMed  CAS  Google Scholar 

References

  • Altar CA et al. (1984) Computer-assisted video analysis of [3H]-spiroperidol binding autoradiographs. J Neurosci Meth 10:173–188

    CAS  Google Scholar 

  • Altar CA et al. (1985) Computer imaging and analysis of dopamine (D2) and serotonin (S2) binding sites in rat basal ganglia or neocortex labeled by [3H]-spiroperidol. J Pharmacol Exp Ther 233:527–538

    PubMed  CAS  Google Scholar 

  • Altar CA, Wasley AM, Neale RF, Stone GA (1986) Typical and atypical antipsychotic occupancy of D2 and S2 receptors: an autoradiographic analysis in rat brain. Brain Res Bull 16:517–525

    PubMed  CAS  Google Scholar 

  • Cadet JL, Kuyatt B, Fahn S, De Souza EB (1987) Differential changes in 125I-LSD-labeled 5-HT-2 serotonin receptors in discrete regions of brain in the rat model of persistent dyskinesias induced by iminodipropionitrile (IDPN): evidence from autoradiographic studies. Brain Res 437:383–386

    PubMed  CAS  Google Scholar 

  • Costall B, Fortune DH, Naylor RJ, Marsden CD, Pycock C (1975) Serotonergic involvement with neuroleptic catalepsy. Neuropharmacol 14:859–868

    CAS  Google Scholar 

  • Fink H, Morgenstern R, Oelssner W (1984) Clozapine — a serotonin antagonist? Pharmacol Biochem Behav 20:513–517

    PubMed  CAS  Google Scholar 

  • Kostowski W, Gumulka W, Czlokowski A (1972) Reduced kataleptogenic effects of some neuroleptics in rats with lesioned midbrain raphe and treated with p-chlorophenylalanine. Brain Res 48:443–446

    PubMed  CAS  Google Scholar 

  • Lee T, Tang SW (1984) Loxapine and clozapine decrease serotonin (S2) but do not elevate dopamine (D2) receptor numbers in the rat brain. Psychiatry Res 12:277–285

    PubMed  CAS  Google Scholar 

  • Morgan DG, Marcusson JO, Finch CE (1984) Contamination of serotonin-2 binding sites with an alpha-1 adrenergic component in assays with (3H)spiperone. Life Sci 34:2507–2514

    PubMed  CAS  Google Scholar 

  • Pazos A, Cortés R, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res 346:231–249

    PubMed  CAS  Google Scholar 

  • Palacios JM, Niehoff DL, Kuhar MJ (1981) [3H]Spiperone binding sites in brain: autoradiographic localization of multiple receptors. Brain Res 213:277–289

    PubMed  CAS  Google Scholar 

  • Reynolds CP, Garrett NJ, Rupniak N, Jenner P, Marsden CD (1983) Chronic clozapine treatment of rats down-regulates 5-HT2 receptors. Eur J Pharmacol 89:325–326

    PubMed  CAS  Google Scholar 

  • Wilmot CA, Szczepanik AM (1989) Effects of acute and chronic treatment with clozapine and haloperidol on serotonin (5-HT2) and dopamine (D2) receptors in the rat brain. Brain Res 487:288–298

    PubMed  CAS  Google Scholar 

References

  • Abou-Gharbia M, Ablordeppey SY, Glennon RA (1993) Sigma receptors and their ligands: the sigma enigma. Ann Rep Med Chem 28:1–10

    CAS  Google Scholar 

  • Angulo JA, Cadet JL, McEwen BS (1990) σ receptor blockade by BMY 14802 affects enkephalinergic and tachykinin cells differentially in the striatum of the rat. Eur J Pharmacol 175:225–228

    PubMed  CAS  Google Scholar 

  • de Costa BR, Bowen WD, Hellewell SB, Walker JM, Thurkauf A, Jacobson AE, Rice KC (1989) Synthesis and evaluation of optically pure [3H]-(+)-pentazocine, a highly potent and selective radioligand for σ receptors. FEBS Lett 251:53–58

    PubMed  Google Scholar 

  • DeHaven-Hudkins DL, Fleissner LC, Ford-Rice FY (1992) Characterization of the binding of [3H](+)-pentazocine to σ recognition sites in guinea pig brain. Eur J Pharmacol 227:371–378

    PubMed  CAS  Google Scholar 

  • Deutsch SI, Weizman A, Goldman ME, Morihisa JM (1988) The sigma receptor: A novel site implicated in psychosis and antipsychotic drug efficacy. Clin Neuropharmacol 11:105–119

    PubMed  CAS  Google Scholar 

  • Ferris RM, Tang FLM, Chang KJ, Russell A (1986) Evidence that the potential antipsychotic agent rimcazole (BW 234U) is a specific, competitive antagonist of sigma sites in brain. Life Sci 38:2329–2339

    PubMed  CAS  Google Scholar 

  • Goldman ME, Jacobson AE, Rice KC, Paul SM (1985) Differentiation of [3H]phencyclidine and (+)-[3H]SKF-10,047 binding sites in rat cerebral cortex. FEBS Lett 190:333–336

    PubMed  CAS  Google Scholar 

  • Hoffman DW (1990) Neuroleptic drugs and the sigma receptor. Am J Psychiatry 147:1093–1094

    PubMed  CAS  Google Scholar 

  • Itzhak Y, Hiller JM, Simon EJ (1985) Characterisation of specific binding sites for [3H](d)-N-allylnormetazocine in rat brain membranes. Mol Pharmacol 27:46–52

    PubMed  CAS  Google Scholar 

  • Kaiser C, Pontecorvo MJ, Mewshaw RE (1991) Sigma receptor ligands: Function and activity. Neurotransm 7:1–5

    Google Scholar 

  • Khazan N, Young GA, El-Fakany EE, Hong O, Calligaro D (1984) Sigma receptors mediate the psychotomimetic effects of N-allylnor-metazocine (SKF-0,047), but not its opioid agonistic-antagonistic properties. Neuropharmacol. 23:983–987

    CAS  Google Scholar 

  • Largent BL, Gundlach AL, Snyder SH (1986) Pharmacological and autoradiographic discrimination of sigma and phencyclidine receptor binding sites in brain with (+)-[3H]SKF 10,047, (+)-[3H]-3-[3-hydroxyphenyl]-N-(1-propyl)piperidine and [3H]-1-[1-(2-thienyl)cyclohexyl]piperidine. J Pharmacol Exp Ther 238:739–748

    PubMed  CAS  Google Scholar 

  • Quirion R, Chicheportiche R, Contreras PC, Johnson KM, Lodge D, Tam SW, Woods JH, Zukin SR (1987) Classification and nomenclature of phencyclidine and sigma receptor sites. Trends Neurosci 10:444–446

    CAS  Google Scholar 

  • Quirion R, Bowen WD, Itzhak Y, Junien JL, Musacchio JM, Rothman RB, Su TP, Tam SW, Taylor DP (1992) A proposal for the classification of sigma binding sites. Trends Pharmacol Sci 13:85–86

    PubMed  CAS  Google Scholar 

  • Sircar R, Nichtenhauser R, Ieni JR, Zukin SR (1986) Characterisation and autoradiographic visualisation of (+)-[3H]SKF 10,047 binding in rat and mouse brain: Further evidence for phencyclidine/“sigma opiate” receptor commonalty. J Pharmacol Exper Ther 237:681–688

    CAS  Google Scholar 

  • Su TP (1982) Evidence for sigma opioid receptor: Binding of [3H]-SKF 10047 to etorphine-inaccessible sites in guinea pig brain. J Pharmacol Exper Ther 223:284–290

    CAS  Google Scholar 

  • Tam SW, Cook L (1984) σ-opiates and certain antipsychotic drugs mutually inhibit (+)-[3H]-SKF 10,047 and [3H]haloperidol binding in guinea pig membranes. Proc Natl Acad Sci USA 81:5618–5621

    PubMed  CAS  Google Scholar 

  • Taylor DP, Dekleva J (1987) Potential antipsychotic BMY 14802 selectively binds to sigma sites. Drug Dev Res 11:65–70

    CAS  Google Scholar 

  • Vaupel DB (1983) Naltrexone fails to antagonize the σ effects of PCP and SKF 10.047 in the dog. Eur J Pharmacol 92:269–274

    PubMed  CAS  Google Scholar 

  • Walker JM, Bowen WD, Walker FO, Matsumoto RR, de Costa B, Rice KC (1990) Sigma receptors: Biology and function. Pharmacol Reviews 42:355–402

    CAS  Google Scholar 

  • Weber E, Sonders M, Quarum M, McLean S, Pou S, Keana JFW (1986) 1,3-Di(2[5-3H]tolyl)guanidine: A selective ligand that labels σ-type receptors. Proc Natl Acad Sci 83:8784–8788

    PubMed  CAS  Google Scholar 

  • Zukin SR, Tempel A, Gardner EL, Zukin RS (1986) Interaction for psychotomimetic opiates and antipsychotic drugs. Proc Natl Acad Sci 83:8784–8788

    Google Scholar 

References

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt. Biochem. 72:248–254

    PubMed  CAS  Google Scholar 

  • Magnusson O, Nilsson LB, Westerlund D (1980) Simultaneous determination of dopamine, DOPAC and homovanillic acid. Direct injections of supernatants from brain tissue homogenates in a liquid chromatography-electrochemical detection system. J. Chromatography 221:237–247

    CAS  Google Scholar 

  • Magnusson O, Fowler CJ, Köhler C, Ögren SO (1986) Dopamine D2 receptors and dopamine metabolism. Relationship between biochemical and behavioural effects of substituted benzamide drugs. Neuropharmacol 25:187–197

    CAS  Google Scholar 

  • Raiteri M, Marchi M, Maura G (1984) Release of catecholamines, serotonin, and acetylcholine from isolated brain tissue. In: Lajtha A (ed) Handbook of Neurochemistry, 2nd ed, Plenum Press New York, London, Vol 6, pp 431–462

    Google Scholar 

  • Reinhard JF, Perry JA. (1984) Fast analysis of tissue catechols using a short, high-efficiency (3 µM) LC column and amperometric detection. J. Liquid Chromatography 7:1211–1220

    CAS  Google Scholar 

  • Shibuya T, Sato K, Salafsky B (1982) Simultaneous measurement of biogenic amines and related compounds by high performance liquid chromatography. Int J Clin Pharmacol Toxicol 20:297–301

    CAS  Google Scholar 

  • Wagner J, Palfreyman M, Zraika M (1979) Determination of DOPA, dopamine, DOPAC, epinephrine, norepinephrine, α-monofluoromethyldopa and α-difluoromethyldopa in various tissues of mice and rats using reversed-phase ion-pair liquid chromatography with electrochemical detection. J Chromatogr 164:41–54

    PubMed  CAS  Google Scholar 

  • Wagner J, Vitali P, Palfreyman MG, Zraika M, Hout S (1982) Simultaneous determination of 3,4-dihydroxyphenylalanine, 5-hydroxytryptophan, dopamine, 4-hydroxy-3-methoxyphenylalanine, norepinephrine, 3,4-dihydroxyphenylacetic acid, homovanilic acid, serotonin, and 5-hydroxyindolacetic acid in rat cerebrospinal fluid and brain by high-performance liquid chromatography with electrochemical detection. J Neurochem 38:1241–1254

    PubMed  CAS  Google Scholar 

References

  • Amberg G, Lindefors N (1989) Intracerebral microdialysis: II. Mathematical studies of diffusion kinetics. J Pharmacol Meth 22:157–183

    CAS  Google Scholar 

  • Arborelius L, Nomikus GG, Hertel P, Salmi P, Grillner P, Hök BB, Hacksell U, Svensson TH (1996) The 5-HT1A receptor antagonist (S)-UH-301 augments the increase in extracellular concentrations of 5-HT in the frontal cortex produced by both acute and chronic treatment with citalopram. Naunyn-Schmiedeberg's Arch Pharmacol 353:630–640

    CAS  Google Scholar 

  • Ascher JA, Cole JO, Colin JN, Feighner JP, Ferris RM, Fibiger HC, Golden RN, Martin P, Zotter WZ, Richelson E, Sulser F (1995) Bupropion: A review of its mechanism of antidepressant activity. J Clin Psychiat 56:395–401

    CAS  Google Scholar 

  • Ashby CR, Wang RY (1996) Pharmacological actions of the atypical antipsychotic drug clozapine: a review. Synapse 24:349–394

    PubMed  CAS  Google Scholar 

  • Auerbach SB, Lundberg JF, Hjorth S (1994) Differential inhibition of serotonin release by 5-HT and NA reuptake blockers after systemic administration. Neuropharmacol 34:89–96

    Google Scholar 

  • Beneviste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43:1369–1374

    Google Scholar 

  • Benveniste H, Hansen AJ, Ottosen NS (1989) Determination of brain interstitial concentrations by microdialysis. J Neurochem 52:1741–1750

    PubMed  CAS  Google Scholar 

  • Boschi G, Launay N, Rips R, Schermann JM (1995) Brain microdialysis in the mouse. J Pharmacol Toxicol Meth 33:29–33

    CAS  Google Scholar 

  • Casanovas JM, Artigas F (1996) Differential effects of ipsapirone on 5-hydroxytryptamine release in the dorsal and median raphe neuronal pathways. J Neurochem 67:1945–1952

    PubMed  CAS  Google Scholar 

  • Chen Z, Steger RW (1993) Plasma microdialysis. A technique for continuous plasma sampling in freely moving rats. J Pharmacol Toxicol Meth 29:111–118

    CAS  Google Scholar 

  • De Boer T (1995) The effects of mirtazepine on central noradrenergic and serotonergic neurotransmission. Intern Clin Psychopharmacol 10/Suppl 4:19–23

    Google Scholar 

  • De Boer T (1996) The pharmacological profile of mirtazepine. J Clin Psychiat 57, Suppl 4:19–25

    Google Scholar 

  • De Boer T, Nefkens F, van Helvoirt A (1994) The α2-adrenenoceptor antagonist Org 3770 enhances serotonin transmission in vivo. Eur J Pharmacol 253:R5–R6

    PubMed  Google Scholar 

  • Di Chiara (1990) In vivo brain dialysis of neurotransmitters Trends Pharmacol Sci 11:116–121

    PubMed  Google Scholar 

  • Egan MF, Chrapusta S, Karoum F, Lipska BK, Wyatt RJ (1996) Effects of chronic neuroleptic treatment on dopamine release: insights from studies using 3-methoxytyramine. J Neural Transmiss 103:777–805

    CAS  Google Scholar 

  • Ferraro TN, Weyers P, Carrozza DP, Vogel WH (1990) Continuous monitoring of brain ethanol levels be intracerebral microdialysis. Alcohol 7:129–132

    PubMed  CAS  Google Scholar 

  • Fink-Jensen A, Hansen L, Hansen JB, Nielsen EB (1996) Regional differences in the effect of haloperidol and atypical neuroleptics on interstitial levels of DOPAC in the rat forebrain: an in vivo microdialysis study. J Psychopharmacol 10:119–125

    PubMed  CAS  Google Scholar 

  • Gainetdinov RR, Sotnikova TD, Grekhova TV, Rayevsky KS (1996) Simultaneous monitoring of dopamine, its metabolites and trans-isomer of atypical neuroleptic drug carbidine concentrations in striatal dialysates of conscious rats. Progr Neuropharmacol Biol Psychiat 20:291–305

    CAS  Google Scholar 

  • Gobert A, Rivet JM, Cistarelli L, Millan MJ (1979) Potentiation of fluoxetine-induced increase in dialysate levels of serotonin (5-HT) in the frontal cortex of freely moving rats by combined blockade of 5-HT1A and 5-HT1B receptors with WAY 100,635 and GR 127,935. J Neurochem 68:1159–1163

    Google Scholar 

  • Hegarty AA, Vogel WH (1995) The effect of acute and chronic diazepam treatment on stress-induced changes in cortical dopamine in the rat. Pharmacol Biochem Behav 52:771–778

    PubMed  CAS  Google Scholar 

  • Hernandez L, Hoebel BG (1994) Chronic clozapine selectively decreases prefrontal cortex dopamine as shown by simultaneous cortical, accumbens, and striatal microdialysis in freely moving rats. Pharmacol Biochem Behav 52:581–589

    Google Scholar 

  • Ichikawa J, Meltzer HY (1990) The effect of chronic clozapine and haloperidol on basal dopamine release and metabolism in rat striatum and nucleus accumbens studied by in vivo microdialysis. Eur J Pharmacol 176:371–374

    PubMed  CAS  Google Scholar 

  • Ichikawa J, Meltzer HY (1995) Effect of antidepressants on striatal and accumbens extracellular dopamine levels. Eur J Pharmacol 281:255–261

    PubMed  CAS  Google Scholar 

  • Imperato A, di Chiara G (1984) Trans-striatal dialysis coupled to reverse phase high performance liquid chromatography with electrochemical detection: A new method for the study of the in vivo release of endogenous dopamine and metabolites. J Neurosci 4:966–977

    PubMed  CAS  Google Scholar 

  • Imperato A, di Chiara G (1985) Dopamine release and metabolism in awake rats after systemic neuroleptics studied by transstriatal dialysis. J Neurosci 5:297–306

    PubMed  CAS  Google Scholar 

  • Imperato A, Tanda G, Frau R, di Chiara G (1988) Pharmacological profile of dopamine receptor agonists studied by brain dialysis in behaving rats. J Pharmacol Exp Ther 245:257–264

    PubMed  CAS  Google Scholar 

  • Jacobson I, Sandberg M, Hamberger A (1985) Mass transfer in brain dialysis devices — a new method for the estimation of extracellular amino acids concentration. J Neurosci Meth 15:263–268

    CAS  Google Scholar 

  • Jordan S, Kramer GL, Zukas PK, Moeller M, Petty F (1994) In vivo biogenic amine efflux in medial prefrontal cortex with imipramine, fluoxetine, and fluvoxamine. Synapse 18:294–297

    PubMed  CAS  Google Scholar 

  • Kendrick KM (1991) In vivo measurement of amino acid, monoamine and neuropeptide release using microdialysis. In: Greenstein B (ed) Neuroendocrine Research Methods, Vol 1, Harwood Acad Publ, Chur, Chapter 12, pp 249–278

    Google Scholar 

  • Klitenick MA, Taber MT, Fibiger HC (1996) Effects of chronic haloperidol on stress-and stimulation-induced increases in dopamine release: tests of the depolarization block hypothesis. Neuropsychopharmacol 15:424–428

    CAS  Google Scholar 

  • Kreiss DS, Lucki I (1995) Effects of acute and repeated administration of antidepressant drugs on extracellular level of 5-hydroxytryptamine measured in vivo. J Pharmacol Exp Ther 274:866–876

    PubMed  CAS  Google Scholar 

  • Le Quellec A, Dupin S, Genissel P, Saivin S, Marchand B, Houin G (1995) Microdialysis probes calibration: gradient and tissue dependent changes in no net flux and reverse dialysis methods. J Pharmacol Toxicol Meth 33:11–16

    Google Scholar 

  • Lindefors N, Amberg G, Ungerstedt U (1989) Intracerebral microdialysis: I. Experimental studies of diffusion kinetics. J Pharmacol Meth 22:141–156

    CAS  Google Scholar 

  • Meil W, See RE (1994) Single pre-exposure to fluphenazine produces persisting behavioral sensitization accompanied by tolerance to fluphenazine-induced dopamine overflow in rats. Pharmacol Biochem Behav 48:605–612

    PubMed  CAS  Google Scholar 

  • Parsons LH, Smith AD, Justice JB Jr. (1991) The in vivo microdialysis recovery of dopamine is altered independently of basal level by 6-hydroxydopamine lesions to the nucleus accumbens. J Neurosci Meth 40:139–147

    CAS  Google Scholar 

  • Petty F, Davis LL, Kabel D, Kramer GL (1996) Serotonin dysfunction disorders: a behavioral neurochemistry prospective. J Clin Psychiat 57, Suppl 8:11–16

    Google Scholar 

  • Potter WZ (1996) Adrenoreceptor and serotonin receptor function: relevance to antidepressant mechanisms of action. J Clin Psychiat 57, Suppl 4:4–8

    CAS  Google Scholar 

  • Rayevsky KS, Gainetdinov RR, Grekhova TV, Sotnikova TD (1995) Regulation of dopamine release and metabolism in rat striatum in vivo: effects of dopamine receptor antagonists. Progr Neuro-Psychopharmacol Biol Psychiat 19:1285–1303

    CAS  Google Scholar 

  • Rollema H, Alexander GM, Grothusen JR, Matos FF, Castagnoli N Jr. (1989) Comparison of the effects of intracerebrally administered MPP+ (1-methyl-4-phenylpyridinium) in three species: microdialysis of dopamine and metabolites in mouse, rat and monkey striatum. Neurosci Lett 106:275–281

    PubMed  CAS  Google Scholar 

  • Romero L, Hervás I, Artigas F (1996) The 5-HT1A antagonist WAY-100635 selectively potentiates the effects of serotonergic antidepressants in rat brain. Neurosci Lett 219:123–126

    PubMed  CAS  Google Scholar 

  • Sandberg M, Butcher S, Hagberg H (1986) Extracellular overflow of neuroactive amino acids during severe insulin-induced hypoglycemia: in vivo dialysis of the rat hippocampus. J Neurochem 47:178–184

    PubMed  CAS  Google Scholar 

  • Santiago M, Westerink BHC (1990) Characterization of the in vivo release of dopamine as recorded by different types of intracerebral microdialysis probes. Naunyn Schmiedeberg's Arch Exp Pharmacol 342:407

    CAS  Google Scholar 

  • Scheller D, Kolb J (1991) The internal reference technique in microdialysis: a practical approach to monitoring dialysis efficiency and to calculating tissue concentrations from dialysate samples. J Neurosci Meth 40:31–38

    CAS  Google Scholar 

  • Schmidt CJ, Fadayel GM (1995) The selective 5-HT2A receptor antagonist, MDL 100,907, increases dopamine efflux in the prefrontal cortex of the rat. Eur J Pharmacol 273:273–279

    PubMed  CAS  Google Scholar 

  • See RE, Lynch AM (1996) Duration-dependent increase in striatal glutamate following prolonged fluphenazine administration in rats. Eur J Pharmacol 308:279–282

    PubMed  CAS  Google Scholar 

  • See RE, Lynch AM, Aravagri M, Nemeroff CB, Owens MJ (1995) Chronic haloperidol-induced changes in regional dopamine release and metabolism and neurotensin content in rats. Brain Res 704:202–209

    PubMed  CAS  Google Scholar 

  • Semba J, Watanabe A, Kito S, Toru M (1995) Behavioural and neurochemical effects of OPC-14597, a novel antipsychotic drug, on dopamine mechanisms in rat brain. Neuropharmacol 34:785–791

    CAS  Google Scholar 

  • Sharp T, Gartside SE, Umbers V (1996) Effects of co-administration of a monoamine oxidase inhibitor and a 5-HT1A receptor antagonist on 5-hydroxytryptamine cell firing and release. Eur J Pharmacol 320:15–19

    Google Scholar 

  • Stähle L, Segersvärd S, Ungerstedt (1991) A comparison between three methods for estimation of extracellular concentration of exogenous and endogenous compounds by microdialysis. J Pharmacol Meth 25:41–52

    Google Scholar 

  • Tanda G, Bassareo V, di Chiara G (1996a) Mianserin markedly and selectively increases extracellular dopamine in the prefrontal cortex as compared to the nucleus accumbens in the rat. Psychopharmacology 123:127–130

    PubMed  CAS  Google Scholar 

  • Tanda G, Frau R, di Chiara G (1996b) Chronic desimipramine and fluoxetine differentially affect extracellular dopamine in the rat prefrontal cortex. Psychopharmacology 127:83–87

    PubMed  CAS  Google Scholar 

  • Ungerstedt U (1984) Measurement of neurotransmitter release by intracranial dialysis. In: Marsden CA (ed) Measurement of Neurotransmitter Release in vivo. John Wiley & Sons Ltd., New York, pp 81–105

    Google Scholar 

  • Ungerstedt U (1986) Microdialysis — A new bioanalytical sampling technique. Curr Separat 7:43–46

    Google Scholar 

  • Ungerstedt U, Herrera Marschitz M, Jungnelius U, Stähle L, Tossman U, Zetterström T (1982) Dopamine synaptic mechanisms reflected in studies combining behavioral recordings and brain dialysis. In: Kohsaka M (ed) Advances in Biosciences. Vol 37: Advances in Dopamine Research, pp 219–231. Pergamon Press, Oxford and New York

    Google Scholar 

  • Wang Y, Wang SL, Sawchuk RJ (1993) Microdialysis calibration using retrodialysis and zero-net flux: application to a study of the distribution of zidovudine to rabbit cerebrospinal fluid and thalamus. Pharmac Res 10:1411–1419

    CAS  Google Scholar 

  • Westerink BHC, Tuinte MHJ (1985) Chronic use of intracerebral dialysis for the in vivo measurement of 3,4-dihydroxyphenylethylamine and its metabolite 3,4-dihydroxyphenylacetic acid. J Neurochem 46:181–185

    Google Scholar 

  • Wood PL, Kim HSD, Stocklin K, Rao TS (1988) Dynamics of the striatal 3-MT-pool in rat and mouse: species differences as assessed by steady-state measurements and intracerebral dialysis. Life Sci 42:2275–2281

    PubMed  CAS  Google Scholar 

  • Zetterström T, Ungerstedt U (1983) Effects of apomorphine on the in vivo release of dopamine and its metabolites, studied by brain dialysis. Eur J Pharmacol 97:29–36

    Google Scholar 

  • Zetterström T, Vernet L, Ungerstedt U, Tossman U, Jonzon B, Fredholm BB (1982) Purine levels in the intact rat brain. Studies with an implanted perfused hollow fibre. Neurosci Lett 29:111–115

    PubMed  Google Scholar 

  • Zetterström T, Sharp T, Marsden CA, Ungerstedt U (1983) In vivo measurement of dopamine and its metabolites by intracerebral dialysis: changes after d-amphetamine. J Neurochem 41:1769–1773

    PubMed  Google Scholar 

References

  • Bhargava KP, Jain IP, Saxena AK, Sinha NJ, Tangri KK (1978) Central adrenoceptors and cholinoceptors in cardiovascular control. Br J Pharmacol 63:7–15

    PubMed  CAS  Google Scholar 

  • Bhattacharya BK, Feldberg W (1958) Perfusion of cerebral ventricles: effects of drugs on outflow from the cisterna and the aqueduct. Br J Pharmacol 13:156–162

    CAS  Google Scholar 

  • Chéramy A, Nieoullon A, Glowinski J (1977) Effects of peripheral and local administration of picrotoxin on the release of newly synthesized 3H-dopamine in the caudate nucleus of the cat. Naunyn-Schmiedeberg's Arch Pharmacol 297:31–37

    Google Scholar 

  • Dietl H, Sinha JN, Philippu A (1981) Presynaptic regulation of the release of catecholamines in the cat hypothalamus. Brain Res 208:143–147

    Google Scholar 

  • Dluzen DE, Ramitez VD (1991) Push-pull cannula — construction, application and considerations for use in neuroendocrinology. In: Greenstein B (ed) Neuroendocrine Research Methods, Vol 1, Harwood Acad Publ, Chur, Chapter 8, pp 163–186

    Google Scholar 

  • Gauchy C, Kemel ML, Glowinski J, Besson JM (1980) In vivo release of endogenously synthesized (3H)GABA from the cat substantia nigra and the pallidoendopeduncular nuclei. Brain Res 193:129–141

    PubMed  CAS  Google Scholar 

  • Kondo A, Iwatsubo K (1978) Increased release of preloaded (3H)GABA from substantia nigra in vivo following stimulation of caudate nucleus and globus pallidus. Brain Res 154:305–400

    Google Scholar 

  • Korf J; Boer PH, Fekkes D (1976) Release of cyclic AMP into push-pull perfusates in freely moving rats. Brain Res 113:551–561

    PubMed  CAS  Google Scholar 

  • Moroni F, Pepeu G (1984) The cortical cup technique. In: Marsden CA (ed) Measurements of Neurotransmitter Release in vivo. John Wiley & Sons, Ltd., Chichester, New York, pp 63–79

    Google Scholar 

  • Myers RD, Simpson CW, Higgins D, Nattermann RA, Rice JC, Redgrave P, Metclaf G (1976) Hypothalamic Na+ and Ca2+ions and temperature set-point: New mechanisms of action of a central or peripheral thermal challenge and intrahypothalamic 5-HT, NE, PGE1 and pyrogen. Brain Res Bull 1:301–327

    CAS  Google Scholar 

  • Nieoullon A, Chéramy A, Glowinski J (1977) An adaptation of the push-pull cannula method to study the in vivo release of (3H)dopamine synthesized from (3H)tyrosine in the cat caudate nucleus: effects of various physical and pharmacological treatments. J Neurochem 28:819–828

    PubMed  CAS  Google Scholar 

  • Philippu A (1984) Use of push-pull cannulae to determine the release of endogenous transmitters in distinct brain areas of anesthetized and freely moving animals. In: Marsden CA (ed) Measurements of Neurotransmitter Release in vivo. John Wiley & Sons, Ltd., Chichester, New York, pp 3–37

    Google Scholar 

  • Philippu A, Glowinski J, Besson JM (1974) In vivo release of newly synthesized catecholamines from the hypothalamus by amphetamine. Naunyn-Schmiedeberg's Arch Pharmacol 282:1–8

    CAS  Google Scholar 

  • Philippu A, Dietl H, Eisert A (1981) Hypotension alters the release of catecholamines in the hypothalamus of the conscious rabbit. Eur J Pharmacol 69:519–523

    PubMed  CAS  Google Scholar 

  • Ruwe WD, Myers RD (1978) Dopamine in the hypothalamus of the cat: pharmacological characterization and push-pull perfusion analysis of sites mediating hypothermia. Pharmacol Biochem Behav 9:65–80

    PubMed  CAS  Google Scholar 

  • Strada SJ, Sulser F, (1971) Comparative effects of p-chloroamphetamine and amphetamine on metabolism and in vivo release of 3H-norepinephrine in the hypothalamus of the rat in vivo. Eur J Pharmacol 15:45–51

    PubMed  CAS  Google Scholar 

  • Sulser F, Owens ML, Strada SJ, Dingell NJ (1969) Modification by desimipramine (DMI) of the availability of epinephrine released by reserpine in the hypothalamus of the rat in vivo. J Pharmacol Exp Ther 168:272–282

    PubMed  CAS  Google Scholar 

  • Tuomisto L, Yamatodani A, Dietl H, Waldmann U, Philippu A (1983) In vivo release of endogenous catecholamines, histamine and GABA in the hypothalamus of Wistar Kyoto and spontaneously hypertensive rats. Naunyn-Schmiedeberg's Arch Exp Pharm

    Google Scholar 

  • Wolfensberger M (1984) Gas-chromatographic and mass-fragmentographic measurement of amino acids released into brain perfusates collected in vivo by push-pull cannula techniques. In: Marsden CA (ed) Measurements of Neurotransmitter Release in vivo. John Wiley & Sons, Ltd., Chichester, New York, pp 39–61

    Google Scholar 

References

  • Ashby CR, Wang RY (1996) Pharmacological actions of the atypical antipsychotic drug clozapine: a review. Synapse 24:349–394

    PubMed  CAS  Google Scholar 

  • Deutch AY (1994) Identification of the neural systems subserving the actions of clozapine: Clues from immediate early gene expression. J Clin Psychiatry 55, Suppl: 37–42

    PubMed  Google Scholar 

  • Deutch AY, Lee MC, Gillham MH, Cameron DA, Goldstein M, Iadarola MJ (1991) Stress selectively increases Fos protein in dopamine neurons innervating the prefrontal cortex. Cerebr Cortex 1:273–292

    CAS  Google Scholar 

  • Deutch AY, Lee M, Iadarola MJ (1992a) Regionally specific effects of atypical antipsychotic drugs on striatal Fos expression: The nucleus accumbens shell as a locus of antipsychotic action. Molec Cell Neurosci 3:332–341

    PubMed  CAS  Google Scholar 

  • Deutch AY, Lee MC, Iadorola MJ (1992b) Regionally specific effects of atypical antipsychotic drugs on striatal fos expression. The nucleus accumbens shell as a locus of antipsychotic action. Mol Cell Neurosci 3:332–341

    PubMed  CAS  Google Scholar 

  • Deutch AY, Öngür D, Duman RS (1995) Antipsychotic drugs induce Fos protein in the thalamic paraventricular nucleus: a novel locus of antipsychotic drug action. Neurosci 66:337–346

    CAS  Google Scholar 

  • Dragunow M, Robertson GS, Faull RLM, Robertson HA, Jansen K (1990) D2 Dopamine receptor antagonists induce FOS and related proteins in rat striatal neurons. Neurosci 37:287–294

    CAS  Google Scholar 

  • Fibiger HC (1994) Neuroanatomical targets of neuroleptic drugs as revealed by Fos immunochemistry. J Clin Psychiatry 55, Suppl B: 33–36

    PubMed  Google Scholar 

  • Fink-Jensen A, Kristensen P (1994) Effects of typical and atypical neuroleptics on Fos protein expression in the rat forebrain. Neurosci Lett 182:115–118

    PubMed  CAS  Google Scholar 

  • Gogusev J, Barbey S, Nezelof C (1993) Modulation of C-myc, C-myb, C-fos, C-sis and C-fms proto-oncogene expression and of CSF-1 transcripts and protein by phorbol diester in human histiocytosis DEL cell line with 5q 35 break point. Anticancer Res 13:1043–1048

    PubMed  CAS  Google Scholar 

  • Graybiel AM, Moratalla R, Robertson HA (1990) Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum. Proc Natl Acad Sci USA 87:6912–6916

    PubMed  CAS  Google Scholar 

  • MacGibbon GA, Lawlor PA, Bravo R, Dragunow M (1994) Clozapine and haloperidol produce a different pattern of immediate early gene expression in rat caudate-putamen, nucleus accumbens, lateral septum and islets of Calleja. Mol Brain Res 23:21–32

    PubMed  CAS  Google Scholar 

  • Merchant KM, Drosa DM (1993) Differential induction of neurotensin and c-fos gene expression by typical versus atypical antipsychotic drugs. Proc Natl Acad Sci USA 90:3447–3451

    PubMed  CAS  Google Scholar 

  • Merchant KM, Dobie DJ, Filloux FM, Totzke M, Aravagiri M, Dorsa DM (1994) Effects of chronic haloperidol and clozapine treatment on neurotensin and c-fos mRNA in rat neostriatal subregions. J Pharmacol Exp Ther 271:460–471

    PubMed  CAS  Google Scholar 

  • Morgan JI, Curran T (1989) Stimulus-transcription coupling in neurons: role of cellular immediate early genes. Trends Neurosci 12:459–462

    PubMed  CAS  Google Scholar 

  • Morgan JI, Curran T (1991) Stimulus-transcription coupling in the nervous system: Involvement of the inducible proto-oncogens fos and jun. Annu Rev Neurosci 14:421–451

    PubMed  CAS  Google Scholar 

  • Nguyen TV, Kosofsky BE, Birnbaum R, Cohen BM, Heyman SE (1992) Differential expression of c-Fos and Zif628 in rat striatum after haloperidol, clozapine and amphetamine. Proc Natl Acad Sci USA 89:4720–4724

    Google Scholar 

  • Robertson GS, Fibiger HC (1992) Neuroleptics increase c-Fos expression in the forebrain. Contrasting effects of haloperidol and clozapine. Neuroscience 46:315–328

    PubMed  CAS  Google Scholar 

  • Robertson GS, Matsumara H, Fibiger HC (1994) Induction pattern of Fos-like immunoreactivity in the forebrain as predictors of atypical antipsychotic activity. J Pharmacol Exp Ther 271:1058–1066

    PubMed  CAS  Google Scholar 

  • Rogue P, Vincendon G (1992) Dopamine D2 receptor antagonists induce immediate early genes in the rat striatum. Brain Res Bull 29:469–472

    PubMed  CAS  Google Scholar 

  • Sebens JB, Koch T, Ter Horst GJ, Korf J (1995) Differential Fosprotein induction in rat forebrain regions after acute and long-term haloperidol and clozapine treatment. Eur J Pharmacol 273:175–182

    PubMed  CAS  Google Scholar 

References

  • Azzi M, Boudin H, Mahmudi N, Pelaprat D, Rostene W, Berod A (1996) In vivo regulation of neurotensin receptors following long-term pharmacological blockade with a specific receptor antagonist. Mol Brain Res 42:213–221

    PubMed  CAS  Google Scholar 

  • Benmoussa M, Chait A, Loric G, de Beaurepaire R (1996) Low doses of neurotensin in the preoptic area produce hypothermia. Comparison with other brain sites and with neurotensin-induced analgesia. Brain Res Bull 39:275–279

    PubMed  CAS  Google Scholar 

  • Betancur C, Canton M, Burgos A, Labeeuw B, Gully D, Rostene W, Pelaprat D (1998) Characterization of binding sites of a new neurotensin receptor antagonist, 3H-SR 142948A, in the rat brain. Eur J Pharmacol 343:67–77

    PubMed  CAS  Google Scholar 

  • Bissette G, Nemeroff CB, Loosen PT, Prange AJ Jr., Lipton MA (1976) Hypothermia and cold intolerance induced by the intracisternal administration of the hypothalamic peptide neurotensin. Nature 262:607–609

    PubMed  CAS  Google Scholar 

  • Bourdel E, Doulut S, Jarretou G, Labbé-Juilié C, Fehrentz JA, Doumbia O, Kitabgi P, Martinez J (1996) New hydroxamate inhibitors of neurotensin-degrading enzymes: Synthesis and enzyme active-site recognition. Int J Pept Protein Res 48:148–155

    PubMed  CAS  Google Scholar 

  • Carraway R, Leeman SE (1973) The isolation of a new hypotensive peptide, neurotensin, from bovine hypothalami. J Biol Chem 248:6854–6861

    PubMed  CAS  Google Scholar 

  • Castagliuolo I, Leeman SE, Bartolak-Suki E, Nikulasson S, Quiu B, Carraway RE (1996) A neurotensin antagonist, SR 48692, inhibits colonic responses to immobilization stress in rats. Proc Natl Acad Sci USA 93:12611–12615

    PubMed  CAS  Google Scholar 

  • Chapman MA, See RE (1996) The neurotensin receptor antagonist SR 48692 decreases extracellular striatal GABA in rats

    Google Scholar 

  • Clineschmidt R, McGuffin JC (1977) Neurotensin administered intracisternally inhibits responsiveness of mice to noxious stimuli. Eur J Pharmacol 49:395–396

    Google Scholar 

  • Coguerel A, Dubuc I, Kitabgi P, Costentin J (1988) Potentiation by thiorphan and bestatin of the naloxon-insensitive analgesic effects of neurotensin and neuromedin N. Neurochem Int 12:361–366

    Google Scholar 

  • Cusack B, Boules M, Tyler BM, Fauq A, McCormick DJ, Richelson E (2000) Effects of a novel neurotensin peptide analog given extracranially on CNS behaviors mediated by apomorphine and haloperidol. Brain Res 856:48–54

    PubMed  CAS  Google Scholar 

  • Ervin GN, Nemeroff CB (1988) Interactions of neurotensin with dopamine-containing neurons in the central nervous system. Neuropsychopharmacol Biol Psychiatry 12:S53–S69

    CAS  Google Scholar 

  • Feifel D, Reza TL, Wustrow DJ, Davis MD (1999) Novel antipsychotic-like effects on prepulse inhibition of startle produced by a neurotensin agonist. J Pharmacol Exp Ther 288:710–713

    PubMed  CAS  Google Scholar 

  • Feurle GE, Muller B, Rix E (1987) Neurotensin induces hyperplasia of the pancreas and growth of the gastric antrum in rats. Gut 28, Suppl 1:19–23

    PubMed  CAS  Google Scholar 

  • Gudasheva TA, Voronina TA, Ostrovskaya RU, Zaitseva NI, Bondarenko NA, Briling VK (1998) Design of N-acylprolyltyrosine ‘tripeptoid’ analogues of neurotensin as potential atypical antipsychotic agents. J Med Chem 41:284–290

    PubMed  CAS  Google Scholar 

  • Gully D, Jeanjean F, Poncelet M, Steinberg R, Soubrié P, Le Fur G, Maffrand JP (1995) Neuropharmacological profile of non-peptide neurotensin antagonists. Fundam Clin Pharmacol 9:513–521

    PubMed  CAS  Google Scholar 

  • Gully D, Lespy L, Canton M, Rostene W, Kitabgi P, le Fur G, Maffrand JP (1996) Effect of the neurotensin receptor antagonist SR 48692 on rat blood pressure modulation by neurotensin. Life Sci 58:665–674

    PubMed  CAS  Google Scholar 

  • Gully G, Labeeuw B, Boigegrain R, Oury-Donat F, Bachy A, Poncelet M, Steinberg R. Suaud-Chagny MF, Santucci V, Vita N, Pecceu F, Labbé-Jullié C, Kitabgi B, Soubriè P (1997) Biochemical and pharmacological activities of SR 142948A, a new potent neurotensin receptor antagonist. J Pharmacol Exp Ther 280:802–812

    PubMed  CAS  Google Scholar 

  • Hong F, Cusack B, Fauq A, Richelson E (1997) Peptidic and non-peptidic neurotensin analogs. Curr Med Chem 4:421–434

    CAS  Google Scholar 

  • Johnson SJ, Akunne HC, Heffener TG, Kesten SR, Pugsley TA, Wise LD, Wustrow DJ (1997) Novel small molecule neurotensin antagonists: 3-(1,5-diaryl-1,5-dioxopentan-3-yl) benzoic acids. Bioorg Med Chem Lett 7:561–566

    CAS  Google Scholar 

  • Kinkead B, Binder EB, Nemeroff CB (1999) Does neurotensin mediate the effects of antipsychotic drugs? Biol Psychiatry 46:340–351

    PubMed  CAS  Google Scholar 

  • Mule F, Serio R, Postorino A, Vetri T, Bonvissuto F (1996) Antagonism by SR 48692 on mechanical responses to neurotensin in rat intestine. Br J Pharmacol 117:488–492

    PubMed  CAS  Google Scholar 

  • Nemeroff CB (1986) The interaction of neurotensin with dopaminergic pathways in the central nervous system: Basic neurobiology and implications for the pathogenesis and treatment of schizophrenia. Psychoneuroendocrinology 11:15–37

    PubMed  CAS  Google Scholar 

  • Pellissier S, Eribon O, Chabert J, Gully D, Roche M (1996) Peripheral neurotensin participates in the modulation of preand postprandial intestinal motility in rats. Neuropeptides 30:412–419

    PubMed  CAS  Google Scholar 

  • Radke JM, Owens MJ, Ritchie JC, Nemeroff CB (1998) Atypical antipsychotic drugs selectively increase neurotensin efflux in dopamine terminal regions. Proc Natl Acad Sci USA 95:11462–11464

    PubMed  CAS  Google Scholar 

  • Sarhan S, Hitchcock JM, Grauffel CA, Wettstein JG (1997) Comparative antipsychotic profiles of neurotensin and a related systematically active peptide agonist. Peptides 18:1223–1227

    PubMed  CAS  Google Scholar 

  • Schaeffer P, Laplace MC, Bernat A, Prabonaud V, Gully D, Lespy L, Herbert JM (1998) SR142948A is a potent antagonist of the cardiovascular effects of neurotensin. J Cardiovasc Pharmacol 31:545–550

    PubMed  CAS  Google Scholar 

  • Saegard JL, Dean C, Hopp FA (2000) Neurochemical transmission of the baroreceptor input in the nucleus tractus solitarius. Brain Res Bull 51:111–118

    Google Scholar 

  • Smith DJ, Hawranko AA, Monroe PJ, Gully D, Urban MO, Craig CR, Smith JP, Smith DI (1997) Dose-dependent pain-facilitatory and-inhibitory actions of neurotensin are revealed by SR 48692, a nonpeptide neurotensin antagonist: influence on the antinociceptive effect of morphine. J Pharmacol Exp Ther 282:899–908

    PubMed  CAS  Google Scholar 

  • Tyler-McMahon BM, Steward JA, Farinas F, McCormick DJ, Richelson E (2000) Highly potent neurotensin analog that causes hypothermia and antinociception. Eur J Pharmacol 390:107–111

    PubMed  CAS  Google Scholar 

  • Unno T, Komori S, Ohashi H (1999) Characterization of neurotensin receptors in intestinal smooth muscle using a nonpeptide antagonist. Eur J Pharmacol, 369:73–80

    PubMed  CAS  Google Scholar 

  • Vincent JP, Mazella J, Kitagbi P (1999) Neurotensin and neurotensin receptors

    Google Scholar 

  • Wang L, Friess H, Zhu Z, Graber H, Zimmermann A, Korc M, Reubi JC, Buchler MW (2000) Neurotensin receptor-1 mRNA analysis in normal pancreas and pancreatic disease. Clin Cancer Res 6:566–571

    PubMed  CAS  Google Scholar 

  • Xing L, Karinch AM, Kauffman GL Jr. (1998) Mesolimbic expression of neurotensin and neurotensin receptor during stress-induced gastric mucosal injury. Am J Physiol 274, Regul Integr Comp Physiol:R38–R45

    Google Scholar 

  • Zhang L, Xing L, Demers L, Washington J, Kauffman GL Jr. (1989a) Central neurotensin inhibits gastric acid secretion: an adrenergic mechanism in rats. Gastroenterology 97:1130–1134

    PubMed  CAS  Google Scholar 

  • Zhang L, Colony PC, Washington JH, Seaton JF, Kauffman GL jr. (1989b) Central neurotensin affects rat gastric integrity, prostaglandin E2, and blood flow. Am J Physiol 256, Gastrointest Liver Physiol 19:G226–G232

    Google Scholar 

References

  • Chalon P, Vita N, Kaghad M, Guillemot M, Bonnin J, Delpech P, Le Fur G, Ferrara P, Caput D (1996) Molecular cloning of a levocabastine-sensitive binding site. FEBS Lett 400:211–214

    Google Scholar 

  • Checler F, Vincent JP, Kitabgi P (1986) Neuromedin N: High affinity interaction with brain neurotensin receptors and rapid inactivation by brain synaptic peptidases. Eur J Pharmacol 126:239–244

    PubMed  CAS  Google Scholar 

  • Cusack B, McCormick DJ, Pang Y-P, Souder T, Garcia R, Fauq A, Richelson E (1995) Pharmacological and biochemical profiles of unique neurotensin 8–13 analogs exhibiting species selectivity, stereoselectivity, and superagonism. J Biol Chem 270:18359–18366

    PubMed  CAS  Google Scholar 

  • Cusack B, Chou T, Jansen K, McCormick DJ, Richelson E (2000) Analysis of binding sites and efficacy of a species-specific peptide at rat and human neurotensin receptors. J Pept Res 55:72–80

    PubMed  CAS  Google Scholar 

  • Dubuc I, Sarret P, Labbé-Jullié C, Botto JM, Honoré E, Bourdel E, Martinez J, Costentin J, Vincent JP, Kitabgi P, Mazella J (1999) Identification of the receptor subtype involved in the analgesic effect of neurotensin. J Neuroscience 19:503–510

    CAS  Google Scholar 

  • Gully D, Labeeuw B, Boigegrain R, Oury-Donat F, Bachy B, Poncelet M, Steinberg R, Suaud-Chagny MF, Santucci V, Vita N, Pecceu F, Labbé-Jullié C, Kitabgi P, Soubrié P, Le Fur G, Maffrand JP (1997) Biochemical and pharmacological activities of SR 142948A, a new potent neurotensin receptor antagonist. J Pharmacol Exp Ther 280:802–812

    PubMed  CAS  Google Scholar 

  • Labbé-Jullié C, Dubuc I, Brouard A, Doulut S, Bourdel E, Pelaprat D, Mazella J, Martinez J, Rostène W, Costentin J, Kitabgi P (1994) In vivo and in vitro structure-activity studies with peptide and pseudopeptide neurotensin analogs suggest the existence of distinct central neurotensin receptor subtypes. J Pharmacol Exp Ther 268:328–336

    PubMed  Google Scholar 

  • Labbé-Jullié C, Barroso S, Nicolas-Etève D, Reversat JL, Botto JM, Mazella J; Barnassau JM, Kitabgi P (1998) Mutagenesis and modeling of the neurotensin receptor NTR1. Identification of residues that are critical for binding of SR 48692, a nonpeptide neurotensin. J Biol Chem 273:16351–16357

    PubMed  Google Scholar 

  • Le F, Groshan K, Zeng X-P, Richelson E (1997) Characterization of the genomic structure, promotor region, and a tetranucleotide repeat polymorphism of the human neurotensin receptor gene. J Biol Chem 272:1315–1322

    PubMed  CAS  Google Scholar 

  • Mazella J, Botto JM, Guillemare E, Coppola T, Sarret P, Vincent JP (1996) Structure, functional expression, and cerebral localization of the levocabastine-sensitive neurotensin/neuromedin N receptor from mouse brain. J Neurosci 16:5613–5620

    PubMed  CAS  Google Scholar 

  • Mazella J, Zsürger N, Navarro V, Chabry J, Kaghad M, Caput D, Ferrara P, Vita N, Gully D, Maffrand JP, Vincent JP (1998) The 100-kDa neurotensin receptor is gp95/sortilin, a non-G-protein coupled receptor. J Biol Chem 273:26273–26276

    PubMed  CAS  Google Scholar 

  • Munson PJ, Rodbard D (1980) LIGAND: A versatile computerized approach for characterization of ligand-binding systems. Anal Biochem 107:220–239

    PubMed  CAS  Google Scholar 

  • Najimi M, Souzé F, Méndez M, Hermans E, Berbar T, Rostène W, Forgez P (1998) Activation of receptor gene transcription is required to maintain cell sensitization after agonist exposure. Studies on neurotensin receptor. J Biol Chem 273:21634–21641

    PubMed  CAS  Google Scholar 

  • Nouel D, Sarret P, Vincent JP, Mazella J, Beaudet A (1999) Pharmacological, molecular and functional characterization of glial neurotensin receptors. Neuroscience 94:1189–1197

    PubMed  CAS  Google Scholar 

  • Ovigne JM, Vermot-Desroches C, Lecron JC, Portier M, Lupker J, Pecceu F, Wijdenes J (1998) An antagonistic monoclonal antibody (B-N6) specific for the human neurotensin receptor-1. Neuropeptides 32:247–256

    PubMed  CAS  Google Scholar 

  • Petersen CM, Nielson MS, Nykjar A, Jacobsen L, Tommerup N, Rasmussen HH, Roigaard H, Gliemann J, Madsen P, Moestrup SK (1997) Molecular identification of a novel candidate sorting receptor purified from human brain by receptor-associated protein affinity chromatography. J Biol Chem 272:3599–3605

    PubMed  CAS  Google Scholar 

  • Petersen CM, Nielson MS, Jacobsen L, Gliemann J, Moestrup SK, Madsen P (1999) Propeptide cleavage conditions sortilin/neurotensin receptor-3 for ligand binding. EMBO J 18:595–604

    CAS  Google Scholar 

  • Schotte A, Leysen JE, Laduron PM (1986) Evidence for a displaceable non-specific 3H-neurotensin binding site in rat brain. Naunyn Schmiedeberg's Arch Pharmacol 333:400–405

    CAS  Google Scholar 

  • Souazé F, Rostène W, Forgez P (1997) Neurotensin agonist induces differential regulation of neurotensin receptor mRNA. Identification of distinct transcriptional and post-transcriptional mechanisms. J Biol Chem 272:10087–10094

    PubMed  Google Scholar 

  • Tanaka K, Masu M, Nakanishi S (1990) Structure and functional expression of the cloned rat neurotensin receptor. Neuron 4:847–854

    PubMed  CAS  Google Scholar 

  • Vincent JP, Mazella J, Kitagbi P (1999) Neurotensin and neurotensin receptors

    Google Scholar 

  • Vita N, Laurent P, Lefort S, Chalon P, Dumont X, Kaghad M, Gully D, Le Fur G, Ferrara P, Caput D (1993) Cloning and expression of a complementary DNA encoding a high affinity human neurotensin receptor. FEBS Lett 317:139–142

    PubMed  CAS  Google Scholar 

  • Watson M, Isackson PJ, Makker M, Yamada MS, Yamada M, Cusack B, Richelson E (1993) Identification of a polymorphism in the human neurotensin receptor gene. Mayo Clin Proc 68:1043–1048

    PubMed  CAS  Google Scholar 

  • Yamada M, Lombet A, Forgez P, Rostène W (1998) Distinct functional characteristics of levocabastine-sensitive rat neurotensin NT2 receptor expressed in Chinese hamster ovary cells. Life Sci 62:PL375–PL379

    CAS  Google Scholar 

References

  • Kreiskott H, Vater W (1959) Verhaltensstudien am Goldhamster unter dem Einfluß zentral-wirksamer Substanzen. Naunyn-Schmiedeberg's Arch exp Path Pharm 236:100–105

    Google Scholar 

  • Lorenz K (1943) Die angeborenen Formen möglicher Erfahrung. Zeitschr Tierpsychol 5:235–409

    Google Scholar 

  • Lorenz K (1965) Evolution and modification of behavior. University of Chicago Press, Chicago

    Google Scholar 

  • Lorenz K (1966) Evolution and modification of behavior. Methuen & Co Ltd., London

    Google Scholar 

  • Ther L, Vogel G, Werner Ph (1959) Zur pharmakologischen Differenzierung und Bewertung von Neuroleptica. Arzneim Forsch/Drug Res 9:351–354

    CAS  Google Scholar 

References

  • Lorenz K (1943) Die angeborenen Formen möglicher Erfahrung. Zeitschr Tierpsychol 5:235–409

    Google Scholar 

  • Lorenz K (1966) Evolution and modification of behavior. Methuen & Co Ltd., London

    Google Scholar 

  • Vogel G, Ther L (1960) Das Verhalten der Baumwollratte zur Beurteilung der neuroleptischen Breite zentral-depressiver Stoffe. Arzneim Forsch/Drug Res 10:806–808

    CAS  Google Scholar 

References

  • Courvoisier S, Fournel J, Ducrot R, Kolsky M, Koeschet P (1953) Propriétés pharmacodynamiques du chlorhydrate de chloro-3-(diméthylamino-3′-propyl)-10-phenothiazine (4.560 R.P.) Arch Int Pharmacodyn 92:305–361

    PubMed  CAS  Google Scholar 

  • Giaja J (1938) Sur l'analyse de la fonction de calorification de l'homéotherme par la dépression barométrique. C R Soc Biol 127:1355–1359

    Google Scholar 

  • Giaja J (1940) Léthargie obtenue che le Rat par la dépression barométrique. C R Acad Sci 210:80–84

    Google Scholar 

  • Giaja J (1953) Sur la physiologie de l'organisme refroidi. Press Medicale 61:128–129

    CAS  Google Scholar 

  • Giaja J, Markovic-Giaja L (1954) L'hyperthermie produite par la chlorpromazine et la résistance a l'asphyxie. Bull Soc Chim Biol 36:1503–1506

    PubMed  CAS  Google Scholar 

  • Litchfield J, Wilcoxon F (1949) A simplified method of evaluating dose effect experiments. J Pharmacol Exp Ther 96:99–113

    PubMed  CAS  Google Scholar 

  • Ther L, Lindner E, Vogel G (1963) Zur pharmakologischen Wirkung der optischen Isomeren des Methadons. Dtsch Apoth Ztg 103:514–520

    CAS  Google Scholar 

  • Ther L, Vogel G, Werner P (1959) Zur pharmakologischen Differenzierung und Bewertung der Neuroleptica. Arzneim Forsch/Drug Res 9:351–354

    CAS  Google Scholar 

  • Vogel G (1959) Über die Wirkung von Dolantin und Polamidon im Vergleich zu anderen stark wirksamen Analgetica an der unterkühlten Ratte nach Giaja. Naunyn-Schmiedeberg's Arch exp Path Pharmak 236:214–215

    CAS  Google Scholar 

References

  • Casey DE (1989) Serotoninergic aspects of acute extrapyramidal syndromes in nonhuman primates. Psychopharmacol Bull 25:457–459

    PubMed  CAS  Google Scholar 

  • Casey DE (1991) Extrapyramidal syndromes in nonhuman primates: Typical and atypical neuroleptics. Psychopharmacol Bull 27:47–50

    PubMed  CAS  Google Scholar 

  • Casey DE (1993) Serotonergic and dopaminergic aspects of neuroleptic-induced extrapyramidal syndromes in nonhuman primates. Psychopharmacology 112:S55–S59

    PubMed  CAS  Google Scholar 

  • Chermat R, Simon P (1975) Appréciation de la catalepsie chez le rat. J Pharmacol 6:493–496

    Google Scholar 

  • Costall B, Naylor RJ (1973) Is there a relationship between the involvement of extrapyramidal and mesolimbic brain areas with the cataleptic action of neuroleptic agents and their clinical antipsychotic effects? Psychopharmacol (Berlin) 32:161–170

    CAS  Google Scholar 

  • Costall B, Naylor RJ (1974) On catalepsy and catatonia and the predictability of the catalepsy test for neuroleptic activity. Psychopharmacol (Berl.) 34:233–241

    CAS  Google Scholar 

  • Duvoisin R (1976) Parkinsonism: Animal analogues of the human disorder. In: Yahr M (ed) The Basal Ganglia. Raven Press, New York, pp 293–303

    Google Scholar 

  • Gerlach J, Casey DE (1990) Remoxipride, a new selective D2 antagonist, and haloperidol in Cebus monkeys. Progr Neuropsychopharmacol Biol Psychiatry 14:103–112

    CAS  Google Scholar 

  • Honma T, Fukushima H (1976) Correlation between catalepsy and dopamine decrease in the rat striatum induced by neuroleptics. Neuropharmacol 15:601–607

    CAS  Google Scholar 

  • Locke KW, Dunn RW, Hubbard JW, Vanselous CL, Cornfeldt M, Fielding S, Strupczewski JT (1990) HP 818:A centrally analgesic with neuroleptic properties. Drug Dev Res 19:239–256

    CAS  Google Scholar 

  • Moore NA, Tye NC, Axton MS, Risius FC (1992) The behavioral pharmacology of olanzapine, a novel “atypical” anti-psychotic agent. J Pharmacol Exp Ther 262:545–551

    PubMed  CAS  Google Scholar 

  • Szewczak MR, Cornfeldt ML, Dunn RW, Wilker JC, Geyer HM, Glamkowski EJ, Chiang Y, Fielding S (1987) Pharmacological evaluation of HP 370, a potential atypical antipsychotic agent. 1. In vivo profile. Drug Dev Res 11:157–168

    CAS  Google Scholar 

References

  • Cook L, Catania AC (1964) Effects of drugs on avoidance and escape behavior. Fed Proc 23:818–835

    PubMed  CAS  Google Scholar 

  • Cook L, Weidley E (1957) Behavioral effects of some psychopharmacological agents. Ann NY Acad Sci 66:740–752

    PubMed  CAS  Google Scholar 

  • Dunn RW, Carlezon WA, Corbett R. (1991) Preclinical anxiolytic versus antipsychotic profiles of the 5-HT3-antagonists Ondansedron, Zacopride, 3α-tropanyl-1H-indole-3-carboxylic ester, and 1αH, 3α, 5αH-tropan-3-yl-3,5-dichlorobenzoate. Drug Dev Res 23:289–300

    CAS  Google Scholar 

  • Locke KW, Dunn RW, Hubbard JW, Vanselous CL, Cornfeldt M, Fielding S, Strupczewski JT, (1990) HP 818:A centrally acting analgesic with neuroleptic properties. Drug Dev Res 19:239–256

    CAS  Google Scholar 

  • Szewczak MR, Cornfeldt, ML, Dunn RW, Wilker JC, Geyer HM, Glamkowski EJ, Chiang Y, Fielding S (1987) Pharmacological evaluation of HP 370, a potential atypical antipsychotic agent. 1. In vivo profile. Drug Dev Res 11:157–168

    CAS  Google Scholar 

References

  • Tedeschi RE, Tedeschi DH, Mucha A, Cook L, Mattis PA, Fellows EJ. (1959) Effects of various centrally acting drugs on fighting behavior of mice. J Pharmacol Exp Ther 125:28–34

    PubMed  CAS  Google Scholar 

References

  • Anderson R, Diotte M, Miliaressis E (1995) The bidirectional interaction between ventral tegmental rewarding and hindbrain aversive stimulation effects in rats. Brain Res 688:15–20

    PubMed  CAS  Google Scholar 

  • Brodie DA, Moreno OM, Malis JE, Boren JJ (1960) Rewarding properties of intracranial stimulation. Science 131:920–930

    Google Scholar 

  • Broekkamp CLE, Van Rossum JM (1975) The effect of micro-injections of morphine and haloperidol into the neostriatum and the nucleus accumbens on self-stimulation behavior. Arch Int Pharmacodyn 217:110–117

    PubMed  CAS  Google Scholar 

  • Corbett D, Laferriere A, Milner P (1982) Plasticity of the medial prefrontal cortex: Facilitated acquisition of intracranial self-stimulation by pretraining stimulation. Physiol Behav 28:531–543

    PubMed  CAS  Google Scholar 

  • Cornfeldt M, Fisher B, Fielding S (1982) Rat internal capsule lesion: a new test for detecting antidepressants. Fed Proc 41:1066

    Google Scholar 

  • Depoortere R, Perrault Gh, Sanger DJ (1996) Behavioral effects in the rat of the putative dopamine D3 receptor agonist 7-OH-DPAT: comparison with quinpirole and apomorphine. Psychopharmacology 124:231–240

    PubMed  CAS  Google Scholar 

  • Dunn RW, Carlezon WA, Corbett R (1991) Preclinical anxiolytic versus antipsychotic profiles of the 5-HT3 antagonists ondansetron, zacopride, 3α-tropanyl-1H-indole-3-carboxylic acid ester, and 1αH, 3α, 5αH-tropan-3-yl-3,5-dichlorobenzoate. Drug Dev Res 23:289–300

    CAS  Google Scholar 

  • Fielding S, Lal H (1978) Behavioral actions of neuroleptics. In: Iversen LL, Iversen SD, Snyder SH (eds) Neuroleptics and Schizophrenia, Vol 10, pp 91–128, Plenum Press, New York

    Google Scholar 

  • Gallistel CR, Freyd G (1987) Quantitative determination of the effects of catecholaminergic agonists and antagonists on the rewarding efficacy of brain stimulation. Pharmacol Biochem Behav 26:731–741

    PubMed  CAS  Google Scholar 

  • Goldstein JM, Malick JB (1983) An automated descending rate-intensity self-stimulation paradigm: usefulness for distinguishing antidepressants from neuroleptics. Drug Dev Res 3:29–35

    CAS  Google Scholar 

  • Koob GF, Fray PJ, Iversen SD (1978) Self-stimulation at the lateral hypothalamus and locus caeruleus after specific unilateral lesions of the dopamine system. Brain Res 146:123–140

    PubMed  CAS  Google Scholar 

  • Mekarski JE (1989) Main effects of current and pimozide on prepared and learned self-stimulation behaviors are on performance not reward. Pharmacol Biochem Behav 31:845–853

    Google Scholar 

  • Mora F, Vives F, Alba F (1980) Evidence for an involvement of acetylcholine in self-stimulation of the prefrontal cortex in the rat. Experientia 36:1180–1181

    PubMed  CAS  Google Scholar 

  • Olds J (1961) Differential effects of drives and drugs on self-stimulation at different brain sites. In: Sheer DE (ed) Electrical Stimulation of the Brain. University of Texas Press, Austin TX, pp 350–366

    Google Scholar 

  • Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47:419–427

    PubMed  CAS  Google Scholar 

  • Olds ME (1972) Alterations by centrally acting drugs of the suppression of self-stimulation behavior in the rat by tetrabenazine, physostigmine, chlorpromazine and pentobarbital. Psychopharmacology 25:299–314

    CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. 2nd Edition; Academic Press, New York

    Google Scholar 

  • Roberts DCS, Zito KA (1987) Interpretation of lesion effects on stimulant self-administration. In: Bozarth MA (ed) Methods for Assessing the Reinforcing Properties of Abused Drugs. Springer-Verlag New York, Berlin, Heidelberg, pp 87–103

    Google Scholar 

  • Szewczak MR, Cornfeldt, ML, Dunn RW, Wilker JC, Geyer HM, Glamkowski EJ, Chiang Y, Fielding S (1987) Pharmacological evaluation of HP 370, a potential atypical antipsychotic agent. 1. In vivo profile. Drug Dev Res 11:157–168

    CAS  Google Scholar 

References

  • Chance MRA (1946) Aggregation as a factor influencing the toxicity of sympathomimetic amines in mice. J Pharmacol 87:214–217

    CAS  Google Scholar 

  • Derlet RW, Albertson TE, Rice P (1990) Protection against d-amphetamine toxicity. Am J Emerg Med 8:105–108

    PubMed  CAS  Google Scholar 

  • Locke KW, Dunn RW, Hubbard JW, Vanselous CL, Cornfeldt M, Fielding S, Strupczewski JT (1990) HP 818: A centrally acting analgesic with neuroleptic properties. Drug Dev Res 19:239–256

    CAS  Google Scholar 

References

  • Ellenbroek BA (1991) The ethological analysis of monkeys in a social setting as an animal model for schizophrenia. In: Olivier B, Mos J, Slangen JL (eds) Animal Models in Psychopharmacology. Advances in Pharmacological Sciences. Birkhäuser Verlag, Basel, pp 265–284

    Google Scholar 

  • Ljungberg T, Ungerstedt U (1985) A rapid and simple behavioral screening method for simultaneous assessment of limbic and striatal blocking effects of neuroleptic drugs. Pharmacol Biochem Behav 23:479–485

    PubMed  CAS  Google Scholar 

  • Locke KW, Dunn RW, Hubbard JW, Vanselous CL, Cornfeldt M, Fielding S, Strupczewski JT (1990) HP 818: A centrally acting analgesic with neuroleptic properties. Drug Dev Res 19:239–259

    CAS  Google Scholar 

  • Machiyama Y (1992) Chronic methylamphetamine intoxication model of schizophrenia in animals. Schizophren Bull 18:107–113

    CAS  Google Scholar 

  • Simon P, Chermat R (1972) Recherche d'une interaction avec les stéréotypies provoquées par l'amphétamine chez le rat. J Pharmacol 3:235–238

    Google Scholar 

References

  • Bischoff S, Christen P, Vassout A. (1988) Blockade of hippocampal dopamine (DA) receptors: A tool for antipsychotics with low extrapyramidal side effects. Prog Neuropsychopharmacol Biol Psychiat 12:455–467

    CAS  Google Scholar 

  • Brown F, Campell W, Clark MSG, Graves DS, Hadley MS, Hatcher J, Mitchell P, Needham P, Riley G, Semple J (1988) The selective dopamine antagonist properties of BRL 34779: a novel substituted benzamide. Psychopharmacology 94:350–358

    PubMed  CAS  Google Scholar 

  • Cabib S, Puglisi-Allegra St (1988) A classical genetic analysis of two apomorphine-induced behaviors in the mouse. Pharmacol Biochem Behav 30:143–147

    PubMed  CAS  Google Scholar 

  • Corral C, Lissavetzky J, Valdeolmillos A, Bravo L, Darias V, Sánchez Mateo C (1992) Neuroleptic activity of 10-(4-methyl-1-piperazinyl)-thieno(3,2-b)(1,5)benzothiazepine derivatives. Arzneim Forsch/Drug Res. 42:896–900

    CAS  Google Scholar 

  • Costall B, Naylor RJ, Nohria V (1978) Climbing behavior induced by apomorphine in mice: A potent model for the detection of neuroleptic activity. Eur J Pharmacol 50:39–50

    PubMed  CAS  Google Scholar 

  • Duterte-Boucher D, Costentin J (1989) Appearance of a stereotyped apomorphine-induced climbing in unresponsive DBA2 mice after chronic manipulation of brain dopamine transmission. Psychopharmacology 98:56–60

    PubMed  CAS  Google Scholar 

  • Horváth K, Andrási P, Berzsenyi P, Pátfalusy M, Patthy M, Szabó G, Sebestyén L, Bagdy E, Körösi J, Botka P, Hamaori T, Láng T (1989) A new psychoactive 5H-2,3-benzodiazepine with an unique spectrum of activity. Arzneim Forsch/Drug Res 39:894–899

    Google Scholar 

  • Moore NA, Axton MS (1988) Production of climbing behaviour in mice requires both D1 and D2 receptor activation. Psychopharmacology 94:263–266

    PubMed  CAS  Google Scholar 

  • Moore NA, Tye NC, Axton MS, Risius FC (1992) The behavioral pharmacology of olanzapine, a novel “atypical” antipsychotic agent. J Pharmacol Exp Ther 262:545–551

    PubMed  CAS  Google Scholar 

  • Protais P, Costentin J, Schwartz JC (1976) Climbing behavior induced by apomorphine in mice: A simple test for the study of dopamine receptors in the striatum. Psychopharmacology 50:1–6

    PubMed  CAS  Google Scholar 

  • Szewczak MR, Cornfeldt, ML, Dunn RW, Wilker JC, Geyer HM, Glamkowski EJ, Chiang Y, Fielding S (1987) Pharmacological evaluation of HP 370, a potential atypical antipsychotic agent. 1. In vivo profile. Drug Dev Res 11:157–168

    CAS  Google Scholar 

  • Vasse M, Chagraoui A, Protais P (1988) Climbing and stereotyped behaviors in mice require the stimulation of D-1 dopamine receptors. Eur J Pharmacol 148:221–229

    PubMed  CAS  Google Scholar 

References

  • Akbas O, Verimer T, Onur R, Kayaalp SO (1984) The effects of yohimbine and neuroleptics on apomorphine-induced pecking behavior in the pigeon. Neuropharmacol 23:1261–1264

    CAS  Google Scholar 

  • Andén NE; Rubenson A, Fuxe K, Hoekfelt T (1967) Evidence for dopamine receptor stimulation by apomorphine. J Pharm Pharmac 19:627–629

    Google Scholar 

  • Christensen A, Fjalland B, Møller Nielsen I (1976) On the supersensitivity of dopamine receptors, induced by neuroleptics. Psychopharmacology 48:1–6

    PubMed  CAS  Google Scholar 

  • Clow A, Theodorou A, Jenner P, Marsden CD (1980) A comparison of striatal and mesolimbic dopamine function in the rat during a 6-month trifluoperazine administration. Psychopharmacology 69:227–233

    PubMed  CAS  Google Scholar 

  • Costall B, Naylor RJ (1973) On the mode of action of apomorphine. Eur J Pharmacol 21:350–361

    PubMed  CAS  Google Scholar 

  • Dall'Olio R, Gandolfi O. (1993) The NMDA positive modulator D-cycloserine potentiates the neuroleptic activity of D1 and D2 dopamine receptor blockers in the rat. Psychopharmacology 110:165–168

    PubMed  Google Scholar 

  • Ernst AM (1967) Mode of action of apomorphine and dexamphetamine on gnawing compulsion in rats. Psychopharmacologia (Berlin) 10:316–323

    PubMed  CAS  Google Scholar 

  • Janssen PAJ, Niemegeers CJC, Jageneau AHM (1960) Apomorphine-antagonism in rats. Arzneim Forsch. 10:1003–1005

    CAS  Google Scholar 

  • Jolicoeur FB, Gagne MA, Rivist R, Drumheller A, St Pierre S (1991) Neurotensin selectively antagonizes apomorphine-induced stereotypic climbing. Pharmacol Biochem Behav 38:463–465

    PubMed  CAS  Google Scholar 

  • Klawans HL, Rubovits R (1972) An experimental model of tardive dyskinesia. J Neural Transmiss 33:235–246

    Google Scholar 

  • Kostowski W, Krzascik P (1989) Research for evaluating the role of dopaminergic mechanisms in the action of valproate. Biogen Amin 6:169–176

    CAS  Google Scholar 

  • Ljungberg T, Ungerstedt U (1978) Classification of neuroleptic drugs according to their ability to inhibit apomorphine-induced locomotion and gnawing: evidence for two different mechanisms of action. Psychopharmacology 56:239–247

    PubMed  CAS  Google Scholar 

  • Locke KW, Dunn RW, Hubbard JW, Vanselous CL, Cornfeldt M, Fielding F, Strupczewski JT (1990) HP 818: A centrally acting analgesic with neuroleptic properties. Drug Dev Res 19:239–256

    CAS  Google Scholar 

  • Puech AJ, Simon P, Boissier JR (1978) Benzamides and classical neuroleptics: comparison of their action using 6 apomorphine-induced effects. Eur J Pharmacol 50:291–300

    PubMed  CAS  Google Scholar 

  • Szewczak MR, Cornfeldt, ML, Dunn RW, Wilker JC, Geyer HM, Glamkowski EJ, Chiang Y, Fielding S (1987) Pharmacological evaluation of HP 370, a potential atypical antipsychotic agent. 1. In vivo profile. Drug Dev Res 11:157–168

    CAS  Google Scholar 

  • Tarsy D, Baldessarini RJ (1974) Behavioral supersensitivity to apomorphine following chronic treatment with drugs which interfere with the synaptic function of catecholamines. Neuropharmacol 13:927–940

    CAS  Google Scholar 

References

  • Argiolas A, Melis MR (1998) The neuropharmacology of yawning. Eur J Pharmacol 343:1–16

    PubMed  CAS  Google Scholar 

  • Asencio M, Delaquerriere B, Cassels BK, Speisky H, Comoy E, Protais P (1999) Biochemical and behavioral effects of boldine and glaucine on dopaminergic systems. Pharmacol Biochem Behav 62:7–13

    PubMed  CAS  Google Scholar 

  • Baraldi M, Benassi-Benelli A, Lolli M (1977) Penile erections in rats after fenfluramine administration. Riv Farmacol Ter 8:375–379

    CAS  Google Scholar 

  • Baraldi M, Benassi-Benelli A, Bernabei MT, Cameroni R, Ferrari F, Ferrari P (1979a) Apocodeine-induced stereotypies and penile erection in rats. Neuropharmacol 18:165–169

    CAS  Google Scholar 

  • Benassi-Benelli A, Ferrari F, Pellegrini-Quarantotti B (1979b) Penile erection induced by apomorphine and N-n-propylnorapomorphine in rats. Arch Int Pharmacodyn 242:241–247

    PubMed  CAS  Google Scholar 

  • Berendsen HHG, Broekkamp CLE (1987) Drug-induced penile erections in rats: indication of serotonin1B receptor mediation. Eur J Pharmacol 135:279–287

    PubMed  CAS  Google Scholar 

  • Berendsen HHG, Gower AJ (1986) Opiate-androgen interaction in drug-induced yawning and penile erections in the rat. Neuroendocrinol 42:185–190

    CAS  Google Scholar 

  • Berendsen HHG, Jenk F, Broekkamp CLE (1990) Involvement of 5-HT1C-receptors in drug-induced penile erections in rats. Psychopharmacology 101:57–61

    PubMed  CAS  Google Scholar 

  • Bertolini A, Baraldi M (1975) Anabolic steroids: permissive agents of ACTH-induced penile erections in rats. Life Sci 17:263–266

    PubMed  CAS  Google Scholar 

  • Bertolini A, Genedani S, Castelli M (1978) Behavioural effects of naloxone in rats. Experientia 34:771–772

    PubMed  CAS  Google Scholar 

  • Bivalacqua TJ, Rajasekaran M, Champion HC, Wang R, Sikka SC, Kadowitz PJ, Hellstrom WJG (1998) The influence of castration of pharmacologically induced penile erection in the cat. J Androl 19:551–557

    PubMed  CAS  Google Scholar 

  • Bristow LJ, Cook GP, Gay JC, Kulagowski J, Landon L, Murray F, Saywell KL, Young L, Hutson PH (1996) The behavioral and neurochemical profile of the putative dopamine D3 agonist, (+)-PD 128907, in the rat. Neuropharmacol 35:285–294

    CAS  Google Scholar 

  • Champion HC, Wang R, Shenassa BB, Murphy WA, Coy DH, Hellstrom WJG, Kadowitz PJ (1997) Adrenomedullin induces penile erection in the cat. Eur J Pharmacol 319:71–75

    PubMed  CAS  Google Scholar 

  • Doherty PC, Wisler PA (1994) Stimulatory effects of quinelorane on yawning and penile erection in the rat. Life Sci 54:507–514

    PubMed  CAS  Google Scholar 

  • Dourish CT, Cooper SJ, Philips SR (1985) Yawning elicited by systemic and intrastriatal injection of piribedil and apomorphine in the rat. Psychopharmacology 86:175–181

    PubMed  CAS  Google Scholar 

  • Eguibar JR, Moyaho A (1997) Inhibition of grooming by pilocarpine differs in high-and low-yawning sublines of Sprague Dawley rats. Pharmacol Biochem Behav 58:317–322

    PubMed  CAS  Google Scholar 

  • Ferrari F, Pelloni F, Giuliani D (1993) Behavioural evidence that different neurochemical mechanisms underlie stretching-yawning and penile erection induced in male rats by SND 919, a new selective D2 dopamine receptor agonist. Psychopharmacology 113:172–276

    PubMed  CAS  Google Scholar 

  • Fujikawa M, Nagashima M, Inuoe T, Yamada K, Furukawa T (1996a) Potential agonistic effects of OPC-14597, a potential antipsychotic agent, on yawning behavior in rats. Pharmacol Biochem Behav 53:903–909

    PubMed  CAS  Google Scholar 

  • Fujikawa M, Yamada K, Nagashima M, Domae M, Furukawa T (1996b) The new muscarinic M1-receptor agonist YM796 evokes yawning and increases oxytocin secretion from the posterior pituitary in rats. Pharmacol Biochem Behav 55:55–60

    PubMed  CAS  Google Scholar 

  • Furukawa T (1996) Yawning behavior for preclinical drug evaluation. Meth Find Exp Clin Pharmacol 18:141–155

    CAS  Google Scholar 

  • Genedani S, Bernardi M, Bertolini A (1994) Influence of ifenprodil on the ACTH-induced behavioral syndrome in rats. Eur J Pharmacol 252:77–80

    PubMed  CAS  Google Scholar 

  • Gower AJ, Berendsen HHG, Princen MM, Broekkamp CLE (1984) The yawning-penile erection syndrome as a model for putative dopamine autoreceptor activity. Eur J Pharmacol 103:81–89

    PubMed  CAS  Google Scholar 

  • Gower AJ, Berendsen HHG, Broekkamp CLE (1986) Antagonism of drug-induced yawning and penile erections in rats. Eur J Pharmacol 122:239–244

    PubMed  CAS  Google Scholar 

  • Gully D, Jeanjean F, Poncelet M, Steinberg R, Soubriè P, La Fur G, Maffrand JP (1995) Neuropharmacologic profile of nonpeptide neurotensin antagonists. Fundam Clin Pharmacol 9:513–521

    PubMed  CAS  Google Scholar 

  • Holmgren B, Urbá-Holmgren R, Aguiar M, Rodriguez R (1980) Sex hormone influences on yawning behavior. Acta Neurobiol Exp 40:515–519

    CAS  Google Scholar 

  • Kurashima M, Katsushi Y, Nagashima M, Shirakawa K, Furukawa T (1995) Effects of putative D3 receptor agonists, 7-OH.DPAT, and quinpirole, on yawning, stereotypy, and body temperature in rats. Pharmacol Biochem Behav 52:503–508

    PubMed  CAS  Google Scholar 

  • Melis MR, Stancampiano R, Argiolas A (1994) Penile erection and yawning induced by paraventricular NMDA injection in male rats are mediated by oxytocin. Pharmacol Biochem Behav 48:203–207

    PubMed  CAS  Google Scholar 

  • Melis MR, Stancampiano R, Argiolas A (1995) Role of nitric oxide in penile erection and yawning induced by 5-HT1C receptor agonists in male rats. Naunyn-Schmiedeberg's Arch Pharmacol 351:439–445

    CAS  Google Scholar 

  • Melis MR, Succu S, Argiolas A (1996) Dopamine agonists increase nitric oxide production in the paraventricular nucleus of the hypothalamus: correlation with penile erection and yawning. Eur J Neurosci 8:2056–2063

    PubMed  CAS  Google Scholar 

  • Melis MR, Succu S, Iannucci U, Argiolas A (1997a) Oxytocin increases nitric oxide production in the paraventricular nucleus of the hypothalamus of male rats: correlation with penile erection and yawning. Regul Peptides 69:105–111

    CAS  Google Scholar 

  • Melis MR, Succu S, Iannucci U, Argiolas A (1997b) N-Methyl-D-aspartic acid-induced penile erection and yawning: role of hypothalamic paraventricular nitric oxide. Eur J Pharmacol 328:115–123

    PubMed  CAS  Google Scholar 

  • Millan MJ, Peglion JL, Lavielle G, Perrin-Monneyron S (1997) 5-HT2C receptors mediate penile erections in rats: actions of novel and selective agonists and antagonists. Eur J Pharmacol 325:9–12

    PubMed  CAS  Google Scholar 

  • Mogilnicka E, Klimek V (1977) Drugs affecting dopamine neurons and yawning behavior. Pharmacol Biochem Behav 7:303–305

    PubMed  CAS  Google Scholar 

  • Nickolson VJ, Berendsen HHG (1980) Effects of the potential neuroleptic peptide des-tyrosine1-γ-endorphin and haloperidol on apomorphine-induced behavioural syndromes in rats and mice. Life Sci 27:1377–1385

    PubMed  CAS  Google Scholar 

  • Poggioli R, Arletti R, Benelli A, Cavazzuti E, Bertolini A (998) Diabetic rats are unresponsive to the penile erection-inducing effect of intracerebroventricularly injected adrenocorticotropin. Neuropeptides 32:151–155

    Google Scholar 

  • Pomerantz SM (1990) Apomorphine facilitates male sexual behavior of rhesus monkeys. Pharmacol Biochem Behav 35:659–664

    PubMed  CAS  Google Scholar 

  • Pomerantz SM (1992) Dopaminergic influences on male sexual behavior of rhesus monkeys: effects of dopamine agonists. Pharmacol Biochem Behav 41:511–517

    PubMed  CAS  Google Scholar 

  • Protais P, Windsor M, Mocaër E, Comoy E (1995) Post-synaptic 5-HT1A receptor involvement in yawning and penile erections induced by apomorphine, physostigmine and mCCP in rats. Psychopharmacology 120:376–383

    PubMed  CAS  Google Scholar 

  • Sato-Suzuki I, Kita I, Oguri M, Arita H (1998) Stereotyped yawning responses induced by electrical and chemical stimulation of paraventricular nucleus of the rat. J Neurophysiol 80:2765–2775

    PubMed  CAS  Google Scholar 

  • Ståhle L, Ungerstedt U (1983) Assessment of dopamine autoreceptor properties of apomorphine, (+)-3-PPP and (−)-3-PPP by recording of yawning behaviour in rats. Eur J Pharmacol 98:307–310

    Google Scholar 

  • Tang AH, Himes CS (1995) Apomorphine produced more yawning in Sprague Dawley rats than in F344 rats: a pharmacological study. Eur J Pharmacol 284:13–18

    PubMed  CAS  Google Scholar 

  • Vergoni AV, Bertoline A, Mutulis F, Wikberg JES, Schioth HB (1998) Differential influence of a selective melanocortin MC4 receptor antagonist (HS014) on melanocortin-induced behavioral effects in rats. Eur J Pharmacol 362:95–101

    PubMed  CAS  Google Scholar 

  • Yamada K, Furukawa T (1980) Direct evidence for involvement of dopaminergic inhibition and cholinergic activation in yawning. Psychopharmacology 67:39–43

    PubMed  CAS  Google Scholar 

  • Zarrindast MR, Toloui V, Hashemi B (1995) Effects of GABAergic drugs on physostigmine-induced yawning in rats. Psychopharmacology 122:297–300

    PubMed  CAS  Google Scholar 

References

  • Fielding S, Lal H (1978) Behavioral actions of neuroleptics. In: Iversen LL, Iversen SD, Snyder SH (eds) Neuroleptics and Schizophrenia Vol 10, pp 91–128, Plenum Press, New York

    Google Scholar 

  • Fielding S, Marky M, Lal H (1975) Elicitation of mouse jumping by combined treatment with amphetamine and L-dopa: Blockade by known neuroleptics. Pharmacologist 17:210

    Google Scholar 

  • Lal H, Colpaert F, Laduron P (1975) Narcotic withdrawal-like mouse jumping produced by amphetamine and L-dopa. Eur J Pharmacol 30:113–116

    PubMed  CAS  Google Scholar 

  • Lal H, Marky M, Fielding S (1976) Effect of neuroleptic drugs on mouse jumping induced by L-dopa in amphetamine treated mice. Neuropharmacol 15:669–671

    CAS  Google Scholar 

References

  • Carlson M, Carlson A (1989) The NMDA antagonist MK-801 causes marked locomotor stimulation in monoamine-depleted mice. J Neural Transm 75:221–226

    Google Scholar 

  • Deutsch SI, Hitri A (1993) Measurement of an explosive behavior in the mouse, induced by MK-801, a PCP analogue. Clin Neuropharmacol 16:251–257

    PubMed  CAS  Google Scholar 

  • Litchfield J, Wilcoxon F (1949) A simplified method of evaluating dose effect experiments. J Pharmacol Exp Ther 96:99–113

    PubMed  CAS  Google Scholar 

  • Rosse RB, Mastropaolo J, Sussman DM, Koetzner L, Morn CB, Deutsch SI (1995) Computerized measurement of MK-801-elicited popping and hyperactivity in mice. Clin Neuropharmacol 18:448–457

    PubMed  CAS  Google Scholar 

  • Verma A, Kulkarni SK (1992) Modulation of MK-801 response by dopaminergic agents in mice. Psychopharmacol 107:431–436

    CAS  Google Scholar 

References

  • Chipkin RE, Iorio LC, Coffin VL, McQuade RD, Berger JG, Barnett A (1988) Pharmacological profile of SCH39166: A dopamine D1 selective benzonaphthazepine with potential antipsychotic activity. J Pharmacol Exp Ther 247:1093–1102

    PubMed  CAS  Google Scholar 

  • Janssen PAJ, Niemegeers CJE (1959) Chemistry and pharmacology of compounds related to 4-(4-hydroxy-4-phenyl-piperidino)-butyrophenone. Part II — Inhibition of apomorphine vomiting in dogs. Arzneim.-Forsch. 9:765–767

    CAS  Google Scholar 

  • Janssen PA, Niemegeers CJE, Shellekens HL. (1965) Is it possible to predict the clinical effects of neuroleptic drugs (major tranquilizers) from animal data? Arzneim Forsch 15:1196–1206

    Google Scholar 

  • Rotrosen J, Wallach MB, Angrist B, Gershon S., (1972) Antagonism of apomorphine-induced stereotypy and emesis in dogs by thioridiazine, haloperidol and pimozide. Psychopharmacol (Berlin) 26:185–195

    CAS  Google Scholar 

References

  • Clow A, Jenner P, Marsden CD (1979) Changes in dopamine-mediated behaviour during one year neuroleptic treatment. Eur J Pharmacol 57:365–375

    PubMed  CAS  Google Scholar 

  • Collins P, Broekkamp CLE, Jenner P, Marsden CD (1991) Drugs acting at D-1 and D-2 dopamine receptors induce identical purposeless chewing in rats which can be differentiated by cholinergic manipulation. Psychopharmacology 103:503–512

    PubMed  CAS  Google Scholar 

  • Iversen SD, Howells RB, Hughes RP (1980) Behavioural consequences of long-term treatment with neuroleptic drugs. Adv Biochem Psychopharmacol 24:305–313

    PubMed  CAS  Google Scholar 

  • Rupniak NMJ, Jenner P, Marsden CD (1983) Cholinergic manipulation of perioral behaviour induced by chronic neuroleptic administration to rats. Psychopharmacology 79:226–230

    PubMed  CAS  Google Scholar 

  • Stewart BR, Jenner P, Marsden CD (1989) Assessment of the muscarinic receptor subtype involved in the mediation of pilocarpine-induced purposeless chewing behaviour. Psychopharmacology 97:228–234

    PubMed  CAS  Google Scholar 

  • Samini M, Yekta FS, Zarrindast MR (1995) Nicotine-induced purposeless chewing in rats: possible dopamine receptor mediation. J Psychopharmacol 9:16–19

    PubMed  CAS  Google Scholar 

  • Zarrindast MR, Moini-Zanjani T, Manaheji H, Fathi F (1992) Influence of dopamine receptors on chewing behaviour in rats. Gen Pharmacol 23:915–919

    PubMed  CAS  Google Scholar 

References

  • Bernardini GL, Gu X, Viscard E, German DC (1991) Amphetamine-induced and spontaneous release of dopamine from A9 and A10 cell dendrites: an in vitro electrophysiological study in the mouse. J Neural Transm 84:183–193

    CAS  Google Scholar 

  • Bowery B, Rothwell LA, Seabrock GR (1994) Comparison between the pharmacology of dopamine receptors mediating the inhibition of cell firing in rat brain slices through the substantia nigra pars compacta and ventral tegmental area. Br J Pharmacol 112:873–880

    PubMed  CAS  Google Scholar 

  • Bunney BS, Grace AA (1978) Acute and chronic haloperidol treatment: comparison of effects on nigral dopaminergic cell activity. Life Sci 23:1715–1728

    PubMed  CAS  Google Scholar 

  • Cedarbaum JM, Aghajanian GK (1977) Catecholamine receptors on locus caeruleus neurons: pharmacological characterization. Eur J Pharmacol 44:375–385

    PubMed  CAS  Google Scholar 

  • Chiodo LA, Bunney BS (1983) Typical and atypical neuroleptics: differential effect of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons. J Neurosci 3:1607–1619

    PubMed  CAS  Google Scholar 

  • Marwaha J, Aghajanian GK (1982) Relative potencies of alpha-1 and alpha-2 antagonists in the locus caeruleus, dorsal raphe and dorsal lateral geniculate nuclei: an electrophysiological study. J Pharmacol Exp Ther 222:287–293

    PubMed  CAS  Google Scholar 

  • Mooney RD, Bennett-Clarke C, Chiaia NL, Sahibzada N, Rhoades RW (1990) Organization and actions of the noradrenergic input to the hamster's superior colliculus. J Comp Neurol 292:214–230

    PubMed  CAS  Google Scholar 

  • Nybäck HV, Walters JR, Aghajanian GK, Roth RH (1975) Tricyclic antidepressants: effects on the firing rate of brain noradrenergic neurons. Eur J Pharmacol 32:302–312

    PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The Rat Brain in Stereotaxic Coordinates. 2nd ed, Academic Press, Sydney, Australia

    Google Scholar 

  • Santucci V, Gueudet C, Steinberg R, Le Fur G, Soubrie P (1997) Involvement of cortical neurotensin in the regulation of rat mesocortico-limbic dopamine neurons: Evidence from changes in the number of spontaneously active A10 cells after neuro tensin receptor blockade. Synapse 26:370–380

    PubMed  CAS  Google Scholar 

  • Schmidt CJ, Black CK, Taylor VL, Fadayel GM, Humphreys TM, Nieduzak TR, Sorensen SM (1992) The 5-HT2 receptor antagonist, MDL 28,133A, disrupts the serotoninergic-dopaminergic interaction mediating the neurochemical effects of 3,4-methylenedioxymethylamphetamine. Eur J Pharmacol 220:151–159

    PubMed  CAS  Google Scholar 

  • Scuvée-Moreau JJ, Dreese AE (1979) Effect of various antide-pressant drugs on the spontaneous firing rate of locus caeruleus and dorsal raphe neurons of the rat. Eur J Pharmacol 57:219–225

    PubMed  Google Scholar 

  • Todorova A, Dimpfel W (1994) Multiunit activity from the A9 and A10 areas in rats following chronic treatment with different neuroleptic drugs. Eur Neuropsychopharmacol 4:491–501

    PubMed  CAS  Google Scholar 

  • White FJ, Wang RY (1983a) Comparison of the effects of chronic haloperidol treatment on A9 and A10 dopamine neurons in the rat. Life Sci 32:983–993

    PubMed  CAS  Google Scholar 

  • White FJ, Wang RY (1983b) Differential effects of classical and atypical antipsychotic drugs on A9 and A10 dopamine neurons. Science 221:1054–1057

    PubMed  CAS  Google Scholar 

References

  • Armstrong-James M, Millar J (1979) Carbon fibre microelectrodes. J Neurosci Meth 1:279–287

    CAS  Google Scholar 

  • Armstrong-James M, Millar J (1984) High-speed cyclic voltammetry and unit recording with carbon fibre microelectrodes. In: Marsden CA (ed) Measurement of Neurotransmitter Release in vivo. John Wiley & Sons Ltd., Chichester, New York, pp 209–224

    Google Scholar 

  • Blaha CD, Lane RF (1983) Chemically modified electrode for in vivo monitoring of brain catecholamines. Brain Res Bull 10:861–864

    PubMed  CAS  Google Scholar 

  • Blaha CD, Lane RF (1984) Direct in vivo electrochemical monitoring of dopamine release in response to neuroleptic drugs. Eur J Pharmacol 98:113–117

    PubMed  CAS  Google Scholar 

  • Blaha CD, Lane RF (1987) Chronic treatment with classical and atypical antipsychotic drugs differentially decreases dopamine release in striatum and nucleus accumbens in vivo. Neurosci Lett 78:199–204

    PubMed  CAS  Google Scholar 

  • Buda M, Gonon FG (1987) Study of brain noradrenergic neurons by use of in vivo voltammetry. In: J.B. Justice Jr. (ed) Voltammetry in the Neurosciences: Principles, Methods and Applications. Humana Press, Clifton, New Jersey, pp 239–272

    Google Scholar 

  • Cespuglio R, Faradji H, Hahn Z, Jouvet M (1984) Voltammetric detection of brain 5-hydroxyindolamines by means of electrochemically treated carbon fibre electrodes: chronic recordings for up to one month with movable cerebral electrodes in the sleeping or waking rat. In: Marsden CA (ed) Measurement of Neurotransmitter Release in vivo. John Wiley & Sons Ltd., Chichester, New York, pp 173–191

    Google Scholar 

  • Crespi F, Sharp T, Maidment NT, Marsden Ca (1984) Differential pulse voltammetry: simultaneous in vivo measurement of ascorbic acid, catechols and 5-hydroxyindoles in the rat striatum. Brain Res 322:135–138

    PubMed  CAS  Google Scholar 

  • de Simoni MG, de Luigi A, Imeri L, Algerin S (1990) Miniaturized optoelectronic system for telemetry of in vivo voltammetric signals. J Neurosci Meth 33:233–240

    Google Scholar 

  • Frazer A, Daws LC (1998) Serotonin transporter function in vivo: Assessment by chronoamperometry. In: Martin GR, Eglen RM, Hoyer D, Hamblin MW, Yocca F (eds) Advances in Serotonin Research. Molecular Biology, Signal Transduction, and Therapeutics. Ann New York Acad Sci 861:217–229

    CAS  Google Scholar 

  • Gonon F, Buda M, Oujol JF (1984) Treated carbon fibre electrodes for measuring catechols and ascorbic acid. In: Marsden CA (ed) Measurement of Neurotransmitter Release in vivo. John Wiley & Sons Ltd., Chichester, New York, pp 153–171

    Google Scholar 

  • Gonon FG (1987) In vivo electrochemical monitoring of dopamine release. In: J.B. Justice Jr. (ed) Voltammetry in the Neurosciences: Principles, Methods and Applications. Humana Press, Clifton, New Jersey, pp 163–183

    Google Scholar 

  • Justice JB Jr. (1987) Introduction to in vivo voltammetry. In: J.B. Justice Jr. (ed) Voltammetry in the Neurosciences: Principles, Methods and Applications. Humana Press, Clifton, New Jersey, pp 3–102

    Google Scholar 

  • Justice JB Jr., Michael AC (1987) Monitoring extracellular DOPAC following stimulated release of dopamine. In: J.B. Justice Jr. (ed) Voltammetry in the Neurosciences: Principles, Methods and Applications. Humana Press, Clifton, New Jersey, pp 185–208

    Google Scholar 

  • Kawagoe KT, Zimmerman JB, Wightman RM (1993) Principles of voltammetry and microelectrode surface states. J Neurosci Meth 48:225–240

    CAS  Google Scholar 

  • Lane RF, Blaha CD (1986) Electrochemistry in vivo: Application to CNS pharmacology. Ann NY Acad Sci 473:50–69

    PubMed  CAS  Google Scholar 

  • Lane RF, Hubbard AT, Blaha CD (1979) Application of semi-differential electroanalysis to studies of neurotransmitters in the central nervous system. J Electroanalyt Chem 95:117–122

    CAS  Google Scholar 

  • Lane RF, Blaha CD, Hari SP (1987) Electrochemistry in vivo: monitoring dopamine release in the brain of the conscious, freely moving rat. Brain Res Bull 19:19–27

    PubMed  CAS  Google Scholar 

  • Lane RF, Blaha CD, Rivet JM (1988) Selective inhibition of mesolimbic dopamine release following chronic administration of clozapine: Involvement of α1-noradrenegic receptors demonstrated by in vivo voltammetry. Brain Res 460:389–401

    Google Scholar 

  • Maidment NT, Marsden CA (1985) In vivo voltammetric and behavioral evidence for somatodendritic autoreceptor control of mesolimbic dopamine neurons. Brain Res 338:317–325

    PubMed  CAS  Google Scholar 

  • Maidment NT, Marsden CA (1987a) Acute administration of clozapine, thioridazine, and metoclopramide increases extracellular DOPAC and decreases extracellular 5-HIAA, measured in rat nucleus accumbens and striatum of the rat using in vivo voltammetry. Neuropharmacol 26:187–193

    CAS  Google Scholar 

  • Maidment NT, Marsden CA (1987b) Repeated atypical neuroleptic administration: Effects on central dopamine metabolism monitored by in vivo voltammetry. Eur J Pharmacol 136:141–149

    PubMed  CAS  Google Scholar 

  • Marsden CA, Brazell MP, Maidment NT (1984) An introduction to in vivo electrochemistry. In: Marsden CA (ed) Measurement of Neurotransmitter Release in vivo. John Wiley & Sons Ltd., Chichester, New York, pp 127–151

    Google Scholar 

  • Marsden CA, Martin KF, Brazell MP, Maidment NT (1987) In vivo voltammetry: Application to the identification of dopamine and 5-hydroxytryptamine receptors. In: J.B. Justice Jr. (ed) Voltammetry in the Neurosciences: Principles, Methods and Applications. Humana Press, Clifton, New Jersey, pp 209–237

    Google Scholar 

  • Nagatsu T, Ikeda M, Fujita K, Shinzato M, Takahashi H, Adachi T (1987) Application of in vivo voltammetry to behavioral pharmacology. In: J.B. Justice Jr. (ed) Voltammetry in the Neurosciences: Principles, Methods and Applications. Humana Press, Clifton, New Jersey, pp 313–324

    Google Scholar 

  • Parada MA, Puig de Parada M, Hoebel BG (1994) A new triple-channel swivel for fluid delivery in the range of intracranial (10 nl) and intravenous (100 µl) self-administration volumes and also suitable for microdialysis. J Neurosci Meth 54:1–8

    CAS  Google Scholar 

  • Parada MA, Puig de Parada M, Hernandez L, Hoebel BG (1995) Triple electrical channels on a triple fluid swivel and its use to monitor intracranial temperature with a thermocouple. J Neurosci Meth 60:133–139

    CAS  Google Scholar 

  • Plotsky PM (1987) Probing pathways of neuroendocrine regulation with voltammetric microelectrodes. In: J.B. Justice Jr. (ed) Voltammetry in the Neurosciences: Principles, Methods and Applications. Humana Press, Clifton, New Jersey, pp 273–309

    Google Scholar 

  • Schenk JO, Adams RN (1984) Chronoamperometric measurements in the central nervous system. In: Marsden CA (ed) Measurement of Neurotransmitter Release in vivo. John Wiley & Sons Ltd., Chichester, New York, pp 193–208

    Google Scholar 

  • Sharp T, Maidment NT, Brazell MP, Zetterström T, Ungerstedt U, Bennett GW, Marsden CA (1984) Changes in monoamine metabolites measured by simultaneous in vivo pulse voltammetry and intracerebral dialysis. Neuroscience 12:1213–1221

    PubMed  CAS  Google Scholar 

  • Stamford JA, Kruk ZL, Millar J (1988) Actions of dopamine antagonists on stimulated striatal and limbic dopamine release: an in vivo voltammetric study. Br J Pharmacol 94:924–932

    PubMed  CAS  Google Scholar 

  • Swiergiel AH, Palamarchouk VS, Dunn AJ (1997) A new design of carbon fiber microelectrode for in vivo voltammetry using fused silica. J Neurosci Meth 73:29–33

    CAS  Google Scholar 

References

  • Blier P, de Montigny C (1994) Current advances and trends in the treatment of depression. Trends Pharmacol Sci 15:220–226

    PubMed  CAS  Google Scholar 

  • Chen G (1964) Antidepressives, analeptics and appetite suppressants. In: Laurence DR, Bacharach AL (eds) Evaluation of Drug Activities: Pharmacometrics. pp 239–260. Academic Press, London and New York

    Google Scholar 

  • Johnson RW, Reisine T, Spotnitz S, Weich N, Ursillo R, Yamamura HI (1980) Effects of desipramine and yohimbine on α2-and β-adrenoreceptor sensitivity. Eur J Pharmacol 67:123–127

    PubMed  CAS  Google Scholar 

  • Kuhn R (1958) The treatment of depressive states with G22355 (imipramine hydrochloride) Am J Psychiatry 115:459–464

    PubMed  CAS  Google Scholar 

  • Panksepp J, Yates G, Ikemoto S, Nelson E (1991) Simple ethological models of depression: Social-isolation induced despair in chicks and mice. In: Olivier B, Mos J, Slangen JL (eds) Animal Models in Psychopharmacology. Advances in Pharmacological Sciences. Birkhäuser Verlag Basel, pp 161–181

    Google Scholar 

  • Porsolt RD, Lenègre A, McArthur RA (1991) Pharmacological models of depression. In: Olivier B, Mos J, Slangen JL (eds) Animal Models in Psychopharmacology. Advances in Pharmacological Sciences. Birkhäuser Verlag Basel, pp 137–159

    Google Scholar 

  • Vetulani J, Stawarz RJ, Dingell JV, Sulser F (1976) A possible common mechanism of action of antidepressant treatments: Reduction in the sensitivity of the noradrenergic cyclic AMP generating system in the rat limbic forebrain. Naunyn-Schmiedeberg's Arch. Pharmacol. 293:109–114

    CAS  Google Scholar 

  • Willner P, Muscat R (1991) Animals models for investigating the symptoms of depression and the mechanisms of action of antidepressant drugs. In: Olivier B, Mos J, Slangen JL (eds) Animal Models in Psychopharmacology. Advances in Pharmacological Sciences. Birkhäuser Verlag Basel, pp 183–198

    Google Scholar 

References

  • Coyle JT, Snyder SH (1969) Catecholamine uptake by synaptosomes in homogenates of rat brain: Stereospecificity in different areas. J Pharmacol Exper Ther 170:221–231

    CAS  Google Scholar 

  • Hertting G, Axelrod J (1961) Fate of tritiated noradrenaline at the sympathetic nerve endings. Nature 192:172–173

    PubMed  CAS  Google Scholar 

  • Iversen LL (1975) Uptake mechanisms for neurotransmitter amines. Biochem Pharmacol 23:1927–1935

    Google Scholar 

  • Lippmann W, Pugsley TA (1977) Effects of 3,4-dihydro-1H-1,4-oxazino[4,3-a]indoles, potential antidepressants, on biogenic amine uptake mechanisms and related activities. Arch Int Pharmacodyn 227:324–342

    PubMed  CAS  Google Scholar 

  • Morin D, Zini R, Urien S, Tillement JP (1989) Pharmacological profile of Binedaline, a new antidepressant drug. J Pharmacol Exp Ther 249:288–296

    PubMed  CAS  Google Scholar 

  • Pacholczyk T, Blakely RD, Amara SG (1991) Expression cloning of a cocaine-and antidepressant-sensitive human noradrenaline transporter. Nature 350:350–354

    PubMed  CAS  Google Scholar 

  • Schloss P, Mayser W, Betz H (1992) Neurotransmitter transporters. A novel family of integral plasma membrane proteins. FEBS Lett 307:76–80

    PubMed  CAS  Google Scholar 

  • Snyder SH, Coyle JT (1969) Regional differences in H3-norepinephrine and H3-dopamine uptake into rat brain homogenates. J Pharmacol Exper Ther 165:78–86

    CAS  Google Scholar 

  • Tehani-Butt SM (1992) [3H]Nisoxetine: a radioligand for quantitation of norepinephrine uptake sites by autoradiography or by homogenate binding. J Pharmacol Exp Ther 260:427–436

    Google Scholar 

References

  • Altar CA, Marshall JF (1987) Neostriatal dopamine uptake and reversal of age-related movement disorders with dopamine-uptake inhibitors. Ann NY Acad Sci 515:343–353

    Google Scholar 

  • Carroll FI, Gao Y, Abraham P, Lewin AH, Lew R, Patel A, Boja JW, Kuhar MJ (1992) Probes for the cocaine receptor. Potentially irreversible ligands for the dopamine transporter. J Med Chem 35:1814–1817

    Google Scholar 

  • Cline EJ, Scheffel U, Boja JW, Carroll FI, Katz JL, Kuhar MJ (1992) Behavioral effects of novel cocaine analogs: a comparison with in vivo receptor binding potency. J Pharmacol Exp Ther 260:1174–1179

    PubMed  CAS  Google Scholar 

  • Cooper BR; Hester TJ, Maxwell RA (1980) Behavioral and biochemical effects of the antidepressant bupropion (Wellbutrin): Evidence of selective blockade of dopamine uptake in vivo. J Pharmacol Exper Ther 215:127–134

    CAS  Google Scholar 

  • Elsworth JD, Taylor JR, Berger P, Roth RH (1993) Cocaine-sensitive and-insensitive dopamine uptake in prefrontal cortex, nucleus accumbens and striatum. Neurochem Int 23:61–69

    PubMed  CAS  Google Scholar 

  • Giros B, El Mestikawi S, Bertrand L, Caron MG (1991) Cloning and functional characterization of a cocaine-sensitive dopamine transporter. FEBS Lett 295:149–153

    PubMed  CAS  Google Scholar 

  • Giros B, El Mestikawi S, Godinot N, Zheng K, Han H, Yang-Feng T, Caron MG (1992) Cloning, pharmacological characterization, and chromosome assignment of the human dopamine transporter. Mol Pharmacol 42:383–390

    PubMed  CAS  Google Scholar 

  • Heikkila RE, Orlansky H, Cohen G (1975) Studies on the distinction between uptake inhibition and release of [3H]dopamine in rat brain slices. Biochem Pharmacol 24:847–852

    PubMed  CAS  Google Scholar 

  • Horn AS, Coyle JT, Snyder SH (1970) Catecholamine uptake by synaptosomes from rat brain: Structure-activity relationships of drugs with different effects on dopamine and norepinephrine neurons. Mol. Pharmacol. 7:66–80

    Google Scholar 

  • Hunt P, Raynaud J-P, Leven M, Schacht U (1979) Dopamine uptake inhibitors and releasing agents differentiated by the use of synaptosomes and field-stimulated brain slices in vitro. Biochem Pharmacol 28:2011–2016

    PubMed  CAS  Google Scholar 

  • Kilty JE, Lorang D, Amara SG (1991) Cloning and expression of a cocaine-sensitive rat dopamine transporter. Science 254:578–579

    PubMed  CAS  Google Scholar 

  • Laruelle M, Baldwin RM, Malison RT, Zea-Ponce Y, Zoghbi SS, Al-Tikriti MS, Sybirska EH, Zimmermann RC, Wisniewski G, Neumeyer JL, Milius RA, Wang S, Smith EO, Roth RH, Charney DS, Hoffer PB, Innis RB (1993) SPECT imaging of dopamine and serotonin transporters with [123I]β-CIT: Pharmacological characterization of brain uptake in nonhuman primates. Synapse 13:295–309

    PubMed  CAS  Google Scholar 

  • Madras BK, Spealman RD, Fahey MA, Neumeyer JL, Saha JK, Milius RA (1989) Cocaine receptors labeled by [3H]2β-carbomethoxy-3β-(4-fluorophenyl)tropane. Mol Pharmacol 36:518–524

    PubMed  CAS  Google Scholar 

  • Michel MC, Rother A, Hiemke Ch, Ghraf R (1987) Inhibition of synaptosomal high-affinity uptake of dopamine and serotonin by estrogen agonists and antagonists. Biochem Pharmacol 36:3175–3180

    PubMed  CAS  Google Scholar 

  • Nakachi N, Kiuchi Y, Inagaki M, Inazu M, Yamazaki Y, Oguchi K (1995) Effects of various dopamine uptake inhibitors on striatal extracellular dopamine levels and behaviours in rats. Eur J Pharmacol 281:195–203

    PubMed  CAS  Google Scholar 

  • Reith MEA, de Costa B, Rice KC, Jacobson AE (1992) Evidence for mutually exclusive binding of cocaine, BTCP, GBR 12935, and dopamine to the dopamine transporter. Eur J Pharmacol 227:417–425

    PubMed  CAS  Google Scholar 

  • Richfield AK (1991) Quantitative autoradiography of the dopamine uptake complex in rats brain using [3H]GBR 12935-binding characteristics. Brain Res 540:1–13

    PubMed  CAS  Google Scholar 

  • Rothman RB, Grieg N, Kim A, de Costa BR, Rice KC, Carroll FI, Pert A (1992) Cocaine and GBR 12909 produce equivalent motoric responses at different occupancy of the dopamine transporter. Pharmacol Biochem Behav 43:1135–1142

    PubMed  CAS  Google Scholar 

  • Saijoh K, Fujiwara H, Tanaka C (1985) Influence of hypoxia on release and uptake of neurotransmitters in guinea pig striatal slices: dopamine and acetylcholine. Japan J Pharmacol 39:529–539

    CAS  Google Scholar 

  • Shimada S, Kitayama S, Lin CL, Patel A, Nanthakumar E, Gregor P, Kuhar M, Uhl G (1991) Cloning and expression of a cocaine-sensitive dopamine transporter complementary DNA. Science 254:576–578

    PubMed  CAS  Google Scholar 

  • Snyder SH, Coyle JT (1969) Regional differences in H3-norepinephrine and H3-dopamine uptake into rat brain homogenates. J Pharmacol Exper Ther 165:78–86

    CAS  Google Scholar 

  • Tuomisto L, Tuomisto J (1974) Dopamine uptake in striatal and hypothalamic synaptosomes: conformational selectivity of the inhibition. Eur J Pharmacol 25:351–361

    PubMed  CAS  Google Scholar 

  • Usdin RB, Mezey E, Chen C, Brownstein MJ, Hoffman BJ (1991) Cloning of the cocaine-sensitive bovine dopamine transporter. Proc Natl Acad Sci USA 88:11168–11171

    PubMed  CAS  Google Scholar 

References

  • Åsberg M, Mårtensson B (1993) Serotonin selective antidepressant drugs: Past, present, future. Clin Neuropharmacol 16 (Suppl 3):S32–S44

    PubMed  Google Scholar 

  • Åsberg M, Thoren P, Traskman L, Bertillson L, Ringberger V (1975) “Serotonin depression” — A biochemical subgroup within the affective disorders. Science 191:478–480

    Google Scholar 

  • Biegon A, Mathis C (1993) Evaluation of [3H]paroxetine as an in vivo ligand for serotonin uptake sites: a quantitative autoradiographic study in the rat brain. Synapse 13:1–9

    PubMed  CAS  Google Scholar 

  • Blakely RD, Berson HE, Fremeau RT, Caron MG, Peek MM, Prince HK, Bradley CC (1991) Cloning and expression of a functional serotonin transporter from rat brain. Nature 354:66–70

    PubMed  CAS  Google Scholar 

  • Blier P, de Montigny C (1997) Current psychiatric uses of drugs acting on the serotonin system. In: Baumgarten HG, Göthert M (eds) Handbook of Experimental Pharmacology, Vol 129, Serotoninergic Neurons and 5-HT receptors in the CNS. Springer-Verlag Berlin Heidelberg, pp 727–750

    Google Scholar 

  • de Montigy C (1980) Enhancement of 5-HT neurotransmission by antidepressant treatment. J Physiol (Paris) 77:455–461

    Google Scholar 

  • Fuller RW (1990) Drugs affecting serotonin neurones. Progr Drug Res 35:85–108

    CAS  Google Scholar 

  • Fuller RW (1993) Biogenic amine transporters Neurotransmissions 9/2:1–4

    Google Scholar 

  • Fuller RW, Wong DT (1990) Serotonin uptake and serotonin uptake inhibition. Ann NY Acad Sci 600:68–80

    PubMed  CAS  Google Scholar 

  • Gershon MD, Miller Jonakait G (1979) Uptake and release of 5-hydroxytryptamine by enteric 5-hydroxytryptaminergic neurons: Effects of fluoxetine (Lilly 110140) and chlorimipramine. Br J Pharmacol 66:7–9

    PubMed  CAS  Google Scholar 

  • Grimsley SR, Jahn MW (1992) Paroxetine, sertaline, and fluvoxamine: new selective serotonin reuptake inhibitors. Clin Pharm 11:930–957

    PubMed  CAS  Google Scholar 

  • Hallstrom COS, Rees WL, Pare CMB, Trenchard A, Turner P (1976) Platelet uptake of 5-hydroxytryptamine and dopamine in depression. Postgrad Med J 52 (Suppl 3):40–44

    PubMed  CAS  Google Scholar 

  • Hoffman BJ Mezey E, Brownstein MJ (1991) Cloning of a serotonin transporter affected by antidepressants. Science 254:579–580

    PubMed  CAS  Google Scholar 

  • Horn AS (1973) Structure-activity relations for the inhibition of 5-HT uptake into rat hypothalamic homogenates by serotonin and tryptamine analogues, J Neurochem 21:883–888

    PubMed  CAS  Google Scholar 

  • Horn AS, Trace RCAM (1974) Structure-activity relations for the inhibition of 5-hydroxytryptamine uptake by tricyclic antidepressants into synaptosomes from serotoninergic neurons in rat brain homogenates. Br J Pharmacol 51:399–403

    PubMed  CAS  Google Scholar 

  • Hyttel J (1994) Pharmacological characterization of selective serotonin reuptake inhibitors. Intern Clin Psychopharmacol 9 (Suppl 1):19–26

    Google Scholar 

  • Hyttel J, Larsen JJ (1985) Serotonin-selective antidepressants. Acta Pharmacol Toxicol 56 (Suppl 1):146–153

    CAS  Google Scholar 

  • Keane PE, Soubrié P (1997) Animal models of integrated serotoninergic functions: their predictive value for the clinical applicability of drugs interfering with serotoninergic transmission. In: Baumgarten HG, Göthert M (eds) Handbook of Experimental Pharmacology, Vol 129, Serotoninergic Neurons and 5-HT receptors in the CNS. Springer-Verlag Berlin Heidelberg, pp 709–725

    Google Scholar 

  • Koe BK, Weissman A, Welch WM, Browne RG (1983) Sertaline, 1S,4S-N-methyl-4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydro-1-naphthylamine, a new uptake inhibitor with selectivity for serotonin. J Pharmacol Exp Ther 226:686–700

    PubMed  CAS  Google Scholar 

  • Langer SZ, Moret C, Raisman R, Dubocovich ML, Briley M (1980) High-affinity [3H]imipramine binding in rat hypothalamus: association with uptake of serotonin but not of epinephrine. Science 210:1133–1135

    PubMed  CAS  Google Scholar 

  • Luo H, Richardson JS (1993) A pharmacological comparison of citalopram, a bicyclic serotonin selective uptake inhibitor, with traditional tricyclic antidepressants. Intern Clin Psychopharmacol 8:3–12

    CAS  Google Scholar 

  • Marcusson JO, Norinder U, Högberg T, Ross SB (1992) Inhibition of [3H]paroxetine binding by various serotonin uptake inhibitors: Eur J Pharmacol 215:191–198

    PubMed  CAS  Google Scholar 

  • Mennini T, Mocaer E, Garattini S (1987) Tianeptine, a selective enhancer of serotonin uptake in rat brain. Naunyn-Schmiedeberg's Arch Pharmacol 336:478–482

    CAS  Google Scholar 

  • Ögren SO, Ross SB, Holm AC, Renyi AL (1981) The pharmacology of zimelidine: a 5-HT selective reuptake inhibitor. Acta Psychiat Scand 290:127–151

    Google Scholar 

  • Ross SB (1980) Neuronal transport of 5-hydroxytryptamine. Pharmacol 21:123–131

    CAS  Google Scholar 

  • Scatton B, Claustre Y, Graham D, Dennis T, Serrano A, Arbilla S, Pimoule C, Schoemaker H, Bigg D, Langer SZ (1988) SL 81.0385: a novel selective and potent serotonin uptake inhibitor. Drug Dev Res 12:29–40

    CAS  Google Scholar 

  • Shank RP, Vaught JL, Pelley A, Setler PE, McComsey DF, Maryanoff BE (1988) McN-5652: a highly potent inhibitor of serotonin uptake. J Pharmacol Exp Ther 247:1032–1038

    PubMed  CAS  Google Scholar 

  • Shaskan EG, Snyder SH (1970) Kinetics of serotonin accumulation into slices from rat brain: relationship to catecholamine uptake. J Pharmacol Exp Ther 175:404–418

    PubMed  CAS  Google Scholar 

  • Wong DT, Bymaster FP, Reid LR, Mayle DA, Krushiski JH, Robertson DW (1993) Norfluoxetine enantiomers as inhibitors of serotonin uptake in rat brain. Neuropsychopharmacol 8:337–344

    CAS  Google Scholar 

References

  • Fleckenstein AE, Haughey HM, Metzger RR, Kokoshka JM, Riddle EL, Hanson JE, Gibb JW, Hanson GR (1999) Differential effects of psychostimulants and related agents on dopaminergic and serotonergic transporter function. Eur J Pharmacol 382:45–49

    PubMed  CAS  Google Scholar 

  • Gu H, Wall SC, Rudnick G (1994) Stable expression of biogenic amine transporters reveals differences in inhibitor sensitivity, kinetics and ion dependence. J Biol Chem 269:7124–7130

    PubMed  CAS  Google Scholar 

  • Inazu M, Kubota N, Takeda H, Zhang J, Kiuchi Y, Oguchi K, Matsumiya T (1999) Pharmacological characterization of dopamine transport in cultured rat astrocytes. Life Sci 664:2239–2245

    Google Scholar 

  • Jayanthi LD, Prasad PD, Ramamoorthy S, Mahesh VB, Leibach FH, Ganapahy V (1993) Sodium-and chloride-dependent, cocaine-sensitive, high-affinity binding of nisoxetine to the human placenta norepinephrine transporter. Biochemistry 32:12178–12185

    PubMed  CAS  Google Scholar 

  • Leonard BE (2000) Evidence for a biochemical lesion in depression. J Clin Psychiatry 61, Suppl 6:12–17

    PubMed  CAS  Google Scholar 

  • Madras BK, Pristupa ZB, Nizmik HB, Liang AY, Blundell P, Gonzalez MD, Meltzer PC (1996) Nitrogen-based drugs are not essential for blockade of monoamine transporters. Synapse 24:340–348

    PubMed  CAS  Google Scholar 

  • Meltzer PC, Liang AY, Blundell P, Gonzalez MD, Chen Z, George C, Madras BK (1997) 2-carbomethoxy-3-aryl-8-oxabicyclo[3.2.1]octanes: potent non-nitrogen inhibitors of monoamine transporters. J Med Chem 40:2661–2673

    PubMed  CAS  Google Scholar 

  • Munson PJ, Rodbard D (1980) LIGAND: A versatile computerized approach for characterization of ligand-binding systems. Analyt Biochem 107:220–239

    PubMed  CAS  Google Scholar 

  • Murphy DL, Wichems C, Li Q, Heils A (1999) Molecular manipulations as tools for enhancing our understanding of 5-HT neurotransmission. Trends Pharmacol Sci 20:246–252

    PubMed  CAS  Google Scholar 

  • Nelson N (1998) The family of Na+/Cl neurotransmitter transporters. J Neurochem 71:1785–1803

    PubMed  CAS  Google Scholar 

  • O'Riordan C, Phillips OM, Williams DC (1990) Two affinity states for [3H]imipramine binding to the human platelet 5-hydroxytryptamine carrier: an explanation for the allosteric interaction between hydroxytryptamine and imipramine. J Neurochem 54:1275–1280

    PubMed  Google Scholar 

  • Owens MJ, Morgan WN, Plott SJ, Nemeroff CB (1997) Neurotransmitter receptor and transporter binding profile of antidepressants and their metabolites. J Pharmacol Exp Ther 283:1305–1322

    PubMed  CAS  Google Scholar 

  • Pfenning MA, Richelson E (1990) Methods for studying receptors with cultured cells of nervous tissue origin. In: Yamamura HI, Enna SJ, Kuhar MJ (eds) Methods in Neurotransmitter Receptor Analysis. Raven Press, New York, pp 147–175

    Google Scholar 

  • Pristupa ZB, Wilson JM, Hoffman BJ, Kish SJ, Niznik HB (1994) Pharmacological heterogeneity of the cloned an native human dopamine transporter: dissociation of [3H]WIN 35,428 and [3H]GBR 12,935 binding. Mol Pharmacol 45:125–135

    PubMed  CAS  Google Scholar 

  • Sato T, Kitayama S, Mitsuhata C, Ikeda T, Morita K, Dohi T (2000) Selective inhibition of monoamine neurotransmitter transporters by synthetic local anesthetics. Naunyn-Schmiedeberg's Arch Pharmacol 361:214–220

    CAS  Google Scholar 

  • Siebert GA, Pond SM, Bryan-Lluka LJ (2000) Further characterisation of the interaction of haloperidol metabolites with neurotransmitter transporters in rat neuronal cultures and in transfected COS-7 cells. Naunyn-Schmiedeberg's Arch Pharmacol 361:255–264

    CAS  Google Scholar 

  • Tatsumi M, Groshan K, Blakely RD, Richelson E (1997) Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol 340:249–258

    PubMed  CAS  Google Scholar 

  • Tatsumi M, Jansen K, Blakely RD, Richelson E (1999) Pharmacological profile of neuroleptics at human monoamine transporters. Eur J Pharmacol 368:277–283

    PubMed  CAS  Google Scholar 

References

  • Fuller RW, Snoddy HD, Perry KW, Bymaster FP, Wong DT (1978) Importance of duration of drug action in the antagonism of p-chloroamphetamine depletion of brain serotonin — Comparison of fluoxetine and chlorimipramine. Biochem Pharmacol 27:193–198

    PubMed  CAS  Google Scholar 

  • Harvey JA, McMaster SE, Yunger LM (1975) p-Chloramphetamine: Selective neurotoxic action in brain. Science 187:841–843

    PubMed  CAS  Google Scholar 

  • Meek JL, Fuxe K, Carlsson A (1971) Blockade of p-chloromethamphetamine induced 5-hydroxytryptamine depletion by chlorimipramine, chlorpheniramine and meperidine. Biochem Pharmacol 20:707–709

    PubMed  CAS  Google Scholar 

  • Sekerke HJ, Smith HE, Bushing JA, Sanders-Busch E (1975) Correlation between brain levels and biochemical effects of the optical isomers of p-chloroamphetamine. J Pharmacol Exper Ther 193:835–844

    CAS  Google Scholar 

  • Squires R (1972) Antagonism of p-chloramphetamine (PCA) induced depletion of 5-HT from rat brain by some thymoleptics and other psychotropic drugs. Acta Pharmacol Toxicol 31:35

    Google Scholar 

References

  • Banerjee SP, Kung SL, Riggi SJ, Chanda SK (1977) Development of β-adrenergic receptor subsensitivity by antidepressants. Nature 268:455–456

    PubMed  CAS  Google Scholar 

  • Bergstrom DA, Kellar KJ (1979) Adrenergic and serotoninergic receptor binding in rat brain after chronic desmethylimipramine treatment. J Pharmacol Exper Ther 209:256–261

    CAS  Google Scholar 

  • Blackshear MA, Sanders-Bush E (1982) Serotonin receptor sensitivity after acute and chronic treatment with mianserin. J Pharmacol Exper Ther 221:303–308

    CAS  Google Scholar 

  • Bucket WR, Thomas PC, Luscombe GP (1988) The pharmacology of sibutramine hydrochloride (BTS 54524), a new antidepressant which induces rapid noradrenergic down-regulation. Prog Neuro-Psychopharmacol Biol Psychiatry 12:575–584

    Google Scholar 

  • Bylund DB, Snyder SH (1976) Beta adrenergic receptor binding in membrane preparations from mammalian brain. Mol Pharmacol 12:568–580

    PubMed  CAS  Google Scholar 

  • Charney DS, Menkes DB, Heninger GR (1981) Receptor sensitivity and the mechanism of action of antidepressant treatment. Arch Gen Psychiatry 38:1160–1180

    PubMed  CAS  Google Scholar 

  • Clements-Jewery S (1978) The development of cortical β-adrenoreceptor subsensitivity in the rat by chronic treatment with trazodone, doxepin and mianserin. Neuropharmacol 17:779–781

    CAS  Google Scholar 

  • Enna SJ, Mann E, Kedall D, Stancel GM (1981) Effect of chronic antidepressant administration on brain neurotransmitter receptor binding. In: Enna SJ, Malick JB, Richelson E (eds) Antidepressants: Neurochemical, Behavioral, and Clinical Perspectives. pp 91–105, Raven Press New York

    Google Scholar 

  • Lee T, Tang SW (1984) Loxapine and clozapine decrease serotonin (S2) but do not elevate dopamine (D2) receptor numbers in the rat brain. Psychiatry Res 12:277–285

    PubMed  CAS  Google Scholar 

  • Leysen JE, Niemegeers CJE, Van Nueten JM, Laduron PM (1982) [3H]Ketanserin (R 41 468) a selective 3H-ligand for serotonin2 receptor binding sites. Mol Pharmacol 21:301–214

    PubMed  CAS  Google Scholar 

  • Maggi A, U'Prichard DC, Enna SJ (1980) Differential effects of antidepressant treatment on brain monoaminergic receptors. Eur J Pharmacol 61:91–98

    PubMed  CAS  Google Scholar 

  • Matsubara R, Matsubara S, Koyama T, Muraki A, Yamashita I (1993) Effect of chronic treatment with milnacipran (TN-912), a novel antidepressant, on β-adrenergic-receptor-adenylate cyclase system and serotonin2 receptor in the rat cerebral cortex. Jpn J Neuropsychopharmacol 15:119–126

    CAS  Google Scholar 

  • Meyerson LR, Ong HH, Martin LL, Ellis DB (1980) Effect of antidepressant agents on β-adrenergic receptor and neurotransmitter regulatory systems. Pharmacol Biochem Behav 12:943–948

    PubMed  CAS  Google Scholar 

  • Peroutka SJ, Snyder SH (1980) Regulation of serotonin2 (5-HT2) receptors labeled with [3H]spiroperidol by chronic treatment with the antidepressant amitriptyline. J Pharmacol Exper Ther 215:582–587

    CAS  Google Scholar 

  • Reynolds CP, Garrett NJ, Rupniak N, Jenner P, Marsden CD (1983) Chronic clozapine treatment of rats down-regulates 5-HT2 receptors. Eur J Pharmacol 89:325–326

    PubMed  CAS  Google Scholar 

  • Savage DD, Frazer A, Mendels J (1979) Differential effects of monoamine oxidase inhibitors and serotonin reuptake inhibitors on 3H-serotonin receptor binding in rat brain. Eur J Pharmacol 58:87–88

    PubMed  CAS  Google Scholar 

  • Scatchard G (1949) The attraction of proteins for small molecules and ions. Ann NY Acad Sci 51:660–672

    CAS  Google Scholar 

  • Schmidt CJ, Black CK, Taylor VL, Fadayel GM, Humphreys TM, Nieduzak TR, Sorensen SM (1992) The 5-HT2 receptor antagonist, MDL 28,133A, disrupts the serotonergic-dopaminergic interaction mediating the neurochemical effects of 3,4-methylenedioxymethamphetamine. Eur J Pharmacol 220:151–159

    PubMed  CAS  Google Scholar 

  • Scott JA, Crews FT (1983) Rapid decrease in rat brain beta adrenergic receptor binding during combined antidepressant alpha-2 antagonist treatment. J Pharmacol Exp Ther 224:640–646

    PubMed  CAS  Google Scholar 

  • Segawa T, Mizuta T, Nomura Y (1979) Modifications of central 5-hydroxytryptamine binding sites in synaptic membranes from rat brain after long-term administration of tricyclic anti-depressants. Eur J Pharmacol 58:75–83

    PubMed  CAS  Google Scholar 

  • Sellinger-Barnette MM, Mendels J, Frazer A (1980) The effect of psychoactive drugs on beta-adrenergic receptor binding in rat brain. Neuropharmacol 19:447–454

    CAS  Google Scholar 

  • Vetulani J, Stawarz RJ, Dingell JV, Sulser F (1976) A possible common mechanism of action of antidepressant treatments: Reduction in the sensitivity of the noradrenergic cyclic AMP generating system in the rat limbic forebrain. Naunyn-Schmiedeberg's Arch Pharmacol 293:109–114

    CAS  Google Scholar 

  • Wilmot CA, Szczepanik AM (1989) Effects of acute and chronic treatment with clozapine and haloperidol on serotonin (5-HT2) and dopamine (D2) receptors in the rat brain. Brain Res 487:288–298

    PubMed  CAS  Google Scholar 

References

  • Banerjee SP, Kung SL, Riggi SJ, Chanda SK (1977) Development of β-adrenergic receptor subsensitivity by antidepressants. Nature 268:455–456

    PubMed  CAS  Google Scholar 

  • Clements-Jewery S (1978) The development of cortical β-adrenoreceptor subsensitivity in the rat by chronic treatment with trazodone, doxepin and mianserin. Neuropharmacol 17:779–781

    CAS  Google Scholar 

  • Heal D, Cheetham SH, Martin K, Browning J, Luscombe G, Buckett R (1992) Comparative pharmacology of dothiepin, its metabolites, and other antidepressant drugs. Drug Dev Res 27:121–135

    CAS  Google Scholar 

  • Lefkowitz RJ, Stadel JM, Caron MG (1983) Adenylate cyclase-coupled beta-adrenergic receptors. Structure and mechanisms of activation and desensitization. Ann Rev Biochem 52:159–186

    PubMed  CAS  Google Scholar 

  • Maggi A, U'Prichard DC, Enna SJ (1980) Differential effects of antidepressant treatment on brain monoaminergic receptors. Eur J Pharmacol 61:91–98

    PubMed  CAS  Google Scholar 

  • Meyerson LR, Ong HH, Martin LL, Ellis DB (1980) Effect of antidepressant agents on β-adrenergic receptor and neurotransmitter regulatory systems. Pharmacol Biochem Behav 12:943–948

    PubMed  CAS  Google Scholar 

  • Salomon Y (1979) Adenylate cyclase assay. In: Brooker G, Greengard P, Robinson GA (eds) Advances in Cyclic Nucleotide Research. Raven Press, New York, Vol 10, pp 35–55

    Google Scholar 

  • Sulser F (1978) Functional aspects of the norepinephrine receptor coupled adenylate cyclase system in the limbic forebrain and its modification by drugs which precipitate or alleviate depression: molecular approaches to an understanding of affective disorders. Pharmacopsychiat 11:43–52

    CAS  Google Scholar 

  • Vetulani J, Stawarz RJ, Dingell JV, Sulser F (1976) A possible common mechanism of action of antidepressant treatments: Reduction in the sensitivity of the noradrenergic cyclic AMP generating system in the rat limbic forebrain. Naunyn-Schmiedeberg's Arch Pharmacol 293:109–114

    CAS  Google Scholar 

  • Wolfe BB, Harden TK, Sporn JR, Molinoff PB (1978) Presynaptic modulation of beta adrenergic receptors in rat cerebral cortex after treatment with antidepressants. J Pharmacol Exp Ther 207:446–457

    PubMed  CAS  Google Scholar 

References

  • Johnson RW, Reisine T, Spotnitz S, Weich N, Ursillo R, Yamamura HI (1980) Effects of desipramine and yohimbine on α2-and β-adrenoreceptor sensitivity. Eur J Pharmacol 67:123–127

    PubMed  CAS  Google Scholar 

  • Scott JA, Crews FT (1983) Rapid decrease in rat brain beta-adrenergic receptor binding during combined antidepressant-alpha-2 antagonist treatment. J Pharmacol Exp Ther 224:640–646

    PubMed  CAS  Google Scholar 

  • Starke K, Borowski E, Endo T (1975) Preferential blockade of presynaptic α-adrenoceptors by yohimbine. Eur J Pharmacol 34:385–388

    PubMed  CAS  Google Scholar 

References

  • Hollister LE (1964) Complications from psychotherapeutic drugs. Clin Pharmacol Ther 5:322–333

    PubMed  CAS  Google Scholar 

  • Marks MJ, Romm E, Collins AC (1987) Genetic influences on tolerance development with chronic oxotremorine infusion. Pharmacol Biochem Behav 27:723–732

    PubMed  CAS  Google Scholar 

  • Meyerhöffer A (1972) Absolute configuration of 3-quinuclidinyl benzilate and the behavioral effect in the dog of the optical isomers. J Med Chem. 15:994–995

    PubMed  Google Scholar 

  • Smith CP, Huger FP (1983) Effects of zinc on [3H]-QNB displacement by cholinergic agonists and antagonists. Biochem Pharmacol 32:377–380

    PubMed  CAS  Google Scholar 

  • Snyder SH, Greenberg D, Yamamura HI (1974) Antischizophrenic drugs and brain cholinergic receptors. Arch Gen Psychiatry 31:58–61

    PubMed  CAS  Google Scholar 

  • Snyder SH, Yamamura HI (1977) Antidepressants and the muscarinic acetylcholine receptor. Arch Gen Psychiatry 34:236–239

    PubMed  CAS  Google Scholar 

  • Wamsley JK, Gehlert DL, Roeske WR, Yamamura HI (1984) Muscarinic antagonist binding site as evidenced by autoradiography after direct labeling with [3H]-QNB and [3H]-pirenzepine. Life Sci 34:1395–1402

    PubMed  CAS  Google Scholar 

  • Yamamura HI, Snyder SH (1974) Muscarinic cholinergic binding in rat brain (quinuclidinyl benzilate/receptors). Proc Nat Acad Sci USA 71:1725–1729

    PubMed  CAS  Google Scholar 

References

  • Callingham BA (1989) Biochemical aspects of the pharmacology of moclobemide. The implications of animal studies. Br J Psychiatry 155 (Suppl 6):53–60

    Google Scholar 

  • Cesura AM, Pletscher A (1992) The new generation of monoamine oxydase inhibitors. Progr Drug Res 38:171–297

    CAS  Google Scholar 

  • Colzi A, d'Agostini F, Cesura AM, Da Prada M (1992) Brain microdialysis in rats: a technique to reveal competition between endogenous dopamine and moclobemide, a RIMA antidepressant. Psychopharmacology 106:S17–S20

    PubMed  CAS  Google Scholar 

  • Frankhauser C, Charieras T, Caille D, Rovei V (1994) Interaction of MAO inhibitors and dietary tyramine: a new experimental model in the conscious rat. J Pharmacol Toxicol Meth 32:219–224

    Google Scholar 

  • Haefeli W, Burkard WP, Cesura AM, Kettler R, Lorez HP, Martin JR, Richards JG, Scherschlicht R, Da Prada M (1992) Biochemistry and pharmacology of moclobemide, a prototype RIMA. Psychopharmacol 106:S6–S14

    Google Scholar 

  • Johnston JP (1968) Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 17:1285–1297

    PubMed  CAS  Google Scholar 

  • Kettler R, Da Prada M, Burkard WP (1990) Comparison of monoamine oxydase-A inhibition by moclobemide in vitro and ex vivo in rats. Acta Psychiat Scand Suppl 82:101–102

    Google Scholar 

  • Knoll J (1980) Monoamine oxidase inhibitors: Chemistry and pharmacology. In: Sandler M (ed) Enzyme inhibitors as drugs. pp 151–173. University Park Press

    Google Scholar 

  • Ozaki M, Weissbach H, Ozaki A, Witkop B, Udenfriend S (1960) Monoamine oxidase inhibitors and procedures for their evaluation in vivo and in vitro. J Med Pharmac Chem 2:591–607

    CAS  Google Scholar 

  • Rowler CJ, Ross SB (1984) Selective inhibitors of monoamine oxydase A and B: biochemical, pharmacological, and clinical parameters. Med Res Rev 4:323–358

    Google Scholar 

  • Waldmeier PC (1993) Newer aspects of the reversible inhibitor of MAO-A and serotonin reuptake, Brofaromine. Progr Neuro-Psychopharmacol Biol Psychiat 17:183–198

    CAS  Google Scholar 

  • Waldmeier PC, Stöcklin K (1990) Binding of [3H]brofaromine to monoamine oxydase A in vivo: displacement by clorgyline and moclobemide. Eur J Pharmacol 180:297–304

    PubMed  CAS  Google Scholar 

  • White HL, Scates PW (1992) Mechanism of monoamine oxydase inhibition by BW 137U87. Drug Dev Res 25:185–193

    Google Scholar 

  • Wurtman RJ, Axelrod J (1963) A sensitive and specific assay for the estimation of monoamine oxidase. Biochem Pharmacol 12:1439–1441

    PubMed  CAS  Google Scholar 

References

  • Czermak J (1873) Beobachtungen und Versuche über “hypnotische” Zustände bei Thieren. Pflüger's Arch ges Physiol 7:107–121

    Google Scholar 

  • Danilewski B (1881) Über die Hemmungen der Reflex-und Willkürbewegungen. Beiträge zur Lehre vom thierischen Hypnotismus. Pflüger's Arch ges Physiol 24:489–525

    Google Scholar 

  • Heubel E (1877) Über die Abhängigkeit des wachen Gehirnzustandes von äusseren Erregungen. Ein Beitrag zur Physiologie des Schlafes und zur Würdigung des Kircher'schen Experimentum mirabile. Pflüger's Arch ges Physiol 14:158–210

    Google Scholar 

  • Kircher A (1646) Experimentum mirabile. De imaginatione gallinae. In: “Ars magna lucis et umbrae” Romae, Lib. II, pars I, 154

    Google Scholar 

  • Schwenter D (1636) Deliciae physico-mathematicae oder Mathematische und Philosophische Erquickstunden. Nürnberg

    Google Scholar 

  • Verworn M (1898) Beitraege zur Physiologie des Centralnerven-systems. Erster Theil. Die sogenannte Hypnose der Thiere. G Fischer Jena, pp 92

    Google Scholar 

  • Vogel G, Ther L (1963) Zur Wirkung der optischen Isomeren von Aethyltryptamin-acetat auf die Lagekatalepsie des Huhnes und auf die Motilitaet der Maus. Arzneim Forsch/Drug Res 13:779–783

    CAS  Google Scholar 

References

  • Alpermann HG, Schacht U, Usinger P, Hock FJ (1992) Pharmacological effects of Hoe 249: A new potential antidepressant. Drug Dev Res 25:267–282

    CAS  Google Scholar 

  • Borsini F, Meli A. (1988) Is the forced swimming test a suitable model for revealing antidepressant activity? Psychopharmacology 94:147–160

    PubMed  CAS  Google Scholar 

  • Buckett WR, Fletcher J, Hopcroft RH, Thomas PC (1982) Automated apparatus for behavioural testing of typical and atypical antidepressants in mice. Br J Pharmacol 75: 170 P

    Google Scholar 

  • Cervo L, Samanin R (1987) Potential antidepressant properties of 8-hydroxy-2-(di-n-propylamino)tetralin, a selective serotonin1A agonist. Eur J Pharmacol 144:223–229

    PubMed  CAS  Google Scholar 

  • Giardina WJ, Ebert DM (1989) Positive effects of captopril in the behavioral despair swim test. Biol Psychiatry 25:697–702

    PubMed  CAS  Google Scholar 

  • Hata T, Itoh E, Nishikawa H (1995) Behavioral characteristics of SART-stressed mice in the forced swim test and drug action. Pharmacol Biochem Behav 51:849–853

    PubMed  CAS  Google Scholar 

  • Kauppila T, Tanila H, Carlson S, Taira T (1991) Effects of atipamezole, a novel α2-adreno-receptor antagonist, in open-field, plus-maze, two compartment exploratory, and forced swimming tests in the rat. Eur. J. Pharmacol. 205:177–182

    PubMed  CAS  Google Scholar 

  • Naitoh H, Yamaoka K, Nomura S (1992) Behavioral assessment of antidepressants. 1. The forced swimming test: A review of its theory and practical application. Jpn J Psychopharmacol 12:105–111

    CAS  Google Scholar 

  • Nishimura H, Tsuda A, Ida Y, Tanaka M (1988) The modified forced-swim test in rats: Influence of rope-or straw-suspension on climbing behavior. Physiol Behav 43:665–668

    PubMed  CAS  Google Scholar 

  • Nishimura H, Ida Y, Tsuda A, Tanaka M (1989) Opposite effects of diazepam and β-CCE on immobility and straw-climbing behavior of rats in a modified forced-swim test. Pharmacol Biochem Behav 33:227–231

    PubMed  CAS  Google Scholar 

  • Nishimura H, Tanaka M, Tsuda A, Gondoh Y (1993) Atypical anxiolytic profile of buspirone and a related drug, SM-3997, in a modified forced swim test employing straw suspension. Pharmacol Biochem Behav 46:647–651

    PubMed  CAS  Google Scholar 

  • Nomura S, Shimizu J, Kinjo M, Kametani H, Nakazawa T (1982) A new behavioral test for antidepressant drugs. Eur J Pharmacol 83:171–175

    PubMed  CAS  Google Scholar 

  • Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressive treatments. Eur J Pharmacol 47:379–391

    PubMed  CAS  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1977a) Behavioural despair in mice: A primary screening test for antidepressants. Arch Int Pharmacodyn 229:327–336

    PubMed  CAS  Google Scholar 

  • Porsolt RD, Le Pichon M, Jalfre M (1977b) Depression: A new animal model sensitive to antidepressant treatments. Nature 266:730–732

    PubMed  CAS  Google Scholar 

  • Porsolt RD, Martin P, Lenègre, Fromage S, Drieu K. (1990) Effects of an extract of Ginkgo biloba (EBG 761) on “learned helplessness” and other models of stress in rodents. Pharmacol Biochem Behav 36:963–971

    PubMed  CAS  Google Scholar 

  • Porsolt RD, Lenègre A, McArthur RA (1991) Pharmacological models of depression. In: Olivier B, Mos J, Slangen JL (eds) Animal Models in Psychopharmacology, Birkhäuser Verlag Basel, pp 137–159

    Google Scholar 

  • van der Heyden JAM, Olivier B, Zethof TJJ (1991) The behavioral despair model as a prediction of antidepressant activity: effects of serotonergic drugs. In: Olivier B, Mos J, Slangen JL (eds) Animal Models in Psychopharmacology. Advances in Pharmacological Sciences. Birkhäuser Verlag, Basel, pp 211–215

    Google Scholar 

  • Wallach MB, Hedley LR (1979) The effects of antihistamines in a modified behavioral despair test. Communic Psychopharmacol 3:35–39

    CAS  Google Scholar 

References

  • Chermat R, Thierry B, Mico JA, Stéru L, Simon P (1986) Adaptation of the tail suspension test to the rat. J Pharmacol (Paris) 17:348–350

    PubMed  CAS  Google Scholar 

  • Porsolt RD, Charmat R, Lenègre A, Avril I, Janvier S, Stéru L (1987) Use of the automated tail suspension test for the primary screening of psychotropic agents. Arch Int Pharmacodyn 288:11–30

    PubMed  CAS  Google Scholar 

  • Porsolt RD, Lenègre A, McArthur RA (1991) Pharmacological models of depression. In: Olivier B, Mos J, Slangen JL (eds) Animal Models in Psychopharmacology, Birkhäuser Verlag Basel, pp 137–159

    Google Scholar 

  • Steru L, Chermat R, Thierry B, Simon P (1985) Tail suspension test: A new method for screening antidepressants in mice. Psychopharmacology 85:367–370

    PubMed  CAS  Google Scholar 

  • Stéru L, Chermat R, Thierry B, Mico JA, Lenègre A, Stéru M, Simon P (1987) The automated tail suspension test: a computerized device which differentiates psychotropic drugs. Prog Neuro-Psychopharmacol Biol Psychiatry 11:659–671

    Google Scholar 

  • Trullas R, Jackson B, Skolnick P (1989) Genetic differences in a tail suspension test for evaluating antidepressant activity. Psychopharmacology 99:287–288

    PubMed  CAS  Google Scholar 

  • van der Heyden J, Molewijk E, Olivier B (1987) Strain differences in response to drugs in the tail suspension test for antidepressant activity. Psychopharmacology 92:127–130

    PubMed  Google Scholar 

References

  • Christensen AV, Geoffroy M (1991) The effect of different serotonergic drugs in the learned helplessness model of depression. In: Olivier B, Mos J, Slangen JL (eds) Animal Models in Psychopharmacology. Advances in Pharmacological Sciences. Birkhäuser Verlag, Basel, pp 205–209

    Google Scholar 

  • Curzon G, Kennett GA, Sarna GS, Whitton PS (1992) The effects of tianeptine and other antidepressants on a rat model of depression. Br J Psychiatry 160 (Suppl 15):51–55

    Google Scholar 

  • Giral P, Martin P, Soubrie P, Simon P (1988) Reversal of helpless behavior in rats by putative 5-HT1A agonists. Biol Psychiat 23:237–242

    PubMed  CAS  Google Scholar 

  • Maier SF, Seligman MEP (1976) Learned helplessness: Theory and evidence. J Exp Psychol 105:3–46

    Google Scholar 

  • Martin P, Soubrié P, Simon P (1986) Noradrenergic and opioid mediation of tricyclic-induced reversal of escape deficits caused by inescapable shock pretreatment in rats. Psychopharmacol 90:90–94

    CAS  Google Scholar 

  • Overmier JB, Seligman MEP (1967) Effects of inescapable shock upon subsequent escape and avoidance learning. J comp Physiol Psychol 63:28–33

    PubMed  CAS  Google Scholar 

  • Porsolt RD, Martin P, Lenègre A, Fromage S, Drieu K (1990) Effects of an extract of Ginkgo biloba (EGB 761) on “learned helplessness” and other models of stress in rodents. Pharmacol Biochem Behav 36:963–971

    PubMed  CAS  Google Scholar 

  • Porsolt RD, Lenègre A, McArthur RA (1991) Pharmacological models of depression. In: Olivier B, Mos J, Slangen JL (eds) Animal Models in Psychopharmacology. Advances in Pharmacological Sciences, Birkhäuser Verlag Basel, pp 137–159

    Google Scholar 

  • Sherman AD, Allers GL, Petty F, Henn FA (1979) A neuropharmacologically-relevant animal model of depression. Neuropharmacol 18:891–893

    CAS  Google Scholar 

  • Simiand J, Keane PE, Guitard J, Langlois X, Gonalons N, Martin P, Bianchetti A, LeFur G, Soubrie P (1992) Antidepressive profile in rodents of SR 5811A, a new selective agonist for atypical ß-adrenoreceptors. Eur J Pharmacol 219:193–201

    PubMed  CAS  Google Scholar 

  • Tejedor del Real P, Gilbert-Rahola J, Leonsegui I, Micó JA (1991) Relationship between emotivity level and susceptibility to the learned helplessness model of depression in the rat. In: Olivier B, Mos J, Slangen JL (eds) Animal Models in Psychopharmacology. Advances in Pharmacological Sciences. Birkhäuser Verlag, Basel, pp 217–224

    Google Scholar 

  • Vaccheri A, Dall'Olio R, Gaggi R, Gandolfi O, Montanaro N (1984) Antidepressant versus neuroleptic activities of sulpiride isomers on four animal models of depression. Psychopharmacology 83:28–33

    PubMed  CAS  Google Scholar 

References

  • Barnett A, Taber RI, Roth FE (1969) Activity of antihistamines in laboratory antidepressant tests. Int J Neuropharmacol 8:73–79

    PubMed  CAS  Google Scholar 

  • Horovitz ZP, Ragozzino PW, Leaf RC. (1965) Selective block of rat mouse-killing by anti-depressants. Life Sci 4:1909–1912

    PubMed  CAS  Google Scholar 

  • Horovitz ZP, Piala JJ, High JP, Burke JC, Leaf RC (1966) Effects of drugs on the mouse-killing (muricide) test and its relationship to amygdaloid functions. Int J Neuropharmacol 5:405–411

    PubMed  CAS  Google Scholar 

  • Karli P (1956) The Norway rats's killing response to the white mouse: an experimental analysis. Behavior 10:81–103

    Google Scholar 

  • Karli P, Vergnes M, Didiergeorges F (1969) Rat-mouse interspecific aggressive behaviour and its manipulation by brain ablation and by brain stimulation. In: Garattini S, Sigg EB (eds) Aggressive behaviour. Excerpta Medica Foundation, Amsterdam, pp 47–55

    Google Scholar 

  • Kreiskott H (1969) Some comments on the killing response behaviour of the rat. In: Garattini S, Sigg EB (eds) Aggressive Behaviour. Excerpta Medica Foundation, Amsterdam, pp 56–58

    Google Scholar 

  • Kulkarni AS (1068) Muricidal block produced by 5-hydroxytryptophan and various drugs. Life Sci 7:125–128

    Google Scholar 

  • McCarthy D (1966) Mouse-killing induced in rats treated with pilocarpine. Fed Proc 25:385, Abstract

    Google Scholar 

  • McMillen BA, Chamberlain JK, DaVanzo JP (1988) Effects of housing and muricidal behavior on serotonergic receptors and interactions with novel anxiolytic drugs. J Neural Transm 71:123–132

    PubMed  CAS  Google Scholar 

  • Molina V, Ciesielski L, Gobaille S, Isel F, Mandel P (1985) Inhibition of mouse killing behavior by serotonin-mimetic drugs: effects of partial alterations of serotonin neurotransmission. Pharmacol Biochem Behav 27:123–131

    Google Scholar 

  • Sofia RD (1969a) Effects of centrally active drugs on experimentally-induced aggression in rodents. Life Sci 8:705–716

    PubMed  CAS  Google Scholar 

  • Sofia RD (1969b) Structural relationship and potency of agents which selectively block mouse-killing (muricide) behavior in rats. Life Sci:1101–1210

    Google Scholar 

  • Vergnes M, Kempf E (1982) Effect of hypothalamic injections of 5,7-dihydroxytryptamine on elicitation of mouse-killing in rats. Behav Brain Res 5:387–397

    PubMed  CAS  Google Scholar 

  • Vogel JR (1975) Antidepressant and mouse-killing (muricide) behavior. In: Fielding S, Lal H (eds) Industrial Pharmacology. Vol II: Antidepressants. Futura Publ Comp., pp 99–112

    Google Scholar 

  • Vogel JR, Leaf RC (1972) Initiation of mouse-killing in non-killer rats by repeated pilocarpine treatment. Physiol Behav 8:421–424

    PubMed  CAS  Google Scholar 

  • Wnek DJ, Leaf RC (1973) Effects of cholinergic drugs on prey-killing in rodents. Physiol Behav 10:1107–1113

    PubMed  CAS  Google Scholar 

References

  • Bonilla-Jaime H, Retana-Marquez S, Velasquez-Moctezuma J (1998) Pharmacological features of masculine sexual behavior in an animal model of depression. Pharmacol Biochem Behav 60:39–45

    PubMed  CAS  Google Scholar 

  • Drago F, Continella G, Alloro MC, Scapagnini U (1985) Behavioral effects of perinatal administration of antidepressant drugs in the rat. Neurobehav Toxicol Teratol 7:493–497

    PubMed  CAS  Google Scholar 

  • Dwyer SM, Rosenwasser AM (1998) Neonatal clomipramine treatment, alcohol intake and circadian rhythms in rats. Psychopharmacology 138:176–183

    PubMed  CAS  Google Scholar 

  • Feenstra MGP, van Galen H, Te Riele PJM, Botterblom MHA, Mirmiran M (1996) Decreased hypothalamic serotonin levels in adult rats treated neonatally with clomipramine. Pharmacol Biochem Behav 55:647–652

    PubMed  CAS  Google Scholar 

  • Frank MG, Heller HC (1997) Neonatal treatments with the serotonin uptake inhibitors clomipramine and zimelidine, but not the noradrenaline uptake inhibitor desipramine, disrupt sleep pattern in rats. Brain Res 768:287–293

    PubMed  CAS  Google Scholar 

  • Hansen HH, Mikkelsen JD (1998) Long-term effects on serotonin transporter mRNA expression of chronic neonatal exposure to a serotonin reuptake inhibitor. Eur J Pharmacol 253:307–315

    Google Scholar 

  • Hansen HH, Sanchez C, Meier E (1997) Neonatal administration of the selective serotonin reuptake inhibitor Lu 10-134-C increases forced swimming-induced immobility in adult rats. A putative animal model of depression? J Pharmacol Exp Ther 283:133–1341

    Google Scholar 

  • Hartley P, Neill D, Hagler M, Kors D, Vogel G (1990) Procedure-and age-dependent hyperactivity in a new animal model of endogenous depression. Neurosci Biobehav Rev 14:69–72

    PubMed  CAS  Google Scholar 

  • Kinney GG, Vogel GW, Feng P (1997) Decreased dorsal raphe nucleus neuronal activity in adult chloral hydrate anesthetized rats following neonatal clomipramine treatment: Implications for endogenous depression. Brain Res 756:68–75

    PubMed  CAS  Google Scholar 

  • Maudhuit C, Hamon M, Adrien J (1995) Electrophysiological activity of raphe dorsalis serotoninergic neurones in a possible model of endogenous depression. NeuroReport 6:681–684

    PubMed  CAS  Google Scholar 

  • Maudhuit C, Hamon M, Adrien J (1996) Effects of chronic treatment with zimelidine and REM sleep deprivation on the regulation of raphe neuronal activity in a rat model of depression. Psychopharmacology 124:267–274

    PubMed  CAS  Google Scholar 

  • Mirmiran M, van de Poll NE, Corner MA, van Oyen HG, Bour HL (1981) Suppression of active sleep by chronic treatment with chlorimipramine during early postnatal development: effects upon adult sleep and behavior in rats. Brain Res 204:129–146

    PubMed  CAS  Google Scholar 

  • Neill D, Vogel G, Hagler M, Kors D, Hennessy A (1990) Diminished sexual activity in a new animal model of endogenous depression. Neurosci Biobehav Rev 14:73–76

    PubMed  CAS  Google Scholar 

  • Prathiba J, Kumar KB, Karanth KS (1995) Effects of neonatal clomipramine on cholinergic receptor sensitivity and passive avoidance behavior in adult rats. J Neural Transm Gen Sect 100:93–99

    PubMed  CAS  Google Scholar 

  • Prathiba J, Kumar KB, Karanth KS (1997) Fear-potentiated post-startle activity in neonatal clomipramine treated rats. Indian J Pharmacol 29:201–203

    CAS  Google Scholar 

  • Prathiba J, Kumar KB, Karanth KS (1998) Hyperactivity of hypothalamic pituitary axis in neonatal clomipramine model of depression. J Neural Transm 105:1335–1339

    PubMed  CAS  Google Scholar 

  • Prathiba J, Kumar KB, Karanth KS (1999) Effects of chronic administration of imipramine on the hyperactivity of hypothalamic-pituitary-adrenal axis in neonatal clomipramine treated rats. Indian J Pharmacol 31:225–228

    CAS  Google Scholar 

  • Rodriguez-Echandia EL, Broitman ST (1983) Effect of prenatal and postnatal exposure to therapeutic doses of chlorimipramine to emotionality in the rat. Psychopharmacology, Berlin 79:236–241

    PubMed  CAS  Google Scholar 

  • Velazquez-Moctezuma J, Diaz-Ruiz O (1992) Neonatal treatment with clomipramine increased immobility in the forced swim test: An attribute of animal models of depression. Pharmacol Biochem Behav 42:737–739

    PubMed  CAS  Google Scholar 

  • Velazquez-Moctezuma J, Aguillar-Garcia A, Diaz-Ruiz O (1993) Behavioral effects of neonatal treatment of clomipramine, scopolamine, and idazoxan in male rats. Pharmacol Biochem Behav 46:215–217

    PubMed  CAS  Google Scholar 

  • Vogel G, Hagler M (1996) Effects of neonatally administered iprindole on adult behaviors of rats. Pharmacol Biochem Behav 55:157–161

    PubMed  CAS  Google Scholar 

  • Vogel G, Hartley P, Neill D, Hagler M, Kors D (1988) Animal depression model by neonatal clomipramine: Reduction of shock induced aggression. Pharmacol Biochem Behav 31:103–106

    PubMed  CAS  Google Scholar 

  • Vogel G, Neill D, Hagler M, Kors D (1990a) A new animal model of endogenous depression: A summary of present findings. Neurosci Biobehav Rev 14:85–91

    PubMed  CAS  Google Scholar 

  • Vogel G, Neill D, Kors D, Hagler M (1990b) REM sleep abnormalities in a new model of endogenous depression. Neurosci Biobehav Rev 14:77–83

    PubMed  CAS  Google Scholar 

  • Vogel GW, Buffenstein A, Minter K, Hennessey A (1990c) Drug effects on REM sleep and on endogenous depression. Neurosci Biobehav Rev 14:49–63

    PubMed  CAS  Google Scholar 

  • Vogel G, Neill D, Hagler M, Kors D, Hartley P (1990d) Decreased intracranial self-stimulation in a new animal model of endogenous depression. Neurosci Biobehav Rev 14:65–68

    PubMed  CAS  Google Scholar 

  • Vogel G, Hagler M, Hennessey A, Richard C (1996) Dose-dependent decrements in adult male sexual behavior after neonatal clomipramine treatment. Pharmacol Biochem Behav 54:605–609

    PubMed  CAS  Google Scholar 

  • Yavari P, Vogel GW, Neill DB (1993) Decreased raphe unit activity in a rat model of endogenous depression. Brain Res 611:31–36

    PubMed  CAS  Google Scholar 

References

  • Andrews JS, Jansen JHM, Linders S, Princen A, Drinkenburg WHIM, Coenders CJH, Vossen JHM (1994) Effects of imipramine and mirtazipine on operant performance in rats. Drug Dev Res 32:58–66

    CAS  Google Scholar 

  • Marek GJ, Seiden LS (1988) Effects of selective 5-hydroxytryptamine-2 and nonselective 5-hydroxytryptamine antagonists on the differential-reinforcement-of-low-rate 72-second schedule. J Pharmacol Exp Ther 244:650–558

    PubMed  CAS  Google Scholar 

  • Marek GJ, Li AA, Seiden LS (1989) Selective 5-hydroxytryptamine2 antagonists have antidepressant-like effects on differential-reinforcement-of-low-rate 72 second schedule. J Pharmacol Exp Ther 250:52–59

    PubMed  CAS  Google Scholar 

  • McGuire PS, Seiden LS (1980) The effects of tricyclic antidepressants on performance under a differential-reinforcement-of-low-rates schedule in rats. J Pharmacol Exp Ther 214:635–641

    PubMed  CAS  Google Scholar 

  • O'Donnell JM, Seiden LS (1983) Differential-reinforcement-of-low-rate 72-second schedule: selective effects of antidepressant drugs. J Pharmacol Exp Ther 224:80–88

    PubMed  Google Scholar 

  • Pollard GT, Howard JL (1986) Similar effects of antidepressant and non-antidepressant drugs on behavior under an interresponse-time > 72-s schedule. Psychopharmacology 89:253–258

    PubMed  CAS  Google Scholar 

  • van Hest A, van Drimmelen M, Olivier B (1992) Flesinoxan shows antidepressant activity in a DRL 72-s screen. Psychopharmacology 107:474–479

    PubMed  Google Scholar 

References

  • Alpermann HG, Schacht U, Usinger P, Hock FJ (1992) Pharmacological effects of Hoe 249: A new potential antidepressant. Drug Dev Res 25:267–282

    CAS  Google Scholar 

  • Sigg EB (1959) Pharmacological studies with Tofranil. Can Psych Assoc J 4:S75–S85

    Google Scholar 

References

  • De Feo G, Lisciani R, Pavan L, Samarelli M, Valeri P (1983) Possible dopaminergic involvement in biting compulsion induced by large doses of clonidine. Pharmacol Res Commun 15:613–619

    PubMed  Google Scholar 

  • Klawans HL, Rubovits R (1972) An experimental model of tardive dyskinesia. J Neural Transmiss 33:235–246

    Google Scholar 

  • Molander L, Randrup A (1974) Investigation of the mechanism by which L-DOPA induces gnawing in mice. Acta Pharmacol Toxicol 34:312–324

    CAS  Google Scholar 

  • Nielsen EB, Suzdak PD, Andersen KE, Knutsen LJS, Sonnewald U, Braestrup C (1991) Characterization of tiagabine (NO-328), a new potent and selective GABA uptake inhibitor. Eur J Pharmacol 196:257–266

    PubMed  CAS  Google Scholar 

  • Pedersen V, Christensen AV (1972) Antagonism of methylphenidate-induced stereotyped gnawing in mice. Acta Pharmacol Toxicol 31:488–496

    CAS  Google Scholar 

  • Randall PK (1985) Quantification of dopaminergic supersensitization using apomorphine-induced behavior in the mouse. Life Sci 37:1419–1423

    PubMed  CAS  Google Scholar 

  • Ther L, Schramm H. (1962) Apomorphin-Synergismus (Zwangsnagen bei Mäusen) als Test zur Differenzierung psychotroper Substanzen. Arch Int Pharmacodyn 138:302–310

    PubMed  CAS  Google Scholar 

References

  • Alpermann HG, Schacht U, Usinger P, Hock FJ (1992) Pharmacological effects of Hoe 249: A new potential antidepressant. Drug Dev Res 25:267–282

    CAS  Google Scholar 

  • Cox B, Lee TF (1981) 5-Hydroxytryptamine-induced hypothermia in rats as an in vivo model for the quantitative study of 5-hydroxytryptamine receptors. J Pharmacol Meth 5:43–51

    CAS  Google Scholar 

  • Porsolt RD, Lenègre A, McArthur RA (1991) Pharmacological models of depression. In: Olivier B, Mos J, Slangen JL (eds) Animal Models in Psychopharmacology, Birkhäuser Verlag Basel, pp 137–159

    Google Scholar 

  • Puech AJ, Chermat R, Poncelet M, Doaré L, Simon P (1981) Antagonism of hypothermia and behavioural responses to apomorphine: a simple, rapid and discriminating test for screening anti-depressants and neuroleptics. Psychopharmacology 75:84–91

    PubMed  CAS  Google Scholar 

References

  • Alpermann HG, Schacht U, Usinger P, Hock FJ (1992) Pharmacological effects of Hoe 249: A new potential antidepressant. Drug Dev Res 25:267–282

    CAS  Google Scholar 

  • Benesová O, Náhunek K (1971) Correlation between the experimental data from animal studies and therapeutic effects of antidepressant drugs. Psychopharmacologia (Berlin) 20:337–347

    Google Scholar 

  • Doble A, Girdlestone D, Piot O, Allam D, Betschart J, Boireau A, Dupuy A, Guérémy C, Ménager J, Zundel JL, Blanchard JC (1992) Pharmacological characterisation of RP 62203, a novel 5-hydroxytryptamine 5-HT2 receptor antagonist. Br J Pharmacol 15:27–36

    Google Scholar 

  • Gylys JA, Muccia PMR, Taylor MK (1963) Pharmacological and toxicological properties of 2-methyl-3-piperidinopyrazine, a new antidepressant. Ann NY Acad Sci 107:899–913

    PubMed  CAS  Google Scholar 

  • Jamieson DD, Duffield PH, Cheng D, Duffield AM (1989) Comparison of the central nervous system activity of the aqueous und lipid extract of kava (Piper methysticum) Arch Int Pharmacodyn 301:66–80

    PubMed  CAS  Google Scholar 

  • Nakagawa T, Ukai K, Kubo S (1993) Antidepressive effects of the stereoisomercis-dosulepin hydrochloride. Arzneim Forsch/Drug Res 43:11–15

    CAS  Google Scholar 

  • Rubin B; Malone MH, Waugh MH, Burke JC (1957) Bioassay of Rauwolfia roots and alkaloids. J Pharmacol Exp Ther 120:125–136

    PubMed  CAS  Google Scholar 

References

  • Alpermann HG, Schacht U, Usinger P, Hock FJ (1992) Pharmacological effects of Hoe 249: A new potential antidepressant. Drug Dev Res 25:267–282

    CAS  Google Scholar 

  • Askew BM (1963) A simple screening procedure for imipramine-like antidepressant drugs. Life Sci 10:725–730

    PubMed  CAS  Google Scholar 

  • Bill DJ, Hughes IE, Stephens RJ (1989) The effects of acute and chronic desimipramine on the thermogenic and hypoactivity responses to α2-agonists in reserpinized and normal mice. Br J Pharmacol 96:144–152

    PubMed  CAS  Google Scholar 

  • Bourin M (1990) Is it possible to predict the activity of a new antidepressant in animals with simple psychopharmacological tests? Fundam Clin Pharmacol 4:49–64

    PubMed  CAS  Google Scholar 

  • Bourin M, Poncelet M, Chermat R, Simon P (1983) The value of the reserpine test in psychopharmacology. Arzneim Forsch/Drug Res 33:1173–1176

    CAS  Google Scholar 

  • Colpaert FC, Lenaerts FM, Niemegeers CJE, Janssen PAJ (1975) A critical study of Ro-4-1284 antagonism in mice. Arch Int Pharmacodyn 215:189–239

    Google Scholar 

  • Koe BK, Lebel LA, Nielsen JA, Russo LL, Saccomano NA, Vinick FJ, Williams IA (1990) Effects of novel catechol ether imidazolidinones on calcium-dependent phosphodiesterase activity, (3H)Rolipram binding, and reserpine-induced hypothermia in mice. Drug Dev Res 21:135–142

    CAS  Google Scholar 

  • Niemegeers CJE (1975) Antagonism of reserpine-like activity. In: Fielding S, Lal H (eds) Industrial Pharmacology. Vol II: Antidepressants. Futura Publ Comp., pp 73–98

    Google Scholar 

  • Muth EA, Moyer JA, Haskins JT, Andree TH, Husbands GEM (1991) Biochemical, neurophysiological, and behavioral effects of Wy-45,233 and other identified metabolites of the antidepressant Venlafaxine. Drug Dev Res 23:191–199

    CAS  Google Scholar 

  • Pawlowski L, Nowak G (1987) Biochemical and pharmacological tests for the prediction of ability of monoamine uptake blockers to inhibit the uptake of noradrenaline in vivo: the effects of desimipramine, maprotiline, femoxitine and citalopram. J Pharm Pharmacol 39:1003–1009

    PubMed  CAS  Google Scholar 

  • Porsolt RD, Lenègre A, McArthur RA (1991) Pharmacological models of depression. In: Olivier B, Mos J, Slangen JL (eds) Animal Models in Psychopharmacology, Birkhäuser Verlag Basel, pp 137–159

    Google Scholar 

References

  • Ahtee L, Saarnivaara L. (1971) The effect of drugs upon the uptake of 5-hydroxytryptamine and metaraminol by human platelets, J. Pharm. Pharmacol 23:495–501

    PubMed  CAS  Google Scholar 

  • Alpermann HG, Schacht U, Usinger P, Hock FJ (1992) Pharmacological effects of Hoe 249: A new potential antidepressant. Drug Dev Res 25:267–282

    CAS  Google Scholar 

  • Awouters F, Niemegeers CJE, Megens AAHP, Meert TF, Janssen PAJ (1988) Pharmacological profile of ritanserin: a very specific central serotonin antagonist. Drug Dev Res 15:61–73

    CAS  Google Scholar 

  • Chen G (1964) Antidepressives, analeptics and appetite suppressants. In: Laurence DR, Bacharach AL (eds) Evaluation of Drug Activities: Pharmacometrics. Academic Press, London and New York, pp 239–260

    Google Scholar 

  • Corne SJ, Pickering RW, Warner BT (1963) A method for assessing the effects of drugs on the central actions of 5-hydroxytryptamine. Br J Pharmacol 20:106–120

    CAS  Google Scholar 

  • Martin P, Frances H, Simon P (1985) Dissociation of head twitches and tremors during the study of interactions with 5-hydroxytryptophan in mice. J Pharmacol Meth 13:193–200

    CAS  Google Scholar 

  • Meert TF, Niemegeers JE, Awouters F, Janssen PAJ Partial and complete blockade of 5-hydroxytryptophan (5-HTP)-induced head twitches in the rat: a study of ritanserin (R55667), risperidone (R64766), and related compounds. Drug Develop Res 13:237–244

    Google Scholar 

  • Moore NA, Tye NC, Axton MS, Risius FC (1992) The behavioral pharmacology of olanzapine, a novel “atypical” antipsychotic agent. J Pharmacol Exp Ther 262:545–551

    PubMed  CAS  Google Scholar 

  • Ortmann R, Martin S, Radeke E, Delini Stula A (1981) Interaction of beta-adrenoreceptor agonists with the serotonergic system in rat brain. A behavioural study using the L-5-HTP syndrome. Naunyn Schmiedeberg's Arch Pharmacol 316:225–230

    CAS  Google Scholar 

  • Shank RP, Gardocki JF, Schneider CR, Vaught JL, Setler PE, Maryanoff BE, McComsey DF (1987) Preclinical evaluation of McN-5707 as a potential antidepressant. J Pharmacol Exp Ther 242:74–84

    PubMed  CAS  Google Scholar 

  • Shank RP; Vaught JL, Pelley KA, Setler PE, McComsey DF, Maryanoff BE (1988) McN-5652: A highly potent inhibitor of serotonin uptake. J Pharmacol Exp Ther 247:1032–1038

    PubMed  CAS  Google Scholar 

References

  • Ahtee L, Saarnivaara L. (1971) The effect of drugs upon the uptake of 5-hydroxytryptamine and metaraminol by human platelets, J. Pharm. Pharmacol 23:495–501

    PubMed  CAS  Google Scholar 

  • Colpaert FC, Janssen PA (1983) The head-twitch response to intraperitoneal injection of 5-hydroxytryptophan in the rat: Antagonist effects of purported 5-hydroxytryptamine antagonists and of pirenperone, an LSD antagonist. Neuropharmacol 22:993–1000

    CAS  Google Scholar 

  • Hallberg H, Carlson L, Elg R (1985) Objective quantification of tremor in conscious unrestrained rats, exemplified with 5-hydroxytryptamine-mediated tremor. J Pharmacol Meth 13:261–266

    CAS  Google Scholar 

  • Matthews WD, Smith CD (1980) Pharmacological profile of a model for central serotonin receptor activation Life Sci 26:1397–1403

    PubMed  CAS  Google Scholar 

  • Shank RP, Gardocki JF, Schneider CR, Vaught JL, Setler PE, Maryanoff BE, McComsey DF (1987) Preclinical evaluation of McN-5707 as a potential antidepressant. J Pharmacol Exp Ther 242:74–84

    PubMed  CAS  Google Scholar 

References

  • Alpermann HG, Schacht U, Usinger P, Hock FJ (1992) Pharmacological effects of Hoe 249: A new potential antidepressant. Drug Dev Res 25:267–282

    CAS  Google Scholar 

  • Bourin M, Malinge M, Colombel MC, Larousse C (1988) Influence of alpha stimulants and beta blockers on yohimbine toxicity. Prog Neuro-Psychopharmacol Biol Psychiat 12:569–574

    CAS  Google Scholar 

  • Goldberg MR, Robertson D (1983) Yohimbine: A pharmacological probe for study the α2-adrenoreceptor. Pharmacol Rev 35:143–180

    PubMed  CAS  Google Scholar 

  • Malick JP (1981) Yohimbine potentiation as a predictor of antidepressant action. In: Enna SJ, Malick JB, Richelson E (eds) Antidepressants: neurochemical, behavioral and clinical perspectives. Raven Press, New York, pp 141–156

    Google Scholar 

  • Porsolt RD, Lenègre A, McArthur RA (1991) Pharmacological models of depression. In: Olivier B, Mos J, Slangen JL (eds) Animal Models in Psychopharmacology, Birkhäuser Verlag Basel, pp 137–159

    Google Scholar 

  • Quinton RM (1963) The increase in the toxicity of yohimbine induced by imipramine and other drugs in mice. Br J Pharmacol 21:51–66

    CAS  Google Scholar 

References

  • Graham-Smith DG (1971) Inhibitory effect of chlorpromazine on the syndrome of hyperactivity produced by L-tryptophan or 5-methoxy-N,N-dimethyltryptamine in rats treated with a monoamine oxidase inhibitor. Br J Pharmacol 43:856–864

    Google Scholar 

  • Knoll J (1980) Monoamine oxidase inhibitors: Chemistry and pharmacology. In: Sandler M (ed) Enzyme Inhibitors as Drugs. pp 151–173. University Park Press

    Google Scholar 

  • Ozaki M, Weissbach H, Ozaki A, Witkop B, Udenfriend S (1960) Monoamine oxidase inhibitors and procedures for their evaluation in vivo and in vitro. J Med Pharmac Chem 2:591–607

    CAS  Google Scholar 

References

  • Andersson G, Larsson K (1994) Effects of FG 5893, a new compound with 5-HT1A receptor agonistic and 5-HT2 receptor antagonistic properties, on male rat sexual behavior. Eur J Pharmacol 255:131–137

    PubMed  CAS  Google Scholar 

  • Arnt J, Hyttel J (1989) Facilitation of 8-OH-DPAT-induced forepaw treading of rats by the 5-HT2 agonist DOI. Eur J Pharmacol 161:45–51

    PubMed  CAS  Google Scholar 

  • Bagdy G, To CT (1997) Comparison of relative potencies of i.v. and i.c.v. administered 8-OH-DPAT gives evidence of different sites of action for hypothermia, lower lip retraction and tail flicks. Eur J Pharmacol 323:53–58

    PubMed  CAS  Google Scholar 

  • Berendsen HG, Broekkamp CLE (1990) Behavioural evidence for functional interactions between 5-HT-receptor subtypes in rats and mice. Br J Pharmacol 101:667–673

    PubMed  CAS  Google Scholar 

  • Berendsen HG, Broekkamp CLE (1997) Indirect in vivo 5-HT1A-agonistic effects of the new antidepressant mirtazapine. Psychopharmacology 133:275–282

    PubMed  CAS  Google Scholar 

  • Berendsen HHG, Jenk F, Broekkamp CLE (1989) Selective activation of 5-HT1A receptors induces lower lip retraction in the rat. Pharmacol Biochem Behav 33:821–827

    PubMed  CAS  Google Scholar 

  • Berendsen HHG, Bourgondien FGM, Broekkamp CLE (1994) Role of dorsal and median raphe nuclei in lower lip retraction in rats. Eur J Pharmacol 263:315–318

    PubMed  CAS  Google Scholar 

  • Berendsen HHG, Kester RCH, Peeters BWMM, Broekkamp CLE (1996) Modulation of 5-HT receptor subtype-mediated behaviours by corticosterone. Eur J Pharmacol 308:103–111

    PubMed  CAS  Google Scholar 

  • Blanchard RJ, Shepherd JK, Armstrong J, Tsuda SF, Blanchard DC (1993) An ethopharmacological analysis of the behavioral effects of 8-OH-DPAT. Psychopharmacology 112:55–65

    PubMed  CAS  Google Scholar 

  • Blanchard RJ, Griebel G, Guardiola-Lemaître B, Brush MM Lee J, Blanchard DC (1997) An ethopharmacological analysis of selective activation of 5-HT1A receptors: the mouse 5-HT1A syndrome. Pharmacol Biochem Behav 57:897–908

    PubMed  CAS  Google Scholar 

  • Deakin JFW, Green AR (1978) The effects of putative 5-hydroxytryptamine antagonists on the behaviour produced by administration of tranylcypromine and L-Dopa in rats. Br J Pharmacol 64:201–209

    PubMed  CAS  Google Scholar 

  • De Boer T, Ruigt GSF, Berendsen HHG (1995) The alpha-2-selective adrenoceptor antagonist Org 3770 (mirtazapine, Remeron registered) enhances noradrenergic and serotonergic transmissions. Hum Psychopharmacol 10, Suppl2:S107–S118

    Google Scholar 

  • Evenden JL (1994) The effect of 5-HT1A receptor agonists on locomotor activity in the guinea pig. Br J Pharmacol 112:861–866

    PubMed  CAS  Google Scholar 

  • Foreman MM, Fuller RW, Leander JD, Benvenga MJ, Wong DT, Nelson DL, Calligaro DO, Swanson SP, Lucot JP, Flaugh ME (1993) Preclinical studies in LY228729: a potent and selective serotionin1A agonist. J Pharmacol Exp Ther 267:58–71

    PubMed  CAS  Google Scholar 

  • Foreman MM, Fuller RW, Rasmussen K, Nelson DL, Calligaro DO, Zhang L, Barrett JE, Booher RN, Paget CJ Jr., Flaugh ME (1994) Pharmacological characterization of LY293284: a 5-HT1A receptor agonist with high potency and selectivity. J Pharmacol Exp Ther 270:1270–1291

    PubMed  CAS  Google Scholar 

  • Foreman MM, Fuller RW, Leander JD, Nelson DL, Calligaro DO, Lucaites VL, Wong DT, Zhang L, Barrett JE, Schaus HM (1995) Pharmacological characterization of enantiomers of 8-thiomethyl-2-(di-n-propylamino)tetralin, potent and selective 5-HT1A receptor agonists. Drug Dev Res 34:66–85

    CAS  Google Scholar 

  • Forster EA, Cliffed IA, Bill DJ, Dover GM, Jones D, Reilly Y, Fletcher A (1995) A pharmacological profile of the selective silent 5-HT1A receptor antagonist, WAY-100635. Eur J Pharmacol 281:81–88

    PubMed  CAS  Google Scholar 

  • Gaggi R, Dall'Olio R, Roncada P (1997) Effects of the selective 5-HT receptor agonists 8-OHDPAT and DOI on behavior and brain biogenic amines of rats

    Google Scholar 

  • Goodwin GM, Green AR (1985) A behavioural and biochemical study in mice and rats of putative selective agonists and antagonists for 5-HT1 and 5-HT2 receptors. Br J Pharmacol 84:743–753

    PubMed  CAS  Google Scholar 

  • Goodwin GM, De Souza RJ, Wood AJ, Green AR (1986) The enhancement by lithium of the 5-HT1A mediated serotonin syndrome produced by 8-OH-DPAT in the rat: evidence for a postsynaptic mechanism. Psychopharmacology 90:488–493

    PubMed  CAS  Google Scholar 

  • Green AR, Heal DJ (1985) The effects of drugs on serotominmediated behavioural models. In Green A (ed) Neuropharmacol of Serotonin. Oxford University Press, pp 326–365

    Google Scholar 

  • Green AR, O'Shaughnessy K, Hammond M, Schächter M, Grahame-Smith DG (1983) Inhibition of 5-hydroxytryptaminemediated behaviour by the putative 5-HT2 antagonist pirenperone. Neuropharmacol 22:573–578

    CAS  Google Scholar 

  • Groenink L, Van der Gugten J, Compaan JC, Maes RAA, Olivier B (1997) Flesinoxan pretreatment differently affects corticosterone, prolactin and behavioural responses to a flesinoxan challenge. Psychopharmacology 131:93–100

    PubMed  CAS  Google Scholar 

  • Jacobs BL (1976) An animal behavior model for studying serotonergic synapses. Life Sci 19:777–786

    PubMed  CAS  Google Scholar 

  • Kleven MS, Assié MB, Koek W (1997) Pharmacological characterization of in vivo properties of putative mixed 5-HT1A agonist/5-HT1A/2C antagonist anxiolytics. II. Drug discrimination and behavioral observation studies in rats. J Pharm Exp Ther 282:747–759

    CAS  Google Scholar 

  • Kofman O, Levin U (1995) Myo-inositol attenuates the enhancement of the serotonin syndrome by lithium. Psychopharmacology 118:213–218

    PubMed  CAS  Google Scholar 

  • Lu J Q,, Nagayama H (1996) Circadian rhythm in the response of central 5-HT1A receptors to 8-OH-DPAT in rats. Psychopharmacology 123:42–45

    PubMed  CAS  Google Scholar 

  • Martin KF, Phillips I, Hearson M, Prow MR, Heal DJ (1992) Characterization of 8-OH-DPAT-induced hypothermia in mice as a 5-HT1A autoreceptor response and its evaluation as a model to selectively identify antidepressants. Br J Pharmacol 107:15–21

    PubMed  CAS  Google Scholar 

  • Moore NA, Rees G, Sanger G, Perrett L (1993) 5-HT1A-mediated lower lip retraction: effects of 5-HT1A agonists and antagonists. Pharmacol Biochem Behav 46:141–143

    PubMed  CAS  Google Scholar 

  • O'Connell MT, Curzon G (1996) A comparison of the effects of 8-OH-DPAT pretreatment on different behavioural responses to 8-OH-DPAT. Eur J Pharmacol 312:137–143

    PubMed  Google Scholar 

  • O'Neill MF, Parameswaran T (1997) RU24699-induced behavioural syndrome requires activation of both 5-HT1A and 5-HT1B receptors. Psychopharmacology 132:255–260

    PubMed  Google Scholar 

  • Porsolt RD, Lenègre A, Caignard DH, Pfeiffer B, Mocaër E, Guardiola-Lemaître B (1992) Psychopharmacological profile of a new chroman derivative with 5-hydroxytryptamine1A agonist properties: S20499(+). Drug Develop Res 27:389–402

    CAS  Google Scholar 

  • Schoeffter P, Fozard JR, Stoll A, Siegl H, Seiler MP, Hoyer D (1993) SDZ 216–525, a selective and potent 5-HT1A receptor antagonist. Eur J Pharmacol 244:251–257

    PubMed  CAS  Google Scholar 

  • Simiand J, Keane PE, Barnouin MC, Keane M, Soubrié P, Le Fur G (1993) Neuropsychopharmacological profile in rodents of SR 57746A, a new, potent 5-HT1A receptor agonist. Fundam Clin Pharmacol 7:413–427

    PubMed  CAS  Google Scholar 

  • Smith LM, Peroutka SJ (1986) Differential effects of 5-hydroxytrytamine1A selective drugs on the 5-HT behavioral syndrome. Pharmacol Biochem Behav 24:1513–1519

    PubMed  CAS  Google Scholar 

  • Tricklebank MD (1985) The behavioural response to 5-HT receptor agonists and subtypes of the central 5-HT receptor. Trends Pharmacol Sci 14:403–407

    Google Scholar 

  • Trulson ME, Eubanks EE, Jacobs BL (1976) Behavioral evidence for supersensitivity following destruction of central serotonergic nerve terminals by 5,7-dihydroxytryptamine. J Pharmacol Exp Ther 198:23–32

    PubMed  CAS  Google Scholar 

  • Wolff MC, Benvenga MJ, Calligaro DO, Fuller RW, Gidda JS, Hemrick-Luecke S, Lucot JB, Nelson DL, Overshiner CD, Leander JD (1997) Pharmacological profile of LY301317, a potent and selective 5-HT1A agonist. Drug Develop Res 40:17–34

    CAS  Google Scholar 

  • Yu H, Lewander T (1997) Pharmacokinetic and pharmacodynamic studies of (R)-8-hydroxy-2-(di-n-propylamino)tetralin in the rat. Eur Neuropsychopharmacol 7:165–172

    PubMed  CAS  Google Scholar 

References

  • Briley M, Prost JF, Moret C (1996) Preclinical pharmacology of milnacipran. Int Clin Psychopharmacol 11/Suppl 4:9–14

    PubMed  Google Scholar 

  • Cairncross KD, Wren A, Cox B, Schieden H (1977) Effects of olfactory bulbectomy and domicile on stress-induced corticosterone release in the rat. Physiol Behav 19:405–487

    Google Scholar 

  • Cairncross KD, Cox B, Forster C, Wren AF (1978) A new model for the detection of antidepressant drugs: olfactory bulbectomy in the rat compared with existing models. J Pharmacol Meth 1:131–143

    CAS  Google Scholar 

  • Cairncross KD, Cox B, Forster C, Wren AF (1979) Olfactory projection system, drugs and behaviour: a review. Psychoneuroendocrinology 4:253–272

    PubMed  CAS  Google Scholar 

  • Hancock AA, Buckner SA, Oheim KW, Morse PA, Brune ME, Meyer MD, Williams M, Kervin LF Jr. (1995) A-80426, a potent α2-adrenoceptor antagonist with serotonin uptake blocking activity and putative antidepressant-like effects: I. Biochemical profile. Drug Dev Res 35:237–245

    CAS  Google Scholar 

  • Janscár SM, Leonard BE (1984) The effect of (±)mianserin and its enantiomers on the behavioural hyperactivity of the olfactory bulbectomized rat. Neuropharmacol 23:1065–1070

    Google Scholar 

  • Kelly JP, Leonard BE (1994) The effects of tianeptine and sertraline in three animal models of depression. Neuropharmacol 33:1011–1016

    CAS  Google Scholar 

  • Kelly JP, Leonard BE (1995) The contribution of pre-clinical drug evaluation in predicting the clinical profile of the selective serotonin reuptake inhibitor paroxetine. J Serotonin Res 1:27–46

    Google Scholar 

  • Kelly JP, Wrynn AS, Leonard BE (1997) The olfactory bulbectomized rat as a model of depression: an update. Pharmacol Ther 74:299–316

    PubMed  CAS  Google Scholar 

  • Leonard BE, O'Connor WJ (1984) Effect of isomers of the 6-aza derivative of mianserin on behaviour and noradrenaline metabolism in bulbectomized rats. Br J Pharmacol 82:246P

    Google Scholar 

  • Leonard BE, Tuite M (1981) Anatomical, physiological and behavioral aspects of olfactory bulbectomy in the rat. Int Rev Neurobiol 22:251–286

    PubMed  CAS  Google Scholar 

  • McNamara MG, Kelly JP, Leonard BE (1995) Effect of 8-OH-DPAT in the olfactory bulbectomized rat model of depression. J Serotonin Res 2:91–99

    CAS  Google Scholar 

  • O'Connor WT, Leonard BE (1986) Effect of chronic administration of the 6-aza analogue of mianserin (ORG 3770) and its enantiomers on behaviour and changes in noradrenaline metabolism of olfactory-bulbectomized rats in the “open field” apparatus. Neuropharmacol 25:267–270

    Google Scholar 

  • Porsolt RD, Lenègre A, McArthur RA (1991) Pharmacological models of depression. In: Olivier B, Mos J, Slangen JL (eds) Animal Models in Psychopharmacology, Birkhäuser Verlag Basel, pp 137–159

    Google Scholar 

  • Redmont AM, Kelly JP, Leonard BE (1995) Effect of chronic antidepressant administration on the conditioned taste aversion to 8-OHDPAT in the olfactory bulbectomized rat model of depression. Med Sci Res 23:487–488

    Google Scholar 

  • Redmont AM, Kelly JP, Leonard BE (1997) Behavioral and neurochemical effects of dizocilpine in the olfactory bulbectomized rat model of depression. Pharmacol Biochem Behav 58:355–359

    Google Scholar 

  • Song C, Leonard BE (1994) Serotonin reuptake inhibitors reverse the impairments in behaviour neurotransmitter and immune functions in the olfactory bulbectomized rat. Hum Psychopharmacol 9:135–146

    CAS  Google Scholar 

  • Song C, Early B, Leonard BE (1966a) The effects of central administration of neuropeptide Y on behavior, neurotransmitter, and immune functions in the olfactory bulbectomized rat model of depression. Brain Behav Immun 10:1–16

    Google Scholar 

  • Song C, Early B, Leonard BE (1966b) Behavioural and immunological effects of the antihistamine terfenadine in olfactory bulbectomized rats. Eur Neuropsychopharmacol 6:157–162

    Google Scholar 

References

  • Ahlenius S, Larsson K (1997) Specific involvement of central 5-HT1A receptors in the mediation of male rat ejaculatory behavior. Neurochem Res. 22:1965–1070

    Google Scholar 

  • Ahlenius S, Larsson K, Svensson L, Hjorth S, Carlsson A, Lindberg P, Wikström H, Sanchez D, Arvidsson LE, Hacksell U, Nilsson JLG (1981) Effects of a new type of 5-HT receptor agonist on male rat sexual behavior. Pharmacol Biochem Behav 15:785–792

    PubMed  CAS  Google Scholar 

  • Andersson G, Larsson K (1994) Effects of FG 5893, a new compound with 5-HT1A receptor agonistic and 5-HT2 receptor antagonistic properties, on male rat sexual behavior. Eur J Pharmacol 255:131–137

    PubMed  CAS  Google Scholar 

  • Arnone M, Baroni M, Gai J, Guzzi U, Desclaux MF, Keane PE, Le Fur G, Soubrié P (1995) Effect of ST 59026A, a new 5-HT1A receptor agonist, on sexual activity in male rats. Behav Pharmacol 6:276–282

    PubMed  CAS  Google Scholar 

  • Fernández-Guasti A, Escalante A, Ågmo A (1989) Inhibitory actions of various HT1B receptor agonists on rat masculine sexual behaviour. Pharmacol Biochem Behav 34:811–816

    PubMed  Google Scholar 

  • Fernández-Guasti A, Rodriguez-Manzo G (1997) OH-DPAT and male rat sexual behavior: Partial blockade by noradrenergic lesion and sexual exhaustion. Pharmacol Biochem Behav 56:111–116

    PubMed  Google Scholar 

  • Foreman MM, Fuller RW, Leander JD, Benvenga MJ, Wong DT, Nelson DL, Calligaro DO, Swanson SP, Lucot JP, Flaugh ME (1993) Preclinical studies in LY228729: a potent and selective serotonin1A agonist. J Pharmacol Exp Ther 267:58–71

    PubMed  CAS  Google Scholar 

  • Foreman MM, Fuller RW, Rasmussen K, Nelson DL, Calligaro DO, Zhang L, Barrett JE, Booher RN, Paget CJ Jr., Flaugh ME (1994) Pharmacological characterization of LY293284: a 5-HT1A receptor agonist with high potency and selectivity. J Pharmacol Exp Ther 270:1270–1291

    PubMed  CAS  Google Scholar 

  • Foreman MM, Fuller RW, Leander JD, Nelson DL, Calligaro DO, Lucaites VL, Wong DT, Zhang L, Barrett JE, Schaus HM (1995) Pharmacological characterization of enantiomers of 8-thiomethyl-2-(di-n-propylamino)tetralin, potent and selective 5-HT1A receptor agonists. Drug Dev Res 34:66–85

    CAS  Google Scholar 

  • Gorzalka BB, Mendelson SD, Watson NV (1990) Serotonin receptor subtypes and sexual behavior. Ann NY Acad Sci 600:435–446

    PubMed  CAS  Google Scholar 

  • Mendelson SD, Gorzalka BB (1981) Serotonin antagonist pirenperone inhibits sexual behavior in the male rat: attenuation by quipazine. Pharmacol Biochem Behav 22:565–571

    Google Scholar 

  • Pomerantz SM, Hepner BC, Wertz JM (1993) 5-HT1A and 5-HT1C/1D receptor agonists produce reciprocal effects on male sexual behavior of rhesus monkeys. Eur J Pharmacol 243:227–234

    PubMed  CAS  Google Scholar 

  • Tallentire D, McRae G, Spedding M, Clark R, Vickery B (1996) Modulation of sexual behaviour in the rat by a potent and selective α2-adrenoceptor agonist, delequamine (RS-15835-197) Br J Pharmacol 118:63–72

    PubMed  CAS  Google Scholar 

References

  • Duvoisin RC (1976) Parkinsonism: Animal analogues of the human disorder. in: Yahr MD (ed) The Basal Ganglia. Raven Press, New York, pp 293–303

    Google Scholar 

  • Hornykiewicz O (1975) Parkinsonism induced by dopaminergic antagonists. In: Caine DB, Chase TN, Barbeau A (eds) Advances in Neurology. Raven Press, New York, pp 155–164

    Google Scholar 

  • Marsden CD, Duvoisin RC, Jenner P, Parkes JD, Pycock C, Tarsy D (1975) Relationship between animal models and clinical parkinsonism. In: Caine DB, Chase TN, Barbeau A (eds) Advances in Neurology. Raven Press, New York, pp 165–175

    Google Scholar 

  • Miller R, Hiley R (1975) Antimuscarinic actions of neuroleptic drugs. In: Caine DB, Chase TN, Barbeau A (eds) Advances in Neurology. Raven Press, New York, pp 141–154

    Google Scholar 

  • Vernier VG (1964) Anti-Parkinsonian agents. In: Laurence DR, Bacharach AL (eds) Evaluation of Drug Activities: Pharmacometrics. Academic Press, London, New York, pp 301–311

    Google Scholar 

References

  • Agarwal JC, Chandishwar N, Sharma M, Gupta GP, Bhargava KP, Shanker K (1983) Some new piperazino derivatives as antiparkinson and anticonvulsant agents. Arch Pharm (Weinheim) 316:690–694

    CAS  Google Scholar 

  • Bebbington A, Brimblecombe RW, Shakeshaft D (1966) The central and peripheral activity of acetylenic amines related to oxotremorine. Br J Pharmacol 26:56–67

    CAS  Google Scholar 

  • Cho AK, Haslett WL, Jenden DJ (1962) The peripheral actions of oxotremorine, a metabolite of tremorine. J Pharmacol Exp Ther 138:249–257

    PubMed  CAS  Google Scholar 

  • Clement JG, Dyck WR (1989) Device for quantitating tremor activity in mice: Antitremor activity of atropine versus soman-and oxotremorine-induced tremors. J Pharmacol Meth 22:25–36

    CAS  Google Scholar 

  • Coward DM, Doggett NS, Sayers AC (1977) The pharmacology of N-carbamoyl-2-(2,6-dichlorophenyl)acetamidine hydrochloride (LON-954) a new tremorigenic agent. Arzneim Forsch/Drug Res 27:2326–2332

    CAS  Google Scholar 

  • Denk H, Haider M, Kovac W, Studynka G (1968) Behavioral changes and neuropathological feature in rats intoxicated with 3-acetylpyridine. Acta Neuropathol 10:34–44

    PubMed  CAS  Google Scholar 

  • Duvoisin RC (1976) Parkinsonism: Animal analogues of the human disorder. in: Yahr MD (ed) The Basal Ganglia. Raven Press, New York, pp 293–303

    Google Scholar 

  • Everett GM (1964) Animal and clinical techniques for evaluating anti-Parkinson agents. In Nodin JH, Siegler PE (eds) Animal and clinical pharmacologic techniques in drug evaluation. Year Book Medical Publ., Inc. Chicago, pp 359–368

    Google Scholar 

  • Frances H, Chermat R, Simon P (1980) Oxotremorine behavioural effects as a screening test in mice. Prog Neuro-Psychopharmacol Biol Psychiatry 4:241–245

    CAS  Google Scholar 

  • Johnson JD, Meisenheimer TL, Isom GE (1986) A new method for quantification of tremors in mice. J Pharmacol Meth 16:329–337

    CAS  Google Scholar 

  • Kinoshita K, Watanabe Y, Yamamura M, Matsuoka Y (1998) TRH receptor agonists ameliorate 3-acetylpyridine-induced ataxia through NMDA receptors in rats. Eur J Pharmacol 343:129–133

    PubMed  CAS  Google Scholar 

  • Matthews RT, Chiou CY (1979) A rat model for resting tremor. J Pharmacol Meth 2:193–201

    Google Scholar 

  • Ringdahl B, Jenden DJ (1983) Pharmacological properties of oxotremorine and its analogs. Life Sci 32:2401–2413

    PubMed  CAS  Google Scholar 

  • Stanford JA, Fowler SC (1997) Scopolamine reversal of tremor produced by low doses of physostigmine in rats: evidence for a cholinergic mechanism. Neurosci Lett 225:157–160

    PubMed  CAS  Google Scholar 

  • Turner RA (1965) Anticonvulsants, Academic Press, New York, London, pp 164–172

    Google Scholar 

  • Vernier VG (1964) Anti-Parkinsonian agents. In: Laurence DR, Bacharach AL (eds) Evaluation of Drug Activities: Pharmacometrics. Academic Press, London and New York, pp 301–311

    Google Scholar 

  • Watanabe Y, Kinoshita K, Koguchi A, Yamamura M (1997) A new method for evaluating motor deficits in 3-acetylpyridine-treated rats. J Neurosci Meth 77:25–29

    CAS  Google Scholar 

References

  • Asin KE, Domino EF, Nikkel A, Shiosaki K (1997) The selective dopamine D1 receptor agonist A-86929 maintains efficacy with repeated treatment in rodent and primate models of Parkinson's disease. J Pharmacol Exp Ther 281:454–459

    PubMed  CAS  Google Scholar 

  • Belluzzi JD, Domino EF, May JM, Bankiewicz KS, McAfee DA (1994) N-0923, a selective dopamine D2 receptor agonist, is efficacious in rat and monkey models of Parkinson's disease. Mov Disord 9:147–154

    PubMed  CAS  Google Scholar 

  • Bernardini GL, Speciale SG, German DC (1990) Increased midbrain dopaminergic activity following 2'CH3-MPTP-induced dopaminergic cell loss: an in vitro electrophysiological study. Brain Res 527:123–129

    PubMed  CAS  Google Scholar 

  • Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of parkinsonism: Selective destruction of dopaminergic neurones in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci, USA, 80:4546–4550

    PubMed  CAS  Google Scholar 

  • Chiba K, Trevor A, Castagnoli N (1984) Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem Biophys Res Commun 120:574–578

    PubMed  CAS  Google Scholar 

  • Close SP, Elliott PJ (1991) Procedure for assessing the behavioral effects of novel anti-Parkinsonian drugs in normal and MPTP-treated marmosets following central microinfusions. J Pharm Meth 25:123–131

    CAS  Google Scholar 

  • Domino EF, Sheng J (1993) Relative potency of some dopamine agonists with varying selectivities for D1 and D2 receptors in MPTP-induced hemiparkinsonian monkeys. J Pharmacol Exp Ther 265:1387–1391

    PubMed  CAS  Google Scholar 

  • Doudet DJ, Wyatt RJ, Cannon-Spoor E, Suddath R, McLellan CA, Cohen RM (1993) 6-(18F)-Fluoro-L-DOPA and cerebral blood flow in unilaterally MPTP-treated monkeys. J Neural Transplant Plast 4:27–38

    PubMed  CAS  Google Scholar 

  • Fuxe K, Janson AM, Rosén L, Finnman UB, Tanganelli S, Morari M, Goldstein M, Agnati LF (1992) Evidence for a protective action of the vigilance promoting drug Modafinil on the MPTP-induced degeneration of the nigrostriatal dopamine neurons in the black mouse: an immunocytochemical and biochemical analysis. Exp Brain Res 88:117–130

    PubMed  CAS  Google Scholar 

  • Gnanalingham KK, Hunter AJ, Jenner P, Marsden CD (1995) Selective dopamine antagonist pretreatment on the antiparkinsonian effects of benzazepine D1 dopamine agonists in rodent and primate models of Parkinson's disease — the differential effects of D1 dopamine antagonists in the primate. Psychopharmacology 117:403–412

    PubMed  CAS  Google Scholar 

  • Heikkila RE, Manzino L, Cabbat FS, Duvoisin RC (1984) Protection against dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine by monoamine oxydase inhibitors. Nature 311:467–469

    PubMed  CAS  Google Scholar 

  • Kebabian JW, Britton DR, DeNinno MP, Perner R, Smith L, Jenner P, Schoenleber R, Williams M (1992) A-77363: a potent and selective D1 receptor antagonist with antiparkinsonian activity in marmosets. Eur J Pharmacol 229:203–209

    PubMed  CAS  Google Scholar 

  • Kindt MV, Youngster SK, Sonsalla PK, Duvoisin RC, Heikkila RE (1988) Role for monoamine oxydase-A (MAO-A) in the bioactivation and nigrostriatal dopaminergic neurotoxicity of the MPTP analog, 2'Me-MTPT. Eur J Pharmacol 146:313–318

    PubMed  CAS  Google Scholar 

  • Lange KW (1989) Circling behavior in old rats after unilateral intranigral injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Life Sci 45:1709–1714

    PubMed  CAS  Google Scholar 

  • Lange KE (1990) Behavioural effects and supersensitivity in the rat following intranigral MPTP and MPP+ administration. Eur J Pharmacol 175:57–61

    PubMed  CAS  Google Scholar 

  • Nomoto M, Jenner P, Marsden CD (1985) The dopamine D2 agonist LY 141865, but not the D1 agonist SKF 38393, reverses parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the common marmoset. Neurosci Lett 57:37–41

    PubMed  CAS  Google Scholar 

  • Nomoto M, Jenner P, Marsden CD (1988) The D1 agonist SKF 38393 inhibits the anti-parkinsonian activity of the D2 agonist LY 141555 in the MPTP-treated marmoset. Neurosci Lett 93:275–280

    PubMed  CAS  Google Scholar 

  • Raz A, Vaadia E, Bergman H (2000) Firing pattern and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. J Neurosci 20:8559–8571

    PubMed  CAS  Google Scholar 

  • Rollema H, Alexander GM, Grothusen JR, Matos FF, Castagnoli N Jr. (1989) Comparison of the effects of intracerebrally administered MPP+ (1-methyl-4-phenylpyridinium) in three species: microdialysis of dopamine and metabolites in mouse, rat and monkey striatum. Neurosci Lett 106:275–281

    PubMed  CAS  Google Scholar 

  • Temlett JA, Quinn NP, Jenner PG, Marsden CD, Pourcher E, Bonnet AM, Agid Y, Markstein R, Lataste X (1989) Antiparkinsonian activity of CY 208–243, a partial D-1 dopamine receptor agonist, in MTPT-treated marmosets and patients with Parkinson's disease. Movement Disord 4:261–265

    PubMed  CAS  Google Scholar 

References

  • Abbott B, Starr BS, Starr MS (1991) CY 208–243 behaves as a typical D-1 agonist in the reserpine-treated mouse. Pharmacol Biochem Behav 38:259–263

    PubMed  CAS  Google Scholar 

  • Agarwal JC, Chandishwar N, Sharma M, Gupta GP, Bhargava KP, Shanker K (1983) Some new piperazino derivatives as antiparkinson and anticonvulsant agents. Arch Pharm (Weinheim) 316:690–694

    CAS  Google Scholar 

  • Amt J (1985) Behavioral stimulation is induced by separate dopamine D1 and D2 receptor sites in reserpine pretreated but not in normal rats. Eur J Pharmacol 113:79–88

    Google Scholar 

  • Duvoisin RC (1976) Parkinsonism: Animal analogues of the human disorder. in: Yahr MD (ed) The Basal Ganglia. Raven Press, New York, pp 293–303

    Google Scholar 

  • Nisewander JL, Castañeda E, Davis DA (1994) Dose-dependent differences in the development of reserpine-induced oral dyskinesias in rats: support of a model of tardive dyskinesia. Psychopharmacology 116:79–84

    Google Scholar 

References

  • Agarwal JC, Chandishwar N, Sharma M, Gupta GP, Bhargava KP, Shanker K (1983) Some new piperazino derivatives as antiparkinson and anticonvulsant agents. Arch Pharm (Weinheim) 316:690–694

    CAS  Google Scholar 

  • Agid Y, Javoy F, Glowinski J, Bouvet D, Sotelo C (1973) Injection of 6-hydroxydopamine into the substantia nigra of the rat. II. Diffusion and specificity. Brain Res 58:291–301

    PubMed  CAS  Google Scholar 

  • Carey RJ (1989) Stimulant drugs as conditioned and unconditioned stimuli in a classical conditioning paradigm. Drug Dev Res 16:305–315

    CAS  Google Scholar 

  • Carpenter MB, McMasters RE (1964) Lesions of the substantia nigra in the rhesus monkey. Efferent fiber degeneration and behavioral observations. Am J Anat 114:293–319

    PubMed  CAS  Google Scholar 

  • Clineschmidt BV, Martin GE, Bunting PR (1982) Central sympathomimetic activity of (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), a substance with potent anticonvulsant, central sympathomimetic, and apparent anxiolytic properties. Drug Dev Res 2:135–145

    CAS  Google Scholar 

  • Costall B, Kelly ME, Naylor RJ (1983) The production of asymmetry and circling behavior following unilateral, intrastriatal administration of neuroleptic agents: a comparison of abilities to antagonise striatal function. Eur J Pharmacol 96:79–86

    PubMed  CAS  Google Scholar 

  • De Jonge MC, Funcke ABH (1962) Sinistrotorsion in guinea pigs as a method of screening central anticholinergic activity. Arch Int Pharmacodyn 137:375–382

    PubMed  CAS  Google Scholar 

  • Emonds-Alt X, Bichon D, Ducoux JP, Heaulme M, Miloux B, Poncelet M, Proietto V, Van Broeck D, Vilain P, Neliat G, Soubrié P, Le Fur G, Brelière JC (1995) SR 142801, the first potent non-peptide antagonist of the tachykinin NK3 receptor. Life Sci 56:27–32

    Google Scholar 

  • Engber TM, Susel Z, Juncos JL, Chase TN (1989) Continuous and intermittent levodopa differentially affect rotation induced by D-1 and D-2 dopamine agonists. Eur J Pharmacol 168:291–298

    PubMed  CAS  Google Scholar 

  • Etemadzadeh E, Koskinen L, Kaakola S (1989) Computerized rotometer apparatus for recording circling behavior. Meth and Find Exp Clin Pharmacol 11:399–407

    CAS  Google Scholar 

  • Fitzgerald LW, Miller KJ, Ratty AK, Glick SD, Teitler M, Gross KW1 (1992) Asymmetric evaluation of striatal dopamine D2 receptors in the chakragati mouse: Neurobehavioral dysfunction in a transgenic insertional mutant. Brain Res 580:18–26

    PubMed  CAS  Google Scholar 

  • Fuxe K, Agnati LF, Corrodi H, Everitt BJ, Hökfelt T, Löfström A, Ungerstedt U (1975) Action of dopamine receptor agonists in fore brain and hypothalamus: rotational behavior, ovulation, and dopamine turnover. In: Caine DB, Chase TN, Barbeau A (eds) Advances in Neurology. Raven Press, New York, pp 223–242

    Google Scholar 

  • Garrett BE, Holtzman SG (1995) The effects of dopamine agonists on rotational behavior in non-tolerant and caffeine-tolerant rats. Behav Pharmacol 6:843–851

    PubMed  CAS  Google Scholar 

  • Garrett BE, Holtzman SG (1996) Comparison of the effects of prototypical behavioral stimulants on locomotor activity and rotational behavior in rats. Pharmacol Biochem Behav 54:469–477

    PubMed  CAS  Google Scholar 

  • Haque NSK, Hlavin ML, Fawcell JW, Dunnett SB (1996) The neurotrophin NT4/5, but not NT3, enhances the efficacy of nigral grafts in a rat model of Parkinson's disease. Brain Res 712:45–52

    PubMed  CAS  Google Scholar 

  • Herrera-Marschitz M, Terenius L, Grehn L, Ungerstedt U (1989) Rotational behaviour produced by intranigral injections of bovine and human β-casomorphins in rats. Psychopharmacology 99:357–361

    PubMed  CAS  Google Scholar 

  • Hudson JL, Levin DR, Hoffer BJ (1993) A 16-channel automated rotometer system for reliable measurement of turning behavior in 6-hydroxydopamine lesioned and transplanted rats. Cell Transplant 2:507–514

    PubMed  CAS  Google Scholar 

  • Kebabian JW, Britton DR, DeNinno MP, Perner R, Smith L, Jenner P, Schoenleber R, Williams M (1992) A-77363: a potent and selective D1 receptor antagonist with antiparkinsonian activity in marmosets. Eur J Pharmacol 229:203–209

    PubMed  CAS  Google Scholar 

  • König JFR, Klippel RA (1963) The rat brain — A stereotaxic atlas. Williams and Wilkins Co., Baltimore, MD

    Google Scholar 

  • Mandel RJ, Wilcox RE, Randall PK (1992) Behavioral quantification of striatal dopaminergic supersensitivity after bilateral 6-hydroxydopamine lesions in the mouse. Pharmacol Biochem Behav 41:343–347

    PubMed  CAS  Google Scholar 

  • McElroy JF, Ward KA (1995) 7-OH-DPAT, a dopamine D3-selective receptor agonist, produces contralateral rotation in 6-hydroxydopamine-lesioned rats. Drug Dev Res 34:329–335

    CAS  Google Scholar 

  • Mele A, Fontana D, Pert A (1997) Alterations in striatal dopamine overflow during rotational behavior induced by amphetamine, phencyclidine and MK 801. Synapse 26:218–244

    PubMed  CAS  Google Scholar 

  • Morelli M (1990) Blockade of NMDA transmission potentiates dopaminergic D-1 while reduces D-2 responses in the 6-OHDA model of Parkinson. Pharmacol Res 22, Suppl 2:343

    Google Scholar 

  • Perese DA, Ulman J, Viola J, Ewing SE, Bankiewicz KS (1989) A 6-hydroxydopamine-induced selective parkinsonian rat model. Brain Res 494:285–293

    PubMed  CAS  Google Scholar 

  • Poncelet M, Gueudet C, Emonds-Alt X, Belière JC, Le Fur G, Soubrié Ph (1993) Turning behavior induced in mice by a neurokinin A receptor antagonist: selective blockade by SR 48968, a non-peptide receptor antagonist. Neurosci Lett 149:40–42

    PubMed  CAS  Google Scholar 

  • Schwarting RKW, Huston JP (1996) The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Progr Neurobiol 50:275–331

    CAS  Google Scholar 

  • Schwarz RD, Stein JW; Bernard P (1978) Rotometer for recording rotation in chemically or electrically stimulated rats. Physiol Behav 20:351–354

    PubMed  CAS  Google Scholar 

  • Smith ID, Todd MJ, Beninger RJ (1996) Glutamate receptor agonist injections into the dorsal striatum cause contralateral turning in the rat: involvement of kainate and AMPA receptors. Eur J Pharmacol 301:7–17

    PubMed  CAS  Google Scholar 

  • Ungerstedt U (1971) Postsynaptic hypersensitivity after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand, Suppl 367:69–93

    CAS  Google Scholar 

  • Vernier VG, Unna KR (1963) The central nervous system effects of drugs in monkeys with surgically-induced tremor: Atropine and other antitremor agents. Arch Int Pharmacodyn 141:30–53

    PubMed  CAS  Google Scholar 

  • Worms P, Martinez J, Briet C, Castro B, Bizière K (1986) Evidence for dopaminomimetic effect of intrastriatally injected cholecystokinin octapeptide in mice. Eur J Pharmacol 121:395–401

    PubMed  CAS  Google Scholar 

  • Yasuda Y, Kikuchi T, Suzuki S, Tsutsui M, Yamada K, Hiyama T (1988) 7-[3-(4-[2,3-Dimethylphenyl]piperazinyl)propoxy]-2(1H)-quinolinone (OPC-4392), a presynaptic dopamine autoreceptor agonist and postsynaptic D2 receptor antagonist. Life Sci 42:1941–1954

    PubMed  CAS  Google Scholar 

References

  • Borlongan CV, Sanberg PR (1995) Elevated body swing test: a new behavioral parameter for rats with 6-hydroxydopamine-induced hemiparkinsonism. J Neurosci 15:5372–5378

    PubMed  CAS  Google Scholar 

  • Borlongan CV, Randall TS, Cahill DW, Sanberg PR (1995) Asymmetrical motor behavior in rats with unilateral excitotoxic lesions as revealed by the elevated body swing test. Brain Res 676:231–234

    PubMed  CAS  Google Scholar 

References

  • Abrous DN, Dunnett SB (1994) Paw reaching test in rats: the staircase test. Neurosci Protocols 10:1–11

    Google Scholar 

  • Abrous DN, Shaltot ARA, Torres EM, Dunnett SB (1993) Dopamine-rich grafts in the neostriatum and/or nucleus accumbens: effects on drug-induced behaviours and skilled paw-reaching. Neuroscience 53:187–197

    PubMed  CAS  Google Scholar 

  • Barnéoud P, Parmentier S, Mazadier M, Miquet JM, Boireau A, Dubedat P, Blanchard JC (1995) Effects of complete and partial lesions of the dopaminergic mesotelenephalic system of skilled forelimb use in rats. Neurosci 67:837–846

    Google Scholar 

  • Barnéoud P, Mazadier M, Miquet JM, Parmentier S, Dubédat P, Doble A, Boireau A (1996) Neuroprotective effects of riluzole on a model of Parkinson's disease in the rat. Neurosci 74:971–983

    Google Scholar 

  • Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swarz KJ, Martin JB (1986) Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid. Nature 321:168–171

    PubMed  CAS  Google Scholar 

  • Borlongan CV, Koutouzis TK, Sanberg PR (1997) 3-Nitropropionic acid animal model and Huntington's disease. Neurosci Biobehav Rev 21:289–293

    PubMed  CAS  Google Scholar 

  • DiFiglia M (1990) Excitotoxic injury of the neostriatum: a model for Huntington's disease. Trends Neurosci 13:286–289

    PubMed  CAS  Google Scholar 

  • Fricker RA, Annett LE, Torres EM Dunnett SB (1996) The placement of a striatal ibotenic acid lesion affects skilled forelimb use and the direction of drug-induced rotation. Brain Res Bull 41:409–416

    PubMed  CAS  Google Scholar 

  • Fricker RA, Torres EM, Hume SP, Myers R, Opacka-Juffrey J, Ashworth S, Brooks DJ, Dunnett SB (1997) The effects of donor stage on the survival and function of embryonic grafts in the adult rat brain. II. Correlation between positron emission tomography and reaching behaviour. Neurosci 79:711–721

    CAS  Google Scholar 

  • Grabowski M, Brundin P, Johansson BB, Kontos HA (1993) Paw reaching, sensorimotor, and rotational behavior after brain infarction in rats. Stroke 24:889–895

    PubMed  CAS  Google Scholar 

  • Marston HM, Faber ESL, Crawford JH, Butcher SP, Sharkey J (1995) Behavioural assessment of endothelin-1 induced middle cerebral artery occlusion in rats. NeuroReport 6/7:1067–1071

    PubMed  CAS  Google Scholar 

  • Meyer C, Jacquart G, Joyal CC, Mahler P, Lalonde R (1997) A revolving food pellet test for measuring sensorimotor performance in rats. J Neurosci Meth 72:117–122

    CAS  Google Scholar 

  • Montoya CP, Astell S, Dunnett SB (1990) Effects of nigral and striatal grafts on skilled forelimb use in the rat. In: SB Dunnett, SJ Richards (eds) Progress in Brain Research, Vol 82, Elsevier Science Publishers BV, Amsterdam, pp 459–466

    Google Scholar 

  • Montoya CP, Campell-Hope LJ, Pemberton KD, Dunnett SB (1991) The staircase test: a measure of independent forelimb reaching and grasping abilities in the rat. J Neurosci Meth 36:219–228

    CAS  Google Scholar 

  • Nakao N, Grasbon-Frodl EM, Widner H, Brundin P (1996) DARPP-32-rich zones in grafts of lateral ganglionic eminence govern the extent of functional recovery in skilled paw reaching in an animal model of Huntington' disease. Neurosci 74:959–970

    CAS  Google Scholar 

  • Nikkhah G, Duan WM, Knappe U, Jödicke A, Björklund A (1993) Restoration of complex sensorimotor behavior and skilled forelimb use by a modified nigral cell suspension transplantation approach in the rat Parkinson model. Neurosci 56:33–43

    CAS  Google Scholar 

  • Olsson M, Nikkhah G, Bentlage C, Björklund A (1995) Forelimb akinesia in the rat Parkinson model: differential effects of dopamine agonists and nigral transplants as assessed by a new stepping test. J Neurosci 15:3863–3875

    PubMed  CAS  Google Scholar 

  • Pérez-Navarro E, Canudas AM, Akerud P, Alberch J, Arenas E (2000) Brain-derived neurotrophic factor, neurotrophin-3 and neurotrophin 4/5 prevent the death of striatal projection neurons in a rodent model of Huntington's disease. J Neurochem 75:2190–2199

    PubMed  Google Scholar 

  • Sharkey J, Crawford JH, Butcher SP, Marston HM, Hayes RL (1996) Tacrolimus (FK506) ameliorates skilled motor deficits produced by middle artery occlusion in rats. Stroke 27:2282–2286

    PubMed  CAS  Google Scholar 

  • Whishaw IQ, O'Connor WT, Dunnett SB (1986) The contributions of motor cortex, nigrostriatal dopamine and caudate-putamen to skilled forelimb use in the rat. Brain 109:805–843

    PubMed  Google Scholar 

References

  • Olsson M, Nikkhah G, Bentlage C, Björklund A (1995) Forelimb akinesia in the rat Parkinson model: differential effects of dopamine agonists and nigral transplants as assessed by a new stepping test. J Neurosci 15:3863–3875

    PubMed  CAS  Google Scholar 

  • Rosenblad C, Martinez-Serrano A, Björklund A (1997) Intrastriatal cell line-derived neurotrophic factor promotes sprouting of spared nigrostriatal dopaminergic afferents and induces recovery of function in a rat model of Parkinson's disease. Neurosci 82:129–137

    Google Scholar 

  • Schallert T, Norton D, Jones TA (1992) A clinically relevant unilateral model of Parkinsonian akinesia. J Neur Transplant Plast 3:332–333

    Google Scholar 

References

  • Büch H, Butello W, Neurohr O, Rummel W (1968) Vergleich von Verteilung, narkotischer Wirksamkeit und metabolischer Elimination der optischen Antipoden von Methylphenobarbital. Biochem Pharmacol 17:2391–2398

    PubMed  Google Scholar 

  • Büch H, Grund W, Buzello W, Rummel W (1969) Narkotische Wirksamkeit und Gewebsverteilung der optischen Antipoden des Pentobarbitals bei der Ratte. Biochem Pharmacol 18:1995–1009

    Google Scholar 

  • Butler TC, Bush MT (1942) Anesthetic potency of some new derivatives of barbituric acid. Proc Soc Exp Biol Med 50:232–243

    CAS  Google Scholar 

  • Chen G, Ensor CR, Bohner B (1966) The Neuropharmacol of 2-(o-chlorophenyl)-2-methylaminocyclohexanone hydrochloride. J Pharm Exp Ther 152:332–339

    CAS  Google Scholar 

  • Child KJ, Currie JP, Davis B, Dodds MG, Pearce DR, Twissell DJ (1971) The pharmacological properties in animals of CT1341 — a new steroid anaesthetic agent. Br J Anaesth 43:2–24

    PubMed  CAS  Google Scholar 

  • Christensen HD, Lee IS (1973) Anesthetic potency and acute toxicity of optically active disubstituted barbituric acids. Toxicol Appl Pharmacol 26:495–503

    PubMed  CAS  Google Scholar 

  • Domenjoz R (1959) Anaesthesist 8:16

    PubMed  CAS  Google Scholar 

  • Glenn JB, Animal studies of the anesthetic activity of ICI 35868. Br J Anaesth 52:731–742

    Google Scholar 

  • Goldenthal EI (1971) A compilation of LD50 values in newborn and adult animals. Toxicol Appl Pharmacol 18:185–207

    PubMed  CAS  Google Scholar 

  • Janssen PAJ, Niemegeers CJE, Marsboom RPH (1975) Etomidate, a potent non-barbiturate hypnotic. Intravenous etomidate in mice, rats, guinea pigs, rabbits and dogs. Arch Int Pharmacodyn 214:92–132

    PubMed  CAS  Google Scholar 

  • Laubach GD, Pan SY, Rudel HW (1955) Steroid anesthetic agent. Science 122:78

    PubMed  CAS  Google Scholar 

  • Miller E, Munch JC, Crossley FS, Hartung WH (1936) J Am Chem Soc 58:1090

    CAS  Google Scholar 

  • Pieri L (1984) Preclinical pharmacology of midazolam. Br J Clin Pharmacol 16:17S–27S

    Google Scholar 

  • Reich DL, Silvay G (1989) Ketamine: an update on the first twenty-five years of clinical experience. Can J Anaesth 36:186–197

    PubMed  CAS  Google Scholar 

  • Reilly CS, Nimmo WS (1987) New intravenous anaesthetics and neuromuscular blocking drugs. Drugs 34:98–135

    PubMed  CAS  Google Scholar 

  • Volwiler EH, Tabern DL (1930) J Am Chem Soc 52:1676

    CAS  Google Scholar 

References

  • Büch H, Buzello W, Neurohr O, Rummel W (1968) Vergleich von Verteilung, narkotischer Wirksamkeit und metabolischer Elimination der optischen Antipoden von Methylphenobarbital. Biochem Pharmacol 17:2391–2398

    PubMed  Google Scholar 

  • Chen G, Ensor CR, Bohner B (1966) The Neuropharmacol of 2-(o-chlorophenyl)-2-methylaminocyclohexanone hydrochloride. J Pharm Exp Ther 152:332–339

    CAS  Google Scholar 

  • Child KJ, Currie JP, Davis B, Dodds MG, Pearce DR, Twissell DJ (1971) The pharmacological properties in animals of CT1341 — a new steroid anaesthetic agent. Br J Anaesth 43:2–24

    PubMed  CAS  Google Scholar 

  • Christensen HD, Lee IS (1973) Anesthetic potency and acute toxicity of optically active disubstituted barbituric acids. Toxicol Appl Pharmacol 26:495–503

    PubMed  CAS  Google Scholar 

  • Dingwall B, Reeve B, Hutchinson M, Smith PF, Darlington CL (1993) The tolerometer: a fast, automated method for the measurement of righting reflex latency in chronic drug studies. J Neurosci Meth 48:11–114

    Google Scholar 

  • Glenn JB (1977) A technique for the laboratory evaluation of the speed of onset of i.v. anesthesia. Br J Anaesth 49:545–549

    Google Scholar 

  • Janssen PAJ, Niemegeers CJE, Marsboom RPH (1975) Etomidate, a potent non-barbiturate hypnotic. Intravenous etomidate in mice, rats, guinea pigs, rabbits and dogs. Arch Int Pharmacodyn 214:92–132

    PubMed  CAS  Google Scholar 

  • Litchfield JT Jr., Wilcoxon FA (1949) Simplified method of evaluating dose-effect experiments. J Pharm Exp Ther 96:99–113

    CAS  Google Scholar 

  • Michelsen LG, Salmenperä M, Hug CC, Sziam F, van der Meer D (1996) Anesthetic potency of remifentanil in dogs. Anesthesiol 84:865–872

    CAS  Google Scholar 

  • Reilly CS, Nimmo WS (1987) New intravenous anaesthetics and neuromuscular blocking drugs. Drugs 34:98–135

    PubMed  CAS  Google Scholar 

  • Volwiler EH, Tabern DL (1930) 5,5-Substituted barbituric acids. J Am Chem Soc 52:1676–1679

    CAS  Google Scholar 

References

  • Bolander HG, Wahlström G, Norberg L (1984) Reevaluation of potency and pharmacokinetic properties of some lipid-soluble barbiturates with an EEG-threshold method. Acta Pharmacol Toxicol 54:33–40

    CAS  Google Scholar 

  • Korkmaz S, Wahlström G (1997) The EEG burst suppression threshold test for the determination of CNS sensitivity to intravenous anesthetics in rats. Brain Res Protocols 1:378–384

    CAS  Google Scholar 

  • Koskela T, Wahlström G (1989) Comparison of anaesthetic and kinetic properties of thiobutabarbital, butabarbital and hexobarbital after intravenous threshold doses in the male rat. Pharmacol Toxicol 64:308–313

    PubMed  CAS  Google Scholar 

  • Norberg L, Wahlström G (1988) Anaesthetic effects of flurazepam alone and in combination with thiopental or hexobarbital evaluated with an EEG-threshold method in male rats. Arch Int Pharmacodyn Ther 292:45–57

    PubMed  CAS  Google Scholar 

  • Norberg L, Wahlström G, Bäckström T (1987) The anaesthetic potency of 3α-hydroxy-5α-pregnan-20-one and 3α-hydroxy-5β-pregnan-20-one determined with an intravenous EEG threshold method in male rats. Pharmacol Toxicol 61:42–47

    PubMed  CAS  Google Scholar 

  • Wauquier A, De Ryck M, Van den Broeck W, Van Loon J, Melis W, Janssen P (1988) Relationships between quantitative EEG measures and pharmacodynamics of alfentanil in dogs. Electroencephalogr Clin Neurophysiol 69:550–560

    PubMed  CAS  Google Scholar 

References

  • Borkowski GL, Dannemann PJ, Russel GB, Lang CM (1990) An evaluation of three intravenous regimens in New Zealand rabbits. Lab Anim Sci 40:270–276

    PubMed  CAS  Google Scholar 

  • Glenn JB, Animal studies of the anesthetic activity of ICI35868. Br J Anaesth 52:731–742

    Google Scholar 

  • Murdock HR (1969) Anesthesia in the rabbit. Fed Proc 28:1510–1516

    PubMed  Google Scholar 

  • Peeters ME, Gil D, Teske E, Eyzenbach V, v.d. Brom WE, Lumeij JT, de Vries HW (1988) Four methods for general anesthesia in rabbits: a comparative study. Lab Animals 22:355–360

    CAS  Google Scholar 

References

  • Davis NL, Nunnally RL, Malinin TI (1975) Determination of the minimal alveolar concentration (MAC) of halothane in the white New Zealand rabbit. Br J Anesthesiol 47:341–345

    CAS  Google Scholar 

  • Eger EI II, Saidman LJ, Brandstater B (1965) Minimum alveolar anesthetic concentration: a standard of anesthetic potency. Anesthesiol 26:756–763

    Google Scholar 

  • Eger EI II, Johnson BH, Weiskopf RB, Holmes MA, Yasuda N, Targ A, Rampil IJ (1988) Minimum alveolar concentration of I-653 and isoflurane in pigs. Anaesth Analg 67:1174–1176

    Google Scholar 

  • Fang Z, Gong D, Ionescu P, Laster MJ, Eger II EI, Kendig J (1997) Maturation decreases ethanol minimum alveolar anesthetic concentration (MAC) more than desflurane MAC in rats. Anaesth Analg 84:852–858

    CAS  Google Scholar 

  • Hall RI, Murphy MR, Hug CC (1987) The enfluorane sparing effect in dogs. Anesthesiol 67:518–525

    CAS  Google Scholar 

  • Ide T, Sakurai Y, Aono M, Nishino T (1998) Minimum alveolar anesthetic concentrations for airway occlusion in cats: A new concept of minimum alveolar anesthetic concentration-airway occlusion response. Anaesth Analg 86:191–197

    CAS  Google Scholar 

  • Kashimoto S, Furuya A, Nonoka A, Oguchi T, Koshimizu M, Kumazawa T (1997) The minimum alveolar concentration of sevoflurane in rats. Eur J Anesthesiol 14:395–361

    Google Scholar 

  • Merkel G, Eger EI II (1963) A comparative study of halothane and halopropane anesthesia. Anesthesiol 24:346–357

    CAS  Google Scholar 

  • Murphy MR, Hug CC (1982) The anesthetic potency of fentanyl in terms of its reduction of enflurane MAC. Anesthesiol: 485–488

    Google Scholar 

  • Quasha AL, Eger EI II, Tinker JH (1980) Determination and applications of MAC. Anesthesiol 53:315–334

    CAS  Google Scholar 

  • Regan MJ, Eger EI II (1967) Effect of hypothermia in dogs on anesthetizing and apneic doses of inhalation agents. Determination of the anesthetic index (Apnea/MAC). Anesthesiol 28:689–700

    CAS  Google Scholar 

  • Robbins BH (1946) Preliminary studies of the anesthetic activity of fluorinated hydrocarbons. J Pharmacol Exp Ther 86:197–204

    PubMed  CAS  Google Scholar 

  • Saidman LJ, Eger EI II (1964) Effect of nitrous oxide and narcotic premedication on the alveolar concentration of halothane required for anesthesia. Anesthesiol 25:302–306

    CAS  Google Scholar 

  • Seifen E, Seifen AB, Kennedy RH, Bushman GA, Loss GE, Williams TG (1987) Comparison of cardiac effects of enflurane, isoflurane, and halothane in the dog heart-lung preparation. J Cardiothor Anesth 1:543–553

    CAS  Google Scholar 

  • Waizer PR, Baez S, Orkin LR (1973) A method for determining minimum alveolar concentration of anesthetic in the rat. Anesthesiol 39:394–397

    CAS  Google Scholar 

  • Wolfson B, Dorsch SE, Kuo TS, Siker ES (1972) Brain anesthetic concentration — a new concept. Anesthesiol 36:176–179

    CAS  Google Scholar 

References

  • Burgison RM (1964) Animal techniques for evaluating anesthetic drugs. In: Nodine JH, Siegler PE (eds) Animal and Clinical Techniques in Drug Evaluation. Year Book Med. Publ., Inc., Chicago, pp 369–372

    Google Scholar 

  • Burns THS, Hall JM, Bracken A, Gouldstone G (1961) Investigation of new fluorine compounds in anaesthesia (3): The anaesthetic properties of hexafluorobenzene. Anaesthesia 16:333–339

    PubMed  CAS  Google Scholar 

  • Raventós J (1956) Action of fluothane — A new volatile anaesthetic. Br J Pharmacol 11:394

    Google Scholar 

  • Ravento J, Spinks A (1958) Development of halothane. Methods of screening volatile anaesthetics. Manchester Univ Med School Gaz 37:55

    Google Scholar 

  • Van Poznak A Artusio JF Jr. (1960) Anesthetic properties of a series of fluorinated compounds: II. Fluorinated ethers. Toxicol Appl Pharmacol 2:374

    Google Scholar 

References

  • Cervin A, Lindberg S (1998) Changes in mucociliary activity may be used to investigate the airway-irritating potency of volatile anaesthetics. Br J Anaesth 80:475–480

    PubMed  CAS  Google Scholar 

  • Fukuda H, Hirabayashi Y, Shimizu R, Saitoh K, Mitsuhata H (1996) Sevoflurane is equivalent to isoflurane for attenuating bupivacaine-induced arrhythmias and seizures in rats. Anesth Analg 83:570–573

    PubMed  CAS  Google Scholar 

  • Hanagata K, Matsukawa T, Sessler DI, Miyaji T, Funayama T, Koshimizu M, Kashimoto S, Kumazawa T (1995) Isoflurane and sevoflurane produce a dose-dependent reduction in the shivering threshold in rabbits. Anesth Analg 81:581–584

    PubMed  CAS  Google Scholar 

  • Hashimoto H, Imamura S, Ikeda K, Nakashima M (1994) Electrophysiological effects of volatile anesthetics, sevoflurane and halothane, in a canine myocardial infarction model. J Anesth 8:93–100

    Google Scholar 

  • Hashimoto Y, Hirota K, Ohtomo N, Ishihara H, Matsuki A (1996) In vivo direct measurement of the bronchodilating effect of sevoflurane using a superfine fiberoptic bronchoscope: Comparison with enflurane and halothane. J Cardiothorac Vasc Anesth 10:213–216

    PubMed  CAS  Google Scholar 

  • Hirano M, Fujigaki T, Shibata O, Sumikawa K (1995) A comparison of coronary hemodynamics during isoflurane and sevoflurane anesthesia in dogs. Anesth Analg 80:651–656

    PubMed  CAS  Google Scholar 

  • Hisaka Y, Ohe N, Takase K, Ogasawara S (1997) Cardiopulmonary effects of sevoflurane in cats: Comparison with isoflurane, halothane, and enflurane. Res Vet Sci 63:205–210

    Google Scholar 

  • Johnson RA, Striler E, Sawyer DC, Brunson DB (1998) Comparison of isoflurane with sevoflurane for anesthesia induction and recovery in adult dogs. Am J Vet Res 59:487–481

    Google Scholar 

  • Kataoka Y, Manabe M, Takimoto E, Tokai H, Aono J, Hishiyama K, Ueda W (1994) Negative inotropic effects of sevoflurane, isoflurane, enflurane and halothane in canine blood-perfused papillary muscles. Anesth Resusc 30:73–76

    CAS  Google Scholar 

  • Kissin I, Morgan PL, Smith LR (1983) Comparison of isoflurane and halothane safety margins in rats. Anesthesiol 58:556–561

    CAS  Google Scholar 

  • Kissin I, Kerr CR, Smith LR (1984) Morphine-halothane interaction in rats. Anesthesiol 60:553–561

    CAS  Google Scholar 

  • Krantz JC Jr., Carr CJ, Forman SE, Evans WE Jr., Wollenweber H (1941) Anesthesia. IV. The anesthetic action of cyclopropylethyl ether. J Pharmacol Exp Ther 72:233–244

    CAS  Google Scholar 

  • Krantz JC Jr., Carr CJ, Lu G, Bell FK (1953) Anesthesia. XL. The anesthetic action of trifluoroethyl vinyl ether. J Pharm Exp Ther 108:488–495

    CAS  Google Scholar 

  • McMurphy RM, Hodgson DS (1996) Cardiopulmonary effects of desflurane in cats. Am J Vet Res 57:367–370

    PubMed  CAS  Google Scholar 

  • Mazzeo AJ, Cheng EY, Bosnjak ZJ, Coon RL, Kampine JP (1996) Differential effects of desflurane and halothane on peripheral airway smooth muscle. Br J Anaesth 76:841–846

    PubMed  CAS  Google Scholar 

  • Mitsuhata H, Saitoh J, Shimizu R, Takeuchi H, Hasome N, Horiguchi Y (1994) Sevoflurane and isoflurane protect against bronchospasm in dogs. Anesthesiol 81:1230–1234

    CAS  Google Scholar 

  • Mutoh T, Nishimura R, Kim HY, Matsunage S, Sasaki N (1997) Cardiopulmonary effects of sevoflurane, compared with halothane, enflurane, and isoflurane, in dogs. Am J Vet Res 58:885–890

    PubMed  CAS  Google Scholar 

  • Novalija E, Hogan QH, Kulier AH, Turner LH, Bosnjak ZJ (1998) Effects of desflurane, sevoflurane and halothane on postinfarction spontaneous dysrhythmias in dogs. Acta Anaesthesiol Scand 42:353–357

    PubMed  CAS  Google Scholar 

  • Saeki Y, Hasegawa Y, Shibamoto T, Yamaguchi Y, Hayashi T, Tanaka S, Wang GH, Koyama S (1996) The effects of sevoflurane, enflurane, and isoflurane on baroreceptor-sympathetic reflex in rabbits. Anesth Analg 82:342–348

    PubMed  CAS  Google Scholar 

  • Soma LR, Terney WJ, Hogan GK, Satoh N (1995) The effects of multiple administrations of sevoflurane to cynomolgus monkeys: Clinical pathologic, hematologic and pathologic study. Anesth Analg 81:347–352

    PubMed  CAS  Google Scholar 

  • Van Poznak A, Artusio F Jr. (1960a) Anesthetic properties of a series of fluorinated compounds. I. Fluorinated hydrocarbons. Toxicol Appl Pharmacol 2:363–373

    Google Scholar 

  • Van Poznak A, Artusio F Jr. (1960b) Anesthetic properties of a series of fluorinated compounds. II. Fluorinated ethers. Toxicol Appl Pharmacol 2:363–373

    Google Scholar 

  • Wolfson B, Kielar CM, Lake C, Hetrick WD, Siker ES (1973) Anesthetic index — a new approach. Anesthesiol 38:583–586

    CAS  Google Scholar 

  • White PF, Johnston RR, Eger EI II (1974) Determination of anesthetic requirement in rats. Anesthesiol 40:52–57

    CAS  Google Scholar 

  • Salmempera M, Wilson D, Szlam F, Hugg CC Jr. (1992) Anesthetic potency of the opioid GI 87084B in dogs. Anesthesiology 77:A368

    Google Scholar 

  • Steffey EP, Howland D (1978) Potency of enflurane in dogs: comparison with halothane and isoflurane. Am J Vet Res 39:573–577

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag

About this entry

Cite this entry

Vogel, H.G., Vogel, W.H., Schölkens, B.A., Sandow, J., Müller, G., Vogel, W.F. (2002). Psychotropic and neurotropic activity1 . In: Vogel, H.G., Vogel, W.H., Schölkens, B.A., Sandow, J., Müller, G., Vogel, W.F. (eds) Drug Discovery and Evaluation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29837-1_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-29837-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42396-6

  • Online ISBN: 978-3-540-29837-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics