Skip to main content

Respiratory activity

  • Reference work entry
Drug Discovery and Evaluation

1 D.1 In vitro tests

1.1 D.1.0.1 Histamine (H1) receptor binding

1.1.1 PURPOSE AND RATIONALE

Histamine is considered to play a major role in asthmatic attacks. H1-antagonists have been used since decades as therapeutic agents. This assay is used to determine the affinity of test compounds to the histamine H1 receptor by measuring their inhibitory activities on the binding of the H1 antagonist 3H-pyrilamine to a plasma membrane preparation from guinea pig brain.

1.1.2 PROCEDURE

Brains from guinea-pigs are homogenized in ice-cold Tris buffer (pH 7.5) in a Potter homogenizer (1 g brain in 30 ml buffer). The homogenate is centrifuged at 4°C for 10 min at 50000g. The supernatant is discarded, the pellet resupended in buffer, centrifuged as before, and the final pellets resupended in Tris buffer (1 g fresh weight/5 ml). Aliquots of 1 ml are frozen at −70°C.

In the competition experiment, 5 μl 3H-pyrilamine (one constant concentration of 2×10−-9 M), 50 μl test compound (>10 concentrations, 10

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

References

  • Carswell H, Nahorski SR (1982) Distribution and characteristics of histamine H1-receptors in guinea-pig airways identified by [3H]mepyramine. Eur J Pharmacol 81:301–307

    PubMed  CAS  Google Scholar 

  • Chang RSL, Tran VT, Snyder SH (1979) Heterogeneity of histamine H1-receptors: Species variations in [3H]mepyramine binding of brain membranes. J Neurochem 32:1653–1663

    PubMed  CAS  Google Scholar 

  • Hill SJ, Emson PC, Young JM (1978) The binding of [3H]mepyramine to histamine H1 receptors in guinea-pig brain. J Neurochem 31:997–1004

    PubMed  CAS  Google Scholar 

  • Ruat M, Schwartz JC (1989) Photoaffinity labeling and electrophoretic identification of the H1-receptor: Comparison of several brain regions and animal species. J Neurochem 53:335–339

    PubMed  CAS  Google Scholar 

References

  • Barrow RE (1986) Volume-pressure cycles from air and liquid-filled intact rabbit lungs. Resp Physiol 63:19–30

    CAS  Google Scholar 

  • Foreman JC, Shelly R, Webber SE (1985) Contraction of guinea-pig lung parenchymal strips by substance P and related peptides. Arch Int Pharmacodyn 278:193–206

    PubMed  CAS  Google Scholar 

  • Frazer DG, Weber KC, Franz GN (1985) Evidence of sequential opening and closing of lung units during inflation-deflation of excised rat lungs. Resp Physiol 61:277–288

    CAS  Google Scholar 

  • Kleinstiver PW, Eyre P (1979) Evaluation of the lung parenchyma strip preparation to measure bronchoactivity. J Pharmacol Meth 2:175–185

    CAS  Google Scholar 

  • Lach E, Haddad EB, Gies JP (1993) Contractile effect of bombesin on guinea pig lung in vitro: involvement of GRP-preferring receptors. Am J Physiol 264:L80–L86

    PubMed  CAS  Google Scholar 

  • Lach E, Trifilieff A, Muosli M, Landry Y, Gies JP (1994) Bradykinin-induced contraction of guinea pig lung in vitro. Naunyn-Schmiedeberg's Arch Pharmacol 350:201–208

    CAS  Google Scholar 

  • Lulich KM, Papadimitriou JM, Paterson JW (1979) The isolated lung strip and single open tracheal ring: a convenient combination for characterizing Schultz-Dale anaphylactic contractions in the peripheral and central airways. Clin Exp Pharmacol Physiol 6:625–629

    PubMed  CAS  Google Scholar 

References

  • Barnes PJ (1993) Muscarinic receptor subtypes in airways. Life Sci 52:521–527

    PubMed  CAS  Google Scholar 

  • Castillo JC, de Beer EJ. (1947) The tracheal chain. I. A preparation for the study of antispasmodics with particular reference to bronchodilator drugs. J Pharmacol Exp Ther 90:104–109

    PubMed  CAS  Google Scholar 

  • Coleman RA, Nials AT (1989) Novel and versatile superfusion system. Its use in the evaluation of some spasmogenic and spasmolytic agents using guinea pig isolated tracheal smooth muscle. J Pharmacol Meth 21

    Google Scholar 

  • Da Silva A, Amrani YS, Trifilieff A, Landry Y (1995) Involvement of B2 receptors in bradykinin-induced relaxation of guinea-pig isolated trachea. Br J Pharmacol 114:103–108

    PubMed  Google Scholar 

  • Eltze M, Galvan M (1994) Involvement of muscarinic M2 and M3, but not of M1 and M4 receptors in vagally stimulated contractions of rabbit bronchus/trachea. Pulmon Pharmacol 7:109–120

    CAS  Google Scholar 

  • Englert CE, Wirth K, Gehring D, Fürst U, Albus U, Scholz W, Rosenkranz B, Schölkens BA (1992) Airway pharmacology of the potassium channel opener, HOE 234, in guinea pigs: in vitro and in vivo studies. Eur J Pharmacol 210:69–75

    PubMed  CAS  Google Scholar 

  • Farmer SG, Fedan JS, Hay DWP, Raeburn D (1986) The effects of epithelium removal on the sensitivity of guinea-pig isolated trachealis to bronchodilator drugs. Br J Pharmacol 89:407–414

    PubMed  CAS  Google Scholar 

  • Farmer SG, Broom T, DeSiato MA (1994) Effects of bradykinin receptor agonists, and captopril and thiorphan in ferret isolated trachea: evidence for bradykinin generation in vitro. Eur J Pharmacol 259:309–313

    PubMed  CAS  Google Scholar 

  • Foster RW (1966) The nature of the adrenergic receptors of the trachea of the guinea-pig. J Pharm Pharmacol 18:1–12

    PubMed  CAS  Google Scholar 

  • Goldie RG, Papadimitriou JM, Paterson JW, Rigby PJ, Self HM, Spina D (1986a) Influence of the epithelium on responsiveness of guinea pig isolated trachea to contractile and relaxant agonists. Br J Pharmacol 87:5–14

    PubMed  CAS  Google Scholar 

  • Goldie RG, Spina D, Henry PJ, Lulich KM, Paterson JW (1986b) In vitro responsiveness of human asthmatic bronchus to carbachol, histamine, β-adrenoceptor agonists and theophylline. Br J Clin Pharmacol 22:669–676

    PubMed  CAS  Google Scholar 

  • Hashjin GS, Henricks PAJ, Folkerts G, Nijkamp FP (1995) Preparation of bovine tracheal smooth muscle for in vitro pharmacological studies. J Pharmacol Toxicol Meth 34:103–108

    CAS  Google Scholar 

  • Hock JF, Wirth K, Albus U, Linz W, Gerhards HJ, Wiemer G, Henke St, Breipohl G, König W, Knolle J, Schölkens BA (1991) HOE 140 a new potent and long acting bradykininantagonist. In vitro studies. Br J Pharmacol 102:769–773

    PubMed  CAS  Google Scholar 

  • Hulsman AR, de Jongste JC (1993) Studies of human airways in vitro: A review of the methodology. J Pharm Toxicol Meth 30:117–132

    Google Scholar 

  • Kotlikoff MI, Kamm KE (1996) Molecular mechanisms of β-adrenergic relaxation of airway smooth muscle. Ann Rev Physiol 58:115–141

    CAS  Google Scholar 

  • Lee T-L, Adaikan PG, Lau L-C, Ratnam SS, Dambisya YM (1997) Effects of bupivacaine and its isomers on guinea pig tracheal smooth muscle. Meth Find Exp Clin Pharmacol 19:27–33

    Google Scholar 

  • Lulich KM, Paterson JW (1980) An in vitro study of various drugs on central and peripheral airways of the rat: a comparison with human airways. Br. J Pharmac 68:633–636

    CAS  Google Scholar 

  • Rhoden KJ, Barnes PJ (1989) Effect of hydrogen peroxide on guinea-pig tracheal smooth muscle in vitro: role of cyclo-oxygenase and airway epithelium. Br J Pharmacol 98:325–330

    PubMed  CAS  Google Scholar 

  • Sheth UK, Dadkar NK, Kamat UG (1972) Selected Topics in Experimental Pharmacology Published by Kothari Book Depot, India

    Google Scholar 

  • Tamaoki J, Yamauchi F, Chiyotani A, Yamawaki I, Takeuchi S, Konno K (1993) Atypical β-adrenoceptor-(β3-adrenoceptor) mediated relaxation of canine isolated bronchial muscle. J Appl Physiol 74:297–302

    PubMed  CAS  Google Scholar 

  • Toews ML, Ustinowa EE, Schultz HD (1997) Lysophosphatidic acid enhances contractility of isolated airway smooth muscle. J Appl Physiol 83:1216–1222

    PubMed  CAS  Google Scholar 

  • Vaali K, Li L, Redemann B, Paakkari I, Vapaatalo H (1996) In vitro bronchorelaxing effect of novel nitric oxide donors GEA 3268 and GEA 5145 in guinea pigs and rats. J Pharm Pharmacol 48:1309–1314

    PubMed  CAS  Google Scholar 

  • Waldeck B, Widmark E (1985) Comparison of the effects of forskolin and isoprenaline on tracheal, cardiac and skeletal muscles from guinea-pig. Eur J Pharmacol 112:349–353

    PubMed  CAS  Google Scholar 

  • Wilkens JH, Becker A, Wilkens H, Emura M, Riebe-Imre M, Plien K, Schöber S, Tsikas D, Gutzki FM, Frölich JCl (1992) Bioassay of a tracheal smooth muscle-constricting factor released by respiratory epithelial cells. Am J Physiol 263 (Lung Cell Mol Physiol 7):L137–L141

    PubMed  CAS  Google Scholar 

  • Wong WSF, Koh DSK, Koh AHM, Ting WL, Wong PTH (1997) Effects of tyrosine kinase inhibitors on antigen challenge of guinea pig lung in vitro. J Pharmacol Exp Ther 283:131–137

    PubMed  CAS  Google Scholar 

References

  • Baersch G, Frölich JC (1996) A new bioassay to study contractile and relaxant effects of PGE2 on perfused guinea pig trachea. J Pharmacol Toxicol Meth 36:63–68

    CAS  Google Scholar 

  • Fedan JS, Frazer DG (1992) Influence of epithelium on the reactivity of guinea pig isolated, perfused trachea to bronchoactive drugs. J Pharm Exp Ther 262:741–750

    CAS  Google Scholar 

  • Fernandes LB, Paternon JW, Goldie RG (1989) Co-axial bioassay of smooth muscle relaxant factor released from guinea-pig tracheal epithelium. Br J Pharmacol 96:117–124

    PubMed  CAS  Google Scholar 

  • Hulsman AR, Raatgeep HR, Bonta IL, Stijnen T, Kerrebijn KF, de Jongste JC (1992) The perfused human bronchiolar tube. Characteristics of a new model. J Pharm Toxicol Meth 28:29–34

    Google Scholar 

  • Lewis CA, Broadley KJ (1995) Influence of spasmogen inhalation by guinea pigs upon subsequent demonstration of ovalbumin-induced hyperreactivity in isolated airway tissues. J Pharmacol Toxicol Meth 34:187–198

    CAS  Google Scholar 

  • Mitchell HW, Willet KE, Sparrow MP (1989) Perfused bronchial segment and bronchial strip: narrowing vs. isometric force by mediators. J Appl Physiol 66:2704–2709

    PubMed  CAS  Google Scholar 

  • Munakata M, Mitzner W, Menkes H (1988) Osmotic stimuli induce epithelial-dependent relaxation in the guinea pig trachea. J Appl Physiol 64:466–471

    PubMed  CAS  Google Scholar 

  • Munakata M, Huang I, Mitzner W, Menkes H (1989) Protective role of epithelium in the guinea pig airway. J Appl Physiol 66:1547–1552

    PubMed  CAS  Google Scholar 

  • Omari TI, Sparrow MP, Mitchell HW (1993) Responsiveness of human isolated bronchial segments and its relationship to epithelial loss. Br J Clin Pharmacol 35:357–365

    PubMed  CAS  Google Scholar 

  • Pavlovic D, Fournier M, Aubier M, Pariente R (1989) Epithelial vs. serosal stimulation of tracheal muscle: role of epithelium J Appl Physiol 67:2522–2526

    PubMed  CAS  Google Scholar 

  • Sparrow MP, Mitchell HW (1991) Modulation by the epithelium of the extent of bronchial narrowing produced by substances perfused through the lumen. Br J Pharmacol 103:1160–1164

    PubMed  CAS  Google Scholar 

  • Yang J, Mitzner W, Hirshman C (1991) Role of epithelium in airway smooth muscle responses to relaxant agents. J Appl Physiol 71:1434–1440

    PubMed  CAS  Google Scholar 

References

  • Luduena FP, von Euler L, Tullar BF, Lands AM (1957) Effect of the optical isomers of some sympathomimetic amines on the guinea pig bronchioles. Arch Int Pharmacodyn 111:392–400

    PubMed  CAS  Google Scholar 

  • Sollmann T, von Oettingen WF (1928) Bronchial perfusion of isolated lung as a method for studying pharmacologic reactions of bronchiolar muscle. Proc Soc Exp Biol Med 25:692–695

    CAS  Google Scholar 

  • Tainter ML, Peddenm JR, James M (1934) Comparative actions of sympathomimetic compounds: bronchodilator actions in perfused guinea pig lungs. J Pharm Exp Ther 51:371–386

    CAS  Google Scholar 

References

  • Allen DA, Schertel ER, Bailey JE (1993) Reflex cardiovascular effects of continuous prostacycline administration into an isolated in situ lung in the dog. J Appl Physiol 74:2928–2934

    PubMed  CAS  Google Scholar 

  • Anglade D, Corboz M, Menaouar A, Parker JC, Sanou S, Bayat S, Benchetrit G, Grimbert FA (1998) Blood flow vs. venous pressure effects on filtration coefficient in oleic-acid injured lung. J Appl Physiol 84:1011–1023

    PubMed  CAS  Google Scholar 

  • Bernard CE, Dahlby R, Hoener BA (1997) An isolated perfused lung model with real time data collection and analysis of lung function. J Pharmacol Toxicol Meth 38:41–46

    CAS  Google Scholar 

  • Byron PR, Roberts NSR, Clark Ar (1986) An isolated perfused rat lung preparation for the study of aerosolized drug deposition and absorption. J Pharm Sci 75:168–172

    PubMed  CAS  Google Scholar 

  • Hauge A (1968) Conditions governing the pressor responses to ventilation hypoxia in isolated perfused rat lungs. Acta Physiol Scand 72:33–44

    PubMed  CAS  Google Scholar 

  • Hendriks JHM, van Schil PEY, Eyskens EJM (1999) Modified technique of isolated left lung perfusion in the rat. Eur Surg Res 31:93–96

    PubMed  CAS  Google Scholar 

  • Nakamura J, Zhang S, Ishikawa N (1987) Role of pulmonary innervation in canine in situ lung-perfusion preparation: a new model of neurogenic pulmonary edema. Clin Exp Pharmacol Physiol 14:535–542

    PubMed  CAS  Google Scholar 

  • Lewis CA, Broadley KJ (1995) Influence of spasmogen inhalation by guinea pigs upon subsequent demonstration of albumin-induced hyperreactivity in isolated airway tissues. J Pharmacol Toxicol Meth 34:187–198

    CAS  Google Scholar 

  • Nossaman BD, Feng CJ, Kadowith PJ (1994) Analysis of responses to bradykinin and influence of HOE 140 in the isolated perfused rat lung. Am J Physiol Heart Circ Physiol 266:H2452–2461

    CAS  Google Scholar 

  • Pogrebniak HW, Witt CJ, Terrill R, Kranda K, Travis WD, Rosenberg SA, Pass HI, Graeber GW, Webb WR, Mathisen DJ (1994) Isolated lung perfusion with tumor necrosis factor: A swine model in preparation of human trials. Ann Thorac Surg 57:1477–1483

    PubMed  CAS  Google Scholar 

  • Riley DJ, Kerr JS, Berg RA, Ianni BD, Pietra GG; Edelman NH, Prockop DJ (1981) Prevention of bleomycin-induced pulmonary fibrosis in the hamster by cis-4-hydroxy-L-proline. AM Rev Respir Dis 123:388–392

    PubMed  CAS  Google Scholar 

  • Uhlig S, Heiny O (1995) Measuring the weight of the isolated perfused rat lung during negative pressure ventilation. J Pharmacol Toxicol Meth 33:147–152

    CAS  Google Scholar 

  • Uhlig S, Wollin L (1994) An improved setup for the isolated perfused rat lung. J Pharmacol Toxicol Meth 31:85–94

    CAS  Google Scholar 

  • Winn R, Nickelson S, Rice CL (1988) Fluid filtration coefficient of isolated goat lungs was unchanged by endotoxin. J Appl Physiol 64:2463–2467

    PubMed  CAS  Google Scholar 

References

  • Belvisi MG, Chung KF, Jackson DM, Barnes PJ (1989a) Opioid modulation of non-cholinergic neural bronchoconstriction in guinea-pig in vivo. Br J Pharmacol 97:1225–1231

    PubMed  CAS  Google Scholar 

  • Belvisi MG, Ichinose M, Barnes PJ (1989b) Modulation of non-adrenergic, non-cholinergic neural bronchoconstriction in guinea-pig airways via GABAB-receptors. Br. J Pharmacol 97:1225–1231

    PubMed  CAS  Google Scholar 

  • Collier HOJ, Hammond AR, Whiteley B (1963) Anti-anaphylactic action of acetylsalicylate in guinea pig lung. Nature 200:176–178

    PubMed  CAS  Google Scholar 

  • Collier HOJ, James GWL (1967) Humoral factors affecting pulmonary inflation during acute anaphylaxis in the guinea pig in vivo. Br J Pharmacol 30:283–301

    CAS  Google Scholar 

  • De la Motta S (1991) Simultaneous measurement of respiratory and circulatory parameters on anesthetized guinea pigs. Seventh Freiburg Focus on Biomeasurement (FFB7) Publ. by Biomesstechnik Verlag, 79232 March, Germany. B IV, pp 45–65

    Google Scholar 

  • Döring HJ, Dehnert H (1997) Methoden zur Untersuchung der Atmungsorgane für die experimentelle Pharmakologie und Physiologie. Biomesstechnik-Verlag March GmbH, D-79323 March, Germany, pp 225–288

    Google Scholar 

  • Groeben H, Brown RH (1996) Ipratropium decreases airway size in dogs by preferential M2 muscarinic receptor blockade in vivo. Anesthesiology 85:867–873

    PubMed  CAS  Google Scholar 

  • Kiese M (1935) Pharmakologische Untersuchungen an der glatten Muskulatur der Lunge (insbesondere mit einigen ephedrinartigen Substanzen) Naunyn Schmiedeberg's Arch exp Path Pharmakol 178:342–366

    CAS  Google Scholar 

  • Konzett H, Rössler R (1940) Versuchsanordung zu Untersuchungen an der Bronchialmuskulatur. Naunyn-Schmiedeberg's Arch Exp Path Pharmakol 192:71–74

    Google Scholar 

  • Lau WAK, Rechtman MP, Boura ALA, King RG (1989) Synergistic potentiation by captopril and propranolol of bradykinin-induced bronchoconstriction in the guinea-pig. Clin Exp Pharmacol Physiol 16:849–857

    PubMed  CAS  Google Scholar 

  • Lefort J, Vargaftig BB (1978) Role of platelets in aspirin-sensitive bronchoconstriction in the guinea pig; interactions with salicylic acid. Br J Pharmacol 63:35–42

    PubMed  CAS  Google Scholar 

  • Lundberg JM, Brodin E, Saria A (1983) Effects and distribution of vagal capsaicin-sensitive substance P neurons with special reference to the trachea and lungs. Acta Physiol Scand 119:243–252

    PubMed  CAS  Google Scholar 

  • Marano G, Doria GP (1993) Lung constant-pressure inflation: fluid dynamic factors are the basis of airway overpressure during bronchoconstriction. Pharmacol Res 28:185–192

    PubMed  CAS  Google Scholar 

  • Miura M, Belvisi MG, Barnes PJ (1994) Modulation of nonadrenergic noncholinergic neural bronchoconstriction by bradykinin in anesthetized guinea pigs in vivo. J Pharm Exp Ther 268:482–486

    CAS  Google Scholar 

  • Orr TSC, Blair AMJN (1969) Potentiated reagin response to egg albumin and conalbumin in Nippostrongylus brasiliensis infected rats. Life Sci 8:1073–1077

    PubMed  CAS  Google Scholar 

  • Riley PA, Mather ME, Keogh RW, Eady RP (1987) Activity of nedocromil sodium in mast-cell-dependent reactions in the rat. Int Arch Allergy Appl Immun 82:108–110

    CAS  Google Scholar 

  • Rosenthale ME, Dervinis A (1968) Improved apparatus for measurement of guinea pig lung overflow. Arch Int Pharmacodyn 172:91–94

    Google Scholar 

  • Schiantarelli P, Bongrani S, Papotti M, Cadel S (1982) Investigation of the activity of bronchodilators using a simple but accurate inhalation procedure: forced insufflation. J Pharmacol Meth 8:9–17

    CAS  Google Scholar 

  • Schliep HJ, Schulze E, Harting J, Haeusler G (1986) Antagonistic effects of bisopropol on several β-adrenoceptor-mediated actions in anesthetized cats. Eur J Pharmacol 123:253–261

    PubMed  CAS  Google Scholar 

References

  • Kagoshima M, Tomomatsu N, Iwahisha Y, Yamaguchi S, Matsuura M, Kawakami Y, Terasawa M (1997) Suppressive effects of Y-24180, a receptor antagonist to platelet activating factor (PAF), on antigen-induced asthmatic responses in guinea pigs. Inflamm Res 46:147–153

    PubMed  CAS  Google Scholar 

  • Lefort J, Vargaftig BB (1978) Role of platelets in aspirin-sensitive bronchoconstriction in the guinea pig; interactions with salicylic acid. Br. J. Pharmac. 63:35–42

    CAS  Google Scholar 

  • Mead J (1960) Control of respiratory frequency. J Appl Physiol 15:325–336

    Google Scholar 

  • Vargaftig BB, Lefort J, Prancan AV, Chignard M, Benveniste J (1979) Platelet-lung in vivo interactions: An artifact of a multipurpose model?. Haemostasis 8:171–182

    PubMed  CAS  Google Scholar 

References

  • Beume R, Kilian U, Mussler K (1985) Die Prüfung broncho-spasmolytischer Substanzen am wachen Meerschweinchen. Atemw — Lungenkrh 11:342–345

    Google Scholar 

  • Brigham KL, Meyrick B (1986) Endotoxin and lung injury: state of the art review. Am Rev Respir Dis 133:913–927

    PubMed  CAS  Google Scholar 

  • Chiba Y, Misawa M (1993) Strain differences in change in airway hyperresponsiveness after repeated antigenic challenge in three strains of rats. Gen Pharmacol 24:1265–1272

    PubMed  CAS  Google Scholar 

  • Chiba Y, Misawa M (1995) Characteristics of muscarinic cholinoceptors in airways of antigen-induced airway hyperresponsive rats. Comp Biochem Physiol 111C:351–357

    CAS  Google Scholar 

  • Christman BW, Lefferts PL, Snapper JR (1987) Effect of a platelet activating factor receptor antagonist (SRI 63-441) on the sheep's response to endotoxin. Am Rev Respir Dis 135:A82

    Google Scholar 

  • Eady RP (1986) The pharmacology of nedocromil sodium. Eur J Respir Dis 69: (Suppl 147):112–119

    Google Scholar 

  • Elwood W, Lötvall JO, Barnes PJ, Chung KF (1992) Effect of dexamethasone and cyclosporin A on allergen-induced airway hyperresponsiveness and inflammatory cell responses in sensitized Brown-Norway rats. Am Rev Respir Dis 145:1289–1294

    PubMed  CAS  Google Scholar 

  • Folkerts G, van der Linde HJ, Nijkamp FP (1995) Virus-induced airway hyperresponsiveness in guinea pigs is related to a deficiency in nitric oxide. J Clin Invest 95:26–30

    PubMed  CAS  Google Scholar 

  • Fryer AD, Yarkony KA, Jacoby DB (1994) The effect of leukocyte depletion on pulmonary M2 muscarinic receptor function in parainfluenza virus-infected guinea pigs. Br J Pharmacol 112:588–594

    PubMed  CAS  Google Scholar 

  • Fryer AD, Costello RW, Yost BL, Lobb RR, Tedder TF, Steeber DA (1997) Antibody to VLA-4, but not to L-selectin, protects neuronal M2 muscarinic receptors in antigen-challenged guinea pig airways. J Clin Invest 99:2036–2044

    PubMed  CAS  Google Scholar 

  • Harris JO, Bice D, Salvaggio JE (1976) Cellular and humoral bronchopulmonary immune response of rabbits immunized with thermophilic actinomyces antigen. Am Rev Respir Dis 114:29–43

    PubMed  CAS  Google Scholar 

  • Hatzelmann A, Haefner D, Beume R, Schudt C (1996) Automatic leukocyte differentiation in bronchoalveolar lavage fluids of guinea pigs and Brown-Norway rats. J Pharmacol Toxicol Meth 35:91–99

    CAS  Google Scholar 

  • Herxheimer H (1956) Bronchoconstrictor agents and their antagonists in the intact guinea pig. Arch Int Pharmacodyn 106:371–380

    PubMed  CAS  Google Scholar 

  • Hutchinson AA, Hinson JM, Brigham KL, Snapper JL (1983) Effect of endotoxin on airway responsiveness to aerosol histamine in sheep. J Appl Physiol 54:1463–1468

    Google Scholar 

  • Kallos P, Pagel W (1937) Experimentelle Untersuchungen über Asthma bronchiale. Acta Med Scand 91:292–305

    Google Scholar 

  • Minshall EM, Riccio MM, Herd CM, Douglas GJ, Seeds EAM, McKennif MG, Sasaki M, Spina D, Page CP (1993) A novel animal model for investigating persistent airway hyperresponsiveness. J Pharmacol Toxicol Meth 30:177–188

    CAS  Google Scholar 

  • Okada S, Inoue H, Yamauchi K, Iijima H, Okhawara Y, Takishima T, Shirato K (1995) Potential role of interleukin-1 in allergen-induced late asthmatic reactions in guinea pigs: Suppressive effect of interleukin-1 receptor antagonist on late asthmatic reaction. J Allergy Clin Immunol 95:1236–1245

    PubMed  CAS  Google Scholar 

  • Olsson OAT (1971) Histamine-induced bronchospasm in unanaesthetized guinea pigs. Acta Allergol 26:438–447

    PubMed  CAS  Google Scholar 

  • Patterson R, Suszko IM, Harris KE (1983) The in vivo transfer of antigen-induced airway reactions by bronchial lumen cells. J Clin Invest 62:519–524

    Google Scholar 

  • Pritchard DI, Eady PR, Harper ST, Jackson DM, Orr TSC, Richards IM, Trigg S, Wells E (1983) Laboratory infection of primates with Ascaris suum to provide a model of allergic bronchoconstriction. Clin Exp Immunol 54:469–476

    PubMed  CAS  Google Scholar 

  • Raeburn D, Underwood SL, Villamil ME (1992) Techniques for drug delivery to the airways, and the assessment of lung functions in animal models. J Pharmacol Toxicol Meth 27:143–159

    CAS  Google Scholar 

  • Reynolds HY (1991) Immunologic system in the respiratory tract. Physiol Rev 71:1117–1133

    PubMed  CAS  Google Scholar 

  • Richards IM, Dixon M, Jackson DM, Vendy K (1986) Alternative modes of action of cromoglycate. Agents Actions 18:294–300

    PubMed  CAS  Google Scholar 

  • Rosenthale ME, Dervinis A (1968) Improved apparatus for measurement of guinea pig lung overflow. Arch Int Pharmacodyn 172:91–94

    Google Scholar 

  • Rosenthale ME, Dervinis A, Begany AJ, Lapidus M, Gluckmann MI (1970) Bronchodilator activity of prostaglandin E2 when administered by aerosol to three species. Experientia 26:1119–1121

    PubMed  CAS  Google Scholar 

  • Rylander R, Marchat B (1988) Modulation of acute endotoxin pulmonary inflammation by a corticosteroid. J Clin Lab Immunol 27:83–86

    PubMed  CAS  Google Scholar 

  • Santing RE, Hoekstra Y, Pasman Y, Zaagsma J, Meurs H (1994) The importance of eosinophil activation for the development of allergen-induced bronchial hyperreactivity in conscious, unrestrained guinea pigs. Clin Exp Allergy 24:1157–1163

    PubMed  CAS  Google Scholar 

  • Snapper JR, Christman BW (1989) Models of acute pulmonary inflammation. In: Pharmacological Methods in the Control of Inflammation. Alan R. Liss, Inc., pp 255–281

    Google Scholar 

  • Tarayre JP, Aliaga M, Barbara M, Tisseyre N Vieu S, Tisne-Versailles J (1990) Model of bronchial hyperreactivity after active anaphylactic shock in conscious guinea pigs. J Pharmacol Meth 23:13–19

    CAS  Google Scholar 

  • Ufkes JGR, Ottenhof M, Aalberse RC (1983) A new method for inducing fatal, IgE mediated, bronchial and cardiovascular anaphylaxis in the rat. J Pharmacol Meth 9:175–181

    CAS  Google Scholar 

References

  • Agrawal KP (1981) Specific airway conductance in guinea pigs: normal values and histamine induced fall. Resp Physiol 43:23–30

    CAS  Google Scholar 

  • Amdur MO, Mead J (1958) Mechanics of respiration in unanesthetized guinea pigs. Am J Physiol 192:364–368

    PubMed  CAS  Google Scholar 

  • Arch JRS, Buckle DR, Bumstead J, Clarke GD, Taylor JF, Taylor SG (1988) Evaluation of the potassium channel activator cromakalim (BRL 34915) as a bronchodilator in the guinea pig: comparison with nifedipine. Br J Pharmacol 95:763–770

    PubMed  CAS  Google Scholar 

  • Ball DI, Coleman RA, Hartley RW, Newberry A (1991) A novel method for the evaluation of bronchoactive agents in the conscious guinea pig. J Pharmacol Meth 26:187–202

    CAS  Google Scholar 

  • Blümcke S, Rode J, Niedorf HR (1967) Eine einfache Methode der Körper-Plethysmographie der Ratte. Naturwiss 54:343–344

    PubMed  Google Scholar 

  • Chand N, Nolan K, Pillar J, Lomask M, Diamantis W, Sofia RD (1993) Aeroallergen-induced dyspnea in freely moving guinea pigs: quantitative measurement by bias flow ventilated whole body plethysmography. Allergy 48:230–235

    PubMed  CAS  Google Scholar 

  • Chapman RW, Danko G, Siegel MI (1985) Effect of propranolol on pulmonary function and bronchoconstrictor responsiveness in guinea pigs and rats. Pharmacol Res Comm 17:149–163

    CAS  Google Scholar 

  • Danko G, Chapman RW (1988) Simple, noninvasive method to measure antibronchoconstrictor activity of drugs in conscious guinea pigs. J Pharmacol Meth 19:165–173

    CAS  Google Scholar 

  • Döring HJ, Dehnert H (1997) Methoden zur Untersuchung der Atmungsorgane für die experimentelle Pharmakologie und Physiologie. Biomesstechnik-Verlag March GmbH, D-79323 March, Germany, pp 267–288

    Google Scholar 

  • Elliott RD, Fitzgerald MF, Clay TP (1991) A whole body plethysmograph for small animals. 7th Freiburg Focus on Biomeasurement. Cardiovascular and Respiratory in vivo Studies. Biomesstechnik-Verlag March GmbH, 79232 March, Germany, pp 66–71

    Google Scholar 

  • Englert CE, Wirth K, Gehring D, Fürst U, Albus U, Scholz W, Rosenkranz B, Schölkens BA (1992) Airway pharmacology of the potassium channel opener, HOE 234, in guinea pigs: in vitro and in vivo studies. Eur J Pharmacol 210:69–75

    PubMed  CAS  Google Scholar 

  • Finney MJ, Forsberg KI (1994) Quantification of nasal involvement in a guinea pig plethysmograph. J Appl Physiol 76:1432–1438

    PubMed  CAS  Google Scholar 

  • Griffith-Johnson DA, Nicholl PJ, McDermott M (1988) Measurement of specific airway conductance in guinea pigs A noninvasive method. J Pharmacol Meth 19:233–242

    Google Scholar 

  • Hey JA, Mingo G, Bolsner DC, Kreutner W, Krobatsch D, Chapman RW (1995) Respiratory effects of baclofen and 3-aminopropylphosphinic acid in guinea pigs. Br J Pharmacol 114:735–738

    PubMed  CAS  Google Scholar 

  • Höbel M, Maroske D, Eichler O (1971) Eine einfache Methode zur Bestimmung des Atemminutenvolumens von Ratten und Meerschweinchen. Arch Int Pharmacodyn 194:371–374

    PubMed  Google Scholar 

  • James JT, Infiesto BP (1983) Concurrent measurement of respiratory and metabolic parameters in rats during exposure to a test vapor: Respiratory stress test. J Pharmacol Meth 10:283–292

    CAS  Google Scholar 

  • Kisagawa K, Saitoh K, Tanizaki A, Ohkubo K, Irino O (1984) A new method for measuring respiration in the conscious mouse. J Pharmacol Meth 12:183–189

    Google Scholar 

  • Kokka N, Elliott HW, Way L (1965) Some effects of morphine on respiration and metabolism in rats. J Pharmacol Exp Ther 148:386–392

    PubMed  CAS  Google Scholar 

  • Linton P (1991) Improvements incorporated in the animal whole-body plethysmograph after Elliott et al. 7th Freiburg Focus on Biomeasurement. Cardiovascular and Respiratory in vivo Studies. Biomesstechnik-Verlag March GmbH, 79232 March, Germany, pp 72–76

    Google Scholar 

  • Murphy DJ, Renninger JP, Gossett KA (1998) A novel method for chronic measurement of pleural pressure in conscious rats. J Pharmacol Toxicol Meth 39:137–141

    CAS  Google Scholar 

  • Paré PD, Michoud MC, Hogg JC (1976) Lung mechanics following antigen challenge of Ascaris suum-sensitive rhesus monkeys. J Appl Physiol 41:668–676

    PubMed  Google Scholar 

  • Pennock BE, Cox CP, Rogers RM, Cain WA, Wells JH (1979) A noninvasive technique for measurements of changes in specific airway resistance. J Appl Physiol 46:399–406

    PubMed  CAS  Google Scholar 

  • Schlegelmilch R (1991) Respiratory measurements on conscious guinea pigs using a double chamber plethysmograph box with aerosol challenge. 7th Freiburg Focus on Biomeasurement. Cardiovascular and Respiratory in vivo Studies. Biomesstechnik-Verlag March GmbH, 79232 March, Germany, pp 136–140

    Google Scholar 

  • Schlenker EH (1984) An evaluation of ventilation in dystrophic Syrian hamsters. J Appl Physiol 56:914–921

    PubMed  CAS  Google Scholar 

  • Schlenker EH, Metz TJ (1989) Ventilatory responses of dystrophic and control hamsters to naloxone. Pharmacol Biochem Behav 34:681–684

    PubMed  CAS  Google Scholar 

  • Schütz E (1960) Bestimmung der Atemgröße narkotisierter Ratten. Arzneim Forsch/Drug Res 10:52–53

    Google Scholar 

  • Sinnett EE, Jackson AC, Leith DE, Butler JP (1981) Fast integrated flow plethysmograph for small mammals. J Appl Physiol 50:1104–1110

    PubMed  CAS  Google Scholar 

  • Wasserman MA, Griffin RL (1977) Thromboxane B2 — comparative bronchoactivity in experimental systems. Eur J Pharmacol 46:303–313

    PubMed  CAS  Google Scholar 

  • Wegner CD, Jackson AC, Berry JD, Gillepsie JR (1984) Dynamic respiratory mechanics in monkeys measured by forced oscillations. Resp Physiol 55:47–61

    CAS  Google Scholar 

  • Wirth K, Hock FJ, Albus U, Linz W, Alpermann HG, Anagnostopoulos H, Henke St, Breipohl W, Knolle J, Schölkens BA (1991) HOE 140, a new potent and long acting bradykinin-antagonist: in vivo studies. Br J Pharmacol 102:774–777

    PubMed  CAS  Google Scholar 

  • Wirth KJ, Gehring D, Schölkens BA (1993) Effect of HOE 140 on bradykinin-induced bronchoconstriction in anesthetized guinea pigs. Am Rev Resp Dis 148:702–706

    PubMed  CAS  Google Scholar 

References

  • De la Motta S (1991) Simultaneous measurement of respiratory and circulatory parameters on anesthetized guinea pigs. Seventh Freiburg Focus on Biomeasurement (FFB7) Publ. by Biomesstechnik Verlag, 79232 March, Germany. B IV, pp 45–65

    Google Scholar 

  • Döring HJ (1991) Historical review of methods for the measurement and evaluation of respiratory parameters, in particular airway resistance. Seventh Freiburg Focus on Biomeasurement (FFB7) Publ. by Biomesstechnik Verlag, 79232 March, Germany. B IV, pp 17–29

    Google Scholar 

  • Döring HJ, Dehnert H (1997) Methoden zur Untersuchung der Atmungsorgane für die experimentelle Pharmakologie und Physiologie. Biomesstechnik-Verlag March GmbH, D-79323 March, Germany, pp 171–211

    Google Scholar 

  • Fleisch A (1925) Der Pneumotachograph; ein Apparat zur Geschwindigkeitsregistrierung der Atemluft. Pflüger's Arch 209:713–722

    Google Scholar 

  • Gad J (1880) Die Regulirung der normalen Athmung. Arch Anat Physiol, Physiol Abthlg:1–32

    Google Scholar 

  • Gildemeister M (1922) Über die Messung der Atmung mit Gasuhr und Ventilen. Pflügers Arch 195:96–100

    Google Scholar 

  • Gozzard N, Herd CM, Blake SM, Holbrook M, Hughes B, Higgs GA, Page CP (1996) Effects of theophylline and rolipram on antigen-induced airway responses in neonatally immunized rabbits. Br J Pharmacol 117:1405–1412

    PubMed  CAS  Google Scholar 

  • Hastings SG (1990a) An integrated system for data acquisition and analysis. Sixth Freiburg Focus on Biomeasurement (FFB6) Publ. by Biomesstechnik Verlag, 79232 March, Germany, pp 206–209

    Google Scholar 

  • Hastings SG (1990b) Typical data reduction process. Sixth Freiburg Focus on Biomeasurement (FFB6) Publ. by Biomesstechnik Verlag, 79232 March, Germany. G IV 1–27

    Google Scholar 

  • Jaquet A (1908) Zur Mechanik der Atembewegungen. Arch exp Path Pharmakol, Suppl, Festschr. O Schmiedeberg: 309–316

    Google Scholar 

  • Lai YL, Diamond L (1986) Comparison of five methods of analyzing respiratory pressure-volume curves. Respir Physiol 66:147–155

    PubMed  CAS  Google Scholar 

  • Lomask MR (1987) BUXCO respiratory mechanics analyzer for non invasive measurements in conscious animals. Third Freiburg Focus on Biomeasurement (FFB3) Publ. by Biomesstechnik Verlag, 79232 March, Germany, pp 212–226

    Google Scholar 

  • Lorino AM, Bénichou M, Macquin-Mavier I, Lorino H, Harf A (1988) Respiratory mechanics for assessment of histamine bronchopulmonary reactivity in guinea pigs. Resp Physiol 73:155–162

    CAS  Google Scholar 

  • Lorino AM, Jarreau PH, Sartene R, Mathieu M, Macquin-Mavier I, Harf A (1993) Bronchoconstriction-induced hyperinflation assessed by thoracic area measurement in guinea pigs. Am Rev Resp Dis 147:392–397

    PubMed  CAS  Google Scholar 

  • O'Neil RM, Ashack RJ, Goodman FR (1981) A comparative study of respiratory responses to bronchoactive agents in rhesus and cynomolgus monkeys. J Pharmacol Meth 5:267–273

    Google Scholar 

  • Pflüger E (1882) Das Pneumonometer. Pflügers Arch 29:244–246

    Google Scholar 

  • Rayburn DB, Mundie TG, Phillips YY (1989) Computer-controlled large-animal pulmonary function system. Comput Meth Progr Biomed 28:1–9

    CAS  Google Scholar 

  • Rohrer F (1915) Der Strömungswiderstand in den menschlichen Atemwegen und der Einfluss der unregelmässigen Verzweigungen des Bronchialsystems auf den Atmungsverlauf in verschiedenen Lungenbezirken. Pflügers Arch 162:225–299

    Google Scholar 

  • Santing RE, Meurs H, van der Mark TW, Remie R, Oosterom WC, Brouwer F, Zaagsma J (1992) A novel method to assess airway function parameters in chronically instrumented, unrestrained guinea-pigs. Pulmon Pharmacol 5:265–272

    CAS  Google Scholar 

  • v. Neergaard K, Wirz K (1927) Über eine Methode zu Messung der Lungenelastizität am lebenden Menschen, insbesondere beim Emphysem. Z. Klin Med. 105:35–50

    Google Scholar 

  • Zwaardemaker H, Ouwehand CD (1904) Die Geschwindigkeit des Athemstromes und das Athemvolum des Menschen. Arch Anat Physiol, Physiol Abthlg. Suppl:241–263

    Google Scholar 

References

  • Boschetto P, Roberts NM, Rogers DF, Barnes PJ (1989) Effect of antiasthma drugs on microvascular leakage in guinea pig airways. Am Rev Resp Dis 139:416–421

    PubMed  CAS  Google Scholar 

  • Herbst C, Tippler B, Shams H, Simmet T (1995) A role of endothelin in bicuculline-induced neurogenic pulmonary oedema in rats. Br Pharmacol 115:753–760

    CAS  Google Scholar 

  • Rogers DF, Boschetto P, Barnes PJ (1989) Plasma exsudation: Correlation between Evans Blue dye and radiolabelled albumin in guinea-pig airways in vivo. J Pharmacol Meth 21:309–315

    CAS  Google Scholar 

  • Sakamoto T, Elwood W, Barnes PJ, Chung FK (1992) Effect of Hoe 140, a new bradykinin receptor antagonist, on bradykinin-and platelet-activating factor-induced bronchoconstriction and airway microvascular leakage in guinea pig. Eur J Pharmacol 213:367–373

    PubMed  CAS  Google Scholar 

  • Sakamoto T Sun J, Barbnes PJ, Chung KF (1994) Effect of a bradykinin receptor antagonist, HOE 140, against bradykinin-and vagal stimulation-induced airway responses in the guinea-pig. Eur J Pharmacol 251:137–142

    PubMed  CAS  Google Scholar 

  • Xu ZH, Shimakura K, Yamamoto T, Wang L M, Mineshita S (1998) Pulmonary edema induced by angiotensin I in rats

    Google Scholar 

References

  • Bartlett D, Remmers JE, Gautier H (1973) Laryngeal regulation of respiratory airflow. Respir Physiol 18:194–202

    PubMed  Google Scholar 

  • González-Barón S, Dawid-Miner MS, Lara JP, Clavijo E, Aguirre JA (1989) Changes in laryngeal resistance and bronchial tonus. Rev Esp Fisiol 45, Suppl:191–196

    PubMed  Google Scholar 

  • Inagi K, Connor NP, Ford CN, Schultz E, Rodriquez AA, Bless DM, Pasic D, Heisey DM (1998) Physiologic assessment of botulinum toxin effects in the rat larynx. Laryngoscope 108:1048–1054

    PubMed  CAS  Google Scholar 

  • O'Halloran KD, Curran AK, Bradford A (1994) Ventilatory and upper-airway resistance response to upper airway cooling and CO2 in anesthetized rats. Pflüger's Arch 429:262–266

    Google Scholar 

  • Stransky A, Szereda-Przestazewska M, Widdicombe J (1973) The effect of lung reflexes on laryngeal resistance and motoneuron discharge. J Physiol 231:517–518

    Google Scholar 

  • Wang ZH, Bradford A, O'Regan RG (1999) Effects of CO2 and H+ on laryngeal receptor activity in the perfused larynx of anesthetized cats. J Physiol (Lond) 519:591–600

    PubMed  CAS  Google Scholar 

  • Willette RN, Krieger AJ, Sapru HN (1982a) Pulmonary opiate receptor activation evokes a cardiorespiratory effect. Eur J Pharmacol 78:61–70

    PubMed  CAS  Google Scholar 

  • Willette RN, Krieger AJ, Sapru HN (1982b) Opioids increase laryngeal resistance and motoneuron activity in the recurrent laryngeal nerve. Eur J Pharmacol 80:57–63

    PubMed  CAS  Google Scholar 

  • Willette RN, Evans DY, Dooley BM (1987) The in situ isolated larynx for evaluation peripheral opiate receptor antagonists. J Pharmacol Meth 17:15–25

    CAS  Google Scholar 

References

  • Amdur MO, Mead J (1958) Mechanics of respiration in anesthetized guinea pigs. Am J Physiol 192:364–368

    PubMed  CAS  Google Scholar 

  • ICH Harmonized Tripartite Guideline (M3) (1997) “Timing of Non-clinical Safety Studies for the Conduct of Human Clinical Trial for Pharmaceuticals”

    Google Scholar 

  • King TKC (1066) Measurement of functional residual capacity in the rat. J Appl Physiol 21:233–236

    Google Scholar 

  • Murphy DJ (1994) Safety pharmacology of the respiratory system: Techniques and study design. Drug Dev Res 32:237–246

    CAS  Google Scholar 

  • Palecek F (1969) Measurement of ventilatory mechanics in the rat. J Appl Physiol 27:149–156

    PubMed  CAS  Google Scholar 

  • The European Agency for the Evaluation of Medicinal Product. Human Medicines Evaluation Unit. (2000) ICH Topic S7. Safety Pharmacology Studies for Human Pharmaceuticals. Note for Guidance on Safety Pharmacology Studies in Human Pharmaceuticals

    Google Scholar 

References

  • Drazen JM (1984) Physiological basis and interpretation of indices of pulmonary mechanics. Environ Health Perspectives 56:3–9

    CAS  Google Scholar 

  • Murphy DJ, Joran ME, Renninger JE (1993) Effects of adenosine agonists and antagonists on pulmonary ventilation in conscious rats. Gen Pharmacol 24:943–954

    PubMed  CAS  Google Scholar 

  • Murphy DJ, Joran ME, Grando JC (1995) A non-invasive method for distinguishing central from peripheral nervous system effects of respiratory depressant drugs in conscious rats. Gen Pharmacol 26:569–575

    PubMed  CAS  Google Scholar 

  • O'Neil JJ, Raub JA (1984) Pulmonary function testing in small laboratory animals. Environ Health Perspectives 56:11–22

    Google Scholar 

References

  • Dubin SE, Morrison GA (1969) A face mask and mouthpiece for respiratory studies in unanesthetized beagle dogs. J Appl Physiol 27:104–105

    PubMed  CAS  Google Scholar 

  • Luft AC, Finkelstein S (1968) Hypoxia: A clinical-physiological approach. Aerospace Med 39:105–110

    PubMed  CAS  Google Scholar 

  • Mauderly JL (1972) Steady state carbon monoxide diffusing capacity of unanesthetized beagle dogs. Am J Vet Res 33:1485–1491

    PubMed  CAS  Google Scholar 

  • Mauderly JL (1974) Influence of sex and age on the pulmonary function of the unanesthetized beagle dog. J Geront 29:282–289

    PubMed  CAS  Google Scholar 

  • Mauderly JL, Nenno WC, Morrison GA (1971) Stocks for holding unanesthetized dogs in the standing position. Lab Animal Sci 21:263–266

    CAS  Google Scholar 

References

  • Braga PC, Bossi R, Piatti G, Dal Sasso M (1993) Antitussive effect of oxatomide on citric acid-induced cough in conscious guinea pig. Arzneim Forsch/Drug Res 43:550–553

    CAS  Google Scholar 

  • Charlier R, Prost M, Binon F, Deltour G (1961) Étude pharmacologique d'un antitussif, le fumarate acide de phénéthyl-1 (propyne-2-yl)-4-propionoxy-4 pipéridine. Arch intern Pharmacodyn 134:306–327

    CAS  Google Scholar 

  • Charmat R, Kornowski H, Jondet A (1966) Technique de sélection rapide des substances antitussives. Application à l'évaluation de l'activité d'un dérivé de la prométhazine. Ann pharmaceut franç 24:181–184

    Google Scholar 

  • Chen JYP, Biller HF, Montgomery EG (1960) Pharmacologic studies of a new antitussive, alpha-(dimetylaminomethyl)-ortho-chlorobenzhydrol hydrochloride (SL-501, Bayer B-186) J Pharmacol Exp Ther 128:384–391

    PubMed  CAS  Google Scholar 

  • Eichler O, Smiatek A (1940) Versuche zur Auswertung von Mitteln zur Bekämpfung des Reizhustens. Arch Exp Path Pharm 194:621–627

    Google Scholar 

  • Ellis GP, Goldberg L, King J, Sheard P (1963) The synthesis and antitussive properties of some cyclopentane derivates. J Med Chem 6:111–117

    PubMed  CAS  Google Scholar 

  • Forsberg K, Karlsson JA (1986) Cough induced by stimulation of capsaicin-sensitive sensory neurons in conscious guinea pigs. Acta Physiol Scand 128:319–320

    PubMed  CAS  Google Scholar 

  • Friebel H, Reichle C, v. Graevenitz A (1955) Zur Hemmung des Hustenreflexes durch zentral angreifende Arzneimittel. Arch exp Path Pharm 224:384–400

    CAS  Google Scholar 

  • Gallico L, Borghi A, Dalla Rosa C, Ceserani R, Tognella S (1994) Mogusteine: a novel peripheral non-narcotic antitussive drug. Br. J. Pharmacol 112:795–800

    PubMed  CAS  Google Scholar 

  • Gross A (1957) Etude expérimentale, chez le chien choralosé, de l'action antitussive de la codéine, au moyen du réflexe pleurotussigène et de la toux lobélinique. C R Soc Biol, Paris 151:704–707

    CAS  Google Scholar 

  • Källqvist I, Melander B (1957) Experimental and clinical evaluation of chlorcyclizine as an antitussive. Arzneim Forsch 7:301–304

    Google Scholar 

  • Kamei J, Tanihara H, Igarashi H, Kasuya Y (1989) Effects of N-methyl-D-aspartate antagonists on the cough reflex. Eur J Pharmacol 168:153–158

    PubMed  CAS  Google Scholar 

  • Karlsson JA, Lanner AS, Persson CGA (1989) Airway opioid receptors mediate inhibition of cough and reflex bronchoconstriction in guinea pigs. J Pharmacol Exp Ther 252:863–868

    Google Scholar 

  • Karttunen P, Koskiniemi J, Airaksinen MM (1982) An improvement to the use of sulfur dioxide to induce cough in experimental animals. J Pharmacol Meth 7:181–184

    CAS  Google Scholar 

  • May AJ, Widdicombe JG (1954) Depression of the cough reflex by pentobarbitone and some opium derivatives. Br J Pharmacol 9:335–340

    CAS  Google Scholar 

  • Püschmann S, Engelhorn R (1978) Pharmakologische Untersuchungen des Bromhexin-Metaboliten Ambroxol. Arzneim Forsch/Drug Res 28:889–898

    Google Scholar 

  • Reichle C, Friebel H (1955) Zur Hemmung des Hustenreflexes durch zentral angreifende Arzneimittel. II. Mitteilung. Arch exp Path Pharm 226:558–562

    CAS  Google Scholar 

  • Rosiere CE, Winder CV, Wax J (1956) Ammonia cough elicited through a tracheal side tube inn unanesthetized dogs. Comparative antitussive bioassay of four morphine derivatives and methadone in terms of ammonia thresholds. J Pharmacol Exp Ther 116:296–316

    PubMed  CAS  Google Scholar 

  • Sallé J Brunaud M (1960), Nouvelle technique d'enregistrement des mouvements de toux provoqués par l'inhalation de vapeurs irritantes chez le cobaye. Arch Int Pharmacodyn 126:120–125

    PubMed  Google Scholar 

  • Sanzari NP, Fainman FB, Emele JF (1968) Cough induced by 1,1-dimethyl-4-phenylpiperazinium iodide: a new antitussive method. J Pharmacol Exp Ther 162:190–195

    PubMed  CAS  Google Scholar 

  • Shemano I (1964) Techniques for evaluating antitussive drugs in animals. In: Nodine JH, Siegler PE (eds) Animal and clinical pharmacologic techniques in drug evaluation. Year Book Medical Publishers, Inc. Chicago, pp 456–460

    Google Scholar 

  • Wiedemeijer JC, Kramer HW, deJongh DK (1960) A screening method for antitussive compounds. Acta Physiol Pharmacol Neerl 9:501–508

    PubMed  CAS  Google Scholar 

  • Winter CA, Flakater L (1952) Antitussive action of d-isomethadone and d-methadone in dogs. Proc Soc Exp Biol Med 81:463–465

    PubMed  CAS  Google Scholar 

  • Winter CA, Flakater L (1954) Antitussive compounds: Testing methods and results. J Pharmacol Exp Ther 112:99–108

    PubMed  CAS  Google Scholar 

  • Winter CA, Flakater L (1955) The effects of drugs upon a graded cough response obtained in sensitized guinea pigs exposed to aerosol of specific antigen. J Exp Med 101:17–24

    PubMed  CAS  Google Scholar 

References

  • Benson WM, Stefko PL, Randall LO (1953) Comparative pharmacology of levorphan, racemorphan and dextromorphan and related methyl esters. J Pharmacol Exp Ther 109:189–200

    PubMed  CAS  Google Scholar 

  • Gallico L, Borghi A, Dalla Rosa C, Ceserani R, Tognella S (1994) Mogusteine: a novel peripheral non-narcotic antitussive drug. Br. J Pharmacol 112:795–800

    PubMed  CAS  Google Scholar 

  • Granier-Doyeux M, Horande M, Kucharski W (1959) Méthode d'évaluation quantitative des agents antitussigènes. Arch Int Pharmacodyn 121:287–296

    PubMed  CAS  Google Scholar 

  • Gross A, Lebon P, Rambert R (1958) Technique de toux expérimentale chez le Chien., par excitation faradique, sous bronchoscopie, de l'éperon trachéal. C R Soc Biol Paris 152:495–497

    PubMed  CAS  Google Scholar 

  • Hara S, Yanaura S (1959) A method of inducing and recording cough and examination of the action of some drugs with this method. Jap J Pharmacol 9:46–54

    PubMed  CAS  Google Scholar 

  • Kasé Y (1952) New methods of estimating cough depressing action. Jap J Pharmacol 2:7–13

    Google Scholar 

  • Kasé Y (1954) The “coughing dog” — an improved method for the evaluation of an antitussive. Pharm Bull (Jpn) 2:298–299

    Google Scholar 

  • Kasé Y, Kito G, Miyata T, Uno T, Takahama K, Ida H (1976) Antitussive activity and other related pharmacological properties of d-3-methyl-N-methylmorphinan (AT-17). Arzneim Forsch/Drug Res 26:353–360

    Google Scholar 

  • Kroepfli P (1950) Über das Verhalten einiger Atmungsgrößen beim Husten. I. Mitteilung über den Hustenmechanismus. Helv Physiol Acta 8:33–43

    Google Scholar 

  • Lemeignan M, Streichenberger G, Lechat P (1966) De l'utilisation du Cobaye décérébré pour l'étude des antitusssifs. Thérapie 21:361–366

    PubMed  CAS  Google Scholar 

  • Stefko PL, Benson WM (1953) A method for the evaluation of antitussive agents in the unanesthetized dog. J Pharmacol Exp Ther 108:217–223

    PubMed  CAS  Google Scholar 

  • Stefko PL, Denzel J, Hickey I (1961) Experimental investigation of nine antitussive drugs. J Pharm Sci 50:216–221

    Google Scholar 

  • Takagi F, Fukuda H, Yano K (1960) Studies on antitussives. I. Bioassay of antitussives. Yakugaku Zasshi 80:1497–1501

    Google Scholar 

  • Tedeschi RE, Tedeschi DH, Hitchens JD, Cook L, Mattis PA, Fellows EJ (1959) A new antitussive method involving mechanical stimulation in unanesthetized dogs. J Pharmacol Exp Ther 126:338–344

    PubMed  CAS  Google Scholar 

  • Yanaura S, Iwase H, Sato S, Nishimura T (1974) A new method for induction of the cough reflex. Jap J Pharmacol 24:453–460

    PubMed  CAS  Google Scholar 

  • Yanaura S, Kitagawa H, Hosakawa T, Misawa M (1982) A new screening method for evaluating antitussives in conscious guinea pigs. J Pharm Dyn 5:965–971

    CAS  Google Scholar 

References

  • Bobb JRR, Ellis S (1951) Production of cough and its suppression in the unanesthetized dog. Am J Physiol 167:768–769

    Google Scholar 

  • Braga PC (1989) Experimental models for the study of cough. In: Braga PC, Allegra L (eds) Cough. Raven Press, Ltd. New York, pp 55–70

    Google Scholar 

  • Chakravarty NK, Mattalana A, Jensen R, Borison HL (1956) Central effects of antitussive drugs on cough and respiration. J Pharm Exp Ther 117:127–135

    CAS  Google Scholar 

  • Domenjoz R (1952) Zur Auswertung hustenstillender Arzneimittel. Arch exper Path Pharmakol 215:19–24

    CAS  Google Scholar 

  • Kasé Y, Wakita Y, Kito T, Miyata T, Yuizono T, Kataoka M (1970) Centrally-induced coughs in the cat. Life Sci 9:49–59

    PubMed  Google Scholar 

  • Lindner E, Stein L (1959) Abkömmlinge des Diphenyl-piperidono-propans — eine neue Reihe hustenstillender Mittel. Arzneim Forsch/Drug Res 9:94–99

    CAS  Google Scholar 

  • Mattalana A, Borison HL (1955) Antitussive agents and centrally-induced cough. Fed Proc 14:367–368

    Google Scholar 

  • Schröder W (1951) Die Verwendung des Vagusschlingenhundes für die Wertbestimmung hustenstillender Substanzen. Arch Exp Path Pharmakol 212:433–439

    Google Scholar 

  • Toner JJ, Macko E (1952) Pharmacological studies on bis-(1-carbo-β-diethyl-aminoethoxy)-1-phenylcyclopentane)-ethane disulfonate. J Pharm Exp Ther 106:246–251

    CAS  Google Scholar 

  • van Dongen K (1956) The effect of Narcotine, Ticarda and Romilar on coughs and on the movements of the cilia in the air passages. Acta Physiol Pharmacol Neerl 4:500–507

    Google Scholar 

References

  • Borson DB, Chinn RA, Davis B, Nadel JA (1980) Adrenergic and cholinergic nerves mediate fluid secretion from tracheal glands of ferrets. J Appl Physiol. Respir Environ Exercise Physiol 49:1027–1031

    CAS  Google Scholar 

  • Kyle H, Robinson NP, Widdicombe JG (1987) Mucus secretion by tracheas of ferret and dog. Eur J Resp Dis 70:14–22

    CAS  Google Scholar 

  • Quinton PM (1979) Composition and control of secretions from tracheal bronchial submucosal glands. Nature 279:551–552

    PubMed  CAS  Google Scholar 

  • Robinson N, Widdicombe JG, Xie CC (1983a) In vitro collection of mucus from the ferret trachea. J Phys 340:7P–8P

    Google Scholar 

  • Robinson N, Widdicombe JG, Xie CC (1983b) In vitro measurement of submucosal gland secretion in the ferret trachea by observation of tantalum dust-coated “hillocks”. J Phys 340:8P

    Google Scholar 

  • Widdicombe JG (1988) Methods for collecting and measuring mucus from specific sources. In: Braga PC, Allegra L (eds) Methods in Bronchial Mucology. Raven Press, Ltd., pp 21–29

    Google Scholar 

References

  • Braga PC (1988) Methods for collecting and measuring airway mucus in animals. In: Braga PC, Allegra L (eds) Methods in Bronchial Mucology. Raven Press, Ltd., pp 3–11

    Google Scholar 

  • Davis B, Chinn R, Gold J, Popovac D, Widdicombe JG, Nadel JA (1982) Hypoxemia reflexly increases secretion from tracheal submucosal glands in dogs. J Appl Physiol Resp Environ Exercise Physiol 52:1416–1419

    CAS  Google Scholar 

  • Engler H, Szelenyi I (1984) Tracheal phenol red secretion, a new method for screening mucosecretolytic compounds. J Pharmacol Meth 11:151–157

    CAS  Google Scholar 

  • Gallagher JT, Kent PW, Passatore M, Phipps RJ, Richardson PS (1975) The composition of tracheal mucus and the nervous control of its secretion in the cat. Proc Roy Soc London 192:49–76

    CAS  Google Scholar 

  • Graziani G, Cazzulani P (1981) Su un metodo particolarmente indicato per lo studio dell'attivita es pettorante nei piccoli animali. Farmaco/Ed Pr 36:167–172

    CAS  Google Scholar 

  • Johnson HG, McNee ML (1983) Secretagogue responses of leukotriene C4,D4: comparison of potency in canine trachea in vivo. Prostaglandins 25:237–243

    PubMed  CAS  Google Scholar 

  • Johnson HG, McNee ML (1985) Adenosine-induced secretion in the canine trachea: Modification by methylxanthines and adenosine derivatives. Br J Pharmacol 86:63–67

    PubMed  CAS  Google Scholar 

  • Leikauf GD, Ueki IF, Nadel JA (1984) Autonomic regulation of viscoelasticity of cat tracheal gland secretions. J Appl Physiol. Respir Environ Exercise Physiol 56:426–430

    CAS  Google Scholar 

  • Perry WF, Boyd EM (1941) A method for studying expectorant action in animals by direct measurement of the output of respiratory tract fluids. J Pharmacol Exp Ther 73:65–77

    CAS  Google Scholar 

  • Proctor DF, Aharonson EF, Reasor MJ, Bucklen KR (1973) A method for collecting normal respiratory mucus. Bull Physiopath Respir 9:351–358

    CAS  Google Scholar 

  • Quevauviller A, Vu-Ngoc-Huyen (1966) Hypersecretion expérimentale du mucus bronchique chez le rat. I. Methode de appreciation anatomopathologique. C R Soc Biol 160:1845–1849

    CAS  Google Scholar 

  • Ueki I, German V, Nadel J (1980a) Direct measurement of tracheal mucus gland secretion with micropipettes in cats. Effects of cholinergic and α-adrenergic stimulation. Clin Res 27:59A

    Google Scholar 

  • Ueki I, German VF, Nadel JA (1980b) Micropipette measurement of airway submucosal gland secretion. Autonomic effects. Am Rev Resp Dis 121:351–357

    PubMed  CAS  Google Scholar 

References

  • Barber WH, Smal Jr. Pal (1974) Construction of an improved tracheal pouch in the ferret. Am Rev Respir Dis 115:165–169

    Google Scholar 

  • Braga PC (1988) Dynamic methods in viscoelasticity assessment. Sinusoidal oscillation method. In: Braga PC, Allegra L (eds) Methods in Bronchial Mucology. Raven Press, Ltd. pp 63–71

    Google Scholar 

  • Kim CS, Berkley BB, Abraham WM, Wanner A (1982) A micro double capillary method for rheological measurements of lower airway secretions. Bull Eur Physiopath Resp 18:915–927

    CAS  Google Scholar 

  • King M (1988) Magnetic microrheometer. In: Braga PC, Allegra L (eds) Methods in Bronchial Mucology. Raven Press, Ltd, pp 73–83

    Google Scholar 

  • Lopez-Vidriero MT, Das I, Reid LM (1977) Airway secretion: Source, biochemical and rheological properties. In: Brain JD, Proctor DF, Reid LM (eds) Respiratory Defense Mechanisms. Part I, Marcel Dekker, Inc., pp 289–356

    Google Scholar 

  • Majima Y, Hirata K, Takeuchi K, Hattori K, Sakakura Y (1990) Effects of orally administered drugs on dynamic viscoelasticity of human nasal mucus. Am Rev Respir Dis 141:79–83

    PubMed  CAS  Google Scholar 

  • Martin M, Litt M, Marriott (1980) The effect of mucolytic agents on the rheological and transport properties of canine tracheal mucus. Am Rev Resp Dis 121:495–500

    PubMed  CAS  Google Scholar 

  • Philippoff W, Han CD, Barnett B, Dulfano MJ (1970) A method for determining the viscoelastic properties of biological fluids. Biorheology 7:55–67

    PubMed  Google Scholar 

  • Scuri R, Frova C, Fantini PL, Mondani G, Riboni R, Alfieri C (1980) Un nuovo metodo per lo studio della mucoproduzione nel coniglio. Boll Chim Farm 119:181–187

    PubMed  CAS  Google Scholar 

  • Wardell Jr., Chakrin LW, Payne BJ (1970) The canine tracheal pouch. A model for use in respiratory mucus research. Am Rev Resp Dis 101:741–754

    PubMed  Google Scholar 

  • Widdicombe JG (1988) Methods for collecting and measuring mucus from specific sources. In. Braga PC, Allegra L (eds) Methods in Bronchial Mucology. Raven Press, Ltd., pp 21–29

    Google Scholar 

  • Yankell SL, Marshall R, Kavanagh B, DePalma PD, Resnick B (1970) Tracheal fistula in dogs. J Appl Physiol 28:853–854

    PubMed  CAS  Google Scholar 

References

  • Bassett DJP, Bowen Kelly E, Brewster EL, Elbon CL, Reichenbaugh SS, Bunton T, Kerr JS (1988) A reversible model of acute lung injury based on ozone exposure. Lung 166:355–369

    PubMed  CAS  Google Scholar 

  • Fryer AD, Yarkony KA, Jacoby DB (1994) The effect of leukocyte depletion on pulmonary M2 muscarinic receptor function in parainfluenza virus-infected guinea pigs. Br J Pharmacol 112:588–594

    PubMed  CAS  Google Scholar 

  • Fryer AD, Costello RW, Yost BL, Lobb RR, Tedder TF, Steeber DA (1997) Antibody to VLA-4, but not to L-selectin, protects neuronal M2 muscarinic receptors in antigen-challenged guinea pig airways. J Clin Invest 99:2036–2044

    PubMed  CAS  Google Scholar 

  • Gossart S, Cambon C, Orfila C, Séguélas MH, Lepert JC, Rami J, Carré P, Pipy B (1996) Reactive oxygen intermediates as regulators of TNF-α production in rat lung induced by silica. J Immunol 156:1540–1548

    PubMed  CAS  Google Scholar 

  • Myrvik QN, Leake ES, Fariss B (1961) Studies on pulmonary alveolar macrophages from the normal rabbit: A technique to produce them in a high state of purity. J Immunol 86:128–132

    PubMed  CAS  Google Scholar 

  • Wang S, Lantz RC, Rider RD, Chen GJ, Breceda V, Hays AM, Robledo RF, Tollinger BJ, Dinesh SVR, Witten ML (1996) A free radical scavenger (Lazaroid U75412E) attenuates tumor necrosis factor-alpha generation in a rabbit smoke-induced lung injury. Respiration 64:358–363

    Google Scholar 

References

  • Baldetorp L, Huberman D, Håkanssson CH, Toremalm NG (1976) Effects of ionizing radiation on the activity of the ciliated epithelium of the trachea. Acta Radiol Ther Phys Biol 13:225–232

    Google Scholar 

  • Braga PC, Dall'Oglio G, Bossi R, Allegra L (1986) Simple and precise method for counting ciliary beats directly from the TV monitor screen. J Pharmacol Meth 16:161–169

    CAS  Google Scholar 

  • Cheung ATW (1976) High speed cinemicrographic studies on rabbit tracheal (ciliated) epithelia: Determination of the beat pattern of tracheal cilia. Pediat Res 10:140–144

    PubMed  CAS  Google Scholar 

  • Corssen G, Allen CR (1958) A comparison of the toxic effects of various local anesthetic drugs on human ciliated epithelium in vitro. Texas Rep Biol Med 16:194–202

    CAS  Google Scholar 

  • Curtis LN, Carson JL (1992) Computer-assisted video measurement of inhibition of ciliary beat frequency of human nasal epithelium in vitro by xylometazoline. J Pharm Toxicol Meth 28:1–7

    CAS  Google Scholar 

  • Dalhamn T (1956) Mucous flow and ciliary activity in the trachea of healthy rats and rats exposed to respiratory irritant gases (SO2, H3N, HCHO). A functional and morphologic (light microscopic and electron microscopic) study, with special reference to technique. Acta Physiol Scand 36, Suppl 123:1–161

    CAS  Google Scholar 

  • Dalhamn T (1964) Studies on tracheal ciliary activity. Am Rev Respir Dis 89:870–877

    PubMed  CAS  Google Scholar 

  • Dalhamn T, Rylander R (1962) Frequency of ciliary beat measured with a photo-sensitive cell. Nature 196:592–593

    PubMed  CAS  Google Scholar 

  • Hakansson CH, Toremalm NG (1963) Studies on the physiology of the trachea. I. Ciliary activity indirectly recorded by a new “light beam reflex” method. Ann Otol 74:954–969

    Google Scholar 

  • Hesse H, Kasparek R, Mizera W, Unterholzner Ch, Konietzko N (1981) Influence of reproterol on ciliary beat frequency of human bronchial epithelium in vitro. Arzneim Forsch/Drug Res 31:716–718

    CAS  Google Scholar 

  • Hybbinette JC, Mercke U (1982a) A method for evaluating the effect of pharmacological substances on mucociliary activity in vivo. Acta Otolaryngol 93:151–159

    PubMed  CAS  Google Scholar 

  • Hybbinette JC, Mercke U (1982b) Effects of the parasympathomimetic drug methacholine and its antagonist atropine on mucociliary activity. Acta Otolaryngol 93:465–473

    PubMed  CAS  Google Scholar 

  • Hybbinette JC, Mercke U (1982c) Effects of sympathomimetic agonists and antagonists on mucociliary activity. Acta Otolaryngol 94:121–130

    PubMed  CAS  Google Scholar 

  • Iravani J (1967) Flimmerbewegung in den intrapulmonalen Luftwegen der Ratte. Pflügers Arch 207:221–237

    Google Scholar 

  • Iravani J (1971) Physiologie und Pathophysiologie der Cilientätigkeit und des Schleimtransports im Tracheobronchialbaum. (Untersuchungen an Ratten). Pneumonologie 144:93–112

    PubMed  CAS  Google Scholar 

  • Iravani J, Melville GN (1975) Mucociliary activity in the respiratory tract as influenced by prostaglandin E1. Respiration 32:305–315

    PubMed  CAS  Google Scholar 

  • Lee WI, Verdugo P (1976) Laser light-scattering spectroscopy. A new application in the study of ciliary activity. Biophys J 16:1115–1119

    PubMed  CAS  Google Scholar 

  • Lierle DM, Moore PM (1935) Further study of the effects of drugs on ciliary activity: a new method of observation in the living animal. Ann Otol 44:671–684

    Google Scholar 

  • Lindberg S, Mercke U (1986) Bradykinin accelerates mucociliary activity in rabbit maxillary sinus. Acta Otolaryngol (Stockh) 101:114–121

    PubMed  CAS  Google Scholar 

  • Lindberg S, Hybbinette JC, Mercke U (1986) Effects of neuropeptides on mucociliary activity. Ann Otol Rhinol Laryngol 95:94–100

    PubMed  CAS  Google Scholar 

  • Lopez-Vidriero MT, Jacobs M, Clarke SW (1985) The effect of isoprenaline on the ciliary activity of an in vitro preparation of rat trachea. Eur J Pharmacol 112:429–432

    PubMed  CAS  Google Scholar 

  • Maurer DR, Sielczak M, Oliver Jr. W, Abraham WM, Wanner A (1982) Role of ciliary motility in acute allergic mucociliary dysfunction. J Appl Physiol 52:1018–1023

    PubMed  CAS  Google Scholar 

  • Mercke U, Håkanson CH, Toremalm NG (1974) A method for standardized studies of mucociliary activity. Acta otolaryng 78:118–123

    PubMed  CAS  Google Scholar 

  • Mercke U, Lindbergh S, Dolata J (1987) The role of neurokinin A and calcitonin-related peptide in the mucociliary defense of the rabbit maxillary sinus. Rhinology 25:89–93

    PubMed  CAS  Google Scholar 

  • Rutland J, Cole PJ (1980) Non-invasive sampling of nasal cilia for measurement of beat frequency and study of ultrastructure. Lancet ii, 564–565

    Google Scholar 

  • Suzuki N (1966) Motor control of the ciliary activity in the frog's palate. J Faculty Sci, Hokkaido Univ Ser VI, 16:67–71

    Google Scholar 

  • Van de Donk HJM, Muller-Platema IP, Zuidema J, Merkus FWHM (1980) The effects of preservatives on the ciliary beat frequency of chicken embryo tracheas. Rhinology 18:119–133

    PubMed  Google Scholar 

  • Verdugo P, Johnson NT, Tam PY (1980) β-adrenergic stimulation of respiratory ciliary activity. J Appl Physiol 48:868–871

    PubMed  CAS  Google Scholar 

References

  • Ahmed T, Januskiewicz AJ, Landa JF, Brown A, Chapman GA, Kenny PJ, Finn RD, Bondick J, Sackner MA (1979) Effect of local radioactivity on tracheal mucous velocity of sheep. Am Rev Resp Dis 120:567–575

    PubMed  CAS  Google Scholar 

  • Battista SP (1971) Agents affecting mucociliary activity. In: Turner RA, Hebborn P (eds) Screening Methods in Pharmacology, Vol II. Academic Press, New York and London. pp 167–202

    Google Scholar 

  • Carson S, Goldhamer R, Carpenter R (1966) Mucus transport in the respiratory tract. Am Rev Resp Dis 93:86–92

    PubMed  Google Scholar 

  • Dalhamn T (1956) Mucous flow and ciliary activity in the trachea of healthy rats and rats exposed to respiratory irritant gases (SO2, H3N, HCHO). A functional and morphologic (light microscopic and electron microscopic) study, with special reference to technique. Acta Physiol Scand 36, Suppl 123:1–161

    CAS  Google Scholar 

  • Deitmer Th (1989) Physiology and pathology of the mucociliary system. Special regards to mucociliary transport in malignant lesions of the human larynx. Karger Basel, Chapter 5: Methods of investigation of mucociliary transport, pp 26–34, Chapter 9: Pathophysiology and pharmacology of the mucociliary system, pp 47–54

    Google Scholar 

  • Friedman M, Stott FD, Poole DO, Dougherty R, Chapman GA, Watson H, Sackner MA (1977) A new roentgenographic method for estimating mucus velocity in airways. Am Rev Respir Dis 115:67–72

    PubMed  CAS  Google Scholar 

  • Giordano AM, Shih, CK, Holsclaw DS, Khan MA, Litt M (1977) Mucus clearance: in vivo canine tracheal vs. in vitro bullfrog palate studies. J Appl Physiol 42:761–766

    PubMed  Google Scholar 

  • Giordano AM, Holsclaw D, Litt M (1978) Mucus rheology and mucociliary clearance: normal physiologic state. Am Rev Resp Dis 118:245–250

    PubMed  CAS  Google Scholar 

  • Iravani J (1971) Physiologie und Pathophysiologie der Cilientätigkeit und des Schleimtransports im Tracheobronchialbaum. (Untersuchungen an Ratten). Pneumonologie 144:93–112

    PubMed  CAS  Google Scholar 

  • Kensler CJ, Battista SP (1966) Chemical and physical factors affecting mammalian ciliary activity. Am Rev Resp Dis 93:93–102

    PubMed  CAS  Google Scholar 

  • Kochmann M (1930) Zur Pharmakologie der Expektorantien. Wirkung auf die Flimmerbewegung. Naunyn-Schmiedeberg's Arch Exp Path Pharmakol 150:23–38

    CAS  Google Scholar 

  • Leitch GJ, Frid LH, Phoenix D (1985) Effects of ethanol on mucociliary clearance. Alcoholism Clin Exp Res 9:277–280

    CAS  Google Scholar 

  • Sackner MA, Reinhart M, Arkin B (1977) Effects of beclomethasone diproprionate on tracheal mucus velocity. Am Rev Resp Dis 115:1069–1070

    CAS  Google Scholar 

  • Sadé J, Eliezer N, Silberberg A, Nevo AC (1970) The role of mucus in transport by cilia. Am Rev Respir Dis 102:48–52

    PubMed  Google Scholar 

  • Ukai K, Sakakura Y, Saida S (1985) Interaction between mucociliary transport and the ciliary beat of chicken nasal mucosa. Arch otorhinolaryngol 242:225–231

    PubMed  CAS  Google Scholar 

References

  • Emura M, Riebe M, Ochiai M, Aufderheide M, Germann P, Mohr U (1990) New functional cell-culture approach to pulmonary carcinogenesis and toxicology. Cancer Res Clin Oncol 116:557–562

    CAS  Google Scholar 

  • Freitag A, Reimann A, Wessler I, Racké K (1996) Effect of bacterial lipopolysaccharides (LPS) and tumor necrosis factor-α (TNF-α) on rat tracheal epithelial cells in culture: morphology, proliferation and induction of nitric oxide (NO) synthase. Pulmon Pharmacol 9:149–156

    CAS  Google Scholar 

  • Hay DWP, Farmer SG, Goldie GR (1994) Inflammatory mediators and modulation of epithelial/smooth muscle interactions. In: Goldie RG (ed) Handbook of Immunopharmacology: Immunopharmacology of Epithelial Barriers. Academic Press, London, pp 119–146

    Google Scholar 

  • Hey C, Wessler I, Racké K (1995) Nitric oxide (NO) synthase is inducible in rat, but not in rabbit alveolar macrophages, with a concomitant reduction in arginase activity. Naunyn Schmiedeberg's Arch Pharmacol 351:651–659

    CAS  Google Scholar 

  • Lechner JF, LaVeck MAA (1985) A serum-free method for culturing normal bronchial cells. J Tissue Cult Meth 9:43–48

    Google Scholar 

  • Webber SE, Corfield DR (1993) The pathophysiology of airway inflammation and mucosal damage in asthma. In: Andrews P, Widdicombe J (eds) Pathophysiology of the Gut and Airways. Portland Press, London, pp 67–77

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag

About this entry

Cite this entry

Vogel, H.G., Vogel, W.H., Schölkens, B.A., Sandow, J., Müller, G., Vogel, W.F. (2002). Respiratory activity. In: Vogel, H.G., Vogel, W.H., Schölkens, B.A., Sandow, J., Müller, G., Vogel, W.F. (eds) Drug Discovery and Evaluation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29837-1_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-29837-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42396-6

  • Online ISBN: 978-3-540-29837-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics