Skip to main content

Endocrinology1

  • Reference work entry
Drug Discovery and Evaluation

1 N.1 Endocrine survey

1.1 PURPOSE AND RATIONALE

The effect of steroid and peptide hormones as well as the influence of drugs on the endocrine system are detected by repeated administration of the test substances. After administration during a period of 1–4 weeks, the endocrine glands and the organs depending on hormonal influences are weighed. Furthermore, the hormonal content of the endocrine glands and blood levels of hormones determined.

1.2 PROCEDURE

Separate groups of 5–10 male and female Sprague-Dawley rats weighing 55–65 g are used. For some compounds, groups of 200 or 300 g body weight may be required. They are treated daily over a period of 6–12 days with the test compound by the intended route of orally) or by subcutaneous injections. For toxicological studies, a treatment period of 4 weeks is preferable. A similar protocol is applied in chronic toxicity studies in rats and dogs. On the day after the last application, the animals are sacrificed, weighed, and the following...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

References

  • Sandow J (1979) Toxicological evaluation of drugs affecting the hypothalamic-pituitary system. Pharmac Ther 5:297–303

    CAS  Google Scholar 

References

  • Biedl A (1916) Physiologie der Nebenniere. Exstirpationsversuche. In: Biedl A (ed) Innere Sekretion. Ihre physiologischen Grundlagen und ihre Bedeutung für die Pathologie. Dritte Auflage, Erster Teil, Urban und Schwarzenberg, Berlin Wien, pp 458–491

    Google Scholar 

  • Bomskov C (1937) Die chirurgischen Methoden der Nebennierenforschung. In Bomskov C, Methodik der Hormonforschung, 1. Band, Thieme Verlag Leipzig, pp 467–485

    Google Scholar 

  • Dorfman RI (1962) In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Bioassay. Chapter 8, Corticoids, Academic Press, New York and London. pp 325–367

    Google Scholar 

  • Grollman A (1941) Biological assay of adrenal cortical activity. Endocrinology 29:855–861

    CAS  Google Scholar 

References

  • Barnes PJ, Adcock I (1993) Anti-inflammatory actions of steroids: molecular mechanisms. Trends Pharmacol Sci 14:436–441

    PubMed  CAS  Google Scholar 

  • Beato M, Truss M, Chávez S (1996) Control of transcription by steroid hormones. NY Acad Sci 784:93–123

    CAS  Google Scholar 

  • Berger TS, Parandoosh Z, Perry BW, Stein RB (1992) Interaction of glucocorticoid analogues with the human glucocorticoid receptor. J Steroid Biochem Molec Biol 41:733–738

    PubMed  CAS  Google Scholar 

  • Brinkmann AO (1994) Steroid hormone receptors: activators of gene transcription. J Pediatr Endocrinol 7:275–282

    PubMed  CAS  Google Scholar 

  • Carson-Jurica MA, Schrader WR, O'Malley BW (1990) Steroid receptor family: Structure and functions. Endocr Rev 11:201–220

    PubMed  CAS  Google Scholar 

  • Distelhorst CW (1993) Steroid hormone receptors. J Lab Clin Med 122:241–244

    PubMed  CAS  Google Scholar 

  • Druzgala P, Hochhaus G, Bodor N (1991) Soft drugs. 10. Blanching activity and receptor binding affinity of a new type of glucocorticoid: loteprednoletabonate. J Steroid Biochem Mol Biol 38:149–154

    PubMed  CAS  Google Scholar 

  • Guo Z, Chen YZ, Xu RB, Fu H (1995) Binding characteristics of glucocorticoid receptor in synaptic plasma membrane from rat brain. Funct Neurol 10:183–194

    PubMed  CAS  Google Scholar 

  • Härd T, Kellenbach E, Boelens R, Maler BA, Dahlman K, Freedman LP, Carlstedt-Duke J, Yamamoto KR, Gustafsson JÅ, Kaptein R (1990) Solution structure of the glucocorticoid receptor DNA-binding domain. Science 249:157–160

    PubMed  Google Scholar 

  • Hochhaus G, Druzgala P, Hochhaus R, Huang MJ, Bodor N (1991) Glucocorticoid activity and structure activity relationships in a series of some novel 17α-ether-substituted steroids: Influence of 17α-substituents. Drug Design Discov 8:117–125

    CAS  Google Scholar 

  • Jacobson L, Brooke S, Sapolsky R (1993) Corticosterone is a preferable ligand for measuring brain corticosteroid receptors: competition by RU 28362 and RU 26752 for dexamethasone binding in rat hippocampal cytosol. Brain Res 625:84–92

    PubMed  CAS  Google Scholar 

  • Jensen EV (1996) Steroid hormones, receptors, and antagonists. Ann NY Acad Sci 784:1–17

    PubMed  CAS  Google Scholar 

  • Lazar MA (1991) Steroid and thyroid hormone receptors. In: Straus JF III (ed) Endocrinology and Metabolism, Clinics of North America. Steroid Hormones. Synthesis Metabolism and Action in Health and Disease. Vol 20:681–695

    CAS  Google Scholar 

  • Lefebvre P, Danze PM, Sablonniere B, Richard C, Formstecher P, Dautrevaux M (1988) Association of the glucocorticoid receptor binding with the 90K nonsteroid-binding component is stabilized by both steroidal and nonsteroidal antigluco-corticoids in intact cells. Biochemistry 27:9186–9194

    PubMed  CAS  Google Scholar 

  • Lopez S, Simons SS (1991) Dexamethasone 21-(β-isothiocyanatoethyl) thioether: A new affinity label for glucocorticoid receptors. J Med Chem 34:1762–1767

    PubMed  CAS  Google Scholar 

  • Ojasoo T, Raynaud JP, Doré JC (1994) Affiliations among steroid receptors as revealed by multivariate analysis of steroid binding data. J Steroid Biochem Mol Biol 48:31–46

    PubMed  CAS  Google Scholar 

  • Ojasoo T, Raynaud JP, Doré JC (1995) Correspondence factor analysis of steroid libraries. Steroids 60:458–469

    PubMed  CAS  Google Scholar 

  • Power RF, Conneely OM, O'Malley BW (1993) New insights into activation of the steroid hormone receptor superfamily. Trends Pharm Sci 13:318–323

    Google Scholar 

  • Raynaud JP, Ojasoo T, Bouton MM, Philibert D (1979) Receptor binding as a tool in the development of new bioactive steroids. In: Ariëns EJ (ed) Drug Design, Vol VIII, Academic Press, New York, pp 169–214

    Google Scholar 

  • Rohdewald P, Möllman HW, Hochhaus G (1985) Affinities of glucocorticoids for glucocorticoid receptors in the human lung. Agents Actions 17:290–292

    CAS  Google Scholar 

  • Rousseau GG, Schmit JP (1977) Structure-activity relationships for glucocorticoids — I: Determination of receptor binding and biological activity. J Steroid Biochem 8:911–919

    PubMed  CAS  Google Scholar 

  • Schlechte JA, Ginsberg BH, Sherman BM (1982) Regulation of the glucocorticoid receptor in human lymphocytes. J Steroid Biochem 16:69–74

    PubMed  CAS  Google Scholar 

  • Spencer RL, Young EA, Choo PH, McEwen BS (1990) Adrenal steroid type I and type II receptor binding: estimates of in vivo receptor number, occupancy, and activation with varying level of steroid. Brain Res 514:37–48

    PubMed  CAS  Google Scholar 

  • Srivastava D, Thompson EB (1990) Two glucocorticoid binding sites on the human glucocorticoid receptor. Endocrinology 127:1770–1778

    PubMed  CAS  Google Scholar 

  • Steiner AE, Wittliff JL (1985) A whole-cell assay for glucocorticoid binding sites in normal human lymphocytes. Clin Chem 31:1855–1860

    PubMed  CAS  Google Scholar 

  • Teutsch G, Nique F, Lemoine G, Bouchoux F, Cérède E, Gofflo D, Philibert D (1995) General structure-activity correlations of antihormones. Ann NY Acad Sci 761:5–28

    PubMed  CAS  Google Scholar 

  • Ueno H, Maruyama A, Miyake M, Nakao E, Nakao K, Umezu K, Nitta I (1991) Synthesis and evaluation of anti-inflammatory activities of a series of corticosteroid 17α-esters containing a functional group. J Med Chem 34:2468–2473

    PubMed  CAS  Google Scholar 

  • White JH, McCuaig KA, Mader S (1994) A simple and sensitive high-throughput assay for steroid agonists and antagonists. Biotechnol 12:1003–1007

    CAS  Google Scholar 

  • Wittliff LJ, Raffelsberger W (1995) Mechanisms of signal transduction: sex hormones, their receptors and clinical utility. J Clin Ligand Assay 18:211–235

    Google Scholar 

  • Wojnar RJ, Varma RK, Free CA, Millonig RC, Karanewsky D, Lutsky BN (1986) Androstene-17-thioketals. 1st Communication: Glucocorticoid receptor binding, antiproliferative and anti-inflammatory activities of some novel 20-thiasteroids (androstene-17-thioketals) Arzneim Forsch/Drug Res 36:1782–1787

    CAS  Google Scholar 

  • Zeelen FJ (1992) Medicinal chemistry of steroids: Recent developments. In: Testa B (ed) Advances in Drug Research. Academic Press, London, pp 149–189

    Google Scholar 

References

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem 72:248–254

    PubMed  CAS  Google Scholar 

  • Cato ACB, Miksicek R, Schütz G, Arnemann J, Beato M (1986) The hormone regulatory element of mouse mammary tumor virus mediates progesterone induction. Embo J 6:2237–2240

    Google Scholar 

  • DeWet JR, Wood KV, deLucca M, Helinski DR, Subramani S (1987) Firefly luciferase gene: Structure and expression in mammalian cells. Mol Cell Biol 7:725–737

    CAS  Google Scholar 

  • Dias JM, Go NF, Hart CP, Mattheakis LC (1998) Genetic recombination as a reporter for screening steroid receptor agonists and antagonists. Analyt Biochem 258:96–102

    PubMed  CAS  Google Scholar 

  • Felgner PL, Holm M (1989) Cationic liposome-mediated transfection. Focus 11:21–25

    Google Scholar 

  • Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci, USA 84:7413–7417

    PubMed  CAS  Google Scholar 

  • Fuhrmann U, Bengtson C, Repenthin G, Schillinger E (1992) Stable transfection of androgen receptor and MMTVCAT into mammalian cells: Inhibition of CAT expression by antiandrogens. J Steroid Biochem Molec Biol 42:787–793

    PubMed  CAS  Google Scholar 

  • Fuhrmann U, Slater EP, Fritzemeier KH (1995) Characterization of the novel progestin gestodene by receptor binding studies and transactivation assays. Contraception 51:45–52

    PubMed  CAS  Google Scholar 

  • Fuhrmann U, Krattenmacher R, Slater EP, Fritzemeier KH (1996) The novel progestin drospirone and its natural counterpart progesterone: biochemical profile and antiandrogenic potential. Contraception 54:243–251

    PubMed  CAS  Google Scholar 

  • Gorman CM, Moffat LF, Howard BH (1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Molec Cell Biol 2:1044–1055

    PubMed  CAS  Google Scholar 

  • Green S, Chambon P (1988) Nuclear receptors enhance our understanding of transcription regulations. Trends Genet 4:309–314

    PubMed  CAS  Google Scholar 

  • Hollenberg SM, Weinberger C, Ong ES, Cerelli G, Oro A, Lebo R, Thompson EB, Rosenfeld MG, Evans RM (1985) Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature 318:635–641

    PubMed  CAS  Google Scholar 

  • Hollon T, Yosimura FK (1989) Variation in enzymatic transient gene expression assays. Analyt Biochem 182:411–418

    PubMed  CAS  Google Scholar 

  • Muhn P, Fuhrmann U, Fritzemeier KH, Krattenmacher R, Schillinger E (1995) Drospirenone: a novel progestogen with antimineralocorticoid and antiandrogenic activity. Ann NY Acad Sci 761:311–335

    PubMed  CAS  Google Scholar 

  • Vayssière BM, Dupont S, Choquart A, Petit F, Garcia T, Marchandeau C, Gronemeyer H, Resche-Rigon M (1997) Synthetic glucocorticoids that dissociate transactivation and AP1 transrepression exhibit anti-inflammatory activity in vivo. Mol Endocrinol 11:1245–1255

    PubMed  Google Scholar 

  • White JH, McCuaig KA, Mader S (1994) A simple and sensitive high-throughput assay for steroid agonists and antagonists. Biotechnol 12:1003–1007

    CAS  Google Scholar 

References

  • Diamondstone TI (1966) Assay of tyrosine transaminase activity by conversion of p-hydroxyphenyl-pyruvate to p-hydroxy-benzaldehyde. Anal Biochem 16:385–401

    Google Scholar 

  • Giesen EM, Beck G (1982) Hormonal deinduction of tyrosine aminotransferase. Horm Metab Res 14:252–256

    PubMed  CAS  Google Scholar 

  • Neef G, Beier S, Elger W, Henderson D, Wiechert R (1984) New steroids with antiprogestional and antiglucocorticoid activities. Steroids 44:349–372

    PubMed  CAS  Google Scholar 

  • Raynaud JP, Bouton MM, Moguilewsky M, Ojasoo T, Philibert D, Beck G, Labrie F, Mornon JP (1980) Steroid hormone receptors and pharmacology. J Steroid Biochem 12:143–157

    PubMed  CAS  Google Scholar 

  • Rousseau GG, Schmit JP (1977) Structure-activity relationships for glucocorticoids — I: Determination of receptor binding and biological activity. J Steroid Biochem 8:911–919

    PubMed  CAS  Google Scholar 

  • Thompson EB, Tomkins GM, Curran JF (1966) Induction of tyrosine α-ketoglutarate transaminase by steroid hormones in a newly established tissue culture cell line. Proc Natl Acad Sci USA 56:269–303

    Google Scholar 

References

  • Kapsenberg ML, Van der Pouw-Kraan T, Stiekema FEM, Schootenmeijer A, Bos JD (1988) Direct and indirect nickelspecific stimulation of T lymphocytes from patients with allergic contact dermatitis to nickel. Eur J Immunol 18:977–982

    PubMed  CAS  Google Scholar 

  • Mollison KW, Frey TA, Gauvin DM, Kolano RM, Sheets MP, Smith ML, Pong M; Nikolaidis NM, Lane BC, Trevillyan JM, Cannon J, Marsh K, Carter GW, Or Y S, Chen Y W, Hsieh GC, Luly JR (1999) A macrolactam inhibitor of T helper type 1 and T helper type 2 cytokine biosynthesis for topical treatment of inflammatory skin diseases. J Invest Dermatol 112:729–738

    PubMed  CAS  Google Scholar 

  • Snijedewint FGM, Kapsenberg ML, Wauben-Penris PJJ, Bos JD (1995) Corticoids class-dependently inhibit Th1-and Th2-type cytokine production. Immunopharmacology 29:93–101

    Google Scholar 

  • Van der Heijden FL, Wierenga EA, Bos JD, Kapsenberg ML (1991) High frequency of IL-4-producing CD4+ allergen-specific T lymphocytes in atopic dermatitis lesional skin. J Invest Dermatol 97:389–394

    PubMed  Google Scholar 

  • Van der Pouw-Kraan T, Van Kooten C, Rensink I, Arden L (1992) Interleukin (IL)-4 production by human T cells: differential regulation of IL-4 vs. IL-2 production. Eur J Immunol 22:1237–1241

    PubMed  Google Scholar 

References

  • Augustine AJ, Oleksyszyn J (1997) Glucocorticoids inhibit degradation in bovine cartilage explants stimulated with concomitant plasminogen and interleukin-1α. Inflamm Res 46:60–64

    PubMed  CAS  Google Scholar 

  • Pelletier JP, DiBattista JA, Raynauld JP, Wilhelm S, Martel-Pelletier J (1995) The in vivo effects of intraarticular corticosteroid injections on cartilage lesions, stromelysin, interleukinl, and oncogen protein synthesis in experimental osteoarthritis. Lab Invest 72:578–586

    PubMed  CAS  Google Scholar 

  • Van den Berg WB, Joosten LAB, van de Loo FAJ, de Vries BJ, van der Kraan PM, Vitters EL (1992) Drug evaluation in normal and arthritic mouse patellas. In: Kuettner KE, Schleyerbach R, Peyron JG, Hascall VC (eds) Articular cartilage and Osteoarthritis. New York, Raven Press: pp 583–595

    Google Scholar 

References

  • Bomskov C (1937) Biologische Methoden der Nebennierenrindenforschung. In Bomskov C, Methodik der Hormonforschung, 1. Band, Thieme Verlag Leipzig, pp 489–534

    Google Scholar 

  • Dorfman RI (1962) In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Bioassay. Chapter 8, Corticoids, Academic Press, New York and London. pp 325–367

    Google Scholar 

  • Ingle DJ (1944) Physiology and Chemistry of Hormones. Am Ass Adv Sci, Washington

    Google Scholar 

References

  • Byrnes WW, Shipley EG (1955) Guinea pig copulatory reflex in response to adrenal steroids and similar compounds. Endocrinology 57:5–9

    PubMed  CAS  Google Scholar 

  • Dorfman RI (1962) In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Bioassay. Chapter 8, Corticoids, Academic Press, New York and London. pp 325–367

    Google Scholar 

  • Gaignault JP, Duval D, Meyer P (1977) The relationship between glucocorticoid structure and effects upon thymocytes. Molec Pharmacol 13:948–955

    Google Scholar 

  • Laschet U, Hohlweg W (1960) Die Testierung neuer Glucocorticoidpräparate mit dem NTP-Test. Pharmazie 15:374–377

    PubMed  CAS  Google Scholar 

  • Ringler I (1964) Activities of adrenocorticosteroids in experimental animals and man. In: Dorfman RI (ed) Methods in Hormone Research, Vol III, Steroidal Activity in Experimental Animals and Man. Chapter 6, Academic Press, New York and London. pp 227–349

    Google Scholar 

References

  • Silber RH, Arcese PS (1964) Animal techniques for evaluating adrenocortical drugs. In: Nodine JH, Siegler PE (eds) Animal and Clinical Pharmacologic Techniques in Drug Evaluation. Year Book Medical Publishers, Inc., Chicago, pp 542–550

    Google Scholar 

  • Speirs RS, Meyer RK (1951) A method of assaying adrenal cortical hormones based on a decrease in circulating eosinophil cells of adrenalectomized mice. Endocrinology 48:316–326

    PubMed  CAS  Google Scholar 

  • Tolksdorf S (1959) Laboratory evaluation of anti-inflammatory steroids. Ann New York Acad Sci 82:829–835

    CAS  Google Scholar 

References

  • Albrecht W, Longauer JK, Weirich EG (1979) Wirkung von Dermatocorticoiden auf die Aktivität der hepatischen Tryptophanpyrrolase beim Meerschweinchen. Arch Dermatol Res 265:275–281

    PubMed  CAS  Google Scholar 

  • Alpermann HG, Sandow J, Vogel HG (1982) Tierexperimentelle Untersuchungen zur topischen und systemischen Wirksamkeit von Prednisolon-17-ethylcarbonat-21-propionat. Arzneim Forsch/Drug Res 32:633–638

    CAS  Google Scholar 

  • Dorfman RI (1962) In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Bioassay. Chapter 8, Corticoids, Academic Press, New York and London. pp 325–367

    Google Scholar 

  • Dorfman RI, Ross E, Shipley RA (1946) The assay of adrenal cortical material by means of a glycogen test in the adrenalectomized mouse. Endocrinology 38:178–188

    PubMed  CAS  Google Scholar 

  • Knox E, Auerbach VH (1955) The hormonal control of tryptophan peroxidase in the rat. J Biol Chem 214:307–313

    PubMed  CAS  Google Scholar 

  • Ringler I (1964) Activities of adrenocorticosteroids in experimental animals and man. In: Dorfman RI (ed) Methods in Hormone Research, Vol III, Steroidal Activity in Experimental Animals and Man. Chapter 6, Academic Press, New York and London. pp 227–349

    Google Scholar 

  • Silber RH, Arcese PS (1964) Animal techniques for evaluating adrenocortical drugs. In: Nodine JH, Siegler PE (eds) Animal and Clinical Pharmacologic Techniques in Drug Evaluation. Year Book Medical Publishers, Inc., Chicago, pp 542–550

    Google Scholar 

  • Stafford RO, Barnes LE, Bowman BJ, Meinzinger MM (1955) Glucocorticoid and mineralocorticoid activities of Δ1-fluorohydrocortisone. Proc Soc Exp Biol Med 89:371–374

    PubMed  CAS  Google Scholar 

  • Venning EH, Kazmin VE, Bell JC (1946) Biological assay of adrenal corticoids. Endocrinology 38:79–89

    PubMed  CAS  Google Scholar 

  • Vogel G (1963) Intensität und Dauer der antiinflammatorischen und glykoneogenetischen Wirkung von Prednisolon und Prednisolonazetat nach oraler und subcutaner Applikation an der Ratte. Acta Endocrin 42:85–96

    CAS  Google Scholar 

  • Vogel HG (1965) Intensität und Dauer der Wirkung von 6α-Methylprednisolon und seinen Estern an der Ratte. Acta Endocrin 50:621–642

    CAS  Google Scholar 

References

  • Barnes PJ (1998) Anti-inflammatory actions of glucocorticoids. Molecular mechanisms. Clin Sci 94:557–572

    PubMed  CAS  Google Scholar 

  • Vayssiere BM, Dupont S, Chaoquart A, et al. (1997) Synthetic glucocorticoids that dissociate transactivation and AP-1 transrepression exhibit anti-inflammatory activity in vivo. Mol Endocrinol 11:1245–1255

    PubMed  CAS  Google Scholar 

References

  • Vogel G (1968) Untersuchungen zur Wirkung von Hormonen auf physikalische und chemische Eigenschaften des Binde-und Stützgewebes. Fortschr. Med 86:666–668

    CAS  Google Scholar 

  • Vogel G, Ther L (1963) Tierexperimentelle Untersuchungen über den Einfluß von Hormonen auf physikalische Eigenschaften von Knochen. Verh Dtsch Ges Pathol 47. Tagung, G Fischer Verlag, Stuttgart, pp 167–171

    Google Scholar 

  • Vogel HG (1969) Zur Wirkung von Hormonen auf physikalische und chemische Eigenschaften des Binde-und Stützgewebes. Arzneim Forsch/Drug Res 19:1495–1503, 1732–1742, 1790–1801, 1981–1996

    CAS  Google Scholar 

  • Vogel HG (1990) Influence of desmotropic drugs on breaking strength and on viscoelastic properties of rat bone. Relaxation and hysteresis experiments. Acta Therap 16:109–127

    CAS  Google Scholar 

References

  • Ther L, Schramm H, Vogel G (1963) Über die antagonistische Wirkung von Trijodthyronin und Progesteron auf den Prednisoloneffekt am Epiphysenknorpel. Acta Endocr 42:29–38

    PubMed  CAS  Google Scholar 

  • Vogel G, Ther L (1964) Über den Einfluß von einigen Hormonen auf mechanisch-physikalische Eigenschaften des Binde-und Stützgewebes. Anatom Anzeig 115, (Suppl) 117–122

    Google Scholar 

  • Vogel HG (1969) Zur Wirkung von Hormonen auf physikalische und chemische Eigenschaften des Binde-und Stützgewebes. Arzneim Forsch/Drug Res 19:1495–1503, 1732–1742, 1790–1801, 1981–1996

    CAS  Google Scholar 

References

  • Vogel HG (1965) Intensität und Dauer der Wirkung von 6α-Methylprednisolon und seinen Estern an der Ratte. Acta Endocrin 50:621–642

    CAS  Google Scholar 

  • Vogel HG (1969) Zur Wirkung von Hormonen auf physikalische und chemische Eigenschaften des Binde-und Stützgewebes. Arzneim Forsch/Drug Res 19:1495–1503, 1732–1742, 1790–1801, 1981–1996

    CAS  Google Scholar 

  • Vogel HG (1984) Influence of desmotropic drugs on viscoelastic properties of rat tail tendons. Hysteresis experiments. Arzneim Forsch/Drug Res 34:213–216

    CAS  Google Scholar 

  • Vogel HG (1989) Influence of desmotropic drugs on viscoelastic properties of tail tendons in rats. Acta Therap 15:239–252

    CAS  Google Scholar 

  • Vogel HG, Schorning M (1990) Retardation experiments in rat tail tendons. Influence of maturation and age and of desmotropic and anti-inflammatory drugs. Acta Therap 16:3–11

    CAS  Google Scholar 

References

  • Vogel HG (1969) Zur Wirkung von Hormonen auf physikalische und chemische Eigenschaften des Binde-und Stützgewebes. Arzneim Forsch/Drug Res 19:1495–1503, 1732–1742, 1790–1801, 1981–1996

    CAS  Google Scholar 

  • Vogel HG (1970a) Beeinflussung der mechanischen Eigenschaften der Haut von Ratten durch Hormone. Arzneim Forsch/Drug Res 20:1849–1857

    CAS  Google Scholar 

  • Vogel HG (1970b) Tensile strength of skin wounds in rats after treatment with corticosteroids. Acta Endocrin 64:295–303

    CAS  Google Scholar 

  • Vogel HG (1971a) Antagonistic effect of aminoacetonitrile and prednisolone on mechanical properties of rat skin. Biochim Biophys Acta 252:580–585

    PubMed  CAS  Google Scholar 

  • Vogel HG (1971b) Zur Wirkung von Hormonen, insbesondere Glucocorticoiden, auf die physikalischen und chemischen Eigenschaften normaler und traumatisierter Haut. Acta Endocrin Suppl 152:19

    Google Scholar 

  • Vogel HG (1972) Influence of age, treatment with corticosteroids and strain rate on mechanical properties of rat skin. Biochim Biophys Acta 286:79–83

    PubMed  CAS  Google Scholar 

  • Vogel HG (1973) Stress relaxation in rat skin after treatment with hormones. j Med 4:19–27

    PubMed  CAS  Google Scholar 

  • Vogel HG (1974) Correlation between tensile strength and collagen content in rat skin. Effect of age and cortisol treatment. Conn Tissue Res 2:177–182

    CAS  Google Scholar 

  • Vogel HG (1976) Measurement of some viscoelastic properties of rat skin following repeated load. Conn Tissue Res 4:163–168

    CAS  Google Scholar 

  • Vogel HG (1977) Strain of rat skin at constant load (creep experiments). Influence of age and desmotropic agents. Gerontology 23:77–86

    PubMed  CAS  Google Scholar 

  • Vogel HG (1981) Influence of desmotropic agents on the directional variations of mechanical properties in rat skin. Bioeng Skin 3:85–97

    Google Scholar 

  • Vogel HG (1986) In vitro test systems for evaluation of the physical properties of the skin. In: Marks R, Plewig G (eds) Skin Models. Models to Study Function and Disease of Skin. Springer-Verlag, Berlin Heidelberg, pp 412–419

    Google Scholar 

  • Vogel HG (1987) Repeated loading followed by relaxation and isorheological behaviour of rat skin after treatment with desmotropic drugs. Bioeng Skin 3:255–269

    CAS  Google Scholar 

  • Vogel HG (1989) Mechanical properties of rat skin with aging. In: Balin AK, Kligman AM (eds) Aging and the Skin. Raven Press, New York, pp 227–275

    Google Scholar 

  • Vogel HG (1993a) In vivo recovery of repeatedly strained rat skin after systemic treatment with desmotropic drugs. Skin Pharmacol 6:103–110

    PubMed  CAS  Google Scholar 

  • Vogel HG (1993b) Strength and viscoelastic properties of anisotropic rat skin after treatment with desmotropic drugs. Skin Pharmacol 6:92–102

    PubMed  CAS  Google Scholar 

  • Vogel HG, Denkel K (1985) Influence of maturation and age, and of desmotropic compounds on the mechanical properties of rat skin in vivo. Bioeng Skin 1:35–54

    Google Scholar 

References

  • Adachi K, Levine V, Halprin KM, Iizuka K, Yoshikawa K (1976). Multiple forms of cyclic nucleotide phosphodiesterase in pig epidermis. Biochem Biophys Acta 429:498–507

    PubMed  CAS  Google Scholar 

  • Alpermann HG, Sandow J, Vogel HG (1982) Tierexperimentelle Untersuchungen zur topischen und systemischen Wirksamkeit von Prednisolon-17-ethylcarbonat-21-propionat. Arzneim Forsch/Drug Res 32:633–638

    CAS  Google Scholar 

  • Altmeyer P, Buhles N (1981) Tolerance on corticosteroids? Guinea pig epithel as an experimental system. Arch Derm Res 271:3–9

    PubMed  CAS  Google Scholar 

  • Hartop PJ, Allenby CF, Prottey C (1978) Comparison of barrier function and lipids in psoriasis and essential fatty acid-deficient rats. Clin Exp Dermatol 3:259–267

    PubMed  CAS  Google Scholar 

  • Iizuka H, Ohkuma N, Ohkawara A (1985) Effects of retinoids on the cyclic AMP system of pig skin epidermis. J Invest Dermatol 85:324–327

    PubMed  CAS  Google Scholar 

  • Iwasaki K, Mishima E, Miura M, Sakai N, Shimao S (1995) Effect of RU 486 on the atrophogenic and antiinflammatory effects of glucocorticoids in skin. J Dermatol Sci 10:151–158

    PubMed  CAS  Google Scholar 

  • Kajita S, Iizuka H, Hirokawa M, Tsutsui M, Mizumoto T (1986) Topical application of potent glucocorticoids augments epidermal beta-adrenergic adenylate cyclase response in vivo. Acta Derm Venereol (Stockh) 66:491–496

    PubMed  CAS  Google Scholar 

  • Kapp JF, Gliwitzki B, Josefiuk P, Weishaupt W (1977) Dermale und systemische Nebenwirkungen von Fluocortin-butylester (FCB). Hautreißversuche im Vergleich mit Wirkstoffen aus Handelspräparaten. Arzneim Forsch/Drug Res 27:2206–2213

    CAS  Google Scholar 

  • Lesnik RH, Mezick JA, Capetola R, Kligman LH (1989) Topical all-trans-retinoic acid prevents corticosteroid-induced skin atrophy without abrogating the anti-inflammatory effects. J Am Acad Dermatol 21:168–190

    Google Scholar 

  • Lowe NJ, Stoughton RB (1977) Essential fatty acid deficient hairless mouse: a model of chronic epidermal hyperproliferation. Br J Dermatol 96:155–162

    PubMed  CAS  Google Scholar 

  • Prottey C, Hartop PJ, Black JG, McCormac JI (1976) The repair of impaired epidermal barrier function in rats by the cutaneous application of linoleic acid. Br J Dermatol 94:13–21

    PubMed  CAS  Google Scholar 

  • Schröder HG, Babej M, Vogel HG (1974) Tierexperimentelle Untersuchungen mit dem lokal wirksamen 9α-Fluor-16α-methyl-17-desoxy-prednisolon. Arzneim Forsch/Drug Res 24:3–5

    Google Scholar 

  • Schwartz E, Mezick JA, Gendimenico GJ, Kligman LH (1994) In vivo prevention of corticosteroid-induced skin atrophy by tretinoin in the hairless mouse is accompanied by modulation of collagen, glycosaminoglycans, and fibronectin. J Invest Dermatol 102:241–246

    PubMed  CAS  Google Scholar 

  • Töpert M, Olivar A, Opitz D (1990) New developments in corticosteroid research. J Dermatol Treatment 1, Suppl 3:S5–S9

    Google Scholar 

  • Van den Hoven WE, van den Berg TP, Korstanje C (1991) The hairless mouse as a model for study of local and systemic atrophogenic effects following topical application of corticosteroids. Acta Derm Venereol (Stockh) 71:29–31

    PubMed  Google Scholar 

  • Vogel HG, Petri W (1985) Comparison of various pharmaceutical preparations of prednicarbate after repeated topical administration to the skin of rats. Arzneim Forsch/Drug Res 35:939–946

    CAS  Google Scholar 

  • Woodbury R, Kligman AM (1992) The hairless mouse model for assaying the atrophogenicity of topical corticosteroids. Acta Derm Venereol (Stockh) 72:403–408

    PubMed  CAS  Google Scholar 

  • Wrench R (1980) Epidermal thinning: evaluation of commercial corticosteroids. Arch Dermatol Res 267:7–24

    PubMed  CAS  Google Scholar 

  • Yoshikawa K, Adachi K, Halprin KM, Levine V (1975) Cyclic AMP in skin: effects of acute ischemia. Br J Dermatol 92:249–254

    PubMed  CAS  Google Scholar 

References

  • Gorman CM, Moffat LF, Howard BH (1982) Recombinant genes which express chloramphenicol acetyltransferase in mammalian cells. Molec Cell Biol 2:1044–1051

    PubMed  CAS  Google Scholar 

  • Hsu-Wong S, Katchman SD, Ledo I, Wu M, Khillan J, Bashir MM; Rosenbloom M, Uitto J (1994) Tissue-specific and developmentally regulated expression of human elastin promotor activity in transgenic mice. J Biol Chem 269:18072–18075

    PubMed  CAS  Google Scholar 

  • Katchman SD, Del Monaco M, Wu M, Brown D, Hsu-Wong S, Uitto J (1995) A transgenic mouse model provides a novel biological assay of topical glucocorticosteroid potency. Arch Dermatol 131:1274–1278

    PubMed  CAS  Google Scholar 

References

  • Clement M, Hehir M, Phillips H, du Vivier A (1983) The effect on epidermal DNA synthesis of a combination of topical steroid with either dithranol or tar as used for psoriasis. Br J Dermatol 109:327–335

    PubMed  CAS  Google Scholar 

  • Du Vivier A, Marshall AC, Brookes LG (1978) An animal model for evaluating the local and systemic effects of topically applied corticosteroids on epidermal synthesis. Br J Dermatol 98:209–215

    PubMed  Google Scholar 

  • Marks R, Pongsehirun D, Saylan T (1973) A method for the assay of topical corticosteroids. Br J Dermatol 88:69–74

    PubMed  CAS  Google Scholar 

  • Marshall RC, Du Vivier A (1978) Effect on epidermal DNA synthesis of the butyrate esters of clobetasone and clobetasol, and the propionate ester of clobetasol. Br J Dermatol 98:355–359

    PubMed  CAS  Google Scholar 

  • Marshall RC, Burrows M, Brookes LG, du Vivier A (1981) The effect of topical and systemic glucocorticosteroids on DNA synthesis in different tissues of the hairless mouse. Br J Dermatol 105:517–520

    PubMed  CAS  Google Scholar 

References

  • Burton K (1956) A study on the conditions and mechanisms of the diphenylamine reaction for the colorimetric estimation of desoxyribonucleic acid. Biochem J 62:401–437

    Google Scholar 

  • Finnen MJ, Herdman ML, Shuster S (1984) Induction of drug metabolizing enzymes in the skin by topical steroids. J Steroid Biochem 20:1169–1173

    PubMed  CAS  Google Scholar 

  • Finnen MJ, Herdman ML, Shuster S (1985) Strain differences in the induction of mono-oxygenase activity in mouse skin by topical clobetasol propionate: evidence of a role for the HR locus. J Steroid Biochem 23:431–435

    PubMed  CAS  Google Scholar 

  • Greenlee WF, Poland A (1978) An improved assay of 7-ethoxycoumarin O'deethylase activity. Induction of hepatic enzyme activity in C5BL/6J and DBA/2J mice by phenobarbital, 3-methylcholanthrene and 2,3,7,8-tetrachlorodibenzop-dioxin. J Pharmacol Exp Ther 205:596–606

    PubMed  CAS  Google Scholar 

  • Pohl RJ, Fouts JR (1980) A rapid method for assaying the metabolisms of 7-ethoxyresorufin by microsomal subcellular fractions. Analyt Biochem 107:150–155

    PubMed  CAS  Google Scholar 

  • Thompson S, Slaga TJ (1976) The effects of dexamethasone on mouse initiation skin and aryl hydrocarbon hydroxylase. Eur J Cancer 12:363–370

    PubMed  CAS  Google Scholar 

References

  • Cantrill HL, Palmberg PF, Zink HA, Waltman SR, Podos SM, Becker B (1975) Comparison of in vitro potency of corticosteroids with ability to raise intraocular pressure. Am J Ophthalmol 79:1012–1017

    PubMed  CAS  Google Scholar 

  • Leibowitz HM, Kupferman A (1974) Anti-inflammatory effectiveness in the cornea of topically administered prednisolone. Invest Ophthalmol 13:757–763

    PubMed  CAS  Google Scholar 

  • Leibowitz HM, Kupferman A, Stewart HR, Kimbrough RL (1978) Evaluation of dexamethasone acetate as a topical ophthalmic formulation. Am J Ophthalmol 86:418–423

    PubMed  CAS  Google Scholar 

  • Leibowitz HM, Ryan WJ, Kupferman A (1992) Comparative anti-inflammatory efficacy of topical corticosteroids with low glaucoma-inducing potential. Arch Ophthalmol 110:118–120

    PubMed  CAS  Google Scholar 

References

  • Cousins SW, Rosenbaum JT, Guss RB, Egbert PR (1982) Ocular albumin fluorophotometric quantitation of endotoxin-induced vascular permeability. Infect Immun 36:730–736

    PubMed  CAS  Google Scholar 

  • Tsuji F, Sawa K, Kato M, Mibu H, Shirasawa E (1997) The effects of betamethasone derivatives on endotoxin-induced uveitis in rats. Exp Eye Res 64:31–36

    PubMed  CAS  Google Scholar 

References

  • Dorfman RI (1962) In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Bioassay. Chapter 8, Corticoids, Academic Press, New York and London. pp 325–367

    Google Scholar 

  • Vincent GP, Monteserin MC, Valeiro AS, Burton G, Lantos CP, Galigniana MD (1997) 21-hydroxy-6,19-oxidoprogesterone: A novel synthetic steroid with specific antiglucocortic oid properties in the rat. Mol Pharmacol 52:749–753

    Google Scholar 

References

  • Bülbring E (1937) The standardization of cortical extracts by the use of drakes. J Physiol (London) 89:64–80

    Google Scholar 

  • Dorfman RI (1962) In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Bioassay. Chapter 8, Corticoids, Academic Press, New York and London. pp 325–367

    Google Scholar 

  • Grollman A (1941) Biological assay of adrenal cortical activity. Endocrinology 29:855–861

    CAS  Google Scholar 

  • Junkmann K (1955) Über protrahiert wirksame Corticoide. Naunyn-Schmiedeberg's Arch exper Pathol Pharmacol 227:212–213

    CAS  Google Scholar 

  • Ringler I (1964) Activities of adrenocorticosteroids in experimental animals and man. In: Dorfman RI (ed) Methods in Hormone Research, Vol III, Steroidal Activity in Experimental Animals and Man. Chapter 6, Academic Press, New York and London. pp 227–349

    Google Scholar 

  • Tolksdorf S, Battin ML, Cassidy JW, McLeod RM, Warren FH, Perlman PL (1956) Adrenocortical properties of δ1,4-pregnadiene-17α,21-diol-3,11,20-trione (Meticorten) and δ1,4-pregnadiene-11β,17α21-triol-3,20-dione (Meticortelone). Proc Soc Exp Biol Med 92:207–214

    PubMed  CAS  Google Scholar 

References

  • Kagawa CM, Shipley EG, Meyer RK (1952) A biological method for determining small quantities of sodium retaining substances. Proc Soc Exp Biol Med 80:281–285

    PubMed  CAS  Google Scholar 

  • Marcus F, Romanoff LP, Pincus G (1952) The electrolyte-excreting activity of adrenocortical substances. Endocrinology 50:286–293

    PubMed  CAS  Google Scholar 

  • Nikisch K, Beier S, Bittler D, Elger W, Laurent H, Losert W, Nishino Y, Schillinger E, Wiechert R (1991) Aldosterone antagonists. 4. Synthesis and activities of steroidal 6,6-ethylene-15,16-methylene 17-spirolactones. J Med Chem 34:2464–2468

    Google Scholar 

  • Simpson SA, Tait JF (1952) A quantitative method for the bioassay of the effect of adrenal cortical steroids on mineral metabolism. Endocrinology 50:150–161

    PubMed  CAS  Google Scholar 

  • Souness GW, Morris DJ (1991) The “mineralocorticoid-like” actions conferred on corticosterone by carbenoxolone are inhibited by the mineralocorticoid receptor (type I) antagonist RU28318. Endocrinology 129:2451–2456

    PubMed  CAS  Google Scholar 

  • Stafford RO, Barnes LE, Bowman BJ, Meinzinger MM (1955) Glucocorticoid and mineralocorticoid activities of δ1-fluorohydrocortisone. Proc Soc Exp Biol Med 89:371–374

    PubMed  CAS  Google Scholar 

References

  • Arriza JL, Weinberger C, Cerelli G, Glaser TM, Handelin BL, Housman DE, Evans RM (1987) Cloning of human mineralocorticoid receptor complementary DNA: Structural and functional kinship with the glucocorticoid receptor. Science 237:268–275

    PubMed  CAS  Google Scholar 

  • Claire M, Faraj H, Grassy G, Aumelas A, Rondot A, Auzou G (1993) Synthesis of new 11β-substituted spirolactone derivatives. Relationship with affinity for mineralocorticoid and glucocorticoid receptors. J Med Chem 36:2404–2407

    PubMed  CAS  Google Scholar 

  • Davioud E, Fagart J, Souque A, Rafestin-Oblin ME, Marquet A (1996) New steroidal diazo ketones as potential photoaffinity labelling reagents for the mineralocorticoid receptor: Synthesis and biological activities. J Med Chem 39:2860–2864

    PubMed  CAS  Google Scholar 

  • Fagart J, Sobrio F, Marquet A (1997a) Synthesis of [3H-2]-21-diazoprogesterone as a potent photoaffinity labelling reagent for the mineralocorticoid receptor. J Label Compd Radiopharm 39:791–795

    CAS  Google Scholar 

  • Fagart J, Wurtz J-M, Souque A, Hellal-Levy C, Moras D, Rafestin-Oblin M-E (1997b) Antagonism in the human mineralocorticoid receptor. EMBO J 17:3317–3325

    Google Scholar 

  • Funder JW (1997) Glucocorticoid and mineralocorticoid receptors: Biological and clinical relevance. Annu Rev Med 48:231–240

    PubMed  CAS  Google Scholar 

  • Funder JM, Feldman D, Highland E, Edelman IS (1974) Molecular modifications of anti-aldosterone compounds: Effects on affinity of spirolactones for renal aldosterone receptors. Biochem Pharmacol 23:1493–1501

    PubMed  CAS  Google Scholar 

  • Grassy G, Fagart J, Calas B, Adenot M, Rafestin-Oblin ME, Auzou G (1997) Structure-activity relationships of steroids with antimineralocorticoid activity. Eur J Med Chem 32:869–879

    CAS  Google Scholar 

  • Jausons-Loffreda N, Balaguer P, Auzou G, Pons M (1994) Development of specific bioluminescent in vitro assays for selecting potential antimineralocorticoids. J Steroid Biochem Mol Biol 49:31–38

    PubMed  CAS  Google Scholar 

  • Ojasoo T, Raynaud JP (1978) Unique steroid congeners for receptor studies. Cancer Res 38:4186–4198

    PubMed  CAS  Google Scholar 

  • Pasqualini JR, Sumida CH (1977) Mineralocorticoid receptors in target tissues. In. Pasqualini JR (ed) Receptors and Mechanism of Action of Steroid Hormones, Part II, Marcel Dekker, Inc, New York and Basel, pp 399–511

    Google Scholar 

  • Raynaud JP (1978) The mechanism of action of antihormones. In: Jacob J (ed), Advances in Pharmacology and Therapeutics, Vol 1, Receptors, Pergamon Press, Oxford, pp 259–278

    Google Scholar 

  • Raynaud JP, Bonne C, Bouton MM, Moguilewsky M, Philibert D, Azadian-Boulanger G (1975) Screening for antihormones by receptor studies. J Steroid Biochem 6:615–622

    PubMed  CAS  Google Scholar 

  • Raynaud JP, Ojasoo T, Bouton MM, Philibert D (1979) Receptor binding as a tool in the development of new bioactive steroids. In: Ariëns EJ (ed) Drug Design, Vol VIII, Academic Press, New York, pp 169–214

    Google Scholar 

  • Rupprecht R, Reul JMHM, van Steensel B, Spengler D, Söder M, Berning B, Holsboer F, Damm K (1993a) Pharmacological and functional characterization of human mineralocorticoid and glucocorticoid receptor ligands. Eur J Pharmacol, Mol Pharmacol Sect 247:145–154

    CAS  Google Scholar 

  • Rupprecht R, Arriza JL, Spengler D, Reul JMHM, Evans RM, Holsboer F, Damm K (1993b) Transactivation and synergistic properties of the mineralocorticoid receptor: Relationship to the glucocorticoid receptor. Mol Endocrin 7:597–603

    CAS  Google Scholar 

  • Sutano W, de Kloet ER (1991) Mineralocorticoid ligands: biochemical, pharmacological, and clinical aspects. Med Res Rev 11:617–639

    Google Scholar 

  • Wambach G, Higgins JR (1978) Antimineralocorticoid action of progesterone in the rat: correlation of the effect on electrolyte excretion and interaction with mineralocorticoid receptors. Endocrinology: 102:1686–1693

    PubMed  CAS  Google Scholar 

  • Wehling M (1994) Novel aldosterone receptors: specificity-conferring mechanism at the level of the cell membrane. Steroids 59:160–163

    PubMed  CAS  Google Scholar 

References

  • Arriza JL, Weinberger C, Cerelli G, Glaser TM, Handelin BL, Housman DE, Evans RM (1987) Cloning of human mineralocorticoid receptor complementary DNA: Structural and functional kinship with the glucocorticoid receptor. Science 237:268–275

    PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem 72:248–254

    PubMed  CAS  Google Scholar 

  • Cato ACB, Miksicek R, Schütz G, Arnemann J, Beato M (1986) The hormone regulatory element of mouse mammary tumor virus mediates progesterone induction. Embo J 6:2237–2240

    Google Scholar 

  • Felgner PL, Holm M (1989) Cationic liposome-mediated transfection. Focus 11:21–25

    Google Scholar 

  • Fuhrmann U, Bengtson C, Repenthin G, Schillinger E (1992) Stable transfection of androgen receptor and MMTV-CAT into mammalian cells: Inhibition of CAT expression by antiandrogens. J Steroid Biochem Molec Biol 42:787–793

    PubMed  CAS  Google Scholar 

  • Fuhrmann U, Slater EP, Fritzemeier KH (1995) Characterization of the novel progestin gestodene by receptor binding studies and transactivation assays. Contraception 51:45–52

    PubMed  CAS  Google Scholar 

  • Fuhrmann U, Krattenmacher R, Slater EP, Fritzemeier KH (1996) The novel progestin drospirone and its natural counterpart progesterone: biochemical profile and antiandrogenic potential. Contraception 54:243–251

    PubMed  CAS  Google Scholar 

  • Gorman CM, Moffat LF, Howard BH (1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Molec Cell Biol 2:1044–1055

    PubMed  CAS  Google Scholar 

  • Green S, Chambon P (1988) Nuclear receptors enhance our understanding of transcription regulations. Trends Genet 4:309–314

    PubMed  CAS  Google Scholar 

  • Lim-Tio SS, Keightley M-C, Fuller PF (1997) Determinants of specificity of transactivation by the mineralocorticoid or glucocorticoid receptor. Endocrinology 138:2537–2543

    PubMed  CAS  Google Scholar 

  • Lombès M, Kenouch S, Souque A, Farman N, Rafestin-Oblin ME (1994) The mineralocorticoid receptor discriminates aldosterone from glucocorticoids independently of the 11β-hydroxysteroid dehydrogenase. Endocrinology 135:834–840

    PubMed  Google Scholar 

  • Muhn P, Fuhrmann U, Fritzemeier KH, Krattenmacher R, Schillinger E (1995) Drospirenone: a novel progestogen with antimineralocorticoid and antiandrogenic activity. Ann NY Acad Sci 761:311–335

    PubMed  CAS  Google Scholar 

  • Rupprecht R, Reul JMHM, van Steensel B, Spengler D, Söder M, Berning B, Holsboer F, Damm K (1993a) Pharmacological and functional characterization of human mineralocorticoid and glucocorticoid receptor ligands Eur J Pharmacol Molec Pharmacol Sect 247:145–154

    CAS  Google Scholar 

  • Rupprecht R, Arriza JL, Spengler D, Reul JMHM, Evans RM, Holsboer F, Damm K (1993b) Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor. Mol Endocrinol 7:597–603

    PubMed  CAS  Google Scholar 

  • White JH, McCuaig KA, Mader S (1994) A simple and sensitive high-throughput assay for steroid agonists and antagonists. Biotechnol 12:1003–1007

    CAS  Google Scholar 

References

  • De Gasparo M, Joss U, Ramjoué HP, Whitebread SE, Haenni H, Schenkel L, Kraehenbühl C, Biollaz M, Grob J, Schmidlin J, Wieland P, Wehrli HU (1987) Three new epoxy-spironolactone derivatives: characterization in vivo and in vitro. J Pharmac Exp Ther 240:650–656

    Google Scholar 

  • Gómez-Sánchez EP, Fort CM, Gómez-Sánchez CE (1990) Intracerebroventricular infusion of RU28318 blocks aldosterone-salt hypertension. Am J Physiol Endocr Metab 258:E482–E484

    Google Scholar 

  • Kagawa CM (1960) Blocking the renal electrolyte effects of mineralocorticoids with an orally active steroidal spirolactone. Endocrinol 67:125–132

    CAS  Google Scholar 

  • Kagawa CM, Brown EA (1960) Ability of isopregnenolone-21-carboxylates to block renal effects of desoxycorticosterone and aldosterone in rats. Proc Soc Exp Biol Med 105:648–650

    PubMed  CAS  Google Scholar 

  • Kagawa CM, Shipley EG, Meyer RK (1952) A biological method for determining small quantities of sodium retaining substances. Proc Soc Exp Biol Med 80:281–285

    PubMed  CAS  Google Scholar 

  • Losert W, Casals-Stenzel J, Buse M (1985) Progestogens with antimineralocorticoid activity. Arzneim Forsch/Drug Res 35:459–471

    CAS  Google Scholar 

  • Losert W, Bittler D, Buse M, Casals-Stenzel J, Haberey M, Laurent H, Nikisch K, Schillinger E, Wiechert L (1986) Mespirone and other 15,16-methylene-17-spirolactones, a new type of steroidal aldosterone antagonists. Arzneim Forsch/Drug Res 36:1583–1600

    CAS  Google Scholar 

  • Sakauye C, Feldman D (1976) Agonist and antagonist activities of spirolactones. Clin Res 24:135A

    Google Scholar 

  • Stafford RO, Barnes LE, Bowman BJ, Meinzinger MM (1955) Glucocorticoid and mineralocorticoid activities of δ1-fluorohydrocortisone. Proc Soc Exp Biol Med 89:371–374

    PubMed  CAS  Google Scholar 

  • Vogel HG (1965) Unpublished data

    Google Scholar 

References

  • Bomskov C (1939) Die Methoden der Ovarexstirpation (Kastration). In Bomskov C, Methodik der Hormonforschung, 2. Band, Thieme Verlag Leipzig, pp 9–18

    Google Scholar 

  • Emmens CW (1969) Estrogens. In: Dorfman RI (ed) Methods in Hormone Research, Vol IIA, Chapter 2, Academic Press, New York and London. pp 61–120

    Google Scholar 

  • May M (1971) Estrogenic and antiestrogenic agents. In: Turner RD, Hebborn P (eds) Screening Methods in Pharmacology. Vol II, Academic Press, New York and London. pp 85–100

    Google Scholar 

References

  • Astroff B, Safe S (1988) Comparative antiestrogenic activities of 2,3,7,8-tetrachlorodibenzo-p-dioxin and 6-methyl-1,3,8-trichlorodibenzofuran in the female rat. Toxicol Appl Pharmacol 95:435–443

    PubMed  CAS  Google Scholar 

  • Bouton MM, Raynaud JP (1977) Impaired nuclear translocation and regulation: a possible explanation of anti-estrogenic activity. Research on Steroids 7:127–137

    CAS  Google Scholar 

  • Bouton MM, Raynaud JP (1978) The relevance of kinetic parameters in the determination of specific binding to the estrogen receptor. J Steroid Biochem 9:9–15

    PubMed  CAS  Google Scholar 

  • Brasier AR, Tate JE, Habener JF (1989) Optimized use of the firefly luciferase assay as a reporter gene in mammalian cell lines. Bio Techniques 7:1116–1122

    CAS  Google Scholar 

  • Chander AK, McCague R, Luqmani Y, Newton C, Dowsett M, Jarman M, Coombes RC (1991) Pyrrolidino-4-iodotamoxifen and 4-iodotamoxifen, new analogues of the antiestrogen tamoxifen for the treatment of breast cancer. Cancer Res 51:5851–5858

    PubMed  CAS  Google Scholar 

  • Clark JH, Peck J Jr., Anderson JN (1976) Estrogen-receptor binding: relationship to estrogen-induced responses. J Toxicol Envir Health 1:561–586

    CAS  Google Scholar 

  • Clark JH, Williams M, Upchurch S, Eriksson H, Helton E, Markaverich BM (1982) Effects of estradiol-17α on nuclear occupancy of the estrogen receptor, stimulation of nuclear type II sites and uterine growth. J Steroid Biochem 16:323–328

    PubMed  CAS  Google Scholar 

  • Dhar JD, Dwivedi A, Srivastava A, Setty BS (1994) Structure activity relationship of some 2,3-diaryl-2H-1-benzopyrans to their anti-implantation, estrogenic and antiestrogenic activities in the rat. Contraception 49:609–616

    PubMed  CAS  Google Scholar 

  • Greene GL, Gilna P, Waterfield M, Baker A, Hort Y, Shine J (1986) Sequence and expression of human estrogen receptor complementary DNA. Science 231:1150–1154

    PubMed  CAS  Google Scholar 

  • Hwang KJ, Carlson KE, Anstead GM, Katzenellenbogen JA (1992) Donor-acceptor tetrahydrochrysenes, inherently fluorescent, high-affinity ligands for the estrogen receptor: binding and fluorescence characteristics and fluorometric assay of receptor. Biochemistry 31:11536–11545

    PubMed  CAS  Google Scholar 

  • Jordan VC, Dix CJ, Rowsby L, Prestwich G (1977) Studies on the mechanism of action of the nonsteroidal antioestrogen tamoxifen (I.C.I. 46,474) in the rat. Mol Cell Endocrinol 7:177–192

    PubMed  CAS  Google Scholar 

  • Katzenellenbogen BS, Ferguson ER, Lan NC (1977) Fundamental differences in the action of estrogens and antiestrogens on the uterus: comparison between compounds with similar duration of action. Endocrinology 100:1252–1259

    PubMed  CAS  Google Scholar 

  • Labrie F, Poulin R, Simard J, Zhao HF, Labrie C, Dauvois S, Dumont M, Hatton AC, Poirier D, Mérand Y (1990) Interactions between estrogens, androgens, progestins, and glucocorticoids in ZR-75-1 human breast cancer cells. Ann NY Acad Sci 595:130–148

    PubMed  CAS  Google Scholar 

  • Ludwig LB, Klinge CM, Peale FV Jr., Bambara RA, Zain S, Hilf (1990) A microliter well assay for quantitative measurement of estrogen receptor binding to estrogen-responsive elements. Mol Endocrinol 4:1027–1033

    PubMed  CAS  Google Scholar 

  • Mukawa F, Suzuki T, Ishibashi M, Yamada F (1988) Estrogen and androgen receptor binding affinity of 10β-chloro-estrenen derivatives. J Steroid Biochem 31:867–870

    PubMed  CAS  Google Scholar 

  • Nichols M, Rientjes JMJ, Stewart AF (1998) Different positioning of the ligand binding domain helix 12 and the F domain in the estrogen receptor accounts for the functional differences between agonists and antagonists. EMBO J 17:765–773

    PubMed  CAS  Google Scholar 

  • Ojasoo T, Raynaud JP (1978) Unique steroid congeners for receptor studies. Cancer Res 38:4186–4198

    PubMed  CAS  Google Scholar 

  • Pons M, Gagne D, Nicolas JC, Mehtali M (1990) A new cellular model of response to estrogens: A bioluminescent test to characterize (anti)estrogen molecules. Bio Techniques 9:450–459

    CAS  Google Scholar 

  • Raynaud JP, Bonne C, Bouton MM, Moguilewsky M, Philibert D, Azadian-Boulanger G (1975) Screening for antihormones by receptor studies. J Steroid Biochem 6:615–622

    PubMed  CAS  Google Scholar 

  • Schwabe JWR, Neuhaus D, Rhodes D (1990) Solution structure of the DNA-binding domain of the oestrogen receptor. Nature 348:458–461

    PubMed  CAS  Google Scholar 

  • Shutt DA, Cox RI (1972) Steroid and phyto-oestrogen binding to sheep uterine receptors in vitro. J Endocrin 52:299–310

    CAS  Google Scholar 

  • Smanik EJ, Calderon JJ, Muldoon TG, Mahesh VB (1989) Effect of progesterone on the activity of occupied nuclear estrogen receptor in vitro. Mol Cell Endocrin 64:111–117

    CAS  Google Scholar 

  • Tremblay GB, Tremblay A, Copeland NG, Gilbert DJ, Jenkins NA, Labrie F, Giguère V (1997) Cloning, chromosomal localization, and functional analysis of the murine estrogen receptor β. Molec Endocrinol 11:353–365

    CAS  Google Scholar 

  • Wakeling AE, Slater SR (1980) Estrogen-receptor binding and biological activity of tamoxifen and its metabolites. Cancer Treat Rep 64:741–744

    PubMed  CAS  Google Scholar 

References

  • Bergmann KE, Wooge CH, Carlson KE, Katzenellenbogen BS, Katzenellenbogen JA (1994) Bivalent ligands as probes for estrogen receptor action. J Steroid Biochem Molec Biol 49:139–152

    PubMed  CAS  Google Scholar 

  • Biberger C, von Angerer E (1996) 2-Phenylindoles with sulfur containing side chains. Estrogen receptor affinity, antiestrogenic potency, and antitumor activity. J Steroid Biochem Molec Biol 58:31–43

    PubMed  CAS  Google Scholar 

  • Bush SM, Folta S, Lannigan DA (1996) Use of the yeast onehybrid system to screen for mutations in the ligand-binding domain of the estrogen receptor. Steroids 61:102–109

    PubMed  CAS  Google Scholar 

  • Fuhrmann U, Slater EP, Fritzemeier KH (1995) Characterization of the novel progestin gestodene by receptor binding studies and transactivation assays. Contraception 51:45–52

    PubMed  CAS  Google Scholar 

  • Fuhrmann U, Krattenmacher R, Slater EP, Fritzemeier KH (1996) The novel progestin drospirone and its natural counterpart progesterone: biochemical profile and antiandrogenic potential. Contraception 54:243–251

    PubMed  CAS  Google Scholar 

  • Gaido KW, Leonard LS, Lovell S, Gould JC, Babal D, Portier CJ, McDonnell DP (1997) Evaluation of chemicals with endocrine modulating activity in a yeast-based steroid hormone receptor gene transcription assay. Toxicol Appl Pharmacol 143:205–212

    PubMed  CAS  Google Scholar 

  • Green S, Chambon P (1988) Nuclear receptors enhance our understanding of transcription regulations. Trends Genet 4:309–314

    PubMed  CAS  Google Scholar 

  • Kohno H, Gandini O, Curtis SW, Korach KS (1994) Anti-estrogenic activity in the yeast transcription system: estrogen receptor mediated agonist response. Steroids 59:572–578

    PubMed  CAS  Google Scholar 

  • McDonnell DP, Nawaz Z, O'Malley BW (1991) In situ distinction between steroid receptor binding and transactivation at a target gene. Mol Cell Biol 11:4350–4355

    PubMed  CAS  Google Scholar 

  • Meyer T, Koop R, von Angerer E, Schönenberger H, Holler E (1994) A rapid luciferase transfection assay for transcription activation and stability control of estrogenic drugs in cell cultures. J Cancer Res Clin Oncol 120:359–364

    PubMed  CAS  Google Scholar 

  • Muhn P, Fuhrmann U, Fritzemeier KH, Krattenmacher R, Schillinger E (1995) Drospirenone: a novel progestogen with antimineralocorticoid and antiandrogenic activity. Ann NY Acad Sci 761:311–335

    PubMed  CAS  Google Scholar 

  • Odum J, Lefevre PA, Tittensor S, Paton D, Routledge EJ, Beresford NA, Sumpter PJ, Ashby J (1997) The rodent uterotrophic assay: Critical protocol features, studies with nonyl phenols, and comparison with a yeast estrogenicity assay. Regul Toxicol Pharmacol 25:178–188

    Google Scholar 

  • Pierrat B, Heery DM, Lemoine Y, Losson R (1992) Functional analysis of the human estrogen receptor using a phenotypic transactivation assay in yeast. Gene 119:237–245

    PubMed  CAS  Google Scholar 

  • Shelby MD, Newbold RR, Tully DB, Chae K, Davis VL (1996) Assessing environmental chemicals for estrogenicity using a combination of in vitro and in vivo assays. Environ Health Perspect 104:1296–1300

    PubMed  CAS  Google Scholar 

  • Tran DQ, Die CF, McLachlan JA, Arnold SF (1996) The antiestrogenic activity of selected polynuclear aromatic hydrocarbons in yeast expressing human estrogen receptor. Biochem Biophys Res Commun 229:102–108

    CAS  Google Scholar 

  • Von Angerer E, Biberger C, Holler E, Koop R, Leichtl S (1994) 1-Carbamoylalkyl-2-phenylindoles: Relationship between side chain structure and estrogen antagonism. J Steroid Biochem Molec Biol 49:51–62

    Google Scholar 

  • Von Angerer E, Biberger C, Leichtl S (1995) Studies on heterocycle-based pure estrogen antagonists. Ann NY Acad Sci 761:176–191

    Google Scholar 

References

  • Miller MA, Katzenellenbogen BS (1983) Characterization and quantitation of antiestrogen binding sites in estrogen receptorpositive and-negative human breast cancer cell lines. Cancer Res 43:3094–3100

    PubMed  CAS  Google Scholar 

  • Palkowitz AD, Glasebrook AL, Thrasher KJ, Hauser KL, Short LL, Phillips DL, Muehl BS, Sato M, Shetler PK, Cullinan GJ, Pell TR, Bryant HU (1997) Discovery and synthesis of [6-hydroxy-3-[4-[2-(1-piperidinyl)ethoxy]phenoxyl]-2-[4-hydroxyphenyl)]benzo[b]thiophene. A novel, highly potent selective estrogen receptor modulator. J Med Chem 40:1407–1417

    PubMed  CAS  Google Scholar 

  • Scholl SM, Huff KK, Lippman ME (1983) Antiestrogenic effects of LY117018 in MCF-7 cells. Endocrinology 112:611–617

    Google Scholar 

  • Thompson EW, Reich R, Shima TB, Albini A, Graf J, Martin GR, Dickson MB, Lippman ME (1984) Differential growth and invasiveness of MCF-7 breast cancer cells by antiestrogens. Cancer Res 48:6764–6768

    Google Scholar 

  • Zacharewski T (1997) In vitro bioassays for assessing estrogenic substances. Environ Sci Technol 31:613–623

    CAS  Google Scholar 

References

  • Allen E, Doisy EA (1923) An ovarian hormone. Preliminary report on its localization, extraction and partial purification, and action in test animals. J Am Med Ass 81:819–821

    CAS  Google Scholar 

  • Eisler M (1964) Animal techniques for evaluating sex steroids. In: Nodine JH, Siegler PE (eds) Animal and Clinical Pharmacologic Techniques in Drug Evaluation. Year Book Medical Publishers, Inc., Chicago, pp 566–573

    Google Scholar 

  • Emmens CW (1969) Estrogens. In: Dorfman RI (ed) Methods in Hormone Research, Vol IIA, Chapter 2, Academic Press, New York and London. pp 61–120

    Google Scholar 

  • Stockard CR, Papanicolaou GN (1917) The existence of a typical oestrus cycle in the guinea-pig — with a study of its histological and physiological changes. Am J Anat 22:225–283

    Google Scholar 

  • Zondek B (1935) Die Brunstreaktion der Nagetiere als Testobjekt zum Nachweis des weiblichen Sexualhormones. In: Zondek B (ed) Hormone des Ovariums und des Hypophysenvorderlappens. Springer Wien, pp 23–33

    Google Scholar 

References

  • Astroff B, Safe S (1991) 6-Alkyl-1,3,8-trichlorodibenzofurans as antiestrogens in female Sprague-Dawley rats. Toxicology 69:187–197

    PubMed  CAS  Google Scholar 

  • Bhakoo HS, Katzenellenbogen B (1977) Progesterone antagonism of estradiol-stimulated uterine ‘induced protein’ synthesis. Mol Cell Endocrinol 8:105–120

    PubMed  CAS  Google Scholar 

  • Branham W, Zehr DR, Sheehan DM (1993) Differential sensitivity of rat uterine growth and epithelium hypertrophy to estrogens and antiestrogens. Proc Soc Exp Biol Med 203:297–303

    PubMed  CAS  Google Scholar 

  • Emmens CW (1969) Estrogens. In: Dorfman RI (ed) Methods in Hormone Research, Vol IIA, Chapter 2, Academic Press, New York and London. pp 61–120

    Google Scholar 

  • Junkmann K (1957) Long-acting steroids in reproduction. Rec Progr Horm Res 13:389–427

    PubMed  CAS  Google Scholar 

  • Lyttle CR, DeSombre ER (1977) Uterine peroxidase as a marker of estrogen action. Proc Natl Acad Sci, USA 74:3162–3166

    PubMed  CAS  Google Scholar 

  • Nishino Y, Schneider MR, Michna H, von Angerer E (1991) Pharmacological characterization of a novel oestrogen antagonist, ZK 119010, in rats and mice. J Endocrinol 130:409–414

    PubMed  CAS  Google Scholar 

  • Odum J, Lefevre PA, Tittensor S, Paton D, Routledge EJ, Beresford NA, Sumpter PJ, Ashby J (1997) The rodent uterotrophic assay: Critical protocol features, studies with nonyl phenols, and comparison with a yeast estrogenicity assay. Regul Toxicol Pharmacol 25:178–188

    Google Scholar 

  • Rubin BL, Dorfman AS, Black L, Dorfman RI (1951) Bioassay of estrogens using mouse uterine response. Endocrinology 49:429–439

    PubMed  CAS  Google Scholar 

  • Van de Velde O, Nique F, Bouchoux F, Brémaud J, Hameau MC, Lucas D, Moratille C, Viet S, Philibert D, Teutsch G (1994) RU 58 668, a new pure antiestrogen inducing a regression of human mammary carcinoma implanted in nude mice. J Steroid Biochem Mol Biol 48:187–196

    PubMed  Google Scholar 

  • Zondek B (1935) Das Wachstum des Uterus als Testobjekt zum Nachweis des weiblichen Sexualhormons (Ovarialhormon) In: Zondek B (ed) Hormone des Ovariums und des Hypophysenvorderlappens. Springer Wien, pp 10–16

    Google Scholar 

References

  • Dorfman RI (1969) Antiestrogens. In: Dorfman RI (ed) Methods in Hormone Research, Vol IIA, Chapter 3, Academic Press, New York and London. pp 121–149

    Google Scholar 

  • Lerner LJ, Holthaus FJ Jr., Thompson CR (1958) A non-steroidal estrogen antagonist 1-(p-2-diethylaminoethoxyphenyl)-1-phenyl-2-p-methoxyphenyl ethanol. Endocrinology 63:295–318

    PubMed  CAS  Google Scholar 

  • Tullner WW, Hertz R (1956) The effect of 17-alpha-hydroxy-11-desoxycorticosterone on estrogen-stimulated chick oviduct growth. Endocrinology 58:282–283

    PubMed  CAS  Google Scholar 

References

  • Byrnes WW, Shipley EG (1955) Guinea pig copulatory reflex in response to adrenal steroids and similar compounds. Endocrinology 57:5–9

    PubMed  CAS  Google Scholar 

  • Byrnes WW, Stafford RO, Olson KJ (1953) Anti-gonadal hormone activity of 11α-hydroxyprogesterone. Proc Soc Exp Biol Med 82:243–247

    PubMed  CAS  Google Scholar 

  • Dorfman RI (1969) Antiestrogens. In: Dorfman RI (ed) Methods in Hormone Research, Vol IIA, Chapter 3, Academic Press, New York and London. pp 121–149

    Google Scholar 

  • Kangas L (1992) Agonistic and antagonistic effects of antiestrogens in different target organs. Acta Oncolog 31:143–146

    CAS  Google Scholar 

  • Lerner LJ, Holthaus FJ Jr., Thompson CR (1958) A non-steroidal estrogen antagonist 1-(p-2-diethylaminoethoxyphenyl)-1-phenyl-2-p-methoxyphenyl ethanol. Endocrinology 63:295–318

    PubMed  CAS  Google Scholar 

  • Levesque C, Merand Y, Dufour JM, Labrie C, Labrie F (1991) Synthesis and biological activity of new halo-steroidal anti-estrogens. J Med Chem 34:1624–1630

    PubMed  CAS  Google Scholar 

  • Nique F, Van de Velde P, Brémaud J, Hardy M, Philibert D, Teutsch G (1994) 11β-amidoalkoxyphenyl estradiols, a new series of pure antiestrogens. J Steroid Biochem Mol Biol 50:21–29

    PubMed  CAS  Google Scholar 

  • Terenius L (1971) Structure-activity relationships of anti-oestrogens with regard to interaction with 17β-oestradiol in the mouse uterus and vagina. Acta Endocrin 66:431–447

    CAS  Google Scholar 

  • Tullner WW, Hertz R (1956) The effect of 17-alpha-hydroxy-11-desoxycorticosterone on estrogen-stimulated chick oviduct growth. Endocrinology 58:282–283

    PubMed  CAS  Google Scholar 

  • Wakeling AE, Bowler J (1988) Novel antiestrogens without partial agonistic activity. J Steroid Biochem 31:645–653

    PubMed  CAS  Google Scholar 

References

  • Brodie A (1991) Aromatase and its inhibitors — an overview. J Steroid Biochem Mol Biol 40:255–261

    PubMed  CAS  Google Scholar 

  • Geelen JAA, Deckers GH, van der Wardt JTH, Loozen HJJ, Tax LJW, Kloosterboer HJ (1991) Selection of 19-(ethyldithio)-andro-4-ene-3,17-dione (ORG 30958): a potent aromatase inhibitor in vivo. J Steroid Biochem Mol Biol 38:181–188

    PubMed  CAS  Google Scholar 

  • Häusler A, Schenkel L, Krähenbühl C, Monnet G, Bhatnagar AS (1989) An in vitro method to determine the selective inhibition of estrogen biosynthesis by aromatase inhibitors. J Steroid Biochem 33:125–131

    PubMed  Google Scholar 

  • Suzuki K, Ito K, Tamura Y, Suzuki T, Honma S, Yamanaka H (1996) Effect of an aromatase inhibitor, TZA-2209, on the prostate of androstenedione-treated castrated dogs. Prostate 28:328–337

    PubMed  CAS  Google Scholar 

  • Takahashi M, Kyo T, Karakida T, Nakagawa S, Kato M, Matsuno S, Koide Y, Sakato M, Kawashima S (1997) Potent and selective aromatase inhibitor: in vitro and in vivo studies with striazine derivative SEF19. Endocr Res 23:1–13

    PubMed  CAS  Google Scholar 

  • Wouters W, Van Ginckel R, Krekels M, Bowden C, De Coster R (1993) Pharmacology of vorozole. J Steroid Biochem — Mol Biol 44:617–621

    PubMed  CAS  Google Scholar 

  • Zaccheo T, Giudici D, Lombard P, di Salle E (1989) A new irreversible aromatase inhibitor, 6-methylenandrosta-1,4,-diene-3,17-dione (FCE 24304): antitumor activity and endocrine effects in rats with DMBA-induced mammary tumors. Cancer Chemother Pharmacol 23:47–50

    PubMed  CAS  Google Scholar 

References

  • Albini A, Iwamoto Y, Kleinman HK, Martin GR, Aaronson SA, Kozlowski JM, McEwan RM (1987) A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 47:3239–3245

    PubMed  CAS  Google Scholar 

  • Kleinman HK, McGarvey ML, Hassel JR, Star VL, Cannon FB, Laurie GW, Martin GR (1986) Basement membrane complexes with biological activity. Biochemistry 25:312–318

    PubMed  CAS  Google Scholar 

  • Miller MA, Katzenellenbogen BS (1983) Characterization and quantitation of antiestrogen binding sites in estrogen receptor-positive and-negative human breast cancer cell lines. Cancer Res 43:3094–3100

    PubMed  CAS  Google Scholar 

  • Scholl SM, Huff KK, Lippman ME (1983) Antiestrogenic effects of LY 117018 in MCF-7 cells. Endocrinology 113:611–617

    PubMed  CAS  Google Scholar 

  • Thompson EW, Reich R, Shima TB, Albini A, Graf J, Martin GR, Dickson RB, Lippman ME (1988) Differential regulation of growth and invasiveness of MCF-7 breast cancer cells by antiestrogens. Cancer Res 48:6764–6768

    PubMed  CAS  Google Scholar 

References

  • Allan GF, Leng X, Tsai SY, Weigel NL, Edwards DP, Tsai M-J, O'Malley BW (1992) Hormone and antihormone induce distinct conformational changes which are central to steroid receptor activation. J Biol Chem 287:19513–19520

    Google Scholar 

  • Bélanger A, Philibert D, Teutsch G (1981) Regio-and stereospecific synthesis of 11β-substituted 19-norsteroids. Steroids 37:361–382

    PubMed  Google Scholar 

  • Benhamou B, Garcia T, Lerouge T, Vergezac A, Gofflo D, Bigogne C, Chambon P, Gronemeyer H (1992) A single amino acid that determines the sensitivity of progesterone receptors to RU486. Science 255:206–209

    PubMed  CAS  Google Scholar 

  • Bergink EW, van Meel F, Turpijn EW, van der Vies J (1983) Binding of progestagens to receptor proteins in MCF-7 cells. J Steroid Biochem 19:1563–1570

    PubMed  CAS  Google Scholar 

  • Boonkasemsanti W, Aedo AR, Cekan SZ (1989) Relative affinity of various progestins and antiprogestins to a rabbit myometrium receptor. Arzneim Forsch/Drug Res 39:195–199

    CAS  Google Scholar 

  • Collins DC (1994) Sex hormone receptor binding, progestin selectivity, and the new oral contraceptives. Am J Obstet Gynecol 170:1508–1513

    PubMed  CAS  Google Scholar 

  • Cook CA, Wani MC, Lee YW, Fail PA, Petrow V (1992) Reversal of activity profile in analogs of the antiprogestin RU 486: effect of a 16α-substituent on progestional (agonist) activity. Life Sci 52:155–162

    Google Scholar 

  • Cook CE, Lee YW, Wani MC, Fail PA, Petrow V (1994) Effects of D-ring substituents on antiprogestional (antagonist) and progestional (agonist) activity of 11β-aryl steroids. Human Reprod 9, Suppl 1:32–39

    CAS  Google Scholar 

  • Edwards DP, Altmann M, DeMarzo A, Zhang Y, Weigel NL, Beck CA (1995) Progesterone receptor and the mechanisms of action of progesterone antagonists. J Steroid Biochem Molec Biol 53:449–458

    PubMed  CAS  Google Scholar 

  • Garcia T, Benhamou B, Gofflo D, Vergezac A, Philibert D, Chambon P, Gronemeyer H (1992) Switching agonistic, antagonistic, and mixed transcriptional responses to 11β-substituted progestins by mutation of the progesterone receptor. Mol Endocr 6:2071–2078

    CAS  Google Scholar 

  • Hurd C, Moudgil VK (1988) Characterization of R5020 and RU486 binding to progesterone receptor from calf uterus. Biochemistry 27:3618–3623

    PubMed  CAS  Google Scholar 

  • Jänne O, Kontula K, Vihko R (1976) Progestin receptors in human tissues: concentration and binding kinetics. J Steroid Biochem 7:1061–1068

    PubMed  Google Scholar 

  • Kloosterboer HJ, Deckers GHJ, van der Heuvel MJ, Loozen HJJ (1988a) Screening for antiprogestagens by receptor studies and bioassays. J Steroid Biochem 31:567–571

    PubMed  CAS  Google Scholar 

  • Kloosterboer HJ, Vonk-Noordegraaf CA, Turpijn EW (1988b) Selectivity in progesterone and androgen receptor binding of progestagens used in oral contraceptives. Contraception 38:325–332

    PubMed  CAS  Google Scholar 

  • Kloosterboer HJ, Deckers GH, Schoonen WGEJ (1994) Pharmacology of two new very selective antiprogestagens: Org 31710 and Org 31806. Human Reprod 9, Suppl 1:47–52

    CAS  Google Scholar 

  • Kontula K, Jänne O, Vihko R, de Jager E, de Visser J, Zeelen F (1975) Progesterone binding proteins: in vitro binding and biological activity of different steroidal ligands. Acta Endocrin 78:574–592

    CAS  Google Scholar 

  • Kuhl H (1996) Comparative pharmacology of newer progestagens. Drugs 51:188–215

    PubMed  CAS  Google Scholar 

  • Li F, Kumar N, Tsong Y-Y, Monder C, Bardin CW (1997) Synthesis and progestional activity of 16-methylene-17α-hydroxy-19-norpregn-4-ene-3,20-dione and its derivatives. Steroids 62:403–408

    PubMed  CAS  Google Scholar 

  • Meyer ME, Pornon A, Ji J, Bocquel MT, Chambon P, Gronemeyer H (1990) Agonistic and antagonistic activities of RU486 on the functions of the human progesterone receptor. EMBO J 9:3923–3932

    PubMed  CAS  Google Scholar 

  • Misrani M, Atger M, d'Auriol L, Loosfelt H, Meriel C, Fridlansky F, Guiochon-Mantel A, Galibert F, Milgrom E (1987) Complete amino acid sequence of the human progesterone receptor deduced from cloned cDNA. Biochem Biophys Res Comm 143:740–748

    Google Scholar 

  • Moguilewsky M, Raynaud JP (1979) Estrogen-sensitive progestin-binding sites in the female rat brain and pituitary. Brain Res 164:165–175

    PubMed  CAS  Google Scholar 

  • Ojasoo T, Raynaud JP (1978) Unique steroid congeners for receptor studies. Cancer Res 38:4186–4198

    PubMed  CAS  Google Scholar 

  • Ojasoo T, Raynaud JP (1990) Steroid hormone receptors. Binding to the progestin receptor. Structural requirements of the ligand and mapping of the hormone-binding site. In: Emmet E, Hansch C (eds) Comprehensive Medicinal Chemistry Vol 3:1200–1207, Pergamon Press, New York

    Google Scholar 

  • Oñate SA, Pendergast P, Wagner PJ, Nissen M, Reeves R, Pettijohn DE, Edwards DE (1994) The DNA-binding protein HMG-1 enhances progesterone receptor binding to its target DNA sequences. Mol Cell Biol 14:3376–3391

    PubMed  Google Scholar 

  • Philibert D, Raynaud JP (1977) Cytoplasmatic progestin receptors in mouse uterus. In: McGuire WL, Raynaud JP, Baulieu EE (eds) Progress in Cancer Research and Therapy. Vol 4, Progesterone Receptors in Normal and Neoplastic Tissues. Raven Press New York, pp 227–243

    Google Scholar 

  • Philibert D, Ojasoo T, Raynaud JP (1977) Properties of the cytoplasmatic progestin-binding protein in the rabbit uterus. Endocrinology 101:1850–1861

    PubMed  CAS  Google Scholar 

  • Phillips A, Demarest K, Hahn DW, Wong F, McGuire JL (1990) Progestional and androgenic receptor binding affinities and in vivo activities of norgestimate and other progestins. Contraception 41:399–410

    PubMed  CAS  Google Scholar 

  • Pinney KG, Carlson KE, Katzenellenbogen JA (1990) [3H]DU41165: A high affinity ligand and novel photoaffinity labeling reagent for the progesterone receptor. J Steroid Biochem 35:179–189

    PubMed  CAS  Google Scholar 

  • Pollow K, Juchem M, Grill HJ, Elger W, Beier S, Henderson D, Schmidt-Gollwitzer K, Manz B (1989a) Gestodene: a novel synthetic progestin-characterization of binding to receptor and serum proteins. Contraception 40:325–341

    PubMed  CAS  Google Scholar 

  • Pollow K, Juchem M, Grill HJ, Manz B, Beier S, Henderson D, Schmidt-Gollwitzer K, Elger W (1989b) 3H-ZK 98,734, a new 11β-aryl substituted antigestagen: binding characteristics to receptor and serum proteins. Contraception 40:213–232

    PubMed  CAS  Google Scholar 

  • Pollow K, Juchem M, Elger W, Jacobi N, Hoffmann G, Möbus V (1992) Dihydrospirorenone (ZK 30595): a novel synthetic progestagen — Characterization of binding to different receptor proteins. Contraception 46:561–574

    PubMed  CAS  Google Scholar 

  • Reel JR, Humphrey RR, Shih YH, Windsor BL, Sakowski R, Creger PL, Edgren RA (1979) Competitive progesterone antagonists: receptor binding and biological activity of testosterone and 19-nortestosterone derivatives. Fertil Steril 31:552–561

    PubMed  CAS  Google Scholar 

  • Savouret JF, Chauchereau A, Misrahi M, Lescop P, Mantel A, Bailly A, Milgrom E (1994) The progesterone receptor: Biological effects of progestins and antiprogestins. Hum Reprod 9/Suppl 1:7–11

    PubMed  CAS  Google Scholar 

  • Schowalter DB, Sullivan WP, Maihle NJ, Dobson ADW, Conneely OM, O'Malley BW, Toft DO (1991) Characterization of progesterone receptor binding to the 90-and 70-kDa heat shock proteins. J Biol Chem 266:21165–21173

    PubMed  CAS  Google Scholar 

  • Seth NM, Bhaduri AP (1986) Progesterone binding of steroidal and nonsteroidal compounds. In: Jucker E (ed) Progress in Drug Research, Vol 30, Birkhäuser Verlag Basel, pp 151–188

    Google Scholar 

  • Skafar DF (1991) Differential DNA binding by calf uterine estrogen and progesterone receptors results from differences in oligomeric states. Biochemistry 30:6148–6154

    PubMed  CAS  Google Scholar 

  • Snyder BW, Beecham GD, Winneker RC (1989) Studies on the mechanism of action of danazole and gestrinone (R2323) in the rat: evidence for a masked estrogen component. Fertil Steril 51:705–710

    PubMed  CAS  Google Scholar 

  • Theofan G, Notides AC (1984) Characterization of the calf uterine progesterone receptor and its stabilization by nucleic acids. Endocrinology 114:1173–1179

    PubMed  CAS  Google Scholar 

References

  • Dijkema R, Schoonen WEG, Teuwen R, van der Struik E, de Ries RJH, van der Kar BAT, Olijve W (1998) Human receptor A and B isoforms in CHO cells. I. Stable transfection of receptor and receptor-responsive reporter genes: Transcription modulation by (anti)progestagens. J Steroid Biochem Mol Biol 64:147–156

    PubMed  CAS  Google Scholar 

  • Edwards JP, West SJ, Marschke KB, Mais DE, Gottardis MM, Jones TK (1998) 5-Aryl-1,2-dihydro-5H-chromeno[3,4-f] quinolines as potent, orally active nonsteroidal progesterone receptor agonists. The effect of D-ring substituents. J Med. Chem 41:303–310

    PubMed  CAS  Google Scholar 

  • Fuhrmann U, Krattenmacher R, Slater EP, Fritzemeier KH (1996) The novel progestin drospirone and its natural counterpart progesterone: biochemical profile and antiandrogenic potential. Contraception 54:243–251

    PubMed  CAS  Google Scholar 

  • Green S, Chambon P (1988) Nuclear receptors enhance our understanding of transcription regulations. Trends Genet 4:309–314

    PubMed  CAS  Google Scholar 

  • Jones TK, Pathirana C, Goldman ME, Hamann LG, Farmer LJ, Ianiro T, Johnson MG, Bender SL, Mais DE, Stein RB (1996) Discovery of novel intracellular receptor modulating drugs. J Steroid Biochem Molec Biol 56:61–66

    PubMed  CAS  Google Scholar 

  • Muhn P, Fuhrmann U, Fritzemeier KH, Krattenmacher R, Schillinger E (1995) Drospirenone: a novel progestogen with antimineralocorticoid and antiandrogenic activity. Ann NY Acad Sci 761:311–335

    PubMed  CAS  Google Scholar 

  • Pathirana C, Stein RB, Berger TS, Fenical W, Ianiro T, Mais DE, Torres A, Goldman ME (1995) Nonsteroidal human progesterone receptor modulators from the marine alga Cymopolia barbata. Molecul Pharmacol 47:630–635

    CAS  Google Scholar 

  • Schoonen WGEJ, Dijkema R, de Ries RJH, Wagenaars JL, Joosten JWH, de Gooyer ME, Deckers GH, Kloosterboer HJ (1998) Human progesterone receptor A and B isoforms in CHO cells. II. Comparison of binding, transactivation and ED 50 values of several synthetic (anti)progestagen. in vitro in CHO and MCF-7 cells and in vivo in rabbits and rats. J Steroid Biochem Molec Biol 64:157–170

    PubMed  CAS  Google Scholar 

  • Sobek L, di Lorenzo D, Oettel M, Kaufmann G (1994) Normal and stable transfected cancer cell lines: tools for a screening of progestogenic, antiprogestogenic and antiglucocorticoid substances. Meth Find Exp Clin Pharmacol 16:545–551

    CAS  Google Scholar 

  • Zhi L, Tegley CM, Kallel EA, Marschk KB, Mais DE, Gottardis MM, Jones TK (1998) 5-Aryl-1,2-dihydrochromeno[3,4-f] quinolines: a novel class of nonsteroidal human progesterone receptor agonists. J Med Chem 41:291–302

    PubMed  CAS  Google Scholar 

References

  • Di Lorenzo D, Albertini A, Zava D (1991) Progestin regulation of alkaline phosphatase in the human breast cancer cell line T47D. Cancer Res 51:4470–4475

    PubMed  Google Scholar 

  • Di Lorenzo D, Gianni M, Savoldi GF, Ferrari F, Albertini A, Garattini E (1993) Progesterone induced expression of alkaline phosphatase is associated with a secretory phenotype in T47D breast cancer cells. Biochem Biophys Res Commun 192:1066–1072

    PubMed  Google Scholar 

  • Li F, Kumar N, Tsong Y-Y, Monder C, Bardin CW (1997) Synthesis and progestional activity of 16-methylene-17α-hydroxy-19-norpregn-4-ene-3,20-dione and its derivatives. Steroids 62:403–408

    PubMed  CAS  Google Scholar 

  • Pathirana C, Stein RB, Berger TS, Fenical W, Ianiro T, Mais DE, Torres A, Goldman ME (1995) Nonsteroidal human progesterone receptor modulators from the marine alga Cymopolia barbata. Molecul Pharmacol 47:630–635

    CAS  Google Scholar 

  • Sobek L, di Lorenzo D, Oettel M, Kaufmann G (1994) Normal and stable transfected cancer cell lines: tools for a screening of progestogenic, antiprogestogenic and antiglucocorticoid substances. Meth Find Exp Clin Pharmacol 16:545–551

    CAS  Google Scholar 

References

  • Butenandt A, Westphal U, Hohlweg W (1943) Über das Hormon des Corpus luteum. Hoppe-Seyler's Zeitschr Biol Chem 227:84–98

    Google Scholar 

  • Clauberg C (1930a) Der biologische Test für das Corpus luteum-Hormon. Klin Wschr 9:2004–2005

    Google Scholar 

  • Clauberg C (1930b) Das Hormon des Corpus luteum. Zentralbl Gynäkol 54:7–19

    Google Scholar 

  • Clauberg C (1930c) Experimentelle Untersuchungen zur Frage eines Mäusetestes für das Hormon des Corpus luteum. Zentralbl Gynäkol 54:1154–1164

    Google Scholar 

  • Clauberg C (1930d) Zur Physiologie und Pathologie der Sexualhormone, im besonderen des Hormons des Corpus luteum. 1. Mitteilung: Der biologische Test für das Luteohormon (das spezifische Hormon des Corpus luteum) am infantilen Kaninchen. Zentralbl Gynäkol 54:2757–2770

    Google Scholar 

  • Elton RL, Edgren RA (1958) Biological actions of 17α-(2-methallyl)-19-nortestosterone, an orally active progestional agent. Endocrinology 63:464–472

    PubMed  CAS  Google Scholar 

  • Hebborn P (1971) Progestional agents. In: Turner RD, Hebborn P (eds) Screening Methods in Pharmacology. Vol II, Academic Press, New York and London. pp 105–119

    Google Scholar 

  • Junkmann K (1957) Long-acting steroids in reproduction. Rec Progr Horm Res 13:389–427

    PubMed  CAS  Google Scholar 

  • McGinty DA, Anderson LP, McCollough NB (1939) Effect of local application of progesterone on the rabbit uterus. Endocrinology 24:829–832

    CAS  Google Scholar 

  • McPhail MK (1934) The assay of progestin. J Physiol (London) 83:145–156

    PubMed  CAS  Google Scholar 

  • Miyake T (1962) Progestional substances. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Chapter 4, Academic Press, New York and London. pp 127–178

    Google Scholar 

  • Pincus G. Miyake T, Merrill AP, Longo P (1957) The bioassay of progesterone. Endocrinology 61:528–533

    PubMed  CAS  Google Scholar 

  • Tayama T, Motoyama T, Ohono Y, Ide N, Turusaki T, Okada H (1979) Local progestional and antiprogestional effects of steroids and their metabolites on the rabbit uterus. Jpn J Fertil Steril 24:48–51

    Google Scholar 

  • Wiechert R; Neumann F (1965) Gestagene Wirksamkeit von 1-Methyl-und 1,2α-Methylen-Steroiden. Arzneim Forsch/Drug Res 15:244–246

    CAS  Google Scholar 

  • Zondek B (1935) Follikelhormon (Follikulin) und Corpusluteum-Hormon (Progestin). In: Zondek B (ed) Hormone des Ovariums und des Hypophysenvorderlappens. Springer Wien, pp 162–170

    Google Scholar 

References

  • Eisler M (1964) Animal techniques for evaluating sex steroids. In: Nodine JH, Siegler PE (eds) Animal and Clinical Pharmacologic Techniques in Drug Evaluation. Year Book Medical Publishers, Inc., Chicago, pp 566–573

    Google Scholar 

  • Elton RL, Edgren RA (1958) Biological actions of 17α-(2-methallyl)-19-nortestosterone, an orally active progestional agent. Endocrinology 63:464–472

    PubMed  CAS  Google Scholar 

  • Lutwak-Mann C (1955) Carbonic anhydrase in the female reproductive tract. Occurrence, distribution and hormonal dependence. J Endocrinol 13:26–38

    PubMed  CAS  Google Scholar 

  • Miyake T (1962) Progestional substances. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Chapter 4, Academic Press, New York and London. pp 127–178

    Google Scholar 

  • Miyake T, Pincus G (1958) Progestional activity of certain 19-norsteroids and progesterone derivatives. Endocrinology 63:816–824

    PubMed  CAS  Google Scholar 

  • Philpot FJ, Philpot JStL (1936) A modified colorimetric estimation of carbonic anhydrase. Biochem J 30:2191–2193

    PubMed  CAS  Google Scholar 

  • Pincus G. Miyake T, Merrill AP, Longo P (1957) The bioassay of progesterone. Endocrinology 61:528–533

    PubMed  CAS  Google Scholar 

References

  • Astwood EB (1939) An assay method for progesterone based on the decidual reaction in the rat. J Endocrinol 1:49–55

    CAS  Google Scholar 

  • Eisler M (1964) Animal techniques for evaluating sex steroids. In: Nodine JH, Siegler PE (eds) Animal and Clinical Pharmacologic Techniques in Drug Evaluation. Year Book Medical Publishers, Inc., Chicago, pp 566–573

    Google Scholar 

  • Elton RL, Edgren RA (1958) Biological actions of 17α-(2-methallyl)-19-nortestosterone, an orally active progestional agent. Endocrinology 63:464–472

    PubMed  CAS  Google Scholar 

  • Miyake T (1962) Progestional substances. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Chapter 4, Academic Press, New York and London. pp 127–178

    Google Scholar 

  • Sreenivasulu S, Singh MM, Setty BS, Kamboj VP (1993) Effect of a pure nonsteroidal antiestrogen, CDRI-85/287, on implantation-associated histological and biochemical changes in the rat uterus. Contraception 48:597–609

    PubMed  CAS  Google Scholar 

  • Zarrow MX, Peters LE, Caldwell AL Jr. (1958) Comparative potency of several progestogenic compounds in a battery of different biological tests. Ann NY Acad Sci 71:532–541

    PubMed  CAS  Google Scholar 

References

  • Eisler M (1964) Animal techniques for evaluating sex steroids. In: Nodine JH, Siegler PE (eds) Animal and Clinical Pharmacologic Techniques in Drug Evaluation. Year Book Medical Publishers, Inc., Chicago, pp 566–573

    Google Scholar 

  • Elton RL, Edgren RA (1958) Biological actions of 17α-(2-methallyl)-19-nortestosterone, an orally active progestional agent. Endocrinology 63:464–472

    PubMed  CAS  Google Scholar 

  • Hebborn P (1971) Progestional agents. In: Turner RD, Hebborn P (eds) Screening Methods in Pharmacology. Vol II, Academic Press, New York and London. pp 105–119

    Google Scholar 

  • Kuhnz W, Beier S (1994) Comparative progestational and androgenic activity of norgestimate and levonorgestrel in the rat. Contraception 49:275–289

    PubMed  CAS  Google Scholar 

  • McGinty (1959) Discussion. Fed Proc Fed Am Soc Exper Biol 18:1048–1050

    CAS  Google Scholar 

  • Miyake T (1962) Progestional substances. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Chapter 4, Academic Press, New York and London. pp 127–178

    Google Scholar 

  • Phillips A, Hahn DW, Klimek S, McGuire JL (1987) A comparison of the potencies and activities of progestagens used in contraceptives. Contraception 36:181–192

    PubMed  CAS  Google Scholar 

  • Shipley EG (1965) Effectiveness of topical application of a number of progestins. Steroids 5:699–717

    CAS  Google Scholar 

  • Stucki JC (1958) Maintenance of pregnancy in ovarectomized rats with some newer progestins. Proc Soc Exp Biol Med 99:500–504

    PubMed  CAS  Google Scholar 

References

  • Chwalisz K (1994) The use of progesterone antagonists for cervical ripening and as adjunct to labor and delivery. Human Reprod 9:131–161

    CAS  Google Scholar 

  • Chwalisz K, Hegele-Hartung C, Schulz R, Qing SS, Louton PT, Elger W (1991) Progesterone control of cervical ripening — experimental studies with the progesterone antagonists onapristone, lilopristone and mefipristone. In: Leppert PC, Woessner JF (eds) The Extracellular Matrix of the Uterus, Cervix and Fetal Membranes: Synthesis, Degradation and Hormonal Regulation. Perinatology Press, Ithaca, New York, pp 119–131

    Google Scholar 

  • Cook CE, Lee YW, Wani MC, Fail PA, Petrow V (1994) Effects of D-ring substituents on antiprogestational (antagonist) and progestational (agonist) activity of 11β-aryl steroids. Human Reprod 9, Suppl 1:32–39

    CAS  Google Scholar 

  • Michna H, Nishino Y, Schneider MR, Louton T, El Etreby MF (1991) A bioassay for the evaluation of antiproliferative potencies of progesterone antagonists. J Steroid Biochem Mol Biol 38:359–365

    PubMed  CAS  Google Scholar 

  • Miyake T, Dorfman RI (1965) Anti-progestional compounds. In: Dorfman RI (ed) Methods in Hormone Research, Vol IV, Chapter 4. Academic Press, New York and London. pp 95–106

    Google Scholar 

  • Oettel M, Kurischko A (1980) STS 557, a new orally active progestin with antiprogestional and contragestional properties in rabbits. Contraception 21:61–75

    PubMed  CAS  Google Scholar 

  • Philibert, D, Moguilewsky M, Mary I, Lecaque D, Tournemine C, Secchi J, Deraedt R (1985) Pharmacological profile of RU 486 in animals. In: Baulieu EE, Segal SJ (eds) The Anti-progestin Steroid RU 486 and Human Fertility Control. Plenum Press, New York London, pp 49–68

    Google Scholar 

  • Stöckemann K, Chwalisz K (1993) Effects of the progesterone antagonists onapristone and ZK 136799 on surgically induced endometriosis in rats. Exp Clin Endocrinol 101, Suppl 1:59

    Google Scholar 

  • Tamaya T, Motoyama T, Ohono Y, Ide N, Turusaki T, Okada H (1979) Local progestational and antiprogestational effects of steroids and their metabolites on the rabbit uterus. Jpn J Fertil Steril 24:48–51

    CAS  Google Scholar 

  • Teutsch G, Philibert D (1994) History and perspectives of antiprogestins from the chemist's point of view. Human Reprod 9, Suppl 1:12–31

    CAS  Google Scholar 

References

  • Auletta FJ, Kelm LB (1994) Mechanisms controlling corpus luteum function in the rhesus monkey (Macaca mulatta): Inhibitory action of hCG on luteolysis induced by PGF. J Reprod Fert 102:215–220

    CAS  Google Scholar 

  • Auletta FJ, Kelm LB, Schofield MJ (1995) Responsiveness of the corpus luteum of the rhesus monkey to gonadotrophin in vitro during spontaneous and prostaglandin F-induced luteolysis. J Reprod Fertil 103:107–113

    PubMed  CAS  Google Scholar 

  • Bartmann W, Beck G, Lerch U, Teufel H, Schölkens B (1979), Luteolytic prostaglandins. Synthesis and biological activity. Prostaglandins 17:301–311

    PubMed  CAS  Google Scholar 

  • Blatchley FR, Donovan BT (1969) Luteolytic effect of prostaglandin in the guinea-pig. Nature 221:1065–1066

    PubMed  CAS  Google Scholar 

  • Brambaifa N (1988) Luteolytic potency of 16-phenoxy-derivatives of prostaglandin F. Experientia 44:45–47

    PubMed  CAS  Google Scholar 

  • Buhr MM, Gruber MY, Riley JCM, Carlson JC (1983) The effect of prolactin pretreatment on prostaglandin F-associated structural changes in membranes from rat corpora lutea. Am J Obstet Gynecol 145:263–268

    PubMed  CAS  Google Scholar 

  • Cao L, Chan WY (1993) Effects of oxytocin and luteal prostaglandins on the functional regression of the corpus luteum in pseudopregnant rats. J Reprod Fertil 99:181–186

    PubMed  CAS  Google Scholar 

  • Chatterjee A (1973) Possible mode of action of prostaglandins: Differential effects of prostaglandin F before and after the establishment of placental physiology in pregnant rats. Prostaglandins 3:189–199

    PubMed  CAS  Google Scholar 

  • Dukes M, Russel W, Walpole AL (1974) Potent luteolytic agents related to prostaglandin F. Nature 250:330–331

    PubMed  CAS  Google Scholar 

  • Dwivedy I, Ray S, Grover A (1993) Present status of luteolytic agents in fertility regulation. Prog Drug Res 40:239–267

    PubMed  CAS  Google Scholar 

  • Fuchs AR, Mok E, Sundaram K (1974) Luteolytic effects of prostaglandins in rat pregnancy, and reversal by luteinizing hormone. Acta Endocrin 76:583–596

    CAS  Google Scholar 

  • Galliani G, Ciabatti R, Colombo G, Guzzi U, Luzzani F, Glässer A (1984) Studies on the luteolytic activity of MDL-646, a new gastroprotective PGE1 analogue, in the hamster. Prostaglandins 27:583–590

    PubMed  CAS  Google Scholar 

  • Gutknecht GD, Wyngarden LJ, Pharriss BB (1971) The effect of prostaglandin F on ovarian and plasma progesterone levels in the pregnant hamster. Proc Soc Exp Biol Med 136:1151–1157

    PubMed  CAS  Google Scholar 

  • Henderson KM, McNatty KP (1975) A biochemical hypothesis to explain the mechanism of luteal regression. Prostaglandins 9:779–797

    PubMed  CAS  Google Scholar 

  • Hoyer PB (1998) Regulation of luteal regression: The ewe as a model. J Soc Gynec Invest 5:49–57

    CAS  Google Scholar 

  • Johnston JO, Hunter KK (1970) Prostaglandin F: mode of action in pregnant hamster. Physiologist 13:235

    Google Scholar 

  • Karim SMM, Ratnam SS, Ilancheran A (1977) Menstrual induction with vaginal administration of 16,16 dimethyl trans-Δ2-PGE1 methyl ester (ONO 802). Prostaglandins 14:615–616

    PubMed  CAS  Google Scholar 

  • Kenny N, Robinson J (1986) Prostaglandin F-induced functional luteolysis: interactions of LH, prostaglandin F and forskolin in cyclic AMP and progesterone synthesis in isolated rat luteal cells. J Endocr 111:415–423

    PubMed  CAS  Google Scholar 

  • Labhsetwar AP (1971) Luteolysis and ovulation induced by prostaglandin F in the hamster. Nature 230:528–529

    PubMed  CAS  Google Scholar 

  • Labhsetwar AP (1972a) New antifertility agent — an orally active prostaglandin — ICI 74,205. Nature 238:400–401

    PubMed  CAS  Google Scholar 

  • Labhsetwar AP (1972b) Luteolytic and ovulation-inducing properties of prostaglandin F in pregnant mice. J Reprod Fertil 28:451–452

    PubMed  CAS  Google Scholar 

  • McCracken JA, Glew ME, Scaramuzzi (1970) Corpus luteum regression induced by prostaglandin F. J Clin Endocr Met 30:544–546

    CAS  Google Scholar 

  • Motta AB, Franchi AM, Faletti A, Gimeno MF (1996) Effect of an oxytocin receptor antagonist on ovarian and uterine synthesis and release of prostaglandin F in pseudopregnant rats. Prostaglandins, Leucotrienes, Essent Fatty Acids 54:95–100

    CAS  Google Scholar 

  • O'Grady JP, Kohorn EI, Glass RH, Caldwell BV, Brock WA, Speroff L (1972) Inhibition of progesterone synthesis in vitro by prostaglandin F. J Reprod Fertil 30:153–156

    PubMed  Google Scholar 

  • Pharriss BB, Wyngarden LJ (1969) The effect of prostaglandin F on the progesterone content of ovaries of pseudopregnant rats. Proc Soc Exp Biol Med 130:92–94

    PubMed  CAS  Google Scholar 

  • Roy R, Karanth S, Dutt A, Juneja HS (1987) Involvement of prostaglandin A1 in interrupting early pregnancy in Syrian golden hamsters. Adv Contracept 3:341–348

    PubMed  CAS  Google Scholar 

  • Speroff L, Ramwell PW (1970) Prostaglandin stimulation of in vitro progesterone synthesis. J Clin Endocr Metab 30:345–350

    PubMed  CAS  Google Scholar 

  • Stocco CO, Deis RP (1998) Participation of intraluteal progesterone and prostaglandin F in LH-induced luteolysis in pregnant rats. J Endocrinol 156:253–259

    PubMed  CAS  Google Scholar 

  • Takagi S, Sakata H, Yoshida T, Nakazawa S, Fujii KT, Tominaga Y, Iwasa Y, Ninagawa T, Hiroshima T, Tomioda Y, Itoh K, Masukawa R (1977) Termination of early pregnancy by ONO-802 (16,16 dimethyl trans-Δ2-PGE1 methyl ester). Prostaglandins 14:791–799

    PubMed  CAS  Google Scholar 

  • Takagi S, Sakata H, Yoshida T, Den K, Fujii TK, Amemiya H, Tomita M (1978) Termination of early pregnancy by ONO-802 suppositories (16,16 dimethyl trans-Δ2-PGE1 methyl ester). Prostaglandins 15:913–919

    PubMed  CAS  Google Scholar 

  • Toppozada M, Warda A, Ramadan M (1979) Intramuscular 16-phenoxy PGE2 ester for pregnancy termination. Prostaglandins 17:461–467

    PubMed  CAS  Google Scholar 

  • Torjesen PA, Aakvaag A (1984) Ovarian production of progesterone and 20α-dihydroprogesterone in vitro following prostaglandin F induced luteolysis in the superluteinized rat. Acta Endocrin 105:258–265

    CAS  Google Scholar 

  • Torjesen PA, Aakvaag A (1986) Characterization of adenylate cyclase of the rat corpus luteum during luteolysis induced by a prostaglandin F analogue. Mol Cell Endocrin 44:237–242

    CAS  Google Scholar 

References

  • Bomskov C (1939) Chirurgische Methoden der Erforschung des Hodenhormones Die Kastration des männlichen Säugetieres. In Bomskov C, Methodik der Hormonforschung, 2. Band, Thieme Verlag Leipzig, pp 350–353

    Google Scholar 

  • Dorfman RI (1969) Androgens and anabolic agents. In: Dorfman RI (ed) Methods in Hormone Research, Vol IIA, Chapter 4. Academic Press, New York and London. pp 151–220

    Google Scholar 

References

  • Bomskov C (1939) Chirurgische Methoden der Erforschung des Hodenhormones. Die Kastration des männlichen Vogels (Kapaunisieren). In Bomskov C, Methodik der Hormonforschung, 2. Band Thieme Verlag Leipzig, pp 353–357

    Google Scholar 

  • Dorfman RI (1969) Androgens and anabolic agents. In: Dorfman RI (ed) Methods in Hormone Research, Vol IIA, Chapter 4. Academic Press, New York and London, pp 151–220

    Google Scholar 

References

  • Bonne C, Raynaud JP (1974) Mode of spironolactone anti-androgenic action: inhibition of androstanolone binding to rat prostate androgen receptor. Mol Cell Endocrin 2:59–67

    CAS  Google Scholar 

  • Botella J, Paris J, Lahlou B (1987) The cellular mechanism of the antiandrogenic action of nomegestrol acetate, a new 19-nor-progestagen, on the rat prostate. Acta Endocr 115:544–550

    PubMed  CAS  Google Scholar 

  • Brown TR, Rothwell SW, Sultan C, Migeon CJ (1981) Inhibition of androgen binding in human foreskin fibroblasts by antiandrogens. Steroids 37:635–647

    PubMed  CAS  Google Scholar 

  • Chang C, Kokontis J, Liao S (1988) Molecular cloning of human and rat androgen complementary cDNA encoding androgen receptors. Science 240:324–326

    PubMed  CAS  Google Scholar 

  • Chang C, Saltzman A, Yeh S, Young W, Keller E, Lee HJ, Wang C, Mizokami A (1995) Androgen receptor: An overview. Crit Rev Eukaryotic Gene Expr 5:97–125

    CAS  Google Scholar 

  • Christiansen RG, Bell MR, D'Ambra TE, Mallamo JP, Herrmann JL, Ackerman JH, Opalka CJ, Kullnig RK, Winneker RC, Snyder BW, Batzold FH, Schane HP (1990) Antiandrogenic steroidal sulfonylpyrazoles. J Med Chem 33:2094–2100

    PubMed  CAS  Google Scholar 

  • Duc I, Botella J, Bonnet P, Fraboul F, Delansorne R, Paris J (1995) Antiandrogenic activity of nomegestrol acetate. Arzneim Forsch/Drug Res 45:70–74

    CAS  Google Scholar 

  • Grover PK, Odell WD (1975) Correlation of in vivo and in vitro activities of some naturally occurring androgens using a radioreceptor assay for 5α-dihydrotestosterone with rat prostate cytosol receptor protein. J Steroid Biochem 5:1373–1379

    Google Scholar 

  • Hoyte RM, Brown TJ, MacLusky NJ, Hochberg RB (1993) 7a-Methyl-17α-(E-2′-[125I]iodovinyl)-19-nortestosterone: a new radioligand for the detection of the androgen receptor. Steroids 58:13–23

    PubMed  CAS  Google Scholar 

  • Humm AW, Schneider MR (1990) Entwicklung nichtsteroidaler Antiandrogene: 4-Nitro-3-trifluormethyldiphenylamine. Arch Pharm 323:83–87

    CAS  Google Scholar 

  • Isomaa V, Pajunen AE, Bardin CW, Jänne OA (1982) Nuclear androgen receptors in the mouse kidney: validation of a new assay. Endocrinology 111:833–843

    PubMed  CAS  Google Scholar 

  • Karvonen U, Kallio PJ, Jänne OA, Palvimo JJ (1997) Interaction of androgen receptors with androgen response element in intact cells. J Biol Chem 272:15973–15979

    PubMed  CAS  Google Scholar 

  • Liang T, Tymoczko JL, Chan KMB, Hung SC, Liao S (1977) Androgen action: Receptors and rapid responses. In: Martini L, Motta M (eds) Androgens and Antiandrogens. Raven Press, New York, pp 77–89

    Google Scholar 

  • Liao S, Howell DK, Chang TM (1974) Action of a nonsteroidal antiandrogen, flutamide, on the receptor binding and nuclear retention of 5α-dihydrotestosterone in rat ventral prostate. Endocrinology 94:1205–1208

    PubMed  CAS  Google Scholar 

  • Liao S, Witte D, Schilling K, Chang C (1984) The use of a hydroxylapatite-filter steroid receptor assay method in the study of the modulation of androgen receptor interaction. J Steroid Biochem 20:11–17

    PubMed  CAS  Google Scholar 

  • Lubahn DB, Joseph DR, Sullivan PM, Willard HF, French FS, Wilson EM (1988) Cloning of human androgen receptor complementary cDNA and localization to the X chromosome. Science 240:327–330

    PubMed  CAS  Google Scholar 

  • Neubauer BE, Best KL, Clemens JA, Gates CA, Goode RL, Jones CD, Laughlin ME, Shaar CJ, Toomey RE, Hoover DM (1993) Endocrine and antiprostatic effects of Raloxifene (LY156758) in the male rat. The Prostate 23:245–262

    PubMed  CAS  Google Scholar 

  • Ojasoo T, Raynaud JP (1978) Unique steroid congeners for receptor studies. Cancer Res 38:4186–4198

    PubMed  CAS  Google Scholar 

  • Raynaud JP, Bonne C, Bouton MM, Moguilewsky M, Philibert D, Azadian-Boulanger G (1975) Screening for anti-hormones by receptor studies. J Steroid Biochem 6:615–622

    PubMed  CAS  Google Scholar 

  • Raynaud JP, Bonne C, Bouton MM, Lagace L, Labrie F (1979) Action of a non-steroid anti-androgen, RU 23908, in peripheral and central tissues. J Steroid Biochem 11:93–99

    PubMed  CAS  Google Scholar 

  • Schilling K, Liao S (1984) The use of radioactive 7α,17α-dime-thyl-19-nortesteosterone (Mibolerone) in the assay of androgen receptors. Prostate 5:581–588

    PubMed  CAS  Google Scholar 

  • Sivelle PC, Underwood AH, Jelly JA (1982) The effects of histamine H2 receptor antagonists on androgen action in vivo and dihydrotestosterone binding to the rat prostate androgen receptor in vitro. Biochem Pharmacol 31:677–684

    PubMed  CAS  Google Scholar 

  • Stobaugh ME, Blickenstaff RT (1990) Synthesis and androgen receptor binding of dihydrotestosterone hemisuccinate homologs. Steroids 55:259–262

    PubMed  CAS  Google Scholar 

  • Teutsch G, Goubet F, Battmann T, Bonfils A, Bouchoux F, Cerede E, Gofflo D, Gaillard-Kelly M, Philibert D (1994) Non-steroidal antiandrogens: synthesis and biological profile of high-affinity ligands for the androgen receptor. J Steroid Biochem Molec Biol 48:111–119

    PubMed  CAS  Google Scholar 

  • Tezón JG, Vazquez MH, Blaquier JA (1982) Androgen-controlled subcellular distribution of its receptor in the rat epididymis: 5α-dihydrotestosterone-induced translocation is blocked by antiandrogens. Endocrinology 111:2039–2045

    PubMed  Google Scholar 

  • Thoth I, Faredin I, Mesko E, Wolfling J, Schneider G (1995) In vitro binding of 16-methylated C-18 and C-19 steroid derivates to the androgen receptor. Pharmacol Res 32:217–221

    Google Scholar 

  • Tilley WD, Marcelli M, Wilson JD, McPhaul MJ (1989) Characterization and expression of a cDNA encoding the human androgen receptor. Proc. Natl Acad Sci 86:327–331

    PubMed  CAS  Google Scholar 

  • Traish AM, Müller RE, Wotiz HH (1986) Binding of 7α, 17α-dimethyl-19-nortestosterone (Mibolerone) to androgen and progesterone receptors in human and animal tissues. Endocrinology 118:1327–1333

    PubMed  CAS  Google Scholar 

  • Von Krempelhuber A, Müller F, Fuhrmann U (1994) DNA-binding of androgen receptor overexpressed in mammalian cells. J Steroid Biochem Molec Biol 48:511–516

    CAS  Google Scholar 

  • Winneker RC, Wagner MM, Batzold FH (1989) Studies on the mechanism of action of WIN 49596: a steroidal androgen receptor antagonist. J Steroid Biochem 33:1133–1138

    PubMed  CAS  Google Scholar 

References

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem 72:248–254

    PubMed  CAS  Google Scholar 

  • Cato ACB, Miksicek R, Schütz G, Arnemann J, Beato M (1986) The hormone regulatory element of mouse mammary tumor virus mediates progesterone induction. Embo J 6:2237–2240

    Google Scholar 

  • Felgner PL, Holm M (1989) Cationic liposome-mediated transfection. Focus 11:21–25

    Google Scholar 

  • Fuhrmann U, Bengtson C, Repenthin G, Schillinger E (1992) Stable transfection of androgen receptor and MMTV-CAT into mammalian cells: Inhibition of CAT expression by antiandrogens. J Steroid Biochem Molec Biol 42:787–793

    PubMed  CAS  Google Scholar 

  • Fuhrmann U, Slater EP, Fritzemeier KH (1995) Characterization of the novel progestin gestodene by receptor binding studies and transactivation assays. Contraception 51:45–52

    PubMed  CAS  Google Scholar 

  • Fuhrmann U, Krattenmacher R, Slater EP, Fritzemeier KH (1996) The novel progestin drospirone and its natural counterpart progesterone: biochemical profile and antiandrogenic potential. Contraception 54:243–251

    PubMed  CAS  Google Scholar 

  • Gorman CM, Moffat LF, Howard BH (1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Molec Cell Biol 2:1044–1055

    PubMed  CAS  Google Scholar 

  • Green S, Chambon P (1988) Nuclear receptors enhance our understanding of transcription regulations. Trends Genet 4:309–314

    PubMed  CAS  Google Scholar 

  • Muhn P, Fuhrmann U, Fritzemeier KH, Krattenmacher R, Schillinger E (1995) Drospirenone: a novel progestogen with antimineralocorticoid and antiandrogenic activity. Ann NY Acad Sci 761:311–335

    PubMed  CAS  Google Scholar 

  • Warriar N, Page N, Koutsilieris M, Govindan MV (1993) Interaction of antiandrogen-androgen complexes with DNA and transcription activation. J Steroid Biochem Mol Biol 46:699–711

    PubMed  CAS  Google Scholar 

  • White JH, McCuaig KA, Mader S (1994) A simple and sensitive high-throughput assay for steroid agonists and antagonists. Biotechnol 12:1003–1007

    CAS  Google Scholar 

References

  • Dorfman RI (1948) Studies on the bioassay of hormones. The assay of testosterone propionate and androsterone by a chick inunction method. Endocrinology 48:1–6

    Google Scholar 

  • Dorfman RI (1969) Androgens and anabolic agents. In: Dorfman RI (ed) Methods in Hormone Research, Vol IIA, Chapter 4. Academic Press, New York and London. pp 151–220

    Google Scholar 

  • Frank RT, Klempner E, Hollander R, Kriss B (1942) Detailed description of technique for androgen assay by the chick comb method. Endocrinology 31:63–70

    CAS  Google Scholar 

  • Fussgänger R (1934) Ein Beitrag zum Wirkungsmechanismus des männlichen Sexualhormons. Medizin Chemie 2:194–204

    Google Scholar 

  • Gallagher TF, Koch FC (1935) The quantitative assay for the testicular hormone by the comb-growth reaction. J Pharmacol Exp Ther 55:97–117

    CAS  Google Scholar 

  • Greenwood AW, Blyth JSS, Callow RK (1935) Quantitative studies on the response of the capon's comb to androsterone. Biochem J 29:1400–1413

    PubMed  CAS  Google Scholar 

  • McCullagh DF, Cuyler WC (1939) The response of the capon's comb to androsterone. J Pharmacol Exp Ther 66:379–388

    CAS  Google Scholar 

  • Oesting RB, Webster B (1938) The sex hormone excretion in children. Endocrinology 22:307–314

    CAS  Google Scholar 

References

  • Dorfman RI (1969) Androgens and anabolic agents. In: Dorfman RI (ed) Methods in Hormone Research, Vol IIA, Chapter 4. Academic Press, New York and London. pp 151–220

    Google Scholar 

  • Eisenberg E, Gordon GS (1950) The levator ani muscle of the rat as an index of myotrophic activity of steroidal hormones. J Pharmacol Exp Ther 99:38–44

    PubMed  CAS  Google Scholar 

  • Eisler M (1964) Animal techniques for evaluating sex steroids. In: Nodine JH, Siegler PE (eds) Animal and Clinical Pharmacologic Techniques in Drug Evaluation. Year Book Medical Publishers, Inc., Chicago, pp 566–573

    Google Scholar 

  • Hershberger LG, Shipley EG, Meyer RK (1953) Myotrophic activity of 19-nortestotestone and other steroids determined by modified levator ani muscle method. Proc Soc Exp Biol Med 83:175–180

    PubMed  CAS  Google Scholar 

  • Junkmann K (1957) Long-acting steroids in reproduction. Rec Progr Horm Res 13:389–427

    PubMed  CAS  Google Scholar 

  • Kincl FA (1965) Anabolic Steroids. In: Dorfman RI (ed) Methods in Hormone Research, Vol IV, Chapter 2. Academic Press, New York and London. pp 21–76

    Google Scholar 

  • Korenchevsky V, Dennison M (1935) The assay of crystalline male sexual hormone (androsterone). Biochem J 29:1720–1731

    PubMed  CAS  Google Scholar 

  • Kuhnz W, Beier S (1994) Comparative progestational and androgenic activity of norgestimate and levonorgestrel in the rat. Contraception 49:275–289

    PubMed  CAS  Google Scholar 

References

  • Dorfman RI (1969) Androgens and anabolic agents. In: Dorfman RI (ed) Methods in Hormone Research, Vol IIA, Chapter 4. Academic Press, New York and London. pp 151–220

    Google Scholar 

  • Polish E (1964) Clinical techniques for evaluating anabolic agents. In: Nodine JH, Siegler PE (eds) Animal and Clinical Pharmacologic Techniques in Drug Evaluation. Year Book Medical Publishers, Inc., Chicago, pp 561–565

    Google Scholar 

  • Stafford RO, Bowman BJ, Olson KJ (1954) Influence of 19-nortestosterone cyclopentyl-propionate on urinary nitrogen of castrate male rat. Proc Soc Exp Biol Med 86:322–326

    PubMed  CAS  Google Scholar 

  • Stucki JC, Forbes AD, Northam JI, Clark JJ (1960) An assay for anabolic steroids employing metabolic balance in the monkey: The anabolic activity of fluoxymesterone and its 11-keto analogue. Endocrinology 66:585–598

    PubMed  CAS  Google Scholar 

References

  • Mainwaring WIP (1977) Modes of action of antiandrogens: a survey. In: Martini L, Motta M (eds) Androgens and Antiandrogens. Raven Press, New York, pp 151–161

    Google Scholar 

  • Moguilewski M Bouton MM (1988) How the study of biological activities of antiandrogens can be oriented towards the clinic. J Steroid Biochem 31:699–710

    Google Scholar 

  • Neri RO (1977) Studies on the biology and mechanism of action of nonsteroidal antiandrogens. In: Martini L, Motta M (eds) Androgens and Antiandrogens. Raven Press, New York, pp 179–189

    Google Scholar 

  • Neumann F (1985) Chemistry and pharmacology of antiandrogens. Chron Dermatol 16:557–563

    Google Scholar 

  • Neumann F, von Berswordt-Wallrabe, Elger W, Steinbeck H, Hahn JD, Kramer M (1970) Aspects of androgen-dependent events as studied by antiandrogens. Rec Progr Horm Res 26:337–410

    PubMed  CAS  Google Scholar 

  • Neumann F, Gräf KJ, Hasan SH, Schenck B, Steinbeck H (1977) Central actions of antiandrogens. In: Martini L, Motta M (eds) Androgens and Antiandrogens. Raven Press, New York, pp 163–177

    Google Scholar 

  • Raynaud JP, Azadian-Boulanger G, Bonne C, Perronnet J, Sakiz E (1977) In: Martini L, Motta M (eds) Androgens and Antiandrogens. Raven Press, New York, pp 281–293

    Google Scholar 

References

  • Andersson S, Russell DW (1990) Structural and biochemical properties of cloned and expressed human and rat steroid 5α-reductases. Proc Natl Acad Sci USA 87:3640–3644

    PubMed  CAS  Google Scholar 

  • Brooks JR, Baptista EM, Berman C, Ham EA, Hichens M, Johnston DBR, Primka RL, Rasmusson G, Reynolds GF, Schmitt SM, Arth GE (1981) Response of rat ventral prostate to a new and novel 5α-reductase inhibitor. Endocrinology 109:830–836

    PubMed  CAS  Google Scholar 

  • Bruchovsky N, Wilson JD (1968) The conversion of testosterone to 5α-androstan-17β-ol-3-one by rat prostate in vivo and in vitro. J Biol Chem 243:2012–2021

    PubMed  CAS  Google Scholar 

  • Corvol P, Michaud A, Menard J, Freifeld M, Mahoudeau J (1975) Antiandrogenic effect of spirolactones: Mechanism of action. Endocrinology 97:52–58

    PubMed  CAS  Google Scholar 

  • di Salle E, Giudici D, Briatico G, Ornati G, Panzeri A (1993) Hormonal effects of turosteride, a 5α-reductase inhibitor, in the rat. J Steroid Biochem Molec Biol 46:549–555

    PubMed  Google Scholar 

  • di Salle E, Briatico G, Giudici D, Ornati G, Panzeri (1994) Endocrine properties of the testosterone 5α-reductase inhibitor Turosteride (FCE 26073). J Steroid Biochem Molec Biol 48:241–248

    PubMed  Google Scholar 

  • di Salle E, Giudici G, Radice A, Zaccheo T, Ornati G, Nesi M, Panzeri A, Délos S, Martin PM (1998) PNU 157706, a novel dual type I and II 5α-reductase inhibitor. J Steroid Biochem Molec Biol 64:179–186

    PubMed  Google Scholar 

  • Hirsch KS, Jones CD, Audia JE, Andersson S, McQuaid L, Stamm NB, Neubauer BL, Pennington P, Toomey RE, Russell DW (1993) LY191704: a selective, nonsteroidal inhibitor of human steroid 5α-reductase type 1. Proc Natl Acad Sci USA 90:5277–5281

    PubMed  CAS  Google Scholar 

  • Iehlè C, Délos S, Filhol O, Martin PM (1993) Baculovirus-directed expression of human prostatic steroid 5α-reductase 1 in an active form. J Steroid Biochem Molec Biol 46:177–182

    PubMed  Google Scholar 

  • Iehlè C, Délos S, Guirou O, Tate R, Raynaud JP, Martin PM (1995) Human prostatic steroid 5α-reductase isoforms: A comparative study of selective inhibitors. J Steroid Biochem Molec Biol 54:273–279

    PubMed  Google Scholar 

  • Jenkins EP, Andersson S, Imperato-McGinley J, Wilson J, Russell DW (1992) Genetic and pharmacological evidence for more than one human steroid 5α-reductase. J Clin Invest 89:293–300

    PubMed  CAS  Google Scholar 

  • Liang T, Cascieri MA, Cheung AH, Reynolds GF, Rasmusson GH (1985) Species differences in prostatic steroid 5α-reductase of rat, dog and human. Endocrinology 117:571–579

    PubMed  CAS  Google Scholar 

  • Neubauer BL, Best KL, Blohm TR, Gates C, Goode RL, Hirsch KS, Laughlin ME, Petrow V, Smalstig EB, Stamm NB, Toomey RE, Hoover DM (1993) LY207320 (6-methylene-4-pregnene-3,20-dione) inhibits testosterone biosynthesis, androgen uptake, 5α-reductase, and produces prostatic regression in rats. Prostate 23:181–199

    PubMed  CAS  Google Scholar 

  • Rhodes L, Primka RL, Berman C, Vergult G, Gabriel M, Pierre-Malice M, Gibelin B (1993) Comparison of Finasteride (Proscar®), a 5α reductase inhibitor, and various commercial plant extracts in In vitro and In vivo 5α reductase inhibition. Prostate 22:43–51

    PubMed  CAS  Google Scholar 

  • Sigimura Y, Sakurai M, Hayashi N, Yamashita A, Kawamura J (1994) Age-related changes of the prostate gland in the senescence-accelerated mouse. Prostate 24:24–32

    Google Scholar 

  • Sudduth SL, Koronkowski (1993) Finasteride: the first 5α reductase inhibitor. Pharmacotherapy 13:309–329

    PubMed  CAS  Google Scholar 

  • Tolman RL, Aster S, Bakshi RK, Bergman JP, Bull HG, Chang B, Cimis G, Dolenga MP, Durette P, Ellsworth K, Esser C, Graham DW, Hagman WK, Harris G, Kopka I, Lanza T, Patel G, Polo S, Rasmusson GH, Sahoo S, Toney JH, Von Langen D, Witzel B (1995) 4-Azasteroids as 5α-reductase inhibitors: Identification of 4,7β-dimethyl-4-aza-5α-cholestan-3-one (MK-386) as a scalp isozyme selective inhibitor. Eur J Med Chem 30, suppl, 311s–316s

    CAS  Google Scholar 

  • Wennbo T, Kindblom J, Isaksson OPG, Tornell J (1997) Transgenic mice overexpressing the prolactin gene develop dramatic enlargement of the prostate gland. Endocrinol 138:4410–4415

    CAS  Google Scholar 

References

  • Dorfman RI (1969) Antiandrogens. In: Dorfman RI (ed) Methods in Hormone Research, Vol IIA, Chapter 5. Academic Press, New York and London. pp 221–249

    Google Scholar 

  • Dorfman RI, Dorfman AS (1960) A test for anti-androgens. Acta Endocrinol 33:308–316

    PubMed  CAS  Google Scholar 

References

  • Baba S, Paul HJ, Pollow K, Janetschek G, Jacobi GH (1981) In vivo studies on the antiandrogenic effects of cimetidine versus cyproterone acetate in rats. Prostate 2:163–174

    PubMed  CAS  Google Scholar 

  • Broulik PD (1980) Antiandrogenic activity of cimetidine in mice. Endokrinologie 76:118–121

    PubMed  CAS  Google Scholar 

  • Byrnes WW, Stafford RO, Olson KJ (1953) Anti-gonadal hormone activity of 11α-hydroxyprogesterone. Proc Soc Exp Biol Med 82:243–247

    PubMed  CAS  Google Scholar 

  • Christiansen RG, Bell MR, D'Ambra TE, Mallamo JP, Herrmann JL, Ackerman JH, Opalka CJ, Kullnig RK, Winnecker RC, Snyder BW, Batzold FH, Schane HP (1990) Antiandrogenic steroidal sulfonylpyrazoles. J Med Chem 33:2094–2100

    PubMed  CAS  Google Scholar 

  • Dorfman RI (1962) An anti-androgen assay using the castrated mouse. Proc Soc Exp Biol Med 111:441–443

    Google Scholar 

  • Dorfman RI (1969) Antiandrogens. In: Dorfman RI (ed) Methods in Hormone Research, Vol IIA, Chapter 5. Academic Press, New York and London. pp 221–249

    Google Scholar 

  • Eviatar A, Danon A, Sulman FG (1961) The mechanism of the “push and pull” principle. V. Effect of the antiandrogen RO 2-7239 on the endocrine system. Arch Int Pharmacodyn 133:75–88

    PubMed  CAS  Google Scholar 

  • Foldesy RG, Vanderhoof MM, Hahn DW (1985) In vitro and in vivo comparisons of antiandrogenic potencies of two histamine H2-receptor antagonists, cimetidine and etintidine-HCl (42087). Proc Soc Exp Biol Med 179:206–210

    PubMed  CAS  Google Scholar 

  • Furr BJA, Valcaccia B, Curry B, Woodburn JR, Chesterson C, Tucker H (1987) ICI 176,334: A novel non-steroidal, peripherally selective antiandrogen. J Endocrinol 113:R7–R9

    PubMed  CAS  Google Scholar 

  • Neri F, Florance K, Koziol P, van Cleave S (1972) A biological profile of a nonsteroidal antiandrogen, SCH 13521 (4′-nitro-3′-trifluoromethylisobutyranilide) Endocrinology 91:427–437

    PubMed  CAS  Google Scholar 

  • Neubauer BE, Best KL, Clemens JA, Goode RL, Jones CD, Laughlin ME, Shaar CJ, Toomey RE, Hoover DM (1993) Endocrine and antiprostatic effects of Raloxifene (LY156758) in the male rat. The Prostate 23:245–262

    PubMed  CAS  Google Scholar 

  • Neubauer BL, Goode RL, Best KL, Hirsch KS, Lin TM, Pioch RP, Probst KS, Tinsley FC, Shaar CJ (1990) Endocrine effects of a new histamine H2-receptor antagonist, Nizatidine (LY139037), in the male rat. Toxicol Appl Pharmacol 102:219–232

    PubMed  CAS  Google Scholar 

  • Neumann F, Gräf KJ, Hasan SH, Schenck B, Steinbeck H (1977) Central actions of antiandrogens. In: Martini L, Motta M (eds) Androgens and antiandrogens. Raven Press, New York, pp 163–177

    Google Scholar 

  • Randall LO, Selitto JJ (1958) Anti-androgenic activity of a synthetic phenanthrene. Endocrinology 62:693–695

    PubMed  CAS  Google Scholar 

  • Shibata K, Takegawa, S, Koizumi N, Yamakoshi N, Shimazawa E (1992) Antiandrogen. I. 2-Azapregnane and 2-oxapregnane steroids. Chem Pharm Bull 40:935–941

    PubMed  CAS  Google Scholar 

  • Sivelle PC, Underwood AH, Jelly JA (1982) The effects of histamine H2 receptor antagonists on androgen action in vivo and dihydrotestosterone binding to the rat prostate androgen receptor in vitro. Biochem Pharmacol 31:677–684

    PubMed  CAS  Google Scholar 

  • Snyder BW, Winneker RC, Batzold FH (1989) Endocrine profile of WIN 49596 in the rat: a novel androgen receptor antagonist. J Steroid Biochem 33:1127–1132

    PubMed  CAS  Google Scholar 

  • Tagekawa S, Koizumi N, Takahashi H, Shibata K (1993) Antiandrogen. II. Oxygenated 2-oxapregnane steroids. Chem Pharm Bull 41:870–875

    Google Scholar 

  • Takeda M, Takagi T, Yashima Y, Maneo H (1982) Effect of a new H2-blocker, 3-[[[2-[(diaminomethylene)amino]-4-thiazoly] methyl]thio]-N2-sulfamoyl propionamidine (YM-11170), on gastric secretion, ulcer formation and male accessory sex organs in rats. Arzneim Forsch/Drug Res 32:734–737

    CAS  Google Scholar 

  • Turner RA (1965) Anabolic, androgenic, and antiandrogenic agents. In: Turner RA (ed) Screening Methods in Pharmacology. Academic Press, New York and London. Chapter 33, pp 244–246

    Google Scholar 

  • Winters SJ, Banks JL, Loriaux DL (1979) Cimetidine is an antiandrogen in the rat. Gastroenterol 76:504–508

    CAS  Google Scholar 

References

  • Neri F, Florance K, Koziol P, van Cleave S (1972) A biological profile of a nonsteroidal antiandrogen, SCH 13521 (4′-nitro-3′-trifluoromethylisobutyranilide) Endocrinology 91:427–437

    PubMed  CAS  Google Scholar 

  • Neumann F, Elger W (1966) Eine neue Methode zur Prüfung antiandrogen wirksamer Substanzen an weiblichen Ratten. Acta Endocrinol 52:54–62

    PubMed  CAS  Google Scholar 

  • Snyder BW, Winneker RC, Batzold FH (1989) Endocrine profile of WIN 49596 in the rat: a novel androgen receptor antagonist. J Steroid Biochem 33:1127–1132

    PubMed  CAS  Google Scholar 

References

  • Imperato-McGinley J, Sanchez RS, Spencer JR, Yee B, Vaughan D (1992) Comparison of the effects of the 5α-reductase inhibitor Finasteride and the antiandrogen Flutamide on prostate and genital differentiation: Dose-response studies. Endocrinol 131:1149–1156

    CAS  Google Scholar 

  • Neumann F (1994) The antiandrogen cyproterone acetate: discovery, chemistry, basic pharmacology, clinical use and tool in basic research. Exp Clin Endocr 102:1–32

    CAS  Google Scholar 

  • Neumann F, Elger W (1966) Permanent changes of gonadal function and sexual behaviour as a result of early feminization of male rats by treatment with an antiandrogenic steroid. Endokrinologie 50:209–225

    PubMed  CAS  Google Scholar 

  • Neumann F, Elger W (1967) Steroidal stimulation of mammary glands in prenatally feminized male rats. Eur J Pharmacol 1:120–123

    PubMed  CAS  Google Scholar 

  • Neumann F, Junkmann K (1963) A new method for determination of virilizing properties of steroids on the fetus. Endo-crinology 73:33–37

    CAS  Google Scholar 

  • Neumann F, Kramer M (1964) Antagonism of androgenic and anti-androgenic agents in their action on the rat fetus. Endocrinology 75:428–433

    PubMed  CAS  Google Scholar 

  • Nishino Y, Schröder H, El Etreby MF (1988) Experimental studies on the endocrine side effects of new aldosterone antagonists. Arzneim Forsch/Drug Res 38:1800–1805

    CAS  Google Scholar 

References

  • Hamilton JB, Montagna W (1950) The sebaceous gland of the hamster. I. Morphological effects of androgens on integumentary structures. Am J Anat 86:191–234

    PubMed  CAS  Google Scholar 

  • Lapière CH, Chèvremont M (1953) Modifications des glandes sébacées par des hormones sexuelles appliquées localement sur la peau de Souris. CR Soc Biol (Paris) 147:1302–1306

    Google Scholar 

  • Mitchell OG (1965) Effect of castration and transplantation on ventral gland of the gerbil. Proc Soc Exp Biol Med 119:953–955

    PubMed  CAS  Google Scholar 

  • Neumann F, Elger W (1966) The effect of a new antiandrogenic steroid, 6-chloro-17-hydroxy-1α,2α-methylenepregena-4,6-diene-3,20-dione acetate (cyproterone acetate) on the sebaceous glands of mice. J Invest Dermatol 46:561–572

    CAS  Google Scholar 

  • Sauter LS, Loud AV (1975) Morphometric evaluation of sebaceous gland volume in intact, castrated, and testosteronetreated rats. J Invest Dermatol 64:9–13

    PubMed  CAS  Google Scholar 

References

  • di Salle E, Giudici D, Briatico G, Ornati G, Panzeri A (1993) Hormonal effects of turosteride, a 5α-reductase inhibitor, in the rat. J Steroid Biochem Molec Biol 46:549–555

    PubMed  Google Scholar 

  • di Salle E, Giudici G, Radice A, Zaccheo T, Ornati G, Nesi M, Panzeri A, Délos S, Martin PM (1998) PNU 157706, a novel dual type I and II 5α-reductase inhibitor. J Steroid Biochem Molec Biol 64:179–186

    PubMed  Google Scholar 

  • Falvo RE, Nalbandov AV (1974) Radioimmunoassay of peripheral plasma testosterone in males from eight species using a specific antibody without chromatography. Endocrinology 95:1466–1468

    PubMed  CAS  Google Scholar 

  • George FW, Johnson L, Wilson JD (1989) The effect of a 5a-reductase inhibitor on androgen physiology in the immature male rat. Endocrin 125:2434–2438

    CAS  Google Scholar 

References

  • Apriletti JW, Baxter JD, Lavin TN (1988) Large scale purification of the nuclear thyroid hormone receptor from rat liver and sequence-specific binding of the receptor to DNA. J Biol Chem 263:9409–9417

    PubMed  CAS  Google Scholar 

  • Ballock RT, Mita BC, Zhou X, Chen DH, Mink LM (1999) Expression of thyroid hormone receptor isoforms in rat growth plate cartilage in vivo. J Bone Miner Res 14:1550–1556

    PubMed  CAS  Google Scholar 

  • Biedl A (1916) Das thyreo-parathyreo-thymische System. In: Biedl A (ed) Innere Sekretion. Ihre physiologischen Grundlagen und ihre Bedeutung für die Pathologie. Dritte Auflage, Erster Teil, Urban und Schwarzenberg, Berlin Wien, pp 5–405

    Google Scholar 

  • Bomskov C (1937) Methodik der Hormonforschung. Vol 1, Das Hormon der Schilddrüse. Thieme Verlag Leipzig, pp 143–394

    Google Scholar 

  • Burris TP, Nawaz Z, Tsai M-J, O'Malley BW (1995) A nuclear hormone receptor-associated protein that inhibits transactivation by the thyroid hormone and retinoic acid receptors. Proc Natl Acad Sci USA 92:9525–9529

    PubMed  CAS  Google Scholar 

  • Chiellini G, Apriletti JW, Yoshikara HA, Baxter JD, Ribeiro RCJ, Scalan TS (1998) A high-affinity subtype-selective agonist ligand for the thyroid hormone receptor. Chem Biol 5:299–306

    PubMed  CAS  Google Scholar 

  • Copp DH (1964) Parathyroids, calcitonin, and control of plasma calcium. Rec Progr Horm Res 20:59–88

    PubMed  CAS  Google Scholar 

  • Copp DH, Cameron EC, Cheney BA, Davidson AFG, Henze KG (1992) Evidence for calcitonin — a new hormone from the parathyroid that lowers calcium. Endocrinol 70:638–649

    Google Scholar 

  • Gundernatsch JF (1913a) Feeding experiments on tadpoles. I. The influence of specific organs given as food on growth and differentiation. Roux Arch Entwicklungsmech 35:457–483

    Google Scholar 

  • Gundernatsch JF (1913b) Feeding experiments on tadpoles. II. A further contribution to the knowledge of organs with internal secretion. Am J Anat 15:431–473

    Google Scholar 

  • Haffner F (1927) Pharmakologische Untersuchungen mit einem deutschen Thyroxin. Klin Wschr 6:1932–1935

    CAS  Google Scholar 

  • Huxley JS, Hogben LT (1922) Experiments on amphibian metamorphosis and pigment responses in relation to internal secretions. Proc Roy Soc Biol 93:36–53

    CAS  Google Scholar 

  • Ichikawa K, DeGroot LJ (1987a) Purification and characterization of rat liver nuclear thyroid hormone receptors. Proc Natl Acad Sci USA 84:3420–3424

    PubMed  CAS  Google Scholar 

  • Ichikawa K, DeGroot LJ (1987b) Thyroid hormone receptors in a human hepatoma cell line: multiple receptor forms on isoelectric focusing. Mol Cell Endocrinol 51:135–143

    PubMed  CAS  Google Scholar 

  • Ichikawa K, Hashizume K, Miyamoto T, Nishii Y, Yamauchi K, Ohtsuka H, Yamada T (1988) Conformational transition of thyroid hormone receptor upon hormone binding: demonstration by aqueous two-phase partitioning. J Endocrinol 119:431–437

    PubMed  CAS  Google Scholar 

  • Ichikawa K, Hashizume K (1991) Use of aqueous two-phase partitioning to study thyroid hormone receptor. In: Greenstein B (ed) Neuroendocrine Research Methods, Vol 1, Harwood Acad Publ, Chur, pp 149–159

    Google Scholar 

  • Kreitmair H (1928) Jodgehalt und Schilddrüsenwirkung. Zugleich Bekanntgabe einer biologischen Wertbestimmungsmethode für Schilddrüsenpräparate. Z ges exp Med 61:202–210

    CAS  Google Scholar 

  • Pitt-Rivers R, Tata JR (1959) The Thyroid Hormones. Pergamon Press, London, New York

    Google Scholar 

  • Torresanai J, Anselmet A (1978) Partial purification and characterization of nuclear triiodothyronine binding proteins. Biochem Biophys Res Commun 81:147–153

    Google Scholar 

  • Turner CW, Premachandra BN (1962) Thyroidal substances. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Chapter 10. Academic Press, New York and London. pp 385–411

    Google Scholar 

  • William GR, Franklyn JA (1994) Physiology of the steroid-thyroid hormone nuclear receptor superfamily. Balliéres Clin Endocrin Metab 8:241–266

    Google Scholar 

  • Wu Y, Xu B, Koenig RJ (2001) Thyroid hormone response element sequence and the recruitment of retinoid X receptors for thyroid hormone responsiveness. J Biol Chem 276:3929–3936

    PubMed  CAS  Google Scholar 

  • Yuan C-X, Ito M, Fondell JD, Fu Z-Y, Roeder RG (1998) The TRAP220 component of a thyroid hormone receptor-associated protein (TRAP) coactivator complex interacts directly with nuclear receptors in a ligand-dependent fashion. Proc Natl Acad Sci USA 95:7939–7944

    PubMed  CAS  Google Scholar 

  • Zavadovsky BM, Zavadovsky EV (1926) Application of the axolotl metamorphosis reaction to the quantitative assay of thyroid gland hormones. Endocrinology 10:550–559

    CAS  Google Scholar 

References

  • Bomskov C (1937) Die chirurgischen Methoden der Schilddrüsenforschung In: Methodik der Hormonforschung. Band 1, pp 143–155. Georg Thieme Verlag, Leipzig

    Google Scholar 

  • Grossie J, Hendrich CE, Turner CW (1965) Comparative methods for determining biological half-life (t1/2) of L-thyroxine in normal, thyroidectomized and methimazole treated female rats. Proc Soc Exp Biol Med 120:413–415

    PubMed  CAS  Google Scholar 

  • Hammet FS (1924) Studies of the thyroid apparatus. XXVIII. The differential development of the albino rat from 75 to 150 days of age and the influence of thyro-parathyroidectomy and parathyroidectomy thereon. Am J Physiol 70:259–272

    Google Scholar 

  • Hammet FS (1926a) Studies on the thyroid apparatus. XXIX. The role of the thyroid apparatus in growth. Am J Physiol 76:69–91

    Google Scholar 

  • Hammet FS (1926b) Studies on the thyroid apparatus. The relation between age at initiation of and response of body growth to thyroid and parathyroid deficiency. Endocrinology 10:29–42

    Google Scholar 

  • Hammet FS (1929) Thyroid and differential development. Endokrinologie 5:81–86

    Google Scholar 

  • Pittman CS, Shinohara M, Thrasher H, McCraw EF (1964) Effect of thyroxine analogues on the peripheral metabolism of thyroxine: the half-life and pattern of elimination. Endocrinology 74:611–616

    PubMed  CAS  Google Scholar 

  • Smith PE, Greenwood CF, Foster GL (1927) A comparison in normal, thyroidectomized and hypophysectomized rats of the effects upon metabolism and growth resulting from daily injections of small amounts of thyroid extract. Am J Pathol 3:669–687

    PubMed  CAS  Google Scholar 

References

  • Anderson BG (1954) Potency and duration of action of triiodothyronine and thyroxine in rats and mice. Endocrinology 54:659–665

    PubMed  CAS  Google Scholar 

  • Basil B, Somers GF, Woolett EA (1950) Measurement of thyroid activity by mouse anoxia method. Br J Pharmacol 5:315–322

    CAS  Google Scholar 

  • Bomskov C (1937) Methodik der Hormonforschung. Vol. 1, Das Hormon der Schilddrüse. Thieme Verlag Leipzig, pp 143–394

    Google Scholar 

  • Gemmill CL (1953) Comparison of activity of thyroxine and 3,5,3′-triiodothyronine. Am J Physiol 172:286–290

    CAS  Google Scholar 

  • Heming AE (1964) Animal techniques for evaluating thyroid and antithyroid agents. In: Nodine JH, Siegler PE (eds) Animal and Clinical Pharmacologic Techniques in Drug Evaluation. Year Book Medical Publ., Inc., Chicago, pp 530–534

    Google Scholar 

  • Holtkamp DE, Ochs S, Pfeiffer CC, Heming AE (1955) Determination of the oxygen consumption of groups of rats. Endocrinology 56:93–104

    PubMed  CAS  Google Scholar 

  • Lilienthal JL, Zierler KL, Folk BP (1949) A simple volumeter for measuring the oxygen consumption of small animals. Bull John Hopkins Hosp 84:238–244

    PubMed  CAS  Google Scholar 

  • MacLagan NF, Sheahan MM (1950) The measurement of oxygen consumption in small animals by a closed circuit method. J Endocrinol 6:456–463

    PubMed  CAS  Google Scholar 

  • Reineke EP, Turner CW (1950) Thyroidal substances. In: Emmens CW (ed) Hormone Assay. Academic Press, Inc., Publishers, New York, Chapter XIX, pp 489–511

    Google Scholar 

  • Smith AU, Emmens CW, Parkes AS (1947) Assay of thyroidal activity by a closed vessel technique. J Endocrinol 5:186–206

    PubMed  CAS  Google Scholar 

  • Stock MJ (1975) An automatic, closed-circuit oxygen consumption apparatus for small animals. J Appl Physiol 39:849–850

    PubMed  CAS  Google Scholar 

  • Turner CW (1969) Thyroidal substances. In: Dorfman RI (ed) Methods in Hormone Research, Vol IIA, Chapter 8. Academic Press, New York and London. pp 301–363

    Google Scholar 

References

  • Anderson BG (1954) Potency and duration of action of triiodothyronine and thyroxine in rats and mice. Endocrinology 54:659–665

    PubMed  CAS  Google Scholar 

  • Perry WF (1951) A method for measuring thyroid hormone secretion in the rat with its application to the bioassay of thyroid extracts. Endocrinology 48:643–650

    PubMed  CAS  Google Scholar 

  • Reineke EP, Turner CW (1950) Thyroidal substances. In: Emmens CW (ed) Hormone Assay. Academic Press, Inc., Publishers, New York, Chapter XIX, pp 489–511

    Google Scholar 

  • Turner CW, Premachandra BN (1962) Thyroidal substances. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Chapter 10. Academic Press, New York and London. pp 385–411

    Google Scholar 

  • Wolff J (1951) Some factors that influence the release of iodine from the thyroid gland. Endocrinology 48:284–297

    PubMed  CAS  Google Scholar 

References

  • Ortiz-Caro J, Pastor RM, Jolin T (1983) Effects of KClO4 in propylthiouracil-hypothyroid rats. Acta Endocrin 103:81–87

    CAS  Google Scholar 

  • Pisarev MA, Krawiec L, Juvenal GJ, Bocanera LV, Pregliasco LB, Sartorio G, Chester HA (1994) Studies on the goiter inhibiting action of iodolactones. Eur J Pharmacol 258:33–37

    PubMed  CAS  Google Scholar 

  • Pitt-Rivers R, Tata JR (1959) The Thyroid Hormones. Pergamon Press, London, New York

    Google Scholar 

  • Reineke EP, Mixner JP, Turner CW (1945) Effect of graded doses of thyroxine on metabolism and thyroid weight of rats treated with thiouracil. Endocrinol 36:64–67

    CAS  Google Scholar 

  • Turner CW, Premachandra BN (1962) Thyroidal substances. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Chapter 10. Academic Press, New York and London. pp 385–411

    Google Scholar 

  • Wiberg GS, Carter JR, Stephenson NR (1964) The effects of various goitrogens on the determination of the relative potency of thyroid by the goiter prevention assay. Acta Endocrin 45:370–380

    CAS  Google Scholar 

References

  • Ther L, Schramm H, Vogel G (1963) Über die antagonistische Wirkung von Trijodthyronin und Progesteron auf den Prednisoloneffekt am Epiphysenknorpel. Acta Endocr 42:29–38

    PubMed  CAS  Google Scholar 

  • Vogel G, Ther L (1964) Über den Einfluß von einigen Hormonen auf mechanisch-physikalische Eigenschaften des Binde-und Stützgewebes. Anatom Anzeig 115, (Suppl) 117–122

    Google Scholar 

  • Vogel HG (1969) Zur Wirkung von Hormonen auf physikalische und chemische Eigenschaften des Binde-und Stützgewebes. Arzneim Forsch/Drug Res 19:1495–1503, 1732–1742, 1790–1801, 1981–1996

    CAS  Google Scholar 

References

  • Heming AE (1964) Animal techniques for evaluating thyroid and antithyroid agents. In: Nodine JH, Siegler PE (eds) Animal and Clinical Pharmacologic Techniques in Drug Evaluation. Year Book Medical Publ., Inc., Chicago, pp 530–534

    Google Scholar 

  • MacKenzie CG, MacKenzie JB (1943) Effect of sulfonamides and thioureas on the thyroid gland and basal metabolism. Endocrinology 32:185–209

    CAS  Google Scholar 

References

  • Astwood EB, Bissell A (1944) Effect of thiouracil on the iodine content of the thyroid gland. Endocrinol 34:282–296

    CAS  Google Scholar 

  • McGinty DA, Bywater WG (1945) Antithyroid studies. I. The goitrogenic activity of some thioureas, pyrimidines and miscellaneous compounds. J Pharmacol Exp Ther 84:342–357

    PubMed  CAS  Google Scholar 

  • Prasad R, Srivastava PK (1993) 1-Aryl-2-amino/hydrazino-4-phenyl-1,6-dihydro-1,3,5-triazine-6-thione and related thiocarbamides/thiosemicarbazides as antithyroidal agents. Arch Pharm 326:963–966

    CAS  Google Scholar 

  • Walker JS, Levy G (1989) Induction of experimental thyroid dysfunction in rats with implantable pellets of thyroxine or propylthiouracil. J Pharmacol Meth 21:223–229

    CAS  Google Scholar 

References

  • Bänder A, Bauer F, Häussler A, Muschaweck R, Vogel G (1962) Pharmakologische Untersuchungen mit Isonikotinsäure-[3,3-di-(p-chlorphenyl)-propyl(1)]-amid (Präparat Hoechst 13217). Zbl Vet Med 9:693–704

    Google Scholar 

  • Bomskov C (1937) Methodik der Hormonforschung. Vol 1, Das Hormon der Schilddrüse. Thieme Verlag Leipzig, pp 143–394

    Google Scholar 

  • Chesney AM, Clawson TA, Mebster B (1928) Endemic goiter in rabbits. Incidence and characteristics. Bull Hopkins Hosp 43:261–277

    Google Scholar 

  • Marine D, Baumann EJ, Cipra A (1929) Studies on simple goiter produced by cabbage and other vegetables. Proc Soc Exp Biol Med 26:822–824

    Google Scholar 

  • Müller P, Löbe M, Sorger D, Ludewig R, Hambsch K (1985) Zur strumigenen Wirkung nichtsteroidaler Antirheumatika und Zytostatika. Ergebnisse experimenteller Untersuchungen. Radiobiol Radiother 26:201–206

    Google Scholar 

  • Webster B (1934) Studies in the experimental production of simple goiter. Endocrinology 16:617–625

    Google Scholar 

  • Weiss SR, Burns JM (1988) The effect of acute treatment with two goitrogens on plasma thyroid hormones, testosterone and testicular morphology in adult male rats. Comp Biochem Physiol 90A:449–452

    CAS  Google Scholar 

References

  • Copp DH (1964) Parathyroids, calcitonin, and control of plasma calcium. Rec Progr Horm Res 20:59–88

    PubMed  CAS  Google Scholar 

  • Copp DH (1994) Calcitonin: discovery, development, and clinical application. Clin Invest Med 17:268–277

    PubMed  CAS  Google Scholar 

  • Copp DH, Cameron EC, Cheney BA, Davidson AFG, Henze KG (1962) Evidence for calcitonin — a new hormone from the parathyroid that lowers calcium. Endocrinol 70:638–649

    CAS  Google Scholar 

  • Deftos LJ (1989) In: Azria M (ed) The Calcitonins. Physiology and Pharmacology. Karger, Basel, pp 67–132

    Google Scholar 

  • Hirsch PF, Voelkel EF, Musnon PL (1964) Thyrocalcitonin: hypocalcemic hypophosphatemic principle of the thyroid gland. Science 146:412–413

    PubMed  CAS  Google Scholar 

  • Munson PF, Hirsch RP (1966) Thyrocalcitonin. Newly recognized thyroid hormone concerned with metabolism of bone. Clin Orthopaed 49:209–215

    CAS  Google Scholar 

  • Nissenson RA, Teitelbaum AP, Arnaud CD (1985) Assay for calcitonin receptors. Methods Enzymol 109:40–48

    PubMed  Google Scholar 

  • Pento JT (1985) A method for the evaluation of calcitonin secretion using the isolated perfused porcine thyroid. J Pharmacol Meth 13:43–51

    CAS  Google Scholar 

  • Raisz LG, Au WYW, Friedman J, Nieman I (1967) Thyrocalcitonin and bone resorption. Studies employing a tissue culture bioassay. Am J Med 43:684–690

    PubMed  CAS  Google Scholar 

  • Tashjian A, Voelkel EF (1979) Human calcitonin: Application of affinity chromatography. In: Jaffe BM, Behrman HR (eds) Methods of Hormone Radioimmunoassay, 2nd Ed, Academic Press New York, pp 355–373

    Google Scholar 

  • Zaidi M, Moonga BS, Bevis PJR, Bascal ZA, Breimer LH (1990) The calcitonin gene peptides: biology and clinical relevance. Crit Rev Clin Lab Sci 28:109–174

    PubMed  CAS  Google Scholar 

References

  • British Pharmacopoeia 1988, Vol II, 1. Biological assay of calcitonin (pork). Biological assay of salcatonin. A164, London, Her Majesty's Stationery Office

    Google Scholar 

  • Buck RH, Maxl F (1990) A validated HPLC assay for salmon calcitonin analysis. Comparison of HPLC and biological assay. J Pharmaceut Biomed Anal 8:761–769

    CAS  Google Scholar 

  • Deming Q, Genquan S, Ruolun K (1994) Biological assay of calcitonin by blood calcium determination in rats. Chin J Pharm Anal 14:30–34

    Google Scholar 

  • European Pharmacopoeia (1986), Monograph 471. Maison-neuve S.A. Sainte Ruffine, France

    Google Scholar 

  • Findlay DM, Michelangeli VP, Orlowski RC, Martin TJ (1983) Biological activities and receptor interactions of des-leu16 salmon and des-phe16 human calcitonin. Endocrinology 112:1288–1291

    PubMed  CAS  Google Scholar 

  • Findlay DM, Michelangeli VP, Martin TJ, Orlowski RC, Seyler JK (1985) Conformational requirements for activity of salmon calcitonin Endocrinology 117:801–805

    PubMed  CAS  Google Scholar 

  • Kapurniotu A, Taylor JW (1995) Structural and conformational requirements for human calcitonin activity: Design, synthesis, and study of lactam-bridged analogues. J Med Chem 38:836–847

    PubMed  CAS  Google Scholar 

  • Kumar M, Slack E, Edwards A, Soliman H, Baghdiantz A, Foster GV, MacIntyre I (1965) A biological assay for calcitonin. J Endocrinol 33:469–475

    PubMed  CAS  Google Scholar 

  • Munson PL, Hirsch PF, Brewer HB, Reisfeld RA, Cooper CW, Wästhed AB, Orimo H, Potts Jr. JT (1968) Thyrocalcitonin. In. Astwood (ed) Recent Progress in Hormone Research, Vol 24, Academic Press, New York and London, pp 589–650

    Google Scholar 

  • Rittel W, Maier R, Brugger M, Kamber B, Riniker B, Sieber P (1976) Structure-activity relationship of human calcitonin. III. Biological activity of synthetic analogues with shortened or terminally modified peptide chains. Experientia 32:246–248

    PubMed  CAS  Google Scholar 

  • Sasayama Y, Suzuki N, Oguro C, Takei Y, Takahashi A, Watanabe TX, Nakajima K, Sakakibara S (1992) Calcitonin of the stingray: Comparison of the hypocalcemic activity with other calcitonins. Gen Comp Endocrinol 86:269–274

    PubMed  CAS  Google Scholar 

  • Sasayama Y, Ukawa KI, Kai-Ya H, Oguro C, Takei Y, Watanabe TX, Nakayama K, Sakakibara S (1993) Goldfish Calcitonin: Purification, characterization, and hypocalcemic potency. Gen Compar Endocrinol 89:189–194

    CAS  Google Scholar 

  • Schwartz KE, Orlowski RC, Marcus R (1981) des-Ser2 salmon calcitonin: A biologically potent synthetic analog. Endocrinology 108:831–835

    PubMed  CAS  Google Scholar 

  • Yates AJ, Gutierrez GE, Garrett IR, Mencel JJ, Nuss GW, Schreiber AB, Mundy GR (1990) A noncyclical analog of calcitonin (α-propionyl di-ala1,7,des-leu19 sCT) retains full potency without inducing anorexia in rats. Endocrinology 126:2845–2849

    PubMed  CAS  Google Scholar 

  • Zanelli JM, Gaines-Das RE, Corran PH (1990) International standards for salmon calcitonin, eel calcitonin, and the Asu1–7 analogue of eel calcitonin: calibration by international collaborative study. Bone Mineral 11:1–17

    CAS  Google Scholar 

  • Zanelli JM, Gaines-Das RE, Corran P (1993) Establishment of the second international standards for porcine and human calcitonins: report of the international collaborative study. Acta Endocrinol 128:443–450

    PubMed  CAS  Google Scholar 

References

  • Aliapoulios MA, Goldhaber P, Munson PL (1966) Thyrocalcitonin inhibition of bone resorption induced by parathyroid hormone in tissue culture. Science 151:330–331

    PubMed  CAS  Google Scholar 

  • Friedman J, Raisz LG (1965) Thyrocalcitonin: Inhibitor of bone resorption in tissue culture. Science 150:1465–1467

    PubMed  CAS  Google Scholar 

  • Zaidi M, Chambers TJ, Moonga BS, Oldoni T, Passarella E, Soncini R, MacIntyre I (1990) A new approach for calcitonin determination based on target cell responsiveness. J Endocrinol Invest 13:119–126

    PubMed  CAS  Google Scholar 

  • Zaidi M, Bax BE, Shankar VS, Moonga BS, Simon B, Towhidul Alam ASM, Gaines Das RE, Pazianis M, Huang CLH (1994) Dimensional analysis of osteoclastic bone resorption and the measurement of biologically active calcitonin. Exper Physiol 79:387–399

    CAS  Google Scholar 

References

  • Albrandt K, Mull E, Brady EMG, Herich J, Moore CX, Beaumont K (1993) Molecular cloning of two receptors from rat brain with high affinity for salmon calcitonin. FEBS Lett 325:225–232

    PubMed  CAS  Google Scholar 

  • Blind E, Raue F, Kienle P, Schroth J, Grauer A, Kabay A, Brügger P, Ziegler R (1993) Development and validation of an assay to measure bioactivity of human calcitonin in vitro using T47D cell membranes. Anal Biochem 212:91–97

    PubMed  CAS  Google Scholar 

  • Findlay DM, Michelangeli VP, Eisman JA, Frampton RJ, Moseley JM, MacIntyre I, Whitehead R, Martin TJ (1980) Calcitonin and 1,25-dihydroxyvitamin D3 receptors in human breast cancer lines. Cancer Res 40:4764–4767

    PubMed  CAS  Google Scholar 

  • Findlay DM, Michelangeli VP, Orlowski RC, Martin TJ (1983) Biological activities and receptor interactions of des-leu16 salmon and des-phe16 human calcitonin. Endocrinology 112:1288–1291

    PubMed  CAS  Google Scholar 

  • Findlay DM, Michelangeli VP, Martin TJ, Orlowski RC, Seyler JK (1985) Conformational requirements for activity of salmon calcitonin. Endocrinology 117:801–805

    PubMed  CAS  Google Scholar 

  • Fukase M, Birge SJ, Rifas L, Avioli LV, Chase LR (1982) Regulation of 25 hydroxyvitamin D3 1-hydroxylase in serumfree monolayer culture of mouse kidney. Endocrinology 110:1073–1075

    PubMed  CAS  Google Scholar 

  • Grauer A, Raue F, Reinel HH, Schneider HG, Schroth J, Kabay A, Brügger P, Ziegler R (1992) A new in vitro bioassay for human calcitonin: validation and comparison to the rat hypocalcemia bioassay. Bone Mineral 17:65–74

    CAS  Google Scholar 

  • Hilton JM, Chai SY, Sexton PM (1995) In vitro autoradiographic localization of the calcitonin receptor isoforms, Cla and Clb, in rat brain. Neuroscience 69:1223–1237

    PubMed  CAS  Google Scholar 

  • Horne WC, Shyu J-F, Chakraborty M, Baron R (1994) Signal transduction by calcitonin. Multiple ligands, receptors, and signaling pathways. Trends Endocrinol Metab 5:395–401

    PubMed  CAS  Google Scholar 

  • Horwitz KB, Zava DT, Thilager AK, Jensen EM, McGuire WL (1978) Steroid receptor analyses of nine human breast cancer cell lines. Cancer Res 38:2434–2437

    PubMed  CAS  Google Scholar 

  • Houssami S, Findlay DM, Brady CL, Martin TJ, Epand RM, Moore EE, Murayama E, Tamura T, Orlowski RC, Sexton PM (1994) Different structural requirements exist for calcitonin receptor binding specificity and adenylate cyclase activation. Mol Pharmacol 47:798–809

    Google Scholar 

  • Kuestner RE, Elrod RD; Grant FJ, Hagen FS, Kuijper JL, Matthewes SL, O'Hara PJ, Sheppard PO, Stroop SD, Thompson DL, Whitmore TE, Findlay DM, Houssami S, Sexton PM, Moore EE (1994) Cloning and characterization of an abundant subtype of the human calcitonin receptor. Mol Pharmacol 46:246–255

    PubMed  CAS  Google Scholar 

  • Martin TJ, Findlay DM, Houssami S, Ikegame M, Rakopoulos M, Moseley JM; Sexton PM (1995) Heterogeneity of the calcitonin receptors: functional aspects in osteoclasts and other sites. J Nutr 125:2009S–2014S

    PubMed  CAS  Google Scholar 

  • Nygaard SC, Küstner RE, Moore EE, Stroop SD (1997) Phosphorylation of the human calcitonin receptor by multiple kinases in localized to the C-terminus. J Bone Miner Res 12:1681–1690

    PubMed  CAS  Google Scholar 

  • Povzek G, Hilton JM, Quiza M, Houssami S, Sexton PM (1997) Structure/function relationships of salmon calcitonin analogues as agonists, antagonists, or inverse agonists in a constitutively activated receptor cell system. Mol Pharmacol 51:658–665

    Google Scholar 

  • Sexton PM, Hilton JM (1992) biologically active salmon calcitonin-like peptide is present in brain. Brain Res 596:279–284

    PubMed  CAS  Google Scholar 

  • Sexton PM, Houssami S, Hilton JM, O'Keefe M, Center RJ, Gillespie MT, Darcy P, Findlay DM (1993) Identification of brain isoforms of the rat calcitonin receptor. Mol Endocrinol 7:815–821

    PubMed  CAS  Google Scholar 

  • Sexton PM, Houssami S, Brady CL, Myers DE, Findlay DM (1994) Amylin is an agonist for the renal porcine calcitonin receptor. Endocrinol 134:2103–2107

    CAS  Google Scholar 

  • Sjödin L, Nederman T, Pråhl M, Montelius (1990) Radioreceptor assay for formulations of salmon calcitonin. Int J Pharmaceutics 63:135–142

    Google Scholar 

  • Suva LJ, Flannery MS, Caulfileld MP, Findlay DM, Juppner G, Goldring SR, Rosenblatt M, Chorev M (1997) Design, synthesis and utility of novel benzophenone-containing calcitonin analogs for photoaffinity labeling the calcitonin receptor. J Pharmacol Exp Ther 283:876–884

    PubMed  CAS  Google Scholar 

  • Yates AJ, Gutierrez GE, Garrett IR, Mencel JJ, Nuss GW, Schreiber AB, Mundy GR (1990) A noncyclical analog of calcitonin (Nα-propionyl di-ala1,7,des-leu19 sCT) retains full potency without inducing anorexia in rats. Endocrinology 126:2845–2849

    PubMed  CAS  Google Scholar 

References

  • Abou-Samra AB, Jüppner H, Force T, Freeman MW, Kong XF, Schipani E, Urena P, Richards J, Bonventre JV, Potts TJ Jr., Kronenberg HM, Segre GV (1992) Expression of a common receptor for parathyroid hormone and parathyroid-related peptide from rat osteoblast-like cells: a single receptor stimulates intracellular accumulation of both cAMP and inositol triphosphates and increases intracellular calcium. Proc Natl Acad Sci USA 89:2732–2736

    PubMed  CAS  Google Scholar 

  • Behar V, Nakamoto C, Greenberg Z, Bisello A, Suva LJ, Rosenblatt M, Chorev M (1996) Histidine at position 5 is the specificity “switch” between two parathyroid hormone receptor subtypes. Endocrinol 137:4217–4244

    CAS  Google Scholar 

  • Bergwitz C, Jusseaume SA, Luck MD, Jüppner H, Gardella TJ (1997) Residues in the membrane-spanning and extracellular loop regions of the parathyroid hormone (PTH)-2 receptor determine signaling selectivity for PTH and PTH-related peptide. J Biol Chem 272:28861–28868

    PubMed  CAS  Google Scholar 

  • Capen CC, Rosol TJ (1989) Recent advances in the structure and function of the parathyroid gland in animals and the effect of xenobiotics. Toxicol Pathol 17:333–345

    PubMed  CAS  Google Scholar 

  • Endres DB, Villanueva R, Sharp CF, Singer FR (1989) Measurement of parathyroid hormone. Endocrin Metab Clin North Amer 18:611–629

    CAS  Google Scholar 

  • Fukayama S, Royo M, Sugita M, Imrich A, Chorev M, Suva LJ, Rosenblatt M, Tashjian AH Jr. (1998) New insights into interactions between the human PTH/PTHrP receptor and agonist/antagonist binding. Am J Physiol 274 (Endocrinol Metab 37) E297–E303

    PubMed  CAS  Google Scholar 

  • Habener JF, Potts JT (1976) Radioimmunoassay of parathyroid hormone. In: Hormones in Human Blood. Detection and Assay. Harvard University Press, Cambridge, pp 551–588

    Google Scholar 

  • Klee GG, Preissner CM, Schryver PG, Taylor RL, Kao PC (1992) Multisite immunochemi-luminometric assay for simultaneously measuring whole-molecule and aminoterminal fragments of human parathyrin. Clin Chem 35:628–635

    Google Scholar 

  • Mallette LE (1988) Synthetic human parathyroid hormone 1–34 fragment for diagnostic testing. Ann Intern Med 109:800–804

    PubMed  CAS  Google Scholar 

  • Moseley JM, Kubota M, Dieffenbach-Jagger H, Wettenhall REH, Kemp BE, Suva LJ, Rodda CP, Ebeling PR Hudson PJ, Zajac D, Martin TJ (1987) Parathyroid hormone-related protein purified from a human lung cancer cell line. Proc Natl Acad Sci, USA 84:5048–5052

    PubMed  CAS  Google Scholar 

  • Nissenson RA, Teitelbaum AP, Arnaud CD (1985) Assay for parathyroid hormone receptors. Methods Enzymol 109:48–56

    PubMed  CAS  Google Scholar 

  • Sancho JJ, Duh Qy, Oms L, Sitges-Serra A, Hammond ME, Arnaud CD, Clark OH (1989) A new experimental model for secondary hyperparathyroidism. Surgery 106:1002–1008

    PubMed  CAS  Google Scholar 

  • Schipani E, Karga H, Karaplis AC, Potts JT Jr., Kronenberg HM, Segre GV, Abou-Samra AB, Jüppner H (1993) Identical complementary deoxyribonucleic acids encode a human renal and bone parathyroid (PTH)/PTH-related peptide receptor. Endocrinol 132:2157–2165

    CAS  Google Scholar 

  • Schneider H, Feyen JHM, Seuwen K, Movva NR (1993) Cloning and functional expression of a human parathyroid hormone receptor. Eur J Pharmacol 246:149–155

    PubMed  CAS  Google Scholar 

  • Strewler GJ, Stern PH, Jacobs JW, Eveloff J, Klein RF, Leung SC, Rosenblatt M, Nissenson RA (1987) Parathyroid hormonelike protein from human renal carcinoma cells. Structural and functional homology with parathyroid hormone. J Clin Invest 80:1803–1807

    PubMed  CAS  Google Scholar 

  • Suva LJ, Winslow GA, Wettnehall REH, Hammonds RG, Moseley JM, Dieffenbacher-Jagger H, Rodda CP, Kemp BE, Rodriguez H, Chen EY, Hudson PJ, Martin TJ, Wood WL (1987) A parathyroid hormone-related protein implicated in malignant hypercalcemia: cloning and expression. Science: 237:893–896

    PubMed  CAS  Google Scholar 

  • Usdin TB, Gruber C, Bonner TI (1995) Identification and functional expression of a receptor selectively recognizing parathyroid hormone, the PTH2 receptor. J Biol Chem 270:15455–15458

    PubMed  CAS  Google Scholar 

  • Yamamoto S, Morimoto I, Yanagihara N, Zeki K, Fujihira T, Izumi F, Yamashita H, Eto S (1997) Parathyroid hormonerelated peptide-(1–34) [PTHrP-(1–34)] induces vasopressin release from the rat supraopticus nucleus in vitro through a novel receptor distinct from a type I or II PTH/PTHrP receptor

    Google Scholar 

References

  • Abou-Samra AB, Jüppner H, Force T, Freeman MW, Kong XF, Schipani E, Urena P, Richards J, Bonventre JV, Potts TJ Jr., Kronenberg HM, Segre GV (1992) Expression of a common receptor for parathyroid hormone and parathyroid-related peptide from rat osteoblast-like cells: a single receptor stimulates intracellular accumulation of both cAMP and inositol tri-phosphates and increases intracellular calcium. Proc Natl Acad Sci USA 89:2732–2736

    PubMed  CAS  Google Scholar 

  • Behar V, Pines M, Nakamoto C, Greenberg Z, Bisello A, Stueckle S, Bessalle R, Usdin TB, Chorev M, Rosenblatt M, Suva L (1996a) The human PTH2 receptor: binding and signal transduction properties of the stably expressed recombinant receptor. Endocrinol 137:2748–2757

    CAS  Google Scholar 

  • Behar V, Nakamoto C, Greenberg Z, Bisello A, Suva LJ, Rosenblatt M, Chorev M (1996b) Histidine at position 5 is the specificity “switch” between two parathyroid hormone receptor subtypes. Endocrinol 137:4217–4244

    CAS  Google Scholar 

  • Bergwitz C, Gardella TJ, Flannery MR, Potts JT Jr, Kronenberg HM, Jüppner H (1996) Full activation of chimeric receptors by hybrids between parathyroid hormone and calcitonin. Evidence for a common pattern of ligand-receptor interaction. J Biol Chem 271:26469–26472

    PubMed  CAS  Google Scholar 

  • Bergwitz C, Jusseaume SA, Luck MD, Jüppner H, Gardella TJ (1997) Residues in the membrane-spanning and extracellular loop regions of the parathyroid hormone (PTH)-2 receptor determine signaling selectivity for PTH and PTH-related peptide. J Biol Chem 272:28861–28868

    PubMed  CAS  Google Scholar 

  • Bisello A, Nakamoto C, Rosenblatt M, Chorev M (1997) Monoand bicyclic analogs of parathyroid hormone-related protein. 1. Synthesis and biological studies. Biochemistry 36:3293–3299

    PubMed  CAS  Google Scholar 

  • Fukayama S, Royo M, Sugita M, Imrich A, Chorev M, Suva LJ, Rosenblatt M, Tashjian AH Jr. (1998) New insights into interactions between the human PTH/PTHrP receptor and agonist/antagonist binding. Am J Physiol 274 (Endocrinol Metab 37) E297–E303

    PubMed  CAS  Google Scholar 

  • Gardella TJ, Luck MD, Fan M-H, Lee C (1996) Transmembrane residues of the parathyroid hormone (PTH)/PTH-related peptide receptor that specifically affect binding and signaling by agonist ligands. J Biol Chem 271:12820–12825

    PubMed  CAS  Google Scholar 

  • Guo J, Liu B, Bringhurst FR (1997) Mechanisms of homologous and heterologus desensitization of PTH/PTHrP receptor signaling in LLC-PK-1 cells. Am J Physiol (Endocrinol Metab 32) 273:E383–E393

    PubMed  CAS  Google Scholar 

  • Inomata N, Akiyama M, Kubota N, Jüppner H (1995) Characterization of a novel parathyroid hormone (PTH) receptor with specificity for the carboxy-terminal region of PTH-(1–84). Endocrinol 136:4732–4740

    CAS  Google Scholar 

  • Kaufmann M, Muff R, Born W, Fischer JA (1994) Functional expression of a stably transfected parathyroid hormone/parathyroid hormone-related protein receptor complementary DNA in CHO cells. Mol Cell Endocrinol 104:21–27

    PubMed  CAS  Google Scholar 

  • McCuiag KA, Clarke JC, White JH (1994) Molecular cloning of the gene encoding the mouse parathyroid hormone / parathyroid hormone-related peptide receptor. Proc Natl Acad Sci USA 91:5051–5055

    Google Scholar 

  • Orloff JJ, Kats Y, Urena P, Schipani E, Vasavada RC, Philbrick WM, Behal A, Abou-Sarma A-B (1995) Further evidence for a novel receptor for amino-terminal parathyroid hormone-related peptide on keratinocytes and squamous carcinoma cell lines. Endocrinol 136:3016–3023

    CAS  Google Scholar 

  • Pines M, Adams AE, Stueckle S, Bessalle R, Rashti-Behar V, Chorev M, Rosenblatt M, Suva LJ (1994) Generation and characterization of human kidney cell lines stably expressing recombinant human PTH/PTHrP receptor: lack of interaction with a C-terminal human PTH peptide. Endocrinol 135:1713–1716

    CAS  Google Scholar 

  • Rubin DA, Juppner H (1999) Zebrafish express the common parathyroid hormone/parathyroid hormone-related peptide receptor (PTH1R) and a novel receptor (PTH3R) that is preferentially activated by mammalian and fugufish parathyroid hormone-related peptide. J Biol Chem 274:28185–28190

    PubMed  CAS  Google Scholar 

  • Schermer DT, Bradley MS, Bambino TH, Nissenson RA, Strewler GJ (1994) Functional properties of a synthetic chicken parathyroid hormone-related protein 1–36 fragment. J Bone Miner Res 9:1041–1046

    PubMed  CAS  Google Scholar 

  • Schipani E, Karga H, Karaplis AC, Potts JT Jr., Kronenberg HM, Segre GV, Abou-Samra AB, Jüppner H (1993) Identical complementary deoxyribonucleic acids encode a human renal and bone parathyroid (PTH)/PTH-related peptide receptor. Endocrinol 132:2157–2165

    CAS  Google Scholar 

  • Uneno S, Yamamuro T, Jüppner H, Abou-Samra A-B, Keutmann HT, Potts JT Jr., Segre GV (1992) Solubilization of functional receptors for parathyroid hormone and parathyroid hormone-related peptide from clonal rat osteosarcoma cells, ROS17/2.8. Calcif Tiss Int 51:382–386

    CAS  Google Scholar 

  • Ureña P, Kong X-F, Abou-Samra A-B, Jüppner H, Kronenberg HM, Potts JT Jr., Segre GV (1993) Parathyroid hormone (PTH)/PTH-related peptide receptor messenger ribonucleic acids are widely distributed in rat tissues. Endocrinol 133:717–623

    Google Scholar 

  • Usdin TB (2000) The PTH2 receptor and TIP39: a new peptidereceptor system. Trends Pharmacol Sci 21:128–130

    PubMed  CAS  Google Scholar 

  • Usdin TB, Gruber C, Bonner TI (1995) Identification and functional expression of a receptor selectively recognizing parathyroid hormone, the PTH2 receptor. J Biol Chem 270:15455–15458

    PubMed  CAS  Google Scholar 

  • Yaghoobian J, Drueke TB (1998) Regulation of the transcription of parathyroid hormone/parathyroid hormone-related peptide receptor mRNA by dexamethasone in ROS 17/2.8 cells. Nephrol Dial Transplant 13:580–586

    PubMed  CAS  Google Scholar 

  • Yamamoto S, Morimoto I, Yanagihara N, Zeki K, Fujihira T, Izumi F, Yamashita H, Eto S (1997) Parathyroid hormonerelated peptide-(1–34) [PTHrP-(1–34)] induces vasopressin release from the rat supraopticus nucleus in vitro through a novel receptor distinct from a type I or II PTH/PTHrP receptor

    Google Scholar 

  • Yasuka T, Kawashima M, Takahashi T, Iwata A, Oka N, Tanaka K (1996) Changes in parathyroid hormone receptor binding affinity during egg laying: implication for calcium homeostasis in chicken. J Bon Miner Res 11:1913–1920

    Google Scholar 

References

  • Collip JB, Clark EP (1925) Further studies on the physiological action of a parathyroid hormone. J Biol Chem 64:485–507

    CAS  Google Scholar 

  • Davies BMA, Gordon AH (1953) The effect of parathyroid hormone on phosphate excretion in the rat. J Endocrinol 9:292–300

    PubMed  CAS  Google Scholar 

  • Davies BMA, Gordon AH, Mussett MV (1954) A plasma calcium assay for parathyroid hormone, using parathyroidectomized rats. J Physiol (London) 125:383–395

    CAS  Google Scholar 

  • Hamilton B, Schwartz C (1932) A method for the determination of small amounts of parathyroid hormone. J Pharmacol 46:285–292

    CAS  Google Scholar 

  • Hefti E, Trechsel U, Fleisch H, Schenk R (1981) Increase of whole-body calcium and skeletal mass in normal and osteoporotic adult rats treated with parathyroid hormone. Clin Sci 62:389–396

    Google Scholar 

  • Holtz F (1937) Wirkstoffe der Nebenschilddrüsen. In: Heubner W, Schüller J (eds) Handbuch der experimentellen Pharmakologie, Ergänzungswerk, Vol 3, Springer-Verlag, Berlin, pp 151–161

    Google Scholar 

  • Kalu DN, Echon R, Hollis BW (1990) Modulation of ovarectomyrelated bone loss by parathyroid hormone in rats. Mechan Ageing Dev 56:49–62

    CAS  Google Scholar 

  • Liu CC, Kalu DN (1990) Human parathyroid hormone-(1–34) prevents bone loss and augments bone formation in sexually mature ovarectomized rats. J Bone Min Res 5:973–982

    CAS  Google Scholar 

  • Thorp RH (1969) Parathyroid hormone. In: Dorfman RI (ed) Methods in Hormone Research, Vol IIA, Chapter 11. Academic Press, New York and London. pp 435–45

    Google Scholar 

  • Zull JE, Malbon CC (1976) Parathyroid hormone receptors. In: Belcher M (ed) Methods in Receptor Research, Part II, Marcel Dekker, Inc., pp 533–564

    Google Scholar 

References

  • Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  • Tepperman HM, L'Heureux MV, Wilhelmi AE (1947) The estimation of parathyroid hormone activity by its effect on serum anorganic phosphorus in the rat. J Biol Chem 168:151–165

    PubMed  CAS  Google Scholar 

  • Thorp RH (1962) Parathyroid hormone. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Chapter 13. Academic Press, New York and London. pp 477–493

    Google Scholar 

References

  • Barling PM, Bennett JH, Triffitt JT, Owen ME (1989) The adenylate cyclase response to parathyroid hormone in cultureded rabbit marrow fibroblastic cells. Bone Mineral 7:23–30

    CAS  Google Scholar 

  • Docherty HM, Heath DA (1989) Multiple forms of parathyroid hormone-like proteins in a human tumor. J Mol Endocrinol 2:11–20

    PubMed  CAS  Google Scholar 

  • Gundberg CM, Fawzi MI Clough ME, Calvo MS (1995) A comparison of the effects of parathyroid hormone and parathyroid hormone-related protein on osteocalcin in the rat. J Bone Miner Res 10:903–906

    PubMed  CAS  Google Scholar 

  • Lopez-Hilker S, Martin KJ, Sugimoto T, Slatopolsky E (1992) Biological activities of parathyroid hormone (1–34) and parathyroid hormone-related peptide (1–34) in isolated perfused rat femur. J Lab Clin Med 119:738–743

    PubMed  CAS  Google Scholar 

  • Nissenson RA, Abbott SR, Teitelbaum AP, Clark OH, Arnaud CD (1981) Endogenous biologically active human parathyroid hormone: Measurement by a guanyl nucleotide-amplified renal adenylate cyclase assay. J Clin End Metab 52:840–846

    CAS  Google Scholar 

  • Saito M, Kawashima K, Endo H (1987) The establishment of a new biological assay system for simultaneous measurement of bone resorption and bone mineralization in organ cultures of chick embryonic femur. J Pharmacobio-Dyn 10:487–493

    PubMed  CAS  Google Scholar 

  • Sugimoto T, Fukase M, Tsutsumi M, Imai Y, Hishikawa R, Yoshimoto Y, Fujita T (1985) Additive effects of parathyroid hormone and calcitonin on adenosine 3',5'-monophosphate release in newly established perfusion system of rat femur. Endocrinology 117:190–195

    Google Scholar 

References

  • Bourdeau A, Manganella G, Thil-Trubert CL, Sachs C, Cournot G (1990) Bioactive parathyroid hormone in pregnant rats and fetuses. Am J Physiol Endocr Metab 258:E549–E554

    CAS  Google Scholar 

  • Bradbeer JN, Dunham J, Fischer JA, de Deuxchaisnes CN, Loveridge N (1988) The metatarsal cytochemical bioassay of parathyroid hormone: Validation, specificity, and application to the study of pseudohypoparathyroidism type I. J Clin Endocr Metab 67:1237–1243

    PubMed  CAS  Google Scholar 

  • Chambers DJ, Dunham J, Zanelli JM, Parsons JA, Bitensky L, Chayen J (1978) A sensitive bioassay of parathyroid hormone in plasma. Clin Endocrinol (Oxford) 9:375–379

    CAS  Google Scholar 

  • Goltzman D, Henderson B, Loveridge N (1980) Cytochemical bioassay of parathyroid hormone: characteristics of the assay and analysis of circulating hormonal forms. J Clin Invest 65:1309–1317

    PubMed  CAS  Google Scholar 

  • Loveridge N, Dean V, Goltzman D, Hendy GN (1991) Bioactivity of parathyroid hormone and parathyroid hormone-like peptide: Agonist and antagonist activities of amino-terminal fragments as assessed by the cytochemical bioassay and in situ biochemistry. Endocrinology 128:1938–1946

    PubMed  CAS  Google Scholar 

  • Wood PJ (1992) The measurement of parathyroid hormone. Ann Clin Biochem 29:11–21

    PubMed  CAS  Google Scholar 

  • Zaman G, Saphier PW, Loveridge N, Kimura T, Sakakibara S, Bernier SM, Hendy GM (1991) Biological properties of synthetic human parathyroid hormone: Effect of deamidation at position 76 on agonistic and antagonistic activity. Endocrinology 128:2583–2590

    PubMed  CAS  Google Scholar 

References

  • Behar V, Pines M, Nakamoto C, Greenberg Z, Bisello A, Stueckle S, Bessalle R, Usdin TB, Chorev M, Rosenblatt M, Suva L (1996a) The human PTH2 receptor: binding and signal transduction properties of the stably expressed recombinant receptor. Endocrinol 137:2748–2757

    CAS  Google Scholar 

  • Behar V, Nakamoto C, Greenberg Z, Bisello A, Suva LJ, Rosenblatt M, Chorev M (1996b) Histidine at position 5 is the specificity “switch” between two parathyroid hormone receptor subtypes. Endocrinol 137:4217–4244

    CAS  Google Scholar 

  • Bergwitz C, Jusseaume SA, Luck MD, Jüppner H, Gardella TJ (1997) Residues in the membrane-spanning and extracellular loop regions of the parathyroid hormone (PTH)-2 receptor determine signaling selectivity for PTH and PTH-related peptide. J Biol Chem 272:28861–28868

    PubMed  CAS  Google Scholar 

  • Fukayama S, Tashjian AH (1994) Involvement of alkaline phosphatase in the modulation of receptor signaling in osteoblasts: evidence for a difference between human parathyroid hormone-related protein and human parathyroid hormone. J Cell Physiol 158:391–397

    PubMed  CAS  Google Scholar 

  • Motomura K, Ohtsuru A, Enomoto H, Tsukazaki T, Namba H, Tsuji Y, Yamashita S (1996) Osteogenic action of parathyroid hormone-related peptide (1–141) in rat ROS cells. Endocrinol J 43:527–535

    CAS  Google Scholar 

  • Oldenburg KR, Epand RF, D'Orfanit A, Vo K, Selick H, Epand RM (1996) Conformational studies on analogs of recombinant parathyroid hormone and their interactions with phospholipids. J Biol Chem 271:17582–17591

    PubMed  CAS  Google Scholar 

  • Pines M, Adams AE, Stueckle S, Bessalle R, Rashti-Behar V, Chorev M, Rosenblatt M, Suva LJ (1994) Generation and characterization of human kidney cell lines stably expressing recombinant human PTH/PTHrP receptor: lack of interaction with a C-terminal human PTH peptide. Endocrinol 135:1713–1716

    CAS  Google Scholar 

  • Rodan SB, Imai Y, Thiede MA, Wesolowski G, Thompson D, Bar-Shavit Z, Shull S, Mann K, Rodan GA (1987) Characterization of a human osteosarcoma cell line (SaOS-2) with osteoblastic properties. Cancer Res 47:4961–4966

    PubMed  CAS  Google Scholar 

References

  • Anderson JJB, Garner SC, Mar M-H, Boass A, Toverud SU, Parikh I (1990) The ovarectomized, lactating rat as an experimental model for osteopenia: calcium metabolism and bone changes. Bone Mineral 11:43–53

    CAS  Google Scholar 

  • Goldner J (1938) A modification of the Masson trichrome technique for routine laboratory purposes. Am J Pathol 14:237–243

    PubMed  CAS  Google Scholar 

  • Pellegrini M, Bisello A, Rosenblatt M, Chorev M, Mierke DF (1997) Conformational studies with RS-66271, an analog of parathyroid hormone-related protein with pronounced bone anabolic activity. J Med Chem 40:3025–3031

    PubMed  CAS  Google Scholar 

  • Vickery BH, Avnur Z, Cheng Y, Chiou SS, Leaffer D, Caulfield JP, Kimmel DB, Ho T, Krastenansky JL (1996) Rs-66271, a C-terminally substituted analog of human parathyroid hormone-related protein (1–43), increases trabecular and cortical bone in ovarectomized, osteopenic rats. J Bone Min Res 11:1943–1951

    CAS  Google Scholar 

  • Villanueva AR, Lundin KD (1989) A versatile new mineralized bone stain for simultaneous assessment of tetracycline and osteoid seams. Stain Technol 64:129–138

    PubMed  CAS  Google Scholar 

References

  • Anselmino KJ, Pecharz RI (1935) Über die Technik der Hypophysenexstirpation bei verschiedenen Versuchstieren. Z exper Med 93:660–665

    Google Scholar 

  • Biedl A (1916) Innere Sekretion. Ihre physiologischen Grundlagen und ihre Bedeutung für die Pathologie. Dritte Auflage, zweiter Teil. Urban und Schwarzenberg, Berlin Wien, pp 111–126

    Google Scholar 

  • Bomskov C (1939) Die Exstirpation der Hypophyse im Tierversuch. In: Methodik der Hormonfoschung. 2. Band, G. Thieme Verlag, Leipzig, pp 553–587

    Google Scholar 

  • Burn JH, Finney DJ, Goodwin LG (1952) Biological Standardization. Chapter XI. Anterior Lobe of the Pituitary Gland. Oxford University Press, London, pp 268–279

    Google Scholar 

  • Collip JB, Selye H, Thompson DL (1933a) Beiträge zur Kenntnis der Physiologie des Gehirnanhanges. Virchows Arch 290:23–46

    Google Scholar 

  • Collip JB, Selye H, Thompson DL (1933a) Gonad-stimulating hormones in hypophysectomised animals. Nature 131:56

    Google Scholar 

  • Jung S, Vogel HG (1963) Unpublished data

    Google Scholar 

  • Loeser A, Thompson KW (1934) Hypophysenvorderlappen, Jod und Schilddrüse. Endokrinologie 14:144–150

    CAS  Google Scholar 

  • Smith PE (1927) The disabilities caused by hypophysectomy and their repair. The tuberal (hypothalamic) syndrome in the rat. J Amer Med Assoc 88:158–161

    CAS  Google Scholar 

  • Thompson KW (1932) A technique for hypophysectomy of the rat. Endocrinology 16:257–263

    Google Scholar 

  • Vogel HG (1965) Evaluation of synthetic peptides with ACTH-activity. Acta Endocrin (Kbh.) Suppl 100:34

    Google Scholar 

  • Vogel HG (1969a) Tierexperimentelle Untersuchungen über synthetische Peptide mit Corticotropin-Aktivität. A: Vergleich mit dem III. Internationalen Standard für Corticotropin. Arzneim Forsch/Drug Res 19:20–24

    CAS  Google Scholar 

  • Vogel HG (1969b) Tierexperimentelle Untersuchungen über synthetische Peptide mit Corticotropin-Aktivität. B: Prüfung einer Depot-Zubereitung von β1–23-Corticotropin-23-amidacetat. Arzneim Forsch/Drug Res 19:25–27

    CAS  Google Scholar 

References

  • Dahl KD, Stone MP (1991) FSH isoforms, radioimmunoassays, bioassays, and their significance. J Androl 13:11–22

    Google Scholar 

  • Imse V, Holzapfel G, Hinney B, Kuhn W, Wuttke W (1992) Comparison of luteinizing hormone pulsatility in the serum of women suffering from polycystic ovarian disease using a bioassay and five different immunoassays. J Clin Endocrin Metab 74:1053–1061

    CAS  Google Scholar 

  • Iwasawa A, Tomizawa KL, Wakabayashi K, Kato Y (1994) Time-resolved fluorimmunoassay (TR-FIA) of gonadotropins. Exp Clin Endocrinol 102:39–43

    PubMed  CAS  Google Scholar 

  • Poyner DR, Hanley MR (1992) Molecular biology of peptide and glycoprotein hormone receptors. In: Braun MR (ed) Molecular Biology of G-Protein-Coupled Receptors. Birkhäuser, Boston Basel Berlin, pp 198–232

    Google Scholar 

  • Simoni M, Nieschlag E (1991) In vitro bioassays of follicle-stimulating hormone: methods and clinical applications. J Endocrinol Invest 14:983–997

    PubMed  CAS  Google Scholar 

  • Storring PL, Gaines Das RE (1989) The International Standard for pituitary FSH: collaborative study of the Standard and of four other purified human FSH preparations of differing molecular composition by bioassays, receptor assays and different immunoassay systems. J Endocrinol 123:275–293

    PubMed  CAS  Google Scholar 

  • Ulloa-Aguirre A, Espinoza R, Damian-Matsumura P, Chappel SC (1988) Immunological and biological potencies of the different molecular species of gonadotrophins. Human Reproduct 3:491–501

    CAS  Google Scholar 

References

  • British Pharmacopoeia 1988: Biological assay of menotrophin. Follicle stimulating hormone activity. Appendix XIV C, p A165. London, Her Majesty's Stationary Office

    Google Scholar 

  • Brown PS (1955) The assay of gonadotrophin from urine of non-pregnant human subjects. J Endocrin 13:59–64

    CAS  Google Scholar 

  • Brown PS, Wells M (1966) Observations on the assay of human urinary follicle-stimulating hormone by the augmentation test in mice. J Endocrinol 35:199–206

    PubMed  CAS  Google Scholar 

  • Christiansen P (1972a) Studies on the rat ovarian augmentation method for follicle stimulating hormone. Acta Endocrinol (Kbh) 70:636–646

    CAS  Google Scholar 

  • Christiansen P (1972b) The rat ovarian augmentation method for follicle stimulating hormone. Specificity of the test. Acta Endocrinol (Kbh) 70:647–653

    CAS  Google Scholar 

  • Evans HM, Simpson ME, Tolksdorf S, Jensen H (1939) Biological studies of the gonadotropic principles in sheep pituitary substance. Endocrinology 25:529–546

    CAS  Google Scholar 

  • Gans E, van Rees GP (1966) Studies on the testicular augmentation assay method for follicle stimulating hormone. Acta Endocrinol 52:573–582

    PubMed  CAS  Google Scholar 

  • Igarashi M, McCann SM (1964) A new sensitive bioassay for follicle-stimulating hormone. Endocrinology 74:440–445

    PubMed  CAS  Google Scholar 

  • Lamond DR, Bindon BM (1966) The biological assay of follicle-stimulating hormone in hypophysectomized immature mice. J Endocrinol 34:365–376

    PubMed  CAS  Google Scholar 

  • Parlow AF, Reichert LE Jr. (1963) Species differences in follicle-stimulating hormone as revealed by the slope in the Steelman-Pohley assay. Endocrinology 73:740–743

    PubMed  CAS  Google Scholar 

  • Segaloff A (1962) The gonadotropins. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Bioassay. Chapter 17. Academic Press, New York and London. pp 591–608

    Google Scholar 

  • Steelman SL, Pohley FM (1953) Assay of follicle stimulating hormone based on the augmentation with human chorionic gonadotropin. Endocrinology 53:604–616

    PubMed  CAS  Google Scholar 

  • Storring PL, Zaidi AA, Mistry YG, Fröysa B, Stenning BE, Diczfalusy E (1981) A comparison of preparations of highly purified human pituitary follicle-stimulating hormone: differences in the follicle-stimulating hormone potencies as determined by in-vivo bioassay, in-vitro bioassay and immunoassay. J Endocrinology 91:353–362

    CAS  Google Scholar 

  • Storring PL, Gaines Das RE (1989) The International Standard for pituitary FSH: collaborative study of the Standard and of four other purified human FSH preparations of differing molecular composition by bioassays, receptor assays and different immunoassay systems. J Endocrinol 123:275–293

    PubMed  CAS  Google Scholar 

  • Uberoi NK, Meyer RK (1967) Uterine weight of the immature rat as a measure of augmentation of pituitary gonadotrophins by human chorionic gonadotrophin (HCG). Fertil Steril 18:420–428

    PubMed  CAS  Google Scholar 

  • Wide L, Hobson B (1986) Influence of the assay method used on the selection of the most active forms of FSH from the human pituitary. Acta Endocrinol (Copenh) 113:17–22

    PubMed  CAS  Google Scholar 

References

  • Boggins J, Ryle M (1972) An in-vitro procedure for the quantitative measurement of follicle-stimulating activity. J Endocrinol 54:355–356

    Google Scholar 

  • Boland NI, Humpherson PG, Leese HJ, Gosden RG (1993) Pattern of lactate production and steroidogenesis during growth and maturation of mouse ovarian follicles in vitro. Biol Reprod 48:798–806

    PubMed  CAS  Google Scholar 

  • Ryle M (1971) The activity of human follicle-stimulating hormone preparations as measured by a response in vitro. J Endocrinol 51:97–107

    PubMed  CAS  Google Scholar 

References

  • Ax RL, Ryan RJ (1979) FSH stimulation of 3H-glucosamine incorporation into proteoglycans by porcine granulosa cells in vitro. J Clin Endocrin Metab 49:646–648

    CAS  Google Scholar 

  • Beers WH, Strickland S (1978) A cell culture assay for follicle-stimulating hormone. J Biol Chem 253:3877–3881

    PubMed  CAS  Google Scholar 

  • Bhargava G, Poretsky L, Denman H, Jandorek R, Miller LK (1989) Hormonally active long-term culture of human ovarian cells: Initial characterization. Metabolism 38:195–196

    PubMed  CAS  Google Scholar 

  • Combarnous Y, Guillou F, Martinat N (1984) Comparison of in vitro follicle-stimulating hormone (FSH) activity of equine gonadotropins (luteinizing hormone, FSH, and chorionic gonadotropin) in male and female rats. Endocrinology 115:1821–1827

    PubMed  CAS  Google Scholar 

  • Dahl KD, Papkoff H, Hsueh AJW (1989) Effects of diverse mammalian and nonmammalian gonadotropins in a rat granulosa cell bioassay for follicle-stimulating hormone. Gen Compar Endocrinol 73:368–373

    CAS  Google Scholar 

  • Dorrington JH, Moon YS, Armstrong DT (1975) Estradiol-17β biosynthesis in cultured granulosa cells from hypophysectomized immature rats; stimulation by follicle-stimulating hormone. Endocrinology 97:1328–1331

    PubMed  CAS  Google Scholar 

  • Fauser BCJM, Soto D, Czekala NM, Hsueh AJW (1989) Granulosa cell aromatase bioassay: Changes of bioactive FSH levels in the female. J Steroid Biochem 33:721–726

    PubMed  CAS  Google Scholar 

  • Hsueh AJW, Erickson GF, Papkoff H (1983) Effect of diverse mammalian gonadotrophins on estrogen and progesterone production by cultured rat granulosa cells. Arch Biochem Biophys 225:505–511

    PubMed  CAS  Google Scholar 

  • Hsueh AJW, Adashi EY, Jones PBC, Welsh TH (1984) Hormonal regulation of the differentiation of cultured ovarian granulosa cells. Endocr Rev 5:76–127

    PubMed  CAS  Google Scholar 

  • Jia XC, Hsueh AJW (1985) Sensitive in vitro bioassay for the measurement of serum follicle-stimulating hormone. Neuroendocrinology 41:445–448

    PubMed  CAS  Google Scholar 

  • Jia XC, Hsueh AJW (1986) Granulosa cell aromatase bioassay for follicle-stimulating hormone: Validation and application of the method. Endocrinology 119:1570–1577

    PubMed  CAS  Google Scholar 

  • Matzkin H, Homonnai ZT, Galiani D, Paz G, Dekel N (1990) Serum bioactive and immunoreactive follicle-stimulating hormone in oligozoospermic and azoospermic men: application of a modified granulosa cell bioassay. Fertil Steril 53:709–714

    PubMed  CAS  Google Scholar 

  • Simoni M, Nieschlag E (1991) In vitro bioassays of follicle-stimulating hormone: methods and clinical applications. J Endocrinol Invest 14:983–997

    PubMed  CAS  Google Scholar 

  • Storring PL, Gaines Das RE (1989) The International Standard for pituitary FSH: collaborative study of the Standard and of four other purified human FSH preparations of differing molecular composition by bioassays, receptor assays and different immunoassay systems. J Endocrinol 123:275–293

    PubMed  CAS  Google Scholar 

  • Thakur AN, Coles R, Sesay A, Earley B, Jacobs HS, Ekins RP (1990) A rat granulosa cell plasminogen activator bioassay for FSH in human serum. J Endocrinol 126:159–168

    PubMed  CAS  Google Scholar 

  • Wang Ch, Leung A (1983) Gonadotropins regulate plasminogen activator production by rat granulosa cells. Endocrinology 112:1201–1207

    PubMed  CAS  Google Scholar 

  • YoungLai EV, Yie SM, Yeo J (1992) Development patterns of bioactive and immunoreactive FSH in the female rabbit: effects of ovarectomy. Eur J Obstet Gynecol Reprod Biol 46:45–49

    PubMed  CAS  Google Scholar 

References

  • Dorrington JH, Armstrong DT (1975) Follicle-stimulating hormone stimulates estradiol-17β synthesis in cultured Sertoli cells. Proc. Natl Acad Sci, USA 72:2677–2681

    PubMed  CAS  Google Scholar 

  • Dorrington JH, Roller NF, Fritz IB (1975) Effects of follicle-stimulating hormone on cultures of Sertoli cell preparations. Mol Cell Endocrinol 3:57–70

    PubMed  CAS  Google Scholar 

  • England BG, Niswender GD Midgley AR (1974) Radioimmunoassay of estradiol-17β without chromatography. J Clin Endocrin Metab 38:42–50

    CAS  Google Scholar 

  • Foulds LM, Robertson DM (1983) Electrofocusing fractionation and characterization of pituitary follicle-stimulating hormone from male and female rats. Mol Cell Endocrinol 31:117–130

    PubMed  CAS  Google Scholar 

  • Harlin J, Khan SA, Diczfalusy E (1988) Molecular composition of luteinizing hormone and follicle-stimulating hormone in commercial gonadotropin preparations. Fertil Steril 46:1055–1061

    Google Scholar 

  • Khan SA, Syed V, Fröysa B, Lindberg M, Diczfalusy E (1984) Influence of gonadectomy on isoelectrofocusing profiles of pituitary gonadotropins in rhesus monkeys. J Med Primatol 14:177–194

    Google Scholar 

  • Marana R, Robertson DM, Suginami H, Diczfalusy E (1979) The assay of human follicle-stimulating hormone preparations: the choice of a suitable standard. Acta Endocrin 92:599–614

    CAS  Google Scholar 

  • Padmanabhan V, Chappel SC, Beitins I (1987) An improved in vitro bioassay for follicle-stimulating hormone (FSH): suitable for measurement of FSH in unextracted human serum. Endocrinology 121:1089–1098

    PubMed  CAS  Google Scholar 

  • Rao AJ, Ramachandran J (1975) Cyclic AMP production in isolated rat seminiferous tubule cell preparations: a potential in vitro assay for follicle stimulating hormone. Life Sci 17:411–416

    PubMed  CAS  Google Scholar 

  • Ritzén EM, Fröysa B, Gustafsson B, Westerholm G, Diczfalusy E (1982) Improved bioassay of follitropin. Horm Res 16:42–48

    PubMed  Google Scholar 

  • Sairam MR, Manjunath P (1982) Studies on pituitary follitropin. XI. Induction of hormonal antagonistic activity by chemical deglycosylation. Mol Cell Endocrinol 28:139–150

    PubMed  CAS  Google Scholar 

  • Shah GV, Ritzén EM (1984) Validation of a bioassay for follitropin in urine samples. J Endocrinol Invest 7, Suppl 3:59–66

    PubMed  Google Scholar 

  • Simoni M, Nieschlag E (1991) In vitro bioassays of follicle-stimulating hormone: methods and clinical applications. J Endocrinol Invest 14:983–997

    PubMed  CAS  Google Scholar 

  • Storring PL, Gaines Das RE (1989) The International Standard for pituitary FSH: collaborative study of the Standard and of four other purified human FSH preparations of differing molecular composition by bioassays, receptor assays and different immunoassay systems. J Endocrinol 123:275–293

    PubMed  CAS  Google Scholar 

  • Storring PL, Zaidi AA, Mistry YG, Fröysa B, Stenning BE, Diczfalusy E (1981) A comparison of preparations of highly purified human pituitary follicle-stimulating hormone: differences in the follicle-stimulating hormone potencies as determined by in-vivo bioassay, in-vitro bioassay and immunoassay. J Endocrinol 91:353–362

    PubMed  CAS  Google Scholar 

  • Van Damme MP, Robertson DM, Marana R, Ritzén EM, Diczfalusy E (1979) A sensitive and specific in vitro bioassay method for the measurement of follicle-stimulating hormone activity. Acta Endocrin 91:224–237

    Google Scholar 

  • Wide L, Hobson B (1986) Influence of the assay method used on the selection of the most active forms of FSH from the human pituitary. Acta Endocrinol 113:17–22

    PubMed  CAS  Google Scholar 

  • Wide L, Hobson BM (1983) Qualitative difference in follicle-stimulating hormone activity in the pituitaries of young women compared to that of men and elderly women. J Clin Endocrin Metab 56:371–375

    CAS  Google Scholar 

  • Zaidi AA, Fröysa B, Diczfalusy E (1982) Biological and immunological properties of different molecular species of human follicle-stimulating hormone: electrofocusing profiles of eight highly purified preparations. J Endocrinol 92:195–204

    PubMed  CAS  Google Scholar 

  • Zaidi AA, Robertson DM, Diczfalusy E (1981) Studies on the biological and immunological properties of human follitropin: profile of two international reference preparations and of an aqueous extract of pituitary glands after electrofocusing. Acta Endocrinol 97:157–165

    PubMed  CAS  Google Scholar 

References

  • Andersen TT, Curatolo LM, Reichert LE Jr. (1983) Follitropin binding to receptors in testis: studies on the reversibility and thermodynamics of the reaction. Mol Cell Endocrinol 33:37–52

    PubMed  CAS  Google Scholar 

  • Burgon PG, Robertson DM, Stanton PG, Hearn MTW (1993) Immunological activities of highly purified isoforms of human FSH correlate with in vitro bioactivities. J Endocrinol 139:511–518

    PubMed  CAS  Google Scholar 

  • Calvo FO, Keutmann HT, Bergert ER, Ryan RJ (1986) Deglycosylated human follitropin: Characterization and effects on adenosine cyclic 3',5'-phosphate production in porcine granulosa cells. Biochemistry 25:3938–3943

    PubMed  CAS  Google Scholar 

  • Cheng KW (1975) A radioreceptor assay for follicle-stimulating hormone. J Clin Endocrin Metab 41:581–589

    CAS  Google Scholar 

  • Foulds LM, Robertson DM (1983) Electrofocusing fractionation and characterization of pituitary follicle-stimulating hormone from male and female rats. Mol Cell Endocrinol 31:117–130

    PubMed  CAS  Google Scholar 

  • Grasso P, Heindel JJ, Powell CJ, Reichert LE Jr. (1993) Effects of mono(2-ethylhexyl)phthalate, a testicular toxicant, on follicle-stimulating hormone binding to membranes of cultured rat Sertoli cells. Biol Reprod 48:454–459

    PubMed  CAS  Google Scholar 

  • Ketelslegers JM, Catt KJ (1974) Receptor binding properties of 125I-hFSH prepared by enzymatic iodination. J Clin Endocrin Metab 39:1159–1162

    CAS  Google Scholar 

  • Lee CY, Ryan RJ (1973) Interaction of ovarian receptors with human luteinizing hormone and human chorionic gonadotropin. Biochemistry 12:4609–4619

    PubMed  CAS  Google Scholar 

  • Marana R, Robertson DM, Suginami H, Diczfalusy E (1979) The assay of human follicle-stimulating hormone preparations: the choice of a suitable standard. Acta Endocrin 92:599–614

    CAS  Google Scholar 

  • Reichert LE Jr. (1976) Follicle-stimulating hormone: measurement by a rat testes tubule receptor assay. In: Blecher M (ed) Methods in Receptor Research. Part I, Marcel Dekker, Inc., New York and Basel, pp 99–118

    Google Scholar 

  • Reichert LE, Bhalla VK (1974) Development of a radioligand receptor assay for human follicle stimulating hormone. Endocrinology 94:483–491

    PubMed  CAS  Google Scholar 

  • Schwartz S, Bell J, Rechnitz S, Rabinowitz D (1973) Binding of human FSH and its subunits to rat testes. Eur J Clin Invest 3:475–481

    PubMed  CAS  Google Scholar 

  • Simoni M, Jockenhovel F, Nieschlag E (1993a) Biological and immunological properties of the international standard for FSH 83/575: Isoelectrofocusing profile and comparison with other FSH preparations. Acta Endocrinol 128:281–288

    PubMed  CAS  Google Scholar 

  • Simoni M, Weinbauer GF, Nieschlag E (1993b) Molecular composition of two different batches of urofollitropin: Analysis by immunofluorometric assay, radioligand receptor assay and in vitro bioassay. J Endocrin Invest 16:21–27

    CAS  Google Scholar 

  • Storring PL, Gaines Das RE (1989) The International Standard for pituitary FSH: collaborative study of the Standard and of four other purified human FSH preparations of differing molecular composition by bioassays, receptor assays and different immunoassay systems. J Endocrinol 123:275–293

    PubMed  CAS  Google Scholar 

  • Wakabayashi N, Suzuki A, Hoshino H, Nishimori K, Mizuno S (1997) The cDNA cloning and transient expression of a chicken gene encoding a follicle-stimulating hormone receptor. Gene 197:121–127

    PubMed  CAS  Google Scholar 

  • Zaidi AA, Robertson DM, Diczfalusy E (1981) Studies on the biological and immunological properties of human follitropin: profile of two international reference preparations and of an aqueous extract of pituitary glands after electrofocusing. Acta Endocrinol 97:157–165

    PubMed  CAS  Google Scholar 

References

  • British Pharmacopoeia 1988: Biological assay of menotrophin. Luteinising hormone activity. Appendix XIV C, pp A165–A166. London, Her Majesty's Stationary Office

    Google Scholar 

  • Greep RO, van Dyke HB, Chow BF (1942) Gonadotropins of the swine pituitary. I. Various biological effects of purified thylakentrin (FSH) and pure metakentrin (ICSH). Endocrinology 30:635–649

    CAS  Google Scholar 

  • Segaloff A (1962) The gonadotropins. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Bioassay. Chapter 17. Academic Press, New York and London. pp 591–608

    Google Scholar 

  • Segaloff A, Steelman SL, Flores A (1956) Prolactin as a factor in the ventral prostate assay for luteinizing hormone. Endocrinology 59:233–240

    PubMed  CAS  Google Scholar 

References

  • Zarrow MX; Cladwell AL Jr., Hafez ESE, Pincus G (1958) Superovulation in the immature rat as a possible assay for LH and HCG. Endocrinology 63:748–758

    PubMed  CAS  Google Scholar 

References

  • Parlow AF (1961) Bio-assay of pituitary luteinizing hormone by depletion of ovarian ascorbic acid. In: Albert A (ed) Human Pituitary Gonadtrophins., Vol III: pp 300, CC Thomas, Springfiled Ill

    Google Scholar 

  • Parlow AF, Reichert LE Jr. (1963) Influence of follicle-stimulating hormone on the prostate assay of luteinizing hormone (LH, ICSH). Endocrinology 73:377–385

    PubMed  CAS  Google Scholar 

  • Sandow J, Schally AV, Schröder HG, Redding TW, Heptner W, Vogel HG (1972) Pharmacological characteristics of a synthetic releasing hormone LH/FSH-RH (Hoe 471). Arzneim Forsch/Drug Res 22:1718–1721

    CAS  Google Scholar 

References

  • Ascoli M (1981) Characterization of several clonal lines of cultured Leydig tumor cells: Gonadotropin receptors and steroidogenic responses. Endocrinology 108:88–95

    PubMed  CAS  Google Scholar 

  • Bousfield GR, Liu WK, Ward DN (1989) Effects of removal of carboxy-terminal extension from equine luteinizing hormone (LH) β-subunit on LH and follicle-stimulating hormone receptor-binding activities and LH steroidogenic activity in rat testicular Leydig cells. Endocrinology 124:379–387

    PubMed  CAS  Google Scholar 

  • Chen HC, Shimohigashi Y, Dufau ML, Catt KJ (1992) Characterization and biological properties of chemically deglycosylated human chorionic gonadotropin. J Biol Chem 257:14446–14452

    Google Scholar 

  • Dahl KD, Sarkissian A (1993) Validation of an improved in vitro bioassay to measure LH in diverse species. J Androl 14:124–129

    PubMed  CAS  Google Scholar 

  • Dufau ML, Catt KJ, Tsuruhara J (1972) A sensitive gonadotropin responsive system: radioimmunoassay of testosterone production by the rat testis in vitro. Endocrinology 90:1032–1040

    PubMed  CAS  Google Scholar 

  • Dufau ML, Pock R, Neubauer A, Catt KJ (1976) In vitro bioassay of LH in human serum: The rat interstitial cell testosterone (RICT) assay. J Clin Endocrin Metab 42:958–969

    CAS  Google Scholar 

  • Dufau ML, Tsuruhara T, Horner KA, Podesta E, Catt KJ (1977) Intermediate role of adenosine 3':5'-cyclic monophosphate and protein kinase during gonadotropin-induced steroidogenesis in testicular interstitial cells. Proc Natl Acad Sci, USA, 74:3419–3423

    PubMed  CAS  Google Scholar 

  • Haavisto AM, Dunkel L, Pettersson K, Huhtaniemi I (1990) LH measurements by in vitro bioassay and a highly sensitive immunofluorometric assay improve the distinction between boys with constitutional delay of puberty and hypogonadotropic hypogonadism. Pediat Res 27:211–214

    PubMed  CAS  Google Scholar 

  • Harlin J, Khan SA, Diczfalusy E (1988) Molecular composition of luteinizing hormone and follicle-stimulating hormone in commercial gonadotropin preparations. Fertil Steril 46:1055–1061

    Google Scholar 

  • Janszen FHA, Cooke BA, van Driel MJA, van der Molen HJ (1976) Purification and characterization of Leydig cells from rat testes. J Endocrinol 70:345–359

    PubMed  CAS  Google Scholar 

  • Khan SA, Syed V, Fröysa B, Lindberg M, Diczfalusy E (1984) Influence of gonadectomy on isoelectrofocusing profiles of pituitary gonadotropins in rhesus monkeys. J Med Primatol 14:177–194

    Google Scholar 

  • Liu WK, Young JD, Ward BN (1984) Deglycosylated ovine lutropin: preparation and characterization by in vitro binding and steroidogenesis. Mol Cell Endocrinol 37:29–39

    PubMed  CAS  Google Scholar 

  • Rodgers M, Michell R, Lambert A, Peers N, Robertson WR (1992) Human chorionic gonadotropin contributes to the bioactivity of Pergonal. Clin Endocrin 37:558–564

    CAS  Google Scholar 

  • Stadler U, Rovan E, Aulitzky W, Frick J, Adam H, Kalla N (1989) Bioassay for determination of human serum luteinizing hormone (LH): a routine clinical method. Andrologia 21:580–583

    PubMed  CAS  Google Scholar 

  • Van Damme MP, Robertson DM, Diczfalusy E (1974) An improved in vitro bioassay method for measuring luteinizing hormone (LH) activity using mouse Leydig cell preparations. Acta Endocrinol 77:655–671

    PubMed  Google Scholar 

  • Whitcomb RW, Schneyer AL (1990) Development and validation of a radioligand receptor assay for measurement of luteinizing hormone in human serum. J Clin Endocr Metab 71:591–595

    PubMed  CAS  Google Scholar 

References

  • Catt KJ, Ketelslegers JM, Dufau ML (1976) Receptors for gonadotropic hormones. In: Blecher M (ed) Methods in receptor research. Part I, Marcel Dekker, Inc., New York Basel, pp 175–250

    Google Scholar 

  • Chen W, Bahl OP (1993) High expression of the hormone binding active extracellular domain (1–294) of rat lutropin receptor in Escherichia coli. Mol Cell Endocrinol 91:35–41

    PubMed  CAS  Google Scholar 

  • Jia XC, Perlas E, Su JGJ, Moran F, Lasley BL, Ny T, Hsueh AJW (1993) Luminescence luteinizing hormone/choriogonadotropin (LH/CG) bioassay: Measurement of serum bioactive LH/CG during early pregnancy in human and macaque. Biol Reprod 49:1310–1316

    PubMed  CAS  Google Scholar 

  • Lee CY, Ryan RJ (1972) Luteinizing hormone receptors: specific binding of human luteinizing hormone to homogenates of luteinized rat ovaries. Proc Natl Acad Sci USA 69:3520–3523

    PubMed  CAS  Google Scholar 

  • Liu WK, Yang KP, Nakagawa Y, Ward DN (1974) The role of the amino group in subunit association and receptor site interaction for ovine luteinizing hormone as studied by acylation. J Biol Chem 249:5544–5550

    PubMed  CAS  Google Scholar 

  • Liu WK, Furlong NB, Ward DN (1977) Effects of β subunit acylation on lutropin receptor site binding. J Biol Chem 252:522–527

    PubMed  CAS  Google Scholar 

  • Liu WK, Young JD, Ward BN (1984) Deglycosylated ovine lutropin: preparation and characterization by in vitro binding and steroidogenesis. Mol Cell Endocrinol 37:29–39

    PubMed  CAS  Google Scholar 

  • Selvaraj N, Moudgal NR (1993) Development of an LH receptor assay capable of measuring serum LH/CG in a wide variety of species. J Reprod Fertil 98:611–616

    PubMed  CAS  Google Scholar 

  • Selvaraj N, Dantes A, Limor R, Golander A, Amsterdam A (1996) Establishment of an in vitro bioassay and radioreceptor assay for LH/CG in human sera using immortalized granulosa cells transfected with LH/CG receptor. Endocrine 5:275–283

    PubMed  CAS  Google Scholar 

  • Storring PL, Gaines-Das RE (1993) The second International Standard for Human Pituitary LH: Its collaborative study by bioassays and immunoassays. J Endocrinol 138:345–359

    PubMed  CAS  Google Scholar 

References

  • Aschheim S, Zondek B (1927) Hypophysenvorderlappenhormon und Ovarialhormon im Harn von Schwangeren. Klin Wchschr 6:1322

    Google Scholar 

  • Hamburger C, Pedersen-Bjergaard K (1937) The assay of gonadotropic hormones. Standardisation curves for pregnant mare's serum hormone and human pregnant urine hormone. Quart J Pharm Pharmacol (1937) 10:662–676

    CAS  Google Scholar 

  • Zondek B (1935) Die hormonale Schwangerschaftsreaktion aus dem Harn bei Mensch und Tier. In: Zondek B (ed) Hormone des Ovariums und des Hypophysenvorderlappens. Springer Wien, pp 534–578

    Google Scholar 

References

  • British Pharmacopoeia 1988: Biological assay of chorionic gonadotrophin. Appendix XIV C, pp A164–A165. London, Her Majesty's Stationary Office

    Google Scholar 

  • United States Pharmacopoeia USP 23 (1995) Chorionic gonadotropin. pp 718–719

    Google Scholar 

References

  • Catt KJ, Dufau ML, Tsuruhara T (1972) Radioligand-receptor assay of luteinizing hormone and chorionic gonadotropin. J Clin Endocrin Metab 34:123–132

    CAS  Google Scholar 

  • Catt KJ, Ketelslegers JM, Dufau ML (1976) Receptors for gonadotropic hormones. In: Blecher M (ed) Methods in Receptor Research. Part I, Marcel Dekker, Inc., New York and Basel, pp 175–250

    Google Scholar 

  • Keutmann HT, McIlroy PJ, Bergert ER, Ryan RJ (1983) Chemically deglycosylated chorionic gonadotropin subunits: Characterization and biological properties. Biochemistry 22:3067–3072

    PubMed  CAS  Google Scholar 

  • Lee CY, Ryan RJ (1973) Interaction of ovarian receptors with human luteinizing hormone and human chorionic gonadotropin. Biochemistry 12:4609–4619

    PubMed  CAS  Google Scholar 

  • Saxena BB (1976) Gonadotropin receptors. In: Blecher M (ed) Methods in Receptor Research. Part I, Marcel Dekker, Inc., New York and Basel, pp 251–299

    Google Scholar 

  • Selvaraj N, Dantes A, Limor R, Golander A, Amsterdam A (1996) Establishment of an in vitro bioassay and radioreceptor assay for LH/CG in human sera using immortalized granulosa cells transfected with LH/CG receptor. Endocrine 5:275–283

    PubMed  CAS  Google Scholar 

References

  • British Pharmacopoeia 1988: Biological assay of menotrophin. Follicle-stimulating activity. Appendix XIV C, pp A165–A166. London, Her Majesty's Stationary Office

    Google Scholar 

References

  • Hamburger C (1950) Gonadotropins. In: Emmens CW (ed) Hormone Assay. Academic Press Inc., Publishers, New York, Chapter VII, pp 173–203

    Google Scholar 

References

  • Armbruster DA, Haws LC (1990) Assay of follitropin and lutropin by fluorescence enzyme immunoassay. J Clin Labor Anal 4:170–174

    CAS  Google Scholar 

  • Faiman C, Ryan RJ (1967) Serum follicle-stimulating hormone and luteinizing hormone concentrations during the menstrual cycle as determined by radioimmunoassays. J Clin Endocrin Metab 27:1711–1716

    CAS  Google Scholar 

  • Haavisto AM, Pettersson K, Bergendahl M, Perheentupa A, Roser FJ, Huhtaniemi I (1993) A supersensitive immunofluorometric assay for rat luteinizing hormone. Endocrinology 132:1687–1691

    PubMed  CAS  Google Scholar 

  • Rosenfield RL, Helke J (1992) Is an immunoassay available for the measurement of bioactive LH in serum? J Androl 13:1–10

    PubMed  CAS  Google Scholar 

  • Seth J, Hanning I, Bacon RRA, Hunter WM (1989) Progress and problems in immunoassays for pituitary gonadotrophins: evidence from the UK external quality assessment schemes, (EQAS) 1980–1988. Clin Chim Acta 186:67–82

    PubMed  CAS  Google Scholar 

  • Terouanne B, Alameddine S, Martin JL, Nicolas JC, Cristol P, Sultan C, de Paulet AC (1989) Dosage par bioluminescence de l'hormone lutéinisante dans le plasma et l'urine. Ann Biol Clin 47:15–21

    CAS  Google Scholar 

  • Ulloa-Aguirre A, Espinoza R, Damian-Matsumura P, Chappel SC (1988) Immunological and biological potencies of the different molecular species of gonadotrophins. Human Reproduct 3:491–501

    CAS  Google Scholar 

  • Weiss P, Zech H, Schönholzer HP, Fritzsche H (1992) Abbott IMx and Serono MAIAclone assays compared for lutropin determinations in urine. Clin Chem 38:2280–2283

    PubMed  CAS  Google Scholar 

  • Wheeler MJ (1991) The radioimmunoassay of gonadotrophins. In: Greenstein B (ed) Neuroendocrine Research Methods. Vol 2, Harwood Acad Publ., Chur, Chapter 22, pp 487–498

    Google Scholar 

  • Wide L, Hobson BM (1983) Qualitative difference in follicle-stimulating hormone activity in the pituitaries of young women compared to that of men and elderly women. J Clin Endocrin Metab 56:371–375

    CAS  Google Scholar 

  • YoungLai EV, Yie SM, Yeo J (1992) Development patterns of bioactive and immunoreactive FSH in the female rabbit: effects of ovarectomy. Eur J Obstet Gynecol Reprod Biol 46:45–49

    PubMed  CAS  Google Scholar 

References

  • Byrnes WW, Meyer RK (1951) The inhibition of gonadotrophic hormone secretion by physiological doses of estrogen. Endocrinology 48:133–136

    PubMed  CAS  Google Scholar 

  • Shipley EG (1962) Anti-gonadotropic steroids, inhibition of ovulation and mating. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Bioassay. Chapter 5. Academic Press, New York and London. pp 179–274

    Google Scholar 

References

  • McGinty DA, Djerassi C (1958) Some chemical and biological properties of 19-nor-17α-ethinyltetosterone. Ann NY Acad Sci 71:500–515

    PubMed  CAS  Google Scholar 

  • Saunders FJ, Drill VA (1958) Some biological activities of 17-ethynyl and 17-alkyl derivatives of 17-hydroxyestrenones. Ann NY Acad Sci 71:516–531

    PubMed  CAS  Google Scholar 

  • Shipley EG (1962) Anti-gonadotropic steroids, inhibition of ovulation and mating. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Bioassay. Chapter 5. Academic Press, New York and London. pp 197–274

    Google Scholar 

  • Vogel HG (1964) Unpublished data

    Google Scholar 

References

  • Austin CR, Bruce HM (1956) Effect of continuous oestrogen administration on oestrus, ovulation and fertilization in rats and mice. J Endocrin 13:376–383

    CAS  Google Scholar 

  • Hahn DW, Allen GO, McGuire JL (1977) The pharmacological profile of norgestimate, a new orally active progestin. Contraception 16:541–553

    PubMed  CAS  Google Scholar 

  • Hebborn P (1971) Progestional agents. In: Turner RD, Hebborn P (eds) Screening Methods in Pharmacology. Vol II, Academic Press, New York and London. pp 105–119

    Google Scholar 

  • Junkmann K (1957) Long acting steroids in reproduction. Rec Progr Horm Res 13:389–427

    PubMed  CAS  Google Scholar 

  • May M (1971) Anovulatory agents. In: Turner RD, Hebborn P (eds) Screening Methods in Pharmacology. Vol II, Academic Press, New York and London. pp 101–104

    Google Scholar 

  • Phillips A, Hahn DW, Klimek S, McGuire JL (1987) A comparison of the potencies and activities of progestogens used in contraceptives. Contraception 36:181–192

    PubMed  CAS  Google Scholar 

  • Sawyer CH (1952) Progesterone initially facilitates and later inhibits release of pituitary ovulating hormone in the rabbit. Fed Proc Fed Am Soc Exper Biol 11:138

    Google Scholar 

  • Shipley EG (1962) Anti-gonadotropic steroids, inhibition of ovulation and mating. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Bioassay. Chapter 5. Academic Press, New York and London. pp 179–274

    Google Scholar 

  • Shipley EG (1965) Effectiveness of topical application of a number of progestins. Steroids 5:699–717

    CAS  Google Scholar 

  • Uilenbroek JTJ (1991) Hormone concentrations and ovulatory response in rats treated with antiprogestagens. J Endocrinol 123:423–429

    Google Scholar 

References

  • Biskind MS, Biskind GS (1990) Development of tumors in the rat ovary after transplantation into the spleen. Historical milestone paper. Cancer J 3:113–116

    Google Scholar 

  • D'Albora H, Cassina MP, Barreiro JP, Sapiro R, Domínguez R (1992) Differences in follicular growth and ovulation ability in the autografted right and left ovary of hemiovarectomised prepubertal rats. Med Sci Res 20:755–757

    Google Scholar 

  • Desclin L (1959) Action du benzoate d'oestradiol et du propionate de testostérone sur la structure de l'ovaire implanté dans la rate. Ann endocrinol (Paris) 20:222–227

    Google Scholar 

  • Mardones E, Iglesias R, Lipschutz A (1956) The antiluteinizing potency of five derivatives of progesterone. Endocrinology 58:212–219

    PubMed  CAS  Google Scholar 

  • Shipley EG (1962) Anti-gonadotropic steroids, inhibition of ovulation and mating. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Bioassay. Chapter 5. Academic Press, New York and London. pp 197–274

    Google Scholar 

  • Vogel HG, Jung S (1962) Unpublished data

    Google Scholar 

References

  • Dhar JD, Dwivedi A, Srivastava A, Setty BS (1994) Structure activity relationship of some 2,3-diaryl-2H-1-benzopyrans to their anti-implantation, estrogenic and antiestrogenic activities in the rat. Contraception 49:609–616

    PubMed  CAS  Google Scholar 

  • Philibert, D, Moguilewsky M, Mary I, Lecaque D, Tournemine C, Secchi J, Deraedt R (1985) Pharmacological profile of RU 486 in animals. In: Baulieu EE, Segal SJ (eds) The Antiprogestin Steroid RU 486 and Human Fertility Control. Plenum Press, New York London, pp 49–68

    Google Scholar 

  • Shipley EG (1962) Anti-gonadotropic steroids, inhibition of ovulation and mating. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Bioassay. Chapter 5. Academic Press, New York and London. pp 197–274

    Google Scholar 

References

  • Jacobs LS (1979) Prolactin. In: Jaffe BM, Behrmann HR (eds) Methods of Hormone Radioimmunoassay. Acad Press, New York, pp 199–222

    Google Scholar 

  • Jeffcoate SL, Bacon RRA, Beastall GH, Divers MJ, Franks S, Seth J (1986) Assays for prolactin: guidelines for the provision of a clinical biochemistry service. Ann Clin Biochem 23:638–651

    PubMed  CAS  Google Scholar 

  • Leroy-Martin B, Peyrat JP, Amrani S, Lorthioir M, Leonardelli J (1995) Analyse immunocytochimique des recepteurs prolactiniques (R-PRL) humains a l'aide d'anticorps anti-idiotypes dans le cancers du sein humain. Ann Pathol 15:192–197

    PubMed  CAS  Google Scholar 

  • Shiu RPC, Friesen HG (1976) Prolactin receptors. In: Blecher M (ed) Methods in Receptor Research, Part II, Marcel Dekker, Inc., New York and Basel, pp 565–598

    Google Scholar 

References

  • Jeffcoate SL, Bacon RRA, Beastall GH, Divers MJ, Franks S, Seth J (1986) Assays for prolactin: guidelines for the provision of a clinical biochemistry service. Ann Clin Biochem 23:638–651

    PubMed  CAS  Google Scholar 

References

  • Lyons WR, Page E (1935) Detection of mammatropin in the urine of lactating women. Proc Soc Exp Biol Med 32:1049–1050

    Google Scholar 

  • Meites J, Turner CW (1950) Lactogenic hormone. In: Emmens CW (ed) Hormone Assay. Chapter X. Academic Press Inc., Publ. New York. pp 237–260

    Google Scholar 

  • Riddle O, Bates RW (1939) Sex and Internal Secretions. 2nd ed., Chapter XX, Williams and Wilkins, Baltimore, MD

    Google Scholar 

  • Segaloff A (1962) Prolactin. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Chapter 18, Academic Press, New York and London. pp 609–615

    Google Scholar 

References

  • Bergman AJ, Meites J, Turner CM (1940) A comparison of methods of assay of the lactogenic hormone. Endocrinology 26:716–722

    CAS  Google Scholar 

  • Lyons WR (1942) The direct mammotropic action of lactogenic hormone. Proc Soc Exp Biol Med 51:308–311

    CAS  Google Scholar 

  • Lyons WR, Catchpole HR (1933) Availability of the rabbit for assay of the hypophyseal lactogenic hormone. Proc Soc Exp Biol Med 31:305–309

    Google Scholar 

  • Meites J, Turner CW (1950) Lactogenic hormone. In: Emmens CW (ed) Hormone Assay. Chapter X. Academic Press Inc., Publ. New York, pp 237–260

    Google Scholar 

  • Segaloff A (1962) Prolactin. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Chapter 18. Academic Press, New York and London. pp 609–615

    Google Scholar 

References

  • Amit T, Ish-Shalom S, Glaser B, Youdim MBH, Hochberg Z (1992) Growth-homone-binding protein in patients with acromegaly. Horm Res 37:205–211

    PubMed  CAS  Google Scholar 

  • Chochinov RH, Daughaday WH (1978) Somatomedin A, Somatomedin C and NSILA-s. In: Jaffe BM, Behrman HR (eds) Methods of Hormone Radioimmunoassay. Academic Press New York, pp 959–977

    Google Scholar 

  • Greenwood FC, Hunter WM, Glover JS (1963) The preparation of 131I-labelled human growth hormone of high specific radioactivity. Biochem J 89:114–123

    PubMed  CAS  Google Scholar 

  • Hofland LJ, van Koetsfeld PM, Verleun TM, Lamberts SWJ (1989) Glycoprotein alpha-subunit and prolactin release by cultured pituitary adenoma cells from acromegalic patients: correlation with GH release. Clin Endocrinol (Oxf) 30:601–611

    CAS  Google Scholar 

  • Hughes JP (1985) The nature and regulation of the receptors for pituitary growth hormone. Ann Rev Physiol 47:469–482

    CAS  Google Scholar 

  • Ilondo MM, Vanderschueren-Lodeweyckx M, DeMeyts P (1991) Measuring growth hormone activity through receptor and binding protein assays. Horm Res 36 (Suppl 1):21–36

    PubMed  CAS  Google Scholar 

  • Isaksson OGP, Edén S, Jansson JO (1985) Mode of action of pituitary growth hormone on target cells. Ann Rev Physiol 47:483–499

    CAS  Google Scholar 

  • Mertani HC, Pechoux C, Garcia-Caballero T, Waters MJ, Morel G (1995) Cellular localization of the growth hormone receptor/binding protein in the human anterior pituitary gland. J Clin Endocrinol Metab 80:3361–3367

    PubMed  CAS  Google Scholar 

  • Peake GT, Morris J, Buckman MT (1978) Growth hormone. In: Jaffe BM, Behrman HR (eds) Methods of Hormone Radioimmunoassay. Academic Press New York, pp 327–339

    Google Scholar 

  • Roswell EC, Mukku VR, Chen AB, Hoff EH, Chu H, McKay PA, Olson KC, Battersby JE, Gehant RL, Meunier A, Garnick ER (1996) Novel assays based on human growth hormone receptor as alternatives to the rat weight gain bioassay for recombinant human growth hormone. Biologicals 24:25–39

    Google Scholar 

  • Rudd BT (1991) Growth, growth hormone and the somatomedins: a historical perspective and current concepts. Ann Clin Biochem 28:542–555

    PubMed  CAS  Google Scholar 

  • Russell JA (1955) Methods of detection and assay of growth hormone. In: Smith RW, Gaebler OH, Long CNH (eds) The Hypophyseal Growth Hormone, Nature and Actions. McGraw-Hill Book Comp. Inc., New York, pp 17–27

    Google Scholar 

  • Strasburger CJ, Wu Z, Pflaum CD, Dressendorfer SA (1996) Immunofunctional assay of human growth hormone (hGH) in serum: a possible consensus for quantitative hGH measurement. J Clin Endocrinol Metab 81:2613–2620

    PubMed  CAS  Google Scholar 

  • Wang BS, Lumanglas AL, Bona CA, Moran TM (1996) Functional characterization of monoclonal antibodies specific to growth hormone receptor. Mol Immunol 33:1197–1202

    PubMed  CAS  Google Scholar 

References

  • Greenspan FS, Li CH, Simpson ME, Evans HM (1950) Growth hormone. In: Emmens CW (ed) Hormone Assay. Chapter XII. Academic Press Inc., Publ. New York. pp 273–290

    Google Scholar 

  • Groesbeck MD, Parlow AF (1987) Highly improved precision of the hypophysectomized female rat body weight gain bioassay for growth hormone by increased frequency of injections, avoidance of antibody formation, and other simple modifications. Endocrinology 120:2582–2590

    PubMed  CAS  Google Scholar 

  • Li CH, Evans HM, Simpson ME (1945) Isolation and properties of the anterior pituitary growth hormone. J Biol Chem 159:353–366

    CAS  Google Scholar 

  • Marx W, Simpson ME, Evans HM (1942) Bioassay of the growth hormone of the anterior pituitary. Endocrinology 30:1–10

    CAS  Google Scholar 

  • Papkoff H, Li CH (1962) Hypophyseal growth hormone. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Chapter 21. Academic Press, New York and London. pp 671–704

    Google Scholar 

  • Roswell EC, Mukku VR, Chen AB, Hoff EH, Chu H, McKay PA, Olson KC, Battersby JE, Gehant RL, Meunier A, Garnick ER (1996) Novel assays based on human growth hormone receptor as alternatives to the rat weight gain bioassay for recombinant human growth hormone. Biologicals 24:25–39

    Google Scholar 

References

  • Bentham J, Ohlsson C, Lindahl A, Isaksson O, Nilsson A (1993) A double-staining technique for detection of growth hormone and insulin-like growth factor-1 binding to rat tibial epiphyseal chondrocytes. J Endocrinol 137:361–367

    PubMed  CAS  Google Scholar 

  • Geschwind II, Li CH (1955) The tibia test for growth hormone. In: Smith RW, Gaebler OH, Long CNH (eds) Hypophyseal Growth Hormone, Nature and Actions. McGraw-Hill, New York, pp 28–58

    Google Scholar 

  • Greenspan FS, Li CH, Simpson ME, Evans HM (1949) Bioassay of hypophyseal growth hormone: The tibia test. Endocrinology 45:455–463

    PubMed  CAS  Google Scholar 

  • Greenspan FS, Li CH, Simpson ME, Evans HM (1950) Growth hormone. In: Emmens CW (ed) Hormone Assay. Chapter XII. Academic Press Inc., Publ. New York. pp 273–290

    Google Scholar 

  • Papkoff H, Li CH (1962) Hypophyseal growth hormone. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Chapter 21. Academic Press, New York and London. pp 671–704

    Google Scholar 

References

  • Collins EJ, Baker VF (1960) Growth hormone and radiosulfate incorporation: I. A new assay method for growth hormone. Metabolism 9:556–560

    PubMed  CAS  Google Scholar 

  • Greenspan FS, Li CH, Simpson ME, Evans HM (1950) Growth hormone. In: Emmens CW (ed) Hormone Assay. Chapter XII, Academic Press Inc., Publ. New York. pp 273–290

    Google Scholar 

  • Papkoff H, Li CH (1962) Hypophyseal growth hormone. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Chapter 21. Academic Press, New York and London. pp 671–704

    Google Scholar 

References

  • Dole V, Meinertz J (1969) Microdetermination of long chain fatty acids in plasma and tissues. J Biol Chem 235:2595–2599

    Google Scholar 

  • Foster CM, Borondy M, Padmanabhan V, Schwartz J, Kletter GB, Hopwood NJ, Beitins IZ (1993) Bioactivity of human growth hormone in serum: Validation of an in vitro bioassay. Endocrinology 132:2073–2082

    PubMed  CAS  Google Scholar 

  • Xu BC, Chen WY, Gu T, Ridgway D, Wiehl P, Okada S, Kopchick JJ (1995) Effects of growth hormone antagonists on 3T3-F422A preadipocyte differentiation. J Endocrinol 146:131–139

    PubMed  CAS  Google Scholar 

References

  • Dattani MT, Hindmarsh PC, Brook CGD, Robinson ICAF, Weir T, Marshall NJ (1993) Enhancement of growth hormone bioactivity by zinc in the eluted stain assay system. Endocrinology 1993:2803–2808

    Google Scholar 

  • Dattani MT, Hindmarsh PC, Brook CGD, Robinson ICAF, Kopchick JJ, Marshall NJ (1995) G120R, a human growth hormone antagonist, shows zinc-dependent agonist and antagonist activity on Nb2 cells. J Biol Chem 270:9222–9226

    PubMed  CAS  Google Scholar 

  • Ealey PA, Yateman ME, Holt SJ, Marshall NJ (1988) ESTA: A bioassay system for the determination of potencies of hormones and antibodies which mimic their action. J Mol Endocrin 1:R1–R4

    CAS  Google Scholar 

  • Ealey PA, Yateman ME, Sandhu R, Dattani MD, Hassan MK, Holt SJ, Marshall NJ (1995) The development of an eluted stain bioassay (ESTA) for human growth hormone. Growth Regul 5:36–44

    PubMed  CAS  Google Scholar 

  • Strasburger CJ, Dattani MT (1997) New growth hormone assays: potential benefits. Acta Pediatr Suppl 412:5–11

    Google Scholar 

References

  • Luque EH, Munoz de Toro M, Smith POF, Neill JD (1986) Subpopulations of lactotropes detected with the reverse hemolytic plaque assay show different responsiveness to dopamine. Endocrinology 118:2120–2124

    PubMed  CAS  Google Scholar 

  • Neill JD, Frawley S (1983) Detection of hormone release from individual cells in mixed populations using a reverse hemolytic plaque assay. Endocrinology 112:1135–1137

    PubMed  CAS  Google Scholar 

  • Niimi M, Sato M, Murao K, Takahara J, Kawanishi K (1994a) Effect of excitatory amino acid receptor agonists on secretion of growth hormone as assessed by the reverse hemolytic plaque assay. Neuroendocrinology 60:173–178

    PubMed  CAS  Google Scholar 

  • Niimi M, Sato M, Wada Y, Tamaki M, Takahara J, Kawanishi K (1994b) Analysis of growth hormone release from rat anterior pituitary cells by reverse hemolytic plaque assay: Influence of interleukin-1. Life Sci 55:1807–1913

    PubMed  CAS  Google Scholar 

  • Smith PF, Luque EH, Neill JD (1986) Detection and measurement of secretion from individual neuroendocrine cells using a reverse hemolytic plaque assay. In: Conn PM (ed) Methods in Enzymology, Academic Press, New York, Vol 124, pp 443–464

    Google Scholar 

References

  • Boguszewski CL, Hynsjö L, Johannsson G, Bengtsson BÅ, Carlsson LMS (1996) 22-kD Growth hormone exclusion assay: a new approach to measurement of non-22kD growth hormone isoforms in human blood. Eur J Endocrin 135:573–582

    CAS  Google Scholar 

  • Strasburger CJ, Dattani MT (1997) New growth hormone assays: potential benefits. Acta Pediatr Suppl 412:5–11

    Google Scholar 

References

  • Carmignac D, Well T, Carlsson L, Clark RG, Robinson ICAF (1992) Growth hormone (GH)-binding protein in normal and GH-deficient dwarf rats. J Endocrinol 135:447–457

    PubMed  CAS  Google Scholar 

  • Carmignac D, Gabrielsson BG, Robinson ICAF (1993) Growth hormone binding protein in the rat: effects of gonadal steroids. Endocrinology 133:2445–2452

    PubMed  CAS  Google Scholar 

  • Chomczynski P, Saachi N (1987) Single step method for RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    PubMed  CAS  Google Scholar 

  • Gabrielsson BG, Carmignac DF, Flavell DM, Robinson ICAF (1995) Steroid regulation of growth hormone (GH) receptor and GH-binding protein messenger ribonucleic acids in the rat. Endocrinology 136:209–217

    PubMed  CAS  Google Scholar 

  • Martini JF, Villares SM, Nagano M, Delehaye-Zervas MC, Eymard B, Kelly PA, Postel-Vinay MC (1995) Quantitative analysis by polymerase chain reaction of growth hormone receptor gene expression in human liver and muscle. Endocrinology 136:1355–1360

    PubMed  CAS  Google Scholar 

  • Möller C, Arner P, Sonnenfeld T, Norstedt G (1991) Quantitative comparison of insulin-like growth factor mRNA levels in human and rat tissues analyzed by a solution hybridization assay. J Mol Endocrinol 7:213–222

    PubMed  Google Scholar 

  • Nilsson A, Swolin D, Enerback S, Ohlsson C (1995) Expression of functional growth hormone receptors in cultured human osteoblast-like cells. J Clin Endocrinol Metab 80:3483–3488

    PubMed  CAS  Google Scholar 

References

  • Bangham DR, National Institute for Medical Research, London (1962) The third international standard for corticotropin and an international working standard for corticotropin. Acta Endocrinol 40:552–554British Pharmacopoeia (1988) Vol II, London, Her Majesty's Stationary Office, pp A166–167

    Google Scholar 

  • Chayen J, Daly JR, Loveridge N, Bitensky L (1976) The cytochemical bioassay of hormones. Rec Progr Horm Res 32:33–79

    PubMed  CAS  Google Scholar 

  • Deutsches Arzneibuch, 9. Ausgabe, 1986, Deutscher Apotheker Verlag Stuttgart, V.2.2.2, p 49

    Google Scholar 

  • Fisher JD (1962) Adrenocorticotropin. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Chapter 20. Academic Press, New York and London. pp 641–669

    Google Scholar 

  • Geiger R, Sturm K, Vogel G, Siedel W (1964) Synthetische Analoge des Corticotropins. Zur Bedeutung der aminoterminalen Sequenz Ser-Tyr-Ser für die adrenocorticotrope Wirkung. Zeitschr Naturforsch 19b:858–860

    CAS  Google Scholar 

  • Inouye K, Otsuka H (1987) ACTH: Structure-function relationship. In: Li CH (ed) Hormonal Proteins and Peptides, Vol XIII, Academic Press, Inc., New York, pp 1–29

    Google Scholar 

  • Rerup C (1957) The subcutaneous assay of corticotrophin A. Acta Endocrinol 25:17–32

    PubMed  CAS  Google Scholar 

  • Rerup C (1958) The subcutaneous assay of corticotrophin A. II. The replacement of gelatine by saline. Acta Endocrinol 28:300–310

    PubMed  CAS  Google Scholar 

  • Roe JH, Kuether CA (1943) The determination of ascorbic acid in whole blood and urine through the 2,4-dinitrophenylhydrazine derivative of dehydroascorbinic acid. J Biol Chem 147:399–407

    CAS  Google Scholar 

  • Sayers MA, Sayers G, Woodbury LA (1948) The assay of adrenocorticotropic hormone by the adrenal ascorbic acid-depletion method. Endocrinol 42:379–393

    CAS  Google Scholar 

  • Schuler W, Schär B, Desaulles P (1963) Zur Pharmakologie eines ACTH-wirksamen, vollsynthetischen Polypeptids, des β1__24-Corticotropins, Ciba 30920-Ba, Synacthen. Schweiz Med Wschr 93:1027–1030

    PubMed  CAS  Google Scholar 

  • USP 23 (1995) Corticotropin injection. pp 426–428

    Google Scholar 

  • Vogel HG (1965) Evaluation of synthetic peptides with ACTH-activity. Acta Endocrin (Kbh.) Suppl 100:34

    Google Scholar 

  • Vogel HG (1969a) Tierexperimentelle Untersuchungen über synthetische Peptide mit Corticotropinaktivität. A: Vergleich mit dem III. Internationalen Standard für Corticotropin. Arzneim Forsch/Drug Res 19:20–24

    CAS  Google Scholar 

  • Vogel HG (1969b) Tierexperimentelle Untersuchungen über synthetische Peptide mit Corticotropinaktivität. B: Prüfung einer Depot-Zubereitung von β1–23-Corticotropin-23-amidacetat. Arzneim Forsch/Drug Res 19:25–27

    CAS  Google Scholar 

References

  • Fisher JD (1962) Adrenocorticotropin. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Chapter 20. Academic Press, New York and London. pp 641–669

    Google Scholar 

  • Pekkarinen A (1965) Bioassay of corticotrophin preparations with the international working standard on living guinea pigs. Acta Endocrinol (Kbh) Suppl 100:35

    Google Scholar 

  • Retiene K, Ditschuneit H, Fischer M, Kopp K, Pfeiffer EF (1962) Corticotropin-Bestimmung anhand des Corticosteron-Anstieges im Nebennieren-Venenblut hypophysektomierter Ratten. Vergleich von Dexamethasonblockade und Hypophysektomie. Acta Endocr (Kbh) 41:211–218

    CAS  Google Scholar 

  • Sandow J, Geiger R, Vogel HG (1977) Pharmacological effects of a short chain ACTH-analogue. Naunyn-Schmiedeberg's Arch Pharmacol 297, Suppl II:162

    Google Scholar 

  • Schuler W, Schär B, Desaulles P (1963) Zur Pharmakologie eines ACTH-wirksamen, vollsynthetischen Polypeptids, des β1_24-Corticotropins, Ciba 30920-Ba, Synacthen. Schweiz Med Wschr 93:1027–1030

    PubMed  CAS  Google Scholar 

  • Staehelin M, Barthe P, Desaulles P (1965) On the mechanism of the adrenal gland response to adrenocorticotropic hormone in hypophysectomized rats. Acta Endocr (Kbh) 50:55–64

    CAS  Google Scholar 

  • Vogel HG (1965) Evaluation of synthetic peptides with ACTH-activity. Acta Endocrin (Kbh) Suppl 100:34

    Google Scholar 

  • Vogel HG (1969a) Tierexperimentelle Untersuchungen über synthetische Peptide mit Corticotropinaktivität. A: Vergleich mit dem III. Internationalen Standard für Corticotropin. Arzneim Forsch/Drug Res 19:20–24

    CAS  Google Scholar 

  • Vogel HG (1969b) Tierexperimentelle Untersuchungen über synthetische Peptide mit Corticotropinaktivität. B: Prüfung einer Depot-Zubereitung von β1–23-Corticotropin-23-amidacetat. Arzneim Forsch/Drug Res 19:25–27

    CAS  Google Scholar 

References

  • Allen WM (1950) A simple method for analyzing complicated absorption curves, of use in the colorimetric determination of urinary steroids. J Clin Endocr 10:71–83

    CAS  Google Scholar 

  • Bangham DR, Musset MV, Stack-Dunne MP (1962) The third international standard for corticotrophin and an international working standard for corticotrophin. Acta Endocr (Kbh) 40:552–554

    Google Scholar 

  • Buckingham JC, Cover PO, Gillies GE (1991) Biological and radioimmunometric assay methods for the determination of corticotrophin. In: Greenstein B (ed) Neuroendocrine Research Methods. Vol 2, Harwood Acad Publ., Chur, Chapter 28, pp 601–613

    Google Scholar 

  • Fisher JD (1962) Adrenocorticotropin. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Chapter 20. Academic Press, New York and London. pp 641–669

    Google Scholar 

  • Rerup C (1958) The subcutaneous assay of corticotrophin A. II. The replacement of gelatine by saline. Acta Endocr (Kbh) 28:300–310

    CAS  Google Scholar 

  • Saffran M, Schally AV (1955) In vitro bioassay of corticotropin: modification and statistical treatment. Endocrinology 56:512–532

    Google Scholar 

  • Saffran M, Matthews EK, Pearlmutter F (1971) Analysis of the response to ACTH by rat adrenal in a flowing system. Rec Progr Hormone Res 27:607–630

    CAS  Google Scholar 

  • Schuler W, Schär B, Desaulles P (1963) Zur Pharmakologie eines ACTH-wirksamen, vollsynthetischen Polypeptids, des β1–24-Corticotropins, Ciba 30920-Ba, Synacthen. Schweiz Med Wschr 93:1027–1030

    PubMed  CAS  Google Scholar 

  • Staehelin M, Barthe P, Desaulles P (1965) On the mechanism of the adrenal gland response to adrenocorticotropic hormone in hypophysectomized rats. Acta Endocr (Kbh) 50:55–64

    CAS  Google Scholar 

  • Tesser GI, Schwyzer R (1966) Synthese des 17,18-Diornithin-β-corticotropin-(1–24)-tetracosapeptides, eines biologisch aktiven Analogons des adrenocorticotropen Hormones. Helvet chim Acta 49:1013–1022

    PubMed  CAS  Google Scholar 

  • Van der Vies (1957) Experience with an assay of adrenocorticotropic hormone based on the steroid output of rat adrenals in vitro. Acta physiol pharmacol Neerl 5:361–384

    Google Scholar 

  • Vogel HG (1969a) Tierexperimentelle Untersuchungen über synthetische Peptide mit Corticotropinaktivität. A: Vergleich mit dem III. Internationalen Standard für Corticotropin. Arzneim Forsch/Drug Res 19:20–24

    CAS  Google Scholar 

  • Vogel HG (1969b) Tierexperimentelle Untersuchungen über synthetische Peptide mit Corticotropinaktivität. B: Prüfung einer Depot-Zubereitung von β1–23-Corticotropin-23-amidacetat. Arzneim Forsch/Drug Res 19:25–27

    CAS  Google Scholar 

References

  • Fisher JD (1962) Adrenocorticotropin. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Chapter 20. Academic Press, New York and London. pp 641–669

    Google Scholar 

  • Hayashida T, Li CH (1952) Enhancement of adrenocorticotropic hormone activity by alum in normal 21-day old rats. Endocrinology 50:187–191

    PubMed  CAS  Google Scholar 

  • Hohlweg W, Laschet U, Dörner G, Daume E (1960) Der NTQ-Test, eine einfache Testierungsmethode für Corticotropin-und Depot-Corticotropin-Präparate. Acta Endocrinol (Kbh) 35:501–507

    CAS  Google Scholar 

  • Rerup C (1958) The thymus involution assay of corticotrophin A. Acta Endocrin (Kbh) 29:93–101

    CAS  Google Scholar 

  • Thing E (1953) The thymus involution test for ACTH. Acta Endocrinol (Kbh) 13:343–352

    CAS  Google Scholar 

  • Thompson RE, Fisher JD (1953) Correlation of preparative history and method of assay of corticotropin with clinical potency. Endocrinology 52:496–509

    PubMed  CAS  Google Scholar 

References

  • Kapas S, Cammas FM, Hinson JP, Clark AJL (1996) Agonistic and receptor binding properties of adrenocorticotropin peptides using the cloned mouse adrenocorticotropin receptor expressed in a stably transfected HeLa cell line. Endocrinology 137:32901–3294

    Google Scholar 

  • Lebrethon MC, Naville D, Begeot M, Saez JM (1994) Regulation of corticotropin receptor number and messenger RNA in cultured human adrenocortical cells by corticotropin and angiotensin II. J Clin Invest 93:1828–1833

    PubMed  CAS  Google Scholar 

  • Munson PJ, Rodbard D (1980) Ligand, a versatile computerised approach for characterization of ligand binding systems. Anal Biochem 107:220–239

    PubMed  CAS  Google Scholar 

  • Naville D, Penhoat A, Barjhoux L, Jaillard C, Fontanay S, Saez J, Durand P, Begeot M (1996) Characterization of the human ACTH receptor gene and in vitro expression. Endocr Res 22:337–348

    PubMed  CAS  Google Scholar 

  • Naville D, Barjhoux L, Jaillard C, Saez JM, Durand P, Begeot M (1997) Stable expression of normal and mutant human ACTH receptor. Study of ACTH binding and coupling to adenylate cyclase. Mol Cell Endocrinol 129:83–90

    PubMed  CAS  Google Scholar 

  • Penhoat A, Jaillard C, Saez M (1993) Identification and characterization of corticotropin receptors in bovine and human adrenals. J Steroid Biochem Mol Biol 44:21–27

    PubMed  CAS  Google Scholar 

  • Penhoat A, Lebrethon MC, Begeot M, Saez JM (1995) Regulation of ACTH receptor mRNA and binding sites by ACTH and angiotensin II in cultured human and bovine adrenal fasciculata cells. Endocr Res 21:157–168

    PubMed  CAS  Google Scholar 

  • Picard-Hagen N, Penhoat A, Hue D, Jaillard C, Durand P (1997) Glucocorticoids enhance corticotropin receptor mRNA levels in ovine adrenocortical cells. J Mol Endocrinol 19:29–36

    PubMed  CAS  Google Scholar 

  • Schioth HB, Chhajlani V, Muceniece R, Klusa V, Wikberg JES (1996) Major pharmacological distinction of the ACTH receptor from other melanocortin receptors. Life Sci 59:797–801

    PubMed  CAS  Google Scholar 

  • Schioth HB, Muceniece R, Larsson M, Wikberg JES (1997) The melanocortin 1, 3, 4 or 5 receptors do not have a binding epitope for ACTH beyond the sequence of alpha-MSH. J Endocrinol 155:73–78

    PubMed  CAS  Google Scholar 

  • Zavyalov VP, Maiorov VA, Safonova NG, Navolotskaya EV, Volodina EY, Abromov VM (1995) Receptor binding properties of the peptides corresponding to the ACTH-like sequence of human pro-Interleukin-1α. Immunol Lett 46:125–128

    CAS  Google Scholar 

References

  • Bockmann J, Winter C, Wittkowski W, Kreutz MR, Böckers TM (1997) Cloning and expression of a brain-derived TSH receptor. Biochem Biophys Res Commun 238:173–1780

    PubMed  CAS  Google Scholar 

  • Castagiola A, Swillens S, Niccoli P, Dumont JE, Vassart G, Ludgate M (1992) Binding assay for thyrotropin receptor autoantibodies using the recombinant receptor protein. J Clin Endocrinol Metab 75:1540–1544

    Google Scholar 

  • Cole ES, Lee K, Lauziere K, et al. (1993) Recombinant human thyroid stimulating hormone: development of a biotechnology product for detection of metastatic lesions of thyroid carcinoma. Biotechnology 11:1014–1024

    PubMed  CAS  Google Scholar 

  • Hussain A, Zimmerman CA, Boose JA, Froulich J, Richardson A, Horowitz RS, Collins MT, Lash RW (1996) Large scale synthesis of recombinant human thyrotropin using methotrexate amplification: chromatographic, immunological, and biological characterization. J Clin Endocrinol Metab 81:1184–1188

    PubMed  CAS  Google Scholar 

  • Meinhold H, Altmann R, Bogner U, Finke R, Schleusener H (1994) Evaluation of various immunometric TSH assays. Exp Clin Endocrinol 102:23–26

    Google Scholar 

  • Oda Y, Sanders J, Roberts S, Maruyama M, Kato R, Perez M, Petersen VB, Wedlock N, Furmaniak J, Smith RB (1998) Binding characteristics of antibodies to the TSH receptor. J Mol Endocrinol 20:233–244

    PubMed  CAS  Google Scholar 

  • Spencer CE (1994) Further developments in TSH technology. Exp Clin Endocrinol 102:12–22

    Google Scholar 

  • Utiger RD (1979) Thyrotropin. In: Jaffe BM, Behrman HR (eds) Methods of Hormone Radioimmunoassay. Academic Press New York, pp 315–325

    Google Scholar 

  • Vassart G, Dumont JE (1992) The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr Rev 13:569–611

    Google Scholar 

References

  • Jones MS (1939) A study of thyrotropic hormone in clinical states. Endocrinology 24:665–671

    CAS  Google Scholar 

  • Junkmann K, Schoeller W (1932) Über das thyreotrope Hormon des Hypophysenvorderlappens. Klin Wschr 11:1176–1177

    CAS  Google Scholar 

  • McGinty DA, McCullough NB (1936) Thyrotropic hormone in non-pituitary tissue. Proc Soc Exp Biol Med 35:24–26

    CAS  Google Scholar 

  • Turner CW (1950) Thyrotropic hormone. In: Emmens CW (ed) Hormone Assay. Chapter IX. Academic Press Inc., Publ. New York. pp 215–235

    Google Scholar 

  • Turner CW (1969) Thyrotropic hormone. In: Dorfman RI (ed) Methods in Hormone Research, Vol IIA, Chapter 14, Academic Press, New York and London. pp 515–565

    Google Scholar 

References

  • Bates RW, Cornfield J (1957) An improved assay method for thyrotropin using depletion of I131 from the thyroid of dayold chicks. Endocrinology 60:225–238

    PubMed  CAS  Google Scholar 

  • McKenzie JM (1958) The bioassay of thyrotropin in serum. Endocrinology 63:372–382

    PubMed  CAS  Google Scholar 

  • Sakiz E, Guillemin R (1964) On a method for calculation and analysis of results in the McKenzie assay for thyrotropin. Proc Soc Exp Biol Med 115:856–860

    PubMed  CAS  Google Scholar 

  • Turner CW (1950) Thyrotropic hormone. In: Emmens CW (ed) Hormone Assay. Chapter IX, Academic Press Inc., Publ. New York. pp 215–235

    Google Scholar 

  • Turner CW (1962) Thyrotropic hormone. In: In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Chapter 19. Academic Press, New York and London. pp 617–639

    Google Scholar 

  • Turner CW (1969) Thyrotropic hormone. In: In: Dorfman RI (ed) Methods in Hormone Research, Vol IIA, Chapter 14. Academic Press, New York and London. pp 515–565

    Google Scholar 

References

  • Horimoto M, Nishikawa M, Yoshikawa N, Inada N (1989) A sensitive and practical bioassay for thyrotropin using cultured FRTL-5 cells: Assessment of bioactivity for serum TSH in patients with chronic renal failure. Acta Endocrinol (Copenh.) 121:191–196

    PubMed  CAS  Google Scholar 

  • Nissim M, Lee KO, Petrick PA, Dahlberg PA, Weintraub BD (1987) A sensitive thyrotropin (TSH) bioassay on iodide uptake in rat FRTL-5 thyroid cells: comparison with the adenosine 3′,5′-monophosphate response to human serum TSH and enzymatically deglycosylated bovine and human TSH. Endocrinology 121:1278–1287

    PubMed  CAS  Google Scholar 

  • Persani L, Tonacchera M, Beck-Peccoz P, Vitti P, Mammoli C, Chiovato L, Elisei R, Faglia G, Ludgate M, Vassart G, Pinchera A (1993) Measurement of cAMP accumulation on Chinese hamster ovary cells transfected with the recombinant human TSH receptor (CHO-R): A new bioassay for human thyrotropin. J Endocrin Invest 16:511–519

    CAS  Google Scholar 

  • Vitti P, Chiovato L, Ceccarelli P, Lombardi A, Novaes M Jr., Fenci GF, Pinchera A (1986) Thyroid-stimulating antibody mimics thyrotropin in its ability to desensitize the adenosine 3′,5′-monophosphate response to acute stimulation in continuously cultured rat thyroid cells (FRT-L5). J Clin Endocrinol Metab 63:454–458

    PubMed  CAS  Google Scholar 

References

  • Albert A (1945) The biochemistry of the thyrotropic hormone. Ann NY Acad Sci 50:466–490

    Google Scholar 

  • Brunish R, Hayashi K, Hayashi J (1962) Purification and properties of exophthalmus-producing substance. Arch Biochem Biophys 98:135–141

    PubMed  CAS  Google Scholar 

  • der Kinderen PJ, Houtstra-Lanz M, Schwarz F (1960) Exophthalmus-producing substance in human serum. J Clin Endocrin Metab 20:712–718

    Google Scholar 

  • Dobyns BM, Steelman SL (1953) The thyroid stimulating hormone of the anterior pituitary as distinct from the exophthalmus producing substance. Endocrinology 52:705–711

    PubMed  CAS  Google Scholar 

  • Haynie TP, Winzler RJ, Matovinovic J, Carr EA Jr., Beierwaltes WH (1962) Thyroid-stimulating and exophthalmus-producing activity of biochemically altered thyrotropin. Endocrinology 71:782–789

    PubMed  CAS  Google Scholar 

  • Sobonya RE, Dobyns BM (1967) Comparisons of the responses of native Ohio fish and two species of salt-water Fundulus to the exophthalmus-producing substance (EPS) of the pituitary gland. Endocrinology 80:1090–1096

    PubMed  CAS  Google Scholar 

  • Turner CW (1969) Thyrotropic hormone. In: In: Dorfman RI (ed) Methods in Hormone Research, Vol IIA, Chapter 14 Academic Press, New York and London. pp 515–565

    Google Scholar 

References

  • Adams DD (1958) The presence of an abnormal thyroid-stimulating hormone in the serum of some thyrotoxic patients. J Clin Endocrin Metab 18:699–712

    CAS  Google Scholar 

  • Ealey PA, Marshall NJ, Ekins RP (1984) Further studies on the response of a cytochemical bioassay to thyroid stimulators, using reference preparations of thyrotropin and long acting thyroid stimulator. J Endocrinol Invest 7:25–28

    PubMed  CAS  Google Scholar 

  • Ealey PA, Valente WA, Ekins RP, Kohn LD, Marshall NJ (1985) Characterization of monoclonal antibodies raised against solubilized thyrotropin receptors in a cytochemical bioassay for thyroid stimulators. Endocrinology 116:124–131

    PubMed  CAS  Google Scholar 

  • Ikeda H, Nagataki S (1983) Lack of refractoriness to stimulation with long acting thyroid stimulator of thyroid hormone synthesis and thyroid hormone secretion in mice in vivo. Acta Endocrin 102:392–395

    CAS  Google Scholar 

  • Ikeda H, Chiu SC, Kuzuya N, Uchimura H, Nagataki S (1984) Effects of in vivo triiodothyronine and long acting thyroid stimulator (LATS) administration on the in vitro thyroid cAMP response to thyrotrophin and LATS. Acta Endocrin 106:193–198

    CAS  Google Scholar 

  • McKenzie JM (1958) The bioassay of thyrotropin in serum. Endocrinology 63:372–382

    PubMed  CAS  Google Scholar 

  • Turner CW (1969) Thyrotropic hormone. In: In: Dorfman RI (ed) Methods in Hormone Research, Vol IIA, Chapter 14. Academic Press, New York and London. pp 515–565

    Google Scholar 

References

  • Allison NL, Albrightson-Winslow CR, Brooks DP, Stassen FL, Huffman WF, Stote RM, Kinter LB (1987) Species heterogeneity and antidiuretic activity of hormone antagonists: What are the predictors? In: Gash DM, Boer GJ, (eds) Vasopressin. Principles and Properties. Plenum Press, New York, pp 207–214

    Google Scholar 

  • Bell IM, Erb JM, Freidinger RM, Gallicchio SN, Guare JP, Guidotti MT, Halpin RA, Hobbs DW, Homnick CF, Kuo MS, Lis EV, Mathre DJ, Michelson SR, Pawluczyk JM, Pettibone DJ, Reiss DR, Vickers S, Williams PD, Woyden CJ (1998) Development of orally active oxytocin antagonists: Studies on 1-(1-(4-[1-(2-methyl-1-oxidopyridin-3-ylmethyl)piperidin-4-yloxy]-2-methoxybenzoyl)-4-yl)-1,4-dihydrobenz[d][1,3]oxazin-2-one (L-372,662) and related pyridines. J Med Chem 41:2146–2163

    PubMed  CAS  Google Scholar 

  • Burnatowska-Hledin MA, Spielman WS (1989) Vasopressin V1 receptors on the principal cells of the rabbit cortical collecting tubule. J Clin Invest 83:84–89

    PubMed  CAS  Google Scholar 

  • Dale H, Laidlaw J (1912) A method for standardising pituitary (infundibular) extracts. J Pharmacol Exper Ther 4:73–95

    Google Scholar 

  • Fahrenholz F, Kojro E, Jans D (1988) Renal and hepatic vasopressin receptor proteins: identification and strategies for purification. In: Cowley Jr. AW, Liard JF, Ausiello DA (eds) Raven Press, Ltd., New York, pp 27–32

    Google Scholar 

  • Fromherz K (1926) Bemerkungen zur Auswertung von Hypophysenextrakt am Meerschweinchenuterus. Naunyn-Schmiedeberg's Arch exp Path Pharmakol 113:113–123

    CAS  Google Scholar 

  • Gash DM, Herman JP, Thomas GJ (1987) Vasopressin and animal behavior. In: Gash DM, Boer GJ (eds) Vasopressin. Principles and Properties. Plenum Press, New York, pp 517–547

    Google Scholar 

  • Glick SM, Kagan A (1978) Vasopressin. In: Jaffe BM, Behrman HR (eds) Methods of Hormone Radioimmunoassay. Academic Press New York, pp 341–351

    Google Scholar 

  • Hedge GA, Huffman LJ (1987) Vasopressin and endocrine function. In: Gash DM, Boer GJ (eds) Vasopressin. Principles and Properties. Plenum Press, New York, pp 435–475

    Google Scholar 

  • Hogben LT, Schlapp W (1924) Studies on the pituitary. III. The vasomotor activity of pituitary extracts throughout the vertebrate series. Quart J Exper Physiol 14:229–258

    CAS  Google Scholar 

  • Hogben LT, Schlapp W, Macdonald AD (1924) Studies on the pituitary IV. Quantitative comparison of pressor activity. Quart J Exper Physiol 14:301–318

    CAS  Google Scholar 

  • Hruby VJ, Chow MS (1990) Conformational and structural considerations in oxytocin-receptor binding and biological activity. Ann Rev Pharmacol Toxicol 30:501–534

    CAS  Google Scholar 

  • Jard S, Bockaert J, Rajerison R (1976) Vasopressin receptors. In: Blecher M (ed) Methods in Receptor Research, Part II, Marcel Dekker, Inc., New York and Basel, pp 667–703

    Google Scholar 

  • Jard S, Gaillard RC, Guillon, G, Marie J, Schoenenberg P, Muller AF, Manning M, Sawyer WH (1986) Vasopressin antagonists allow demonstration of a novel type of vasopressin receptor in the rat adenohypophysis. Mol Pharmacol 30:171–177

    PubMed  CAS  Google Scholar 

  • Kagan A, Glick SM (1978) Oxytocin. In: Jaffe BM, Behrman HR (eds) Methods of Hormone Radioimmunoassay. Academic Press New York, pp 327–339

    Google Scholar 

  • Kuo MS, Bock MG, Freidinger RM, Guidfotti MT, Lis EV, Pawluczyk JM, Perlow DS, Pettibone DJ, Quigley AG, Reiss DR, Williams PD, Woyden CJ (1998) Nonpeptide oxytocin antagonists: Potent, bioavailable analogs of L-371,257 containing A 1-R-(pyridyl)ethyl ether terminus. Bioorg Med Chem Lett 8:3081–3086

    PubMed  CAS  Google Scholar 

  • Mah SC, Hofbauer KG (1987) Pharmacological studies with the vasopressin (V2) antagonist d(CH2)5-D-Tyr(Et)V AVP: acute and chronic effects in Sprague-Dawley and Brattleboro rats. In: Gash DM, Boer GJ (eds) Vasopressin. Principles and Properties. Plenum Press, New York, pp 201–206

    Google Scholar 

  • Manning M, Bankowski K, Sawyer WH (1987) Selective agonists and antagonists of vasopressin. In: Gash DM, Boer GJ (eds) Vasopressin. Principles and Properties. Plenum Press, New York, pp 335–368

    Google Scholar 

  • Schaumann W (1937) Wirkstoffe des Hinterlappens der Hypophyse. Handbuch exper Pharmakol, Vol 3, Springer Berlin, pp 61–150

    Google Scholar 

  • Soloff MS (1976) Oxytocin receptors in the mammary gland and uterus. In: Blecher M (ed) Methods in Receptor Research, Part II, Marcel Dekker, Inc., New York and Basel, pp 511–531

    Google Scholar 

  • Vogel G, Hergott J (1963) Pharmakologische Untersuchungen über O-Methyl-tyrosin2-lysin8-Vasopressin. Arzneim Forsch/Drug Res 13:415–421

    CAS  Google Scholar 

  • Walker BR, Childs ME, Adams EM (1988) Direct cardiac effects of vasopressin: role of V1-and V2-vasopressinergic receptors. Am J Physiol 255:H261–H265

    PubMed  CAS  Google Scholar 

References

  • Berde B, Cerletti A, Konzett H (1959) The biological activity of a series of peptides related to oxytocin. In: Caldeyro-Barcia, Heller H (eds) Oxytocin: Intern Sympos Montevideo. Pergamon Press, London, 1961

    Google Scholar 

  • Berde B, Doepfner W, Konzett H (1957) Some pharmacological actions or four synthetic analogues of oxytocin. Br J Pharmacol 12:209–214

    CAS  Google Scholar 

  • Boissonnas RA (1960) The chemistry of oxytocin and vasopressin. In: Schachter M (ed) Polypeptides which affect smooth muscles and blood vessels. Pergamon Press, London, pp 7–19

    Google Scholar 

  • Boissonnas RA, Guttmann St, Berde B, Konzett H (1961) Relationships between the chemical structures and the biological properties of the posterior pituitary hormones and their synthetic analogues. Experientia 1:377–390

    Google Scholar 

  • British Pharmacopoeia, Vol II (1988) Biological assay of oxytocin. Appendix XIV C:A171

    Google Scholar 

  • Burn HJ, Finney DJ, Goodwin LG (1952) Biological Standardization. 2nd ed, 2nd impression. Oxford University Press, London, New York, Toronto

    Google Scholar 

  • Dale H, Laidlaw J (1912) A method for standardising pituitary (infundibular) extracts. J Pharmacol Exper Ther 4:73–95

    Google Scholar 

  • Fromherz K (1926) Bemerkungen zur Auswertung von Hypophysenextrakt am Meerschweinchenuterus. Naunyn-Schmiedeberg's Arch exp Path Pharmakol 113:113–123

    CAS  Google Scholar 

  • Glaubach S, Molitor H (1932) Vergleich der Auswertungsmethoden von Gesamtextrakten des Hypophysenhinterlappens am isolierten Meerrschweinchenuterus und an der Diuresehemmung von Hunden, Ratten und Mäusen. Naunyn-Schmiedeberg's Arch exp Path Pharmakol 166:243–264

    CAS  Google Scholar 

  • Guissani DA, Jenkins SL, Mecenas CA, Owiny JR, Wentwort RA, Winter JA, Derks JB, Honnebier MBOM, Nathanielz PW (1995) The oxytocin (OT) antagonist Atosiban (ATO) prolongs gestation in the rhesus monkey. J Soc Gynecol Invest 2:265

    Google Scholar 

  • Holton P (1948) A modification of the method of Dale and Laidlaw for the standardization of posterior pituitary extract. Br J Pharmacol 3:328–334

    CAS  Google Scholar 

  • Kruse J (1986) Oxytocin: Pharmacology and clinical application. J Fam Pract 23:473–479

    PubMed  CAS  Google Scholar 

  • Liebmann C, Nawrath S, Ludwig B, Paegelow I (1993) Pharmacological and molecular actions of the bradykinin B2 receptor antagonist, Hoe 140 in the rat uterus. Eur J Pharmacol 235:183–188

    PubMed  CAS  Google Scholar 

  • Lipschitz W, Klar F (1933) Die Abhängigkeit der Wirkung uteruserregender Mittel (Histamin und Ergotamin) von Konzentration und Reaktionstemperatur. Naunyn-Schmiedeberg's Arch exp Path Pharmakol 174:223–244

    CAS  Google Scholar 

  • Munsick RA, Sawyer WH, van Dyke HB (1960) Avian neurohyophyseal hormones: Pharmacological properties and tentative identification. Endocrinology 66:860–871

    CAS  Google Scholar 

  • Murray WJ, Miller JW (1960) Oxytocin-induced “cramping” in the rat. J Pharm Exp Ther 128:372–379

    CAS  Google Scholar 

  • Pettibone DJ, Guidotti MT, Harrell CM, Jasper JR, Lis EV, O'Brien JA, Reiss DR, Woyden CJ, Bock MG, Evans BE, Freidinger RM, Williams DP, Murphy MG (1996) Progress in the development of oxytocin antagonists for use in preterm labor. Adv Exper Biol Med 395:601–612

    Google Scholar 

  • Schaumann W (1937) Wirkstoffe des Hinterlappens der Hypophyse. Handbuch exper Pharmakol, Vol 3, Springer Berlin, pp 61–150

    Google Scholar 

  • Schübel K, Gehlen W (1933) Eine neue, zuverlässige Methode zur Standardisierung von Hypophysen-Hinterlappenextrakten. Naunyn-Schmiedeberg's Arch exp Path Pharmakol 173:633–641

    Google Scholar 

  • Simon A (1933) The secretion of the posterior lobe of the hypophysis after the administration of drugs. J Pharmacol 49:375–386

    CAS  Google Scholar 

  • Thorp RH (1962) Posterior pituitary hormones. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Chapter 14. Academic Press, New York and London. pp 495–516

    Google Scholar 

  • Thorp RH (1969) Posterior pituitary hormones. In: Dorfman RI (ed) Methods in Hormone Research, Vol IIA, Chapter 12. Academic Press, New York and London. pp 457–480

    Google Scholar 

  • USP 23 (1995) Vasopressin injection. The United States Pharmacopeia 23, pp 1622–1623

    Google Scholar 

  • Van Dyke HB, Adamsons K, Engel SL (1995) I. Pituitary hormones. Aspects of the biochemistry and physiology of the neurohyophyseal hormones. Rec Progr Hormone Res 11:1–41

    Google Scholar 

  • Vogel G, Hergott J (1963) Pharmakologische Untersuchungen über O-Methyl-tyrosin2-lysin8-Vasopressin. Arzneim Forsch/Drug Res 13:415–421

    CAS  Google Scholar 

References

  • British Pharmacopoeia, Vol II (1988) Biological assay of oxytocin. Appendix XIV C:A171

    Google Scholar 

  • Coon JM (1939) A new method for the assay of posterior pituitary extracts. Arch intern Pharmacodyn Ther 62:79–99

    CAS  Google Scholar 

  • DuVigneaud V, Fitt PS, Bodanszky M, O'Connell M (1960) Synthesis and some pharmacological properties of a peptide derivative of oxytocin: Glycyloxytocin. Proc Soc Exp Biol Med 104:653–656

    Google Scholar 

  • Munsick RA, Sawyer WH, van Dyke HB (1960) Avian neurohyophyseal hormones: Pharmacological properties and tentative identification. Endocrinology 66:860–871

    CAS  Google Scholar 

  • Thorp RH (1962) Posterior pituitary hormones. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Chapter 14. Academic Press, New York and London. pp 495–516

    Google Scholar 

  • Thorp RH (1969) Posterior pituitary hormones. In: Dorfman RI (ed) Methods in Hormone Research, Vol IIA, Chapter 12, Academic Press, New York and London. pp 457–480

    Google Scholar 

  • USP 23 (1995a) Design and analysis of biological assays. The United States Pharmacopeia 23, pp 1705–1715

    Google Scholar 

  • USP 23 (1995b) Oxytocin injection. The United States Pharmacopeia 23, pp 1148–1149

    Google Scholar 

  • Van Dyke HB, Adamsons K, Engel SL (1995) I. Pituitary hormones. Aspects of the biochemistry and physiology of the neurohyophyseal hormones. Rec Progr Hormone Res 11:1–41

    Google Scholar 

References

  • Berde B, Cerletti A (1957) Démonstration expérimentale de l'action de l'ocytocine sur la glande mammaire. Gynaecologia 144:275–278

    PubMed  CAS  Google Scholar 

  • British Pharmacopoeia, Vol II (1988) Biological assay of oxytocin. Appendix XIV C:A171

    Google Scholar 

  • Munsick RA, Sawyer WH, van Dyke HB (1960) Avian neurohyophyseal hormones: Pharmacological properties and tentative identification. Endocrinology 66:860–871

    CAS  Google Scholar 

  • Thorp RH (1962) Posterior pituitary hormones. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Chapter 14, Academic Press, New York and London. pp 495–516

    Google Scholar 

  • Thorp RH (1969) Posterior pituitary hormones. In: Dorfman RI (ed) Methods in Hormone Research, Vol IIA, Chapter 12, Academic Press, New York and London. pp 457–480

    Google Scholar 

  • Tindal JS, Yokoyama A (1962) Assay of oxytocin by the milk-ejection response in the anesthetized lactating guinea pig. Endocrinology 71:196–202

    PubMed  CAS  Google Scholar 

  • van Dyke (1959) Some features of the pharmacology of oxytocin. In: Caldeyro-Barcia, Heller H (eds) Oxytocin: Intern Sympos Montevideo. Pergamon Press, London, 1961. pp 48–67

    Google Scholar 

  • van Dyke HB, Adamsons K Jr., Engel SL (1955) Aspects of the biochemistry and physiology of the neurohypophyseal hormones. Rec Progr Hormone Res 11:1–41

    Google Scholar 

References

  • Chan WY, Wo NC, Cheng LL, Manning M (1996) Isosteric substitution of Asn5 in antagonists of oxytocin and vasopressin leads to highly selective and potent oxytocin and V1a receptor antagonists: New approaches for the design of potential tocolytics for preterm labor. J Pharm Exp Ther 277:999–1003

    CAS  Google Scholar 

  • Elands J, Barberis C, Jard S, Tribollet E, Dreifuss JJ, Bankowski K, Manning M, Sawyer WH (1987) 125I-labelled d(CH2)5 [Tyr(Me)2,Thr4,Tyr-NH 92 ]OTV. A selective oxytocin receptor ligand. Eur J Pharmacol 147:197–207

    Google Scholar 

  • Evans BE, Lundell GF, Gilbert KF, Bock MG, Rittle KE, Carroll LA, Williams PD, Pawluczyk JM, Leighton JL, Young MB, Erb JM, Hobbs DW, Gould NP, DiPardo RM, Hoffman JB, Perlow DS, Whitter WL, Veber DF, Pettibone DJ, Clineschmidt BV, Anderson PS, Freidinger RM (1993) Nanomolar-affinity, non-peptide oxytocin receptor antagonists. J Med Chem 36:3993–4005

    PubMed  CAS  Google Scholar 

  • Freidinger RM, Pettibone DJ (1997) Small molecule ligands for oxytocin and vasopressin receptors. Med Res Rev 17:1–7

    PubMed  CAS  Google Scholar 

  • Jeng Y J; Lolait SJ, Strakova Z, Chen C, Copland JA, Mellman D, Hellmich MR, Soloff MS (1996) Molecular cloning and functional characterization of the oxytocin receptor from a rat pancreatic cell line (RINm5F). Neuropeptides 30:557–565

    PubMed  CAS  Google Scholar 

  • Klein U, Jurzak M, Gerstberger R, Fahrenholz F (1995) A new tritiated oxytocin receptor radioligand — Synthesis and application for localization of central oxytocin receptors. Peptides 16:851–857

    PubMed  CAS  Google Scholar 

  • Maggi M, Fantoni G, Baldi E, Cioni A, Rossi S, Vanelli GB, Melin P, Åkerlund M, Serio M (1994) Antagonists for the human oxytocin receptor: an in vitro study. J Reprod Fertil 101:345–352

    PubMed  CAS  Google Scholar 

  • Manning M, Cheng LL, Klis A, Stoev S, Przybylski J, Bankowski K, Sawyer WH, Barberis C, Chan WY (1995) Advances in the design of selective antagonists, potential tocolytics and radioiodinated ligands for oxytocin receptors. In: Ivell R, Russell J (eds) Oxytocin, Plenum Press, New York, pp 559–584

    Google Scholar 

  • McPherson GA (1985a) KINETIC, EBDA, LIGAND, LOWRY: A Collection of Radioligand Binding Analysis Programs (Elsevier Science Publ., Amsterdam)

    Google Scholar 

  • McPherson GA (1985b) Analysis of radioligand binding experiments. A collection of computer programs for the IBM PC. J Pharmacol Meth 14:213–228

    CAS  Google Scholar 

  • Pak S C, Bertoncini D, Meyer W, Scaunas D, Flouret G, Wilson R Jr. (1994) Comparison of binding affinity of oxytocin antagonists to human and rat oxytocin receptors their correlation to the rat oxytocic bioassay. Biol Reprod 51:1140–1144

    PubMed  CAS  Google Scholar 

  • Pettibone DJ, Freidinger RM (1997) Discovery and development of non-peptide antagonists of peptide hormone receptors. Biochem Soc Trans 25:1051–1057

    PubMed  CAS  Google Scholar 

  • Pettibone DJ, Woyden CJ, Totaro JA (1990) Identification of functional oxytocin receptors in lactating rat mammary gland in vitro. Eur J Pharmacol Mol Pharmacol Sect 188:235–242

    CAS  Google Scholar 

  • Pettibone DJ, Clineschmidt BV, Lis EV, Reiss DR, Totaro JA, Woyden CJ, Bock MG, Freidinger RM, Tung RD, Veber DF, Williams DP, Lowensohn (1991) In vitro pharmacological profile of a novel structural class of oxytocin antagonists. J Pharm Exp Ther 256:304–308

    CAS  Google Scholar 

  • Pettibone DJ, Clineschmidt BV, Guidotti MT, Lis EV, Reiss DR, Woyden CJ, Bock MG, Evans BE, Freidinger RM, Hobbs DW, Veber DF, Williams PD, Chiu SHL, Thompson KL, Schorn TW, Siegl PKS, Kaufman MJ, Cukierski MA, Haluska GJ, Cook MJ, Novy MJ (1993a) L-368,899, a potent orally active oxytocin antagonist for potential use in preterm labor. Drug Dev Res 30:129–142

    CAS  Google Scholar 

  • Pettibone DJ, Clineschmidt BV, Kishel MT, Lis EV, Reiss DR, Woyden CJ, Evans BE, Freidinger RM, Veber DF, Cook MJ, Haluska GJ, Novy MJ, Lowensohn (1993b) Identification of an orally active, nonpeptidyl oxytocin antagonist. J Pharm Exp Ther 264:308–314

    CAS  Google Scholar 

  • Pettibone DJ, Guidotti MT, Harrell CM, Jasper JR, Lis EV, O'Brien JA, Reiss DR, Woyden CJ, Bock MG, Evans BE, Freidinger RM, Williams DP, Murphy MG (1996) Progress in the development of oxytocin antagonists for use in preterm labor. Adv Exper Biol Med 395:601–612

    Google Scholar 

  • Salvatore CA, Woyden CJ, Guidotti MT, Pettibone DJ, Jacobson MA (1998) Cloning and expression of the rhesus monkey oxytocin receptor. J Recept Signal Transduction Res 18:15–24

    CAS  Google Scholar 

  • Young LJ, Hout B, Nilsen R, Wang Z, Insel TR (1996) Species differences in central oxytocin receptor expression: Comparative analyses of promotor sequences. J Neuroendocrinol 8:777–783

    PubMed  CAS  Google Scholar 

References

  • Laycock JF, Chatterji U, Seckl JR, Gartside IB (1994) The abnormal quinine drinking aversion in the Brattleboro rat with diabetes insipidus is reversed by the vasopressin agonist DDAVP: a possible role for vasopressin in the motivation to drink. Physiol Behav 55:407–412

    PubMed  CAS  Google Scholar 

  • McCabe JT, Almasan K, Lehmann E, Hänze J, Lang RE, Pfaff DW, Ganten D (1988) Vasopressin gene expression in hypertensive, normotensive, and diabetes insipidus rats. Clin Exp Theor Pract A10 (Suppl 1):131–142

    CAS  Google Scholar 

  • Nyunt-Wai V, Laycock JF (1990) The pressor response to vasopressin is not attenuated by hypertonic NaCl in the anaesthetized Brattleboro rat. J Physiol 430:35P

    Google Scholar 

  • Schmale H, Richter D (1984) Single base deletion in the vasopressin gene is the cause of diabetes insipidus in Brattleboro rats. Nature 308:705–709

    PubMed  CAS  Google Scholar 

  • Schmale H, Ivell R, Breindl M, Darmer D, Richter D (1984) The mutant vasopressin gene from diabetes insipidus (Brattleboro) rats is transcribed but the message is not efficiently translated. EMBO J 3:3289–3293

    PubMed  CAS  Google Scholar 

  • Sokol HW, Valtin H (eds) (1982) The Brattleboro rat. Ann NY Acad Sci, New York, Vol 394

    Google Scholar 

  • Szot P, Dorsa DM (1992) Cytoplasmatic and nuclear vasopressin RNA in hypothalamic and extrahypothalamic neurons of the Brattleboro rat: An in situ hybridization study. Mol Cell Neurosci 3:224–236

    PubMed  CAS  Google Scholar 

  • Valtin H, Sawyer WH, Sokol HW (1965) Neurohypophyseal principles in rats homozygous and heterozygous for hypothalamic diabetes insipidus (Brattleboro strain). Endocrinol 77:701–706

    CAS  Google Scholar 

References

  • Altura BM, Altura BT (1984) Actions of vasopressin, oxytocin, and synthetic analogs on vascular smooth muscle. Fed Proc 43:80–86

    PubMed  CAS  Google Scholar 

  • British Pharmacopoeia, Vol II (1988) Biological assay of argipressin. Appendix XIV C:A172–A173

    Google Scholar 

  • Dekansky J (1952) The quantitative assay of vasopressin. Br J Pharmacol 7:567–572

    Google Scholar 

  • DuVigneaud V, Fitt PS, Bodansky M, O'Conell MO (1960) Synthesis and some pharmacological properties of a peptide derivative of oxytocin: Glycyloxytocin. Proc Soc Exp Biol Med 104:653–656

    Google Scholar 

  • Hamilton HC (1912) The pharmacological assay of pituitary preparations. J An Pharmaceut Ass 1:1117–1119

    CAS  Google Scholar 

  • Knape JTA, van Zwieten PA (1988) Vasoconstrictor activity of vasopressin in the pithed rat. Arch Int Pharmacodyn 291:142–152

    PubMed  CAS  Google Scholar 

  • Sawyer WH (1961) Neurohypophyseal hormones. Pharmacol Rev 13:225–277

    PubMed  CAS  Google Scholar 

  • Thorp RH (1969) Posterior pituitary hormones. In: Dorfman RI (ed) Methods in Hormone Research, Vol IIA, Chapter 12, Academic Press, New York and London. pp 457–480

    Google Scholar 

  • USP 23 (1995a) Design and analysis of biological assays. The United States Pharmacopeia 23, pp 1705–1715

    Google Scholar 

  • USP 23 (1995b) Vasopressin injection. The United States Pharmacopeia 23, pp 1622–1623

    Google Scholar 

  • Van Dyke HB, Adamsons K, Engel SL (1955) I. Pituitary hormones. Aspects of the biochemistry and physiology of the neurohypophyseal hormones. Rec Progr Hormone Res 11:1–41

    Google Scholar 

  • Vogel G, Hergott J (1963) Pharmakologische Untersuchungen über O-Methyl-tyrosin2-lysin8-Vasopressin. Arzneim Forsch/Drug Res 13:415–421

    CAS  Google Scholar 

References

  • British Pharmacopoeia, Vol II (1988) Biological assay of desmopressin. Appendix XIV D:A173

    Google Scholar 

  • Burn JH (1931) Estimation of the antidiuretic potency of pituitary (posterior lobe) extract. Quart J Pharmacy 4:517–529

    CAS  Google Scholar 

  • Schaumann W (1937) Wirkstoffe des Hinterlappens der Hypophyse. Handbuch exper Pharmakol, Vol 3, Springer Berlin, pp 61–150

    Google Scholar 

  • Thorp RH (1962) Posterior pituitary hormones. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Chapter 14, Academic Press, New York and London. pp 495–516

    Google Scholar 

  • Thorp RH (1969) Posterior pituitary hormones. In: Dorfman RI (ed) Methods in Hormone Research, Vol IIA, Chapter 12, Academic Press, New York and London. pp 457–480

    Google Scholar 

  • Van Dyke HB, Adamsons K, Engel SL (1955) I. Pituitary hormones. Aspects of the biochemistry and physiology of the neurohypophyseal hormones. Rec Progr Hormone Res 11:1–41

    Google Scholar 

  • Vogel G, Hergott J (1963) Pharmakologische Untersuchungen über O-Methyl-tyrosin2-lysin8-Vasopressin. Arzneim Forsch/Drug Res 13:415–421

    CAS  Google Scholar 

References

  • Berde B, Cerletti A (1961) Über die antidiuretische Wirkung von synthetischem Lysin-Vasopressin. Helv Physiol Acta 19:135–150

    CAS  Google Scholar 

  • Dettelbach HR (1958) A method for assaying small amounts of antidiuretic substances with notes on some properties of vasopressin. Am J Physiol 192:379–386

    PubMed  CAS  Google Scholar 

  • Dicker SE (1953) A method for the assay of very small amounts of antidiuretic activity with a note on the antidiuretic titer of rats' blood. J Physiol 122:149–157

    PubMed  CAS  Google Scholar 

  • Munsick RA, Sawyer WH, van Dyke HB (1960) Avian neurohyophyseal hormones: Pharmacological properties and tentative identification. Endocrinology 66:860–871

    CAS  Google Scholar 

  • van Dyke HB, Ames RG (1951) Alcohol diuresis. Acta Endocrin (Kbh) 7:110–121

    Google Scholar 

References

  • Schaumann W (1937) Wirkstoffe des Hinterlappens der Hypophyse. Handbuch exper Pharmakol, Vol 3, Springer Berlin, pp 61–150

    Google Scholar 

  • Simon A (1933) The secretion of the posterior lobe of the hypophysis after the administration of drugs. J Pharmacol 49:375–386

    CAS  Google Scholar 

  • Vogel G, Hergott J (1963) Pharmakologische Untersuchungen über O-Methyl-tyrosin2-lysin8-Vasopressin. Arzneim Forsch/Drug Res 13:415–421

    CAS  Google Scholar 

References

  • Ala Y, Morin D, Mahé E, Cotte N, Mouillac B, Jard S, Barberis C, Tribollet E, Dreifuss JJ, Sawyer WH, Wo N C, Chan WY, Kolodziejczyk AS, Chen LL, Manning M (1997) Properties of a new radioiodinated antagonist for human vasopressin V2 and V1a receptors. Eur J Pharmacol 331:285–293

    PubMed  CAS  Google Scholar 

  • Albright JD, Chan PS (1997) Recent advances in the discovery of vasopressin antagonists: Peptide and nonpeptide V1a and V2 receptor antagonists. Curr Pharm Des 3:615–632

    CAS  Google Scholar 

  • Barberis C, Ballestre MN, Jard S, Tribollet E, Arsenijevic Y, Dreifuss JJ, Bankowski K, Manning M, Chan WY, Schlosser SS, Holsboer F, Elands J (1995) Characterization of a novel linear radioiodinated vasopressin antagonist: An excellent radioligand for vasopressin V1a receptors. Neuroendocrinol 62:135–146

    CAS  Google Scholar 

  • Carnazzi E, Aumelas A, Phalipou S, Mouillac B, Guillon G, Barberis C, Seyer R (1997) Efficient photoaffinity labeling of the rat V1a vasopressin receptor using a linear azidopeptidic antagonist. Eur J Biochem 247:906–913

    PubMed  CAS  Google Scholar 

  • Elands J, Barberis C, Jard S, Lammek B, Manning M, Sawyer WH, de Kloet ER (1988) 125I-d(CH2)5[Tyr(Me)2,Tyr(NH2)9]AVP: iodination and binding characteristics of a vasopressin receptor ligand. FEBS Lett 229:251–255

    PubMed  CAS  Google Scholar 

  • Gaillard RC, Schoeneberg P, Favrod-Coune CA, Muller AF, Marie J, Bockaert J, Jard S (1984) Properties of rat anterior pituitary vasopressin receptors: relation to adenylate cyclase and the effect of corticotropin-releasing factor. Proc Natl Acad Sci USA 81:2907–2911

    PubMed  CAS  Google Scholar 

  • Gopalakrishnan V, Triggle CR, Sulakhe PV, McNeill JR (1986) Characterization of a specific, high affinity [3H]arginine8 vasopressin-binding site in liver microsomes from different strains of rats and the role of magnesium. Endocrinology 118:990–997

    PubMed  CAS  Google Scholar 

  • Howl J, Wheatley M (1995) Molecular pharmacology of V1a vasopressin receptors. Gen Pharmacol 26:1143–1152

    PubMed  CAS  Google Scholar 

  • Kelly JM, Abrahams JM, Phillips PA, Mendelsohn FAO, Grzonka Z, Johnston CI (198) [125J]-[d(CH2)5,Sar7]AVP: a selective ligand for V1 vasopressin receptors. J Receptor Res 9:27–41

    Google Scholar 

  • Munson PV, Rodbard D (1980) Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem 107:220–239

    PubMed  CAS  Google Scholar 

  • Nitschke R, Fröbe U, Greger R (1991) Antidiuretic hormone acts via V1 receptors on intracellular calcium in the isolated perfused rabbit cortical thick ascending limb. Pflügers Arch 417:622–632

    PubMed  CAS  Google Scholar 

  • Ogawa H, Yamashita H, Kondo K, Yamamura Y, Miyamoto H, Kan K, Kitano K, Tanaka M, Nakaya K, Nakamura S, Mori T, Tominaga M, Yabuuchi Y (1996) Orally active, nonpeptide vasopressin V2 receptor antagonists: A novel series of 1-[4-(benzoylamino)benzoyl]-2,3,4,5-tetrahydro-1 H-benzazepines and related compounds. J Med Chem 39:3547–3555

    PubMed  CAS  Google Scholar 

  • Pávó I, Kojro E, Fahrenholz F (1993) Synthesis and binding characteristics of two sulfhydryl-reactive probes for vasopressin receptors. FEBS Lett 316:59–62

    PubMed  Google Scholar 

  • Phalipou S, Cotte N, Carnazzi E, Seyer R, Mahe E, Jard S, Barberis C, Mouillac B (1997) Mapping peptide-binding domains of the human V1a vasopressin receptor with a photoactivatable linear peptide antagonist. J Biol Chem 272:26936–26944

    Google Scholar 

  • Saito M, Tahara A, Sugimoto T (1997) 1-Desamino-8-d-arginine vasopressin (DDAVP) as an agonist on V1b vasopressin receptor. Biochem Pharmacol 53:1711–1717

    PubMed  CAS  Google Scholar 

  • Serradeil-Le Gal C, Wagnon J, Garcia C, Laccour C, Guiraudou P, Christophe B, Villanova G, Nisato D, Maffrand JP, Le Fur G, Guillon G, Cantau B, Barberis C, Trueba M, Ala Y, Jard S (1993) Biochemical and pharmacological properties of SR 49059, a new, potent, nonpeptide antagonist of rat and human vasopressin V1a receptors. J Clin Invest 92:224–231

    PubMed  CAS  Google Scholar 

  • Serradeil-Le Gal, Raufaste D, Marty E, Garcia C, Maffrand JP, Le Fur G (1994a) Binding of [3H]SR49059, a potent nonpeptide vasopressin antagonist, to rat and human liver membranes. Biochem Biophys Res Commun 199:353–369

    PubMed  CAS  Google Scholar 

  • Serradeil-Le Gal, Bourrié B, Raufaste D, Carayon P, Garcia C, Maffrand JP, Le Fur G, Casellas P (1994b) Effect of a new, potent, non-peptide vasopressin V1a vasopressin antagonist, SR 49059, on the binding and the mitogenic activity of vasopressin on Swiss 3T3 cells. Biochem Pharmacol 47:633–641

    PubMed  CAS  Google Scholar 

  • Tahara A, Tomura Y, Wada K I, Kusayama T, Tsukada J, Takanashi M, Yatsu T, Uchida W, Tanaka A (1997a) Pharmacological profile of YM087, a novel potent nonpeptide vasopressin V1a and V2 receptor antagonist, in vitro and in vivo. J Pharm Exp Ther 282:301–308

    CAS  Google Scholar 

  • Tahara A, Tomura Y, Wada K I, Kusayama T, Tsukada J, Ishii N, Yatsu T, Uchida W, Tanaka A (1997b) Effect of YM087, a potent nonpeptide vasopressin antagonist on vasopressin-induced hyperplasia and hypertrophy of cultured vascular smooth muscle cells. J Cardiovasc Pharmacol 30:759–766

    PubMed  CAS  Google Scholar 

  • Thibonnier M (1998) Development and therapeutic indications of orally-active vasopressin receptor antagonists. Expert Opin Invest Drugs 7:729–740

    CAS  Google Scholar 

  • Yatsu T, Tomura Y, Tahara A, Wada K I, Tsukada J, Uchida W, Tanaka A, Takenaka T (1997) Pharmacological profile of YM087, a novel nonpeptide dual vasopressin V1a and V2 receptor antagonist

    Google Scholar 

References

  • Bargmann W (1949) Über die neurosekretorische Verknüpfung von Hypothalamus und Neurohypophyse. Z Zellforsch Mikroskop Anat 34:610–634

    CAS  Google Scholar 

  • Bassiri RM, Dvorak J, Utiger RD (1978) Thyrotropin-releasing hormone. In: Jaffe BM, Behrman HR (eds) Methods of Hormone Radioimmunoassay, Academic Press, New York, pp 45–56

    Google Scholar 

  • Bøler J, Enzmann F, Folkers K (1969) The identity of chemical and hormonal properties of the thyrotropin releasing hormone and pyroglutamyl-histidyl-proline amide. Biochem Biophys Res Comm 37:705–710

    PubMed  Google Scholar 

  • Flohé L, Bauer K, Friderichs E, Günzler WA, Hennies HH, Herrling S, Lagler F, Otting F, Schwertner E (1983) Biological effects of degradation-stabilized TRH analogues. In: Griffiths EC, Bennett GW (eds) Thyrotropin-Releasing Hormone. Raven Press, New York. pp 327–340

    Google Scholar 

  • Furukawa et al. (1980) Effects of thyrotropin releasing hormone (TRH) on the isolated small intestine and taenia coli of the guinea pig. Eur J Pharmacol 64:279–287

    PubMed  CAS  Google Scholar 

  • Horita A, Carino MA, Lai H (1986) Pharmacology of thyrotropin-releasing hormone. Ann Rev Pharmacol Toxicol 26:311–332

    CAS  Google Scholar 

  • Horita A (1988) An update on the CNS actions of TRH and its analogs. Life Sci 62:1443–1448

    Google Scholar 

  • Metcalf (1983) The neuropharmacology of TRH analogues. In: Griffiths EC, Bennett GW (eds) Thyrotropin-Releasing Hormone. Raven Press, New York. pp 315–326

    Google Scholar 

  • Nemeroff CB; Kalivas PW, Golden RN, Prange AJ (1984) Behavioral effects of hypothalamic hypophysiotropic hormones, neurotensin, substance P and other neuropeptides. Pharmac Ther 24:1–56

    CAS  Google Scholar 

  • Pekary AE (1998) Is Ps4 (prepro-TRH160–169) more than an enhancer for thyrotropin-releasing hormone? Thyroid 8:963–968

    PubMed  CAS  Google Scholar 

  • Reichlin S, Saperstein R, Jackson IMD, Boyd III AE, Patel Y (1976) Hypothalamic hormones. Ann Rev Physiol 38:389–424

    CAS  Google Scholar 

  • Saffran M, Schally AV (1955) The release of corticotrophin by anterior pituitary tissue in vitro. Can J Biochem Physiol 33:408–415

    PubMed  CAS  Google Scholar 

  • Schally AV, Nair RMG, Barrett, JF, Bowers CY, Folkers K (1970) The structure of hypothalamic thyrotropin-releasing hormone. Fed Proc 29:47 Abstr

    Google Scholar 

  • Scharrer E, Scharrer B (1954) Hormones produced by neurosecretory cells. Rec Progr Horm Res 10:183–240

    CAS  Google Scholar 

  • Wilber JF, Ai Hua Xu (1998) The thyrotropin-releasing hormone gene 1998: Cloning, characterization, and transcriptional regulation in the central nervous system, heart and testis. Thyroid 8:897–901

    PubMed  CAS  Google Scholar 

References

  • Burt DR, Taylor RL (1983) TRH receptor binding in CNS and pituitary. In: Griffiths EC, Bennett GW (eds) Thyrotropin-Releasing Hormone. Raven Press, New York. pp 71–83

    Google Scholar 

  • de la Peña P, Delgado LM, del Camino D, Barros F (1992) Two isoforms of the thyrotropin-releasing hormone receptor generated by alternative splicing have indistinguishable functional properties. J Biol Chem 267:23703–23708

    Google Scholar 

  • Duthie SM, Taylor PL, Anderson L, Cook J, Eidne KA (1993) Cloning and functional characterization of the human TRH receptor. Molec Cell Endocrinol 95:R11–R15

    PubMed  CAS  Google Scholar 

  • Gaudreau P, Boulanger L, Abribat T (1992) Affinity of human growth hormone-releasing factor (1–29)NH2 analogues for GRF binding sites in rat adenopituitary. J Med Chem 35:1864–1869

    PubMed  CAS  Google Scholar 

  • Gershengorn MC, Osman R (1996) Molecular and cellular biology of thyrotropin-releasing hormone receptors. Physiol Rev 76:175–171

    PubMed  CAS  Google Scholar 

  • Han B, Tashjian AH Jr. (1995) Importance of extracellular domains for ligand binding in the thyrotropin-releasing hormone receptor. Molec Endocrinol 9:1708–1719

    CAS  Google Scholar 

  • Hinuma S, Hosoya M, Ogi K, Tanaka H, Nagai Y, Onda H (1994) Molecular cloning and functional expression of human thyrotropin-releasing hormone (TRH) receptor gene. Biochim Biophys Acta 1219:251–259

    PubMed  CAS  Google Scholar 

  • Jarowska-Feil L, Budziszewska B, Lason W (1995) The effect of single and repeated morphine administration on the level of thyrotropin-releasing hormone and its receptors in the rat brain. Neuropeptides 29:343–349

    Google Scholar 

  • Jinsi-Parimoo A, Gershengorn MC (1997) Constitutive activity of native thyrotropin-releasing hormone receptors revealed using a protein kinase C-responsive reporter gene. Endocrinology 138:1471–1475

    PubMed  CAS  Google Scholar 

  • Jones KE, Brubaker JH, Chin WW (1996) An alternative splice variant of the mouse TRH receptor mRNA is the major form expressed in the pituitary gland. J Mol Endocrinol 16:197–204

    PubMed  CAS  Google Scholar 

  • Lee TW, Eidne KA, Milligan G (1995) Signalling characteristics of thyrotropin releasing hormone (TRH) receptor isoforms. Biochem Soc Transact 23:115

    Google Scholar 

  • Lefrancois L, Gaudreau P (1994) Identification of receptor binding pharmacophores of growth hormone-releasing factor in rat adenopituitary. Neuroendocrinol 59:363–370

    CAS  Google Scholar 

  • Matre V, Karlsen HE, Wright MS, Lundell I, Fjeldheim ÅK, Gabrielsen OS, Larhammar D, Gautvik KM (1993) Molecular cloning of a functional human thyrotropin releasing hormone receptor. Biochem Biophys Res Commun 195:179–185

    PubMed  CAS  Google Scholar 

  • Mayo KE (1992) Molecular cloning and expression of a pituitary-specific receptor for growth hormone-releasing hormone. Molec Endocrinol 6:1734–1744

    CAS  Google Scholar 

  • Sellar RE, Taylor PL, Lamb RF, Zabavnik J, Anderson L, Eidne KA (1993) Functional expression and molecular characterization of the thyrotrophin-releasing hormone receptor from rat and anterior pituitary gland. J Molec Endocrinol 10:199–206

    CAS  Google Scholar 

  • Sharif NA, Burt RD (1983) Rat brain TRH receptors: kinetics, pharmacology, distribution and ionic effects. Regul Pept 7:399–411

    PubMed  CAS  Google Scholar 

  • Simasko and Horita (1982) Characterization and distribution of 3H-(3 MeHis2)thyreotropin releasing hormone receptors in rat brain. Life Sci 30:1793–1799

    PubMed  CAS  Google Scholar 

  • Straub RE, Frech GC, Joho RH, Gershengorn MC (1990) Expression cloning of a cDNA encoding the mouse pituitary thyrotropin-releasing-hormone receptor. Proc Natl Acad Sci USA 87:9514–9518

    PubMed  CAS  Google Scholar 

  • Sum Y M, Millar RP, Ho H, Gershengorn MC, Illing N (1998) Cloning and characterization of the chicken thyrotropin-releasing hormone receptor. Endocrinology 139:3390–3398

    Google Scholar 

  • Taylor RL, Burt DR (1981) Properties of [3H](3-Me-His2)TRH binding to apparent TRH receptors in the sheep central nervous system. Brain Res 218:207–217

    PubMed  CAS  Google Scholar 

  • Yamada M, Monden T, Satoh T, Satoh N, Murakami M, Iriuchijima T, Karegawa T, Mori M (1993) Pituitary adenomas of patients with acromegaly express thyrotropin-releasing hormone receptor messenger RNA: cloning and functional expression of the human thyrotropin-releasing hormone receptor gene. Biochem Biophys Res Commun 195:737–745

    PubMed  CAS  Google Scholar 

  • Yamada M, Iwasaki T, Satoh T, Monden T, Konaka S, Murakami M, Iriuchijima T, Mori M (1995) Activation of the thyrotropin-releasing hormone (TRH) receptor by a direct precursor of TRH, TRH-Gly. Neurosci Lett 196:109–112

    PubMed  CAS  Google Scholar 

References

  • Bøler J, Enzmann F, Folkers K (1969) The identity of chemical and hormonal properties of the thyrotropin releasing hormone and pyroglutamyl-histidyl-proline amide. Biochem Biophys Res Comm 37:705–710

    PubMed  Google Scholar 

  • Bowers CR, Redding TW, Schally AV (1965) Effect of thyrotropin releasing factor (TRF) of ovine, bovine, porcine and human origin on thyrotropin release in vitro and in vivo. Endocrinology 77:609–616

    PubMed  CAS  Google Scholar 

  • Bowers CY, Schally AV (1970) Assay of thyrotropin-releasing hormone. In: Hypophysiotropic hormones of the hypothalamus: Assay and chemistry. The Williams & Wilkins Co., pp 74–89

    Google Scholar 

  • Bowers CY, Schally AV, Reynolds GA, Hawley WD (1967) Interactions of L-trijodothyronine and thyrotropin-releasing factor on the release and synthesis of thyrotropin from anterior pituitary gland of mice. Endocrinol 81:741–747

    CAS  Google Scholar 

  • Bowers CY, Lee KL, Schally AV (1968) Effect of actinomycin D on hormones that control the release of thyrotropin from the anterior pituitary glands of mice. Endocrinology 82:303–310

    PubMed  CAS  Google Scholar 

  • McKenzie JM (1958) The bioassay of thyrotropin in serum. Endocrinology 63:372–382

    PubMed  CAS  Google Scholar 

  • Redding TW, Schally AV (1967) Depletion of pituitary thyrotropic hormone by thyrotropin releasing factor. Endocrinology 81:918–921

    PubMed  CAS  Google Scholar 

  • Redding TW, Schally AV (1969) Studies on the thyrotropin-releasing hormone (TRH) activity in peripheral blood. Proc Soc Exp Biol Med 131:420–425

    PubMed  CAS  Google Scholar 

  • Redding TW, Bowers CY, Schally AV (1966) An in vivo assay for thyrotropin releasing factor. Endocrinol 79:229–236

    CAS  Google Scholar 

  • Schally AV, Bowers CY, Redding TW (1966) Purification of thyrotropic hormone-releasing hormone from bovine hypothalamus. Endocrinology 78:726–732

    PubMed  CAS  Google Scholar 

  • Schally AV, Arimura A, Bowers CY, Kastin AJ, Sawano S, Redding TW (1968) Hypothalamic neurohormones regulating anterior pituitary function. Rec Progr Horm Res 24:497–588

    PubMed  CAS  Google Scholar 

  • Schally AV, Redding TW, Bowers CY, Barrett JF (1969) Isolation and properties of porcine thyrotropin-releasing hormone. J Biol Chem 244:4077–4088

    PubMed  CAS  Google Scholar 

  • Yamakazi E, Sakiz E, Guillemin R (1963) An in vivo bioassay for TSH-releasing factor. Experientia 19:480–481

    Google Scholar 

References

  • Barros F, Kaczorowski GJ, Katz GM, Vandlen RL, Reuben JP (1986) Application of whole-cell voltage clamp in the study of neuroendocrine cells. In: Electrophysiological Techniques in Pharmacology, Alan R Liss, Inc., pp 149–168

    Google Scholar 

  • Bowers CR, Redding TW, Schally AV (1965) Effect of thyrotropin releasing factor (TRF) of ovine, bovine, porcine and human origin on thyrotropin release in vitro and in vivo. Endocrinology 77:609–616

    PubMed  CAS  Google Scholar 

  • Bowers CY, Schally AV (1970) Assay of thyrotropin-releasing hormone. In: Hypophysiotropic hormones of the hypothalamus: Assay and chemistry. The Williams & Wilkins Co., pp 74–89

    Google Scholar 

  • Guillemin R, Vale W (1970) Bioassays of the hypophysiotropic hormones: In vitro systems. In: Hypophysiotropic hormones of the hypothalamus: Assay and chemistry. The Williams & Wilkins Co., pp 21–35

    Google Scholar 

  • Guillemin R, Yamazaki E, Gard D, Jutisz M, Sakiz E (1963) In vitro secretion of thyrotropin (TSH): Stimulation by a hypothalamic peptide. Endocrinology 73:564–572

    PubMed  CAS  Google Scholar 

  • Jeffcoate SL, Linton EA, Lira O, White N (1983) Age-dependent changes in the brain content, enzymic inactivation, and hypophysiotropic action of TRH in the rat. In: Griffiths EC, Bennett GW (eds) Thyrotropin-Releasing Hormone. Raven Press, New York pp 145–155

    Google Scholar 

  • McKenzie JM (1958) The bioassay of thyrotropin in serum. Endocrinology 63:372–382

    PubMed  CAS  Google Scholar 

  • Saffran M, Schally AV (1955a) The release of corticotrophin by anterior pituitary tissue in vitro. Can J Biochem Physiol 33:408–415

    PubMed  CAS  Google Scholar 

  • Saffran M, Schally AV (1955b) In vitro bioassay of corticotropin: modification and statistical treatment. Endocrinology 56:512–532

    Google Scholar 

  • Schally AV, Redding TW (1967) In vitro studies with thyrotropin releasing factor. Proc Soc Exp Biol Med 126:320–325

    CAS  Google Scholar 

  • Vale W, Grant G, Amoss M, Blackwell R, Guillemin R (1972) Culture of enzymatically dispersed anterior pituitary cells: Functional validation of a method. Endocrinology 91:562–572

    PubMed  CAS  Google Scholar 

References

  • Akhtar FB, Marshall GR, Wickings EJ, Nieschlag E (1983) Reversible induction of azoospermia in rhesus monkeys by constant infusion of a gonadotropin-releasing hormone agonist using osmotic minipumps. J Clin Endocr Metab 56:534–540

    PubMed  CAS  Google Scholar 

  • Conn PM, Staley D, Harris C, Andrews WV, Gorospe WC, McArdle CA, Huckle WL, Hansen J (1986) Mechanism of action of gonadotropin releasing hormone. Ann Rev Physiol 48:495–513

    CAS  Google Scholar 

  • Hazum E, Keinan D (1983) Gonadotropin releasing-hormone receptors: Photoaffinity labeling with an antagonist. Biochem Biophys Res Comm 110:116–123

    PubMed  CAS  Google Scholar 

  • Levine JE, Bauer-Dantoin AC, Besecke LM, Conaghan LA, Legan SJ, Meredith JM, Strobl FJ, Urban JH, Vogelsong KM, Wolfe AM (1991) Neuroendocrine regulation of the luteinizing hormone-releasing hormone pulse generator in the rat. Rec Progr Horm Res 47:97–153

    PubMed  CAS  Google Scholar 

  • McCann SM (1970) Bioassay of luteinizing hormone-releasing hormone. In: Hypophysiotropic hormones of the hypothalamus: Assay and chemistry. The Williams & Wilkins Co., pp 90–102

    Google Scholar 

  • McCann SM, Marubayashi U, Sun HQ, Yu WH (1993) Control of follicle-stimulating hormone and luteinizing hormone release by hypothalamic peptides. Ann New York Acad Sci 687:55–59

    CAS  Google Scholar 

  • Nett TM, Niswender GD (1979) Gonadotropin-releasing hormone. In: Jaffe BM, Behrman HR (eds) Methods of hormone radioimmunoassay. Academic Press New York, pp 57–75

    Google Scholar 

  • Perrin M, Haas H, Rivier JE, Vale WW (1982) GnRH binding to rat anterior pituitary membrane homogenates: Comparison of antagonists and agonists using radiolabeled antagonist and agonist. Mol Pharmacol 23:44–51

    Google Scholar 

  • Raheja KL, Jordan A (1994) FDA recommendations for preclinical testing of gonadotropin releasing hormone (GnRH) analogues. Regul Toxicol Pharmacol 19:168–175

    PubMed  CAS  Google Scholar 

  • Sandow J, v Rechenberg W, Jerzabek G, Stoll W (1978) Pituitary gonadotropin inhibition by a highly active analog of LHRH. Fertil Steril 30:205–209

    PubMed  CAS  Google Scholar 

  • Sandow J, v Rechenberg W, Jerzabek G (1980) Hypothalamicpituitary-testicular function in rats after supraphysiological doses of a highly active LHRH analogue (buserelin). Acta Endocrin 94:489–497

    CAS  Google Scholar 

  • Steelman SL (1970) The determination of the follicle-stimulating hormone-releasing factor (FSH-RF) In: Hypophysiotropic hormones of the hypothalamus: Assay and chemistry. The Williams & Wilkins Co., pp 103–114

    Google Scholar 

  • Trimino E, Pinilla L, Aguilar E (1993) Pituitary-gonadal function in neonatal and adult female rats treated with gonadotropin-releasing hormone agonists and antagonists. Shortand long-term effects. Acta Endocrinol 129:251–259

    PubMed  CAS  Google Scholar 

  • Weinbauer GF, Respondek M, Themann H, Nieschlag E (1987) Reversibility of long-term effects of GnRH agonist administration on testicular histology and sperm production in the nonhuman primate. J Androl 8:319–329

    PubMed  CAS  Google Scholar 

  • Weinbauer GF, Behre HM, Nieschlag E (1990) Contraceptive studies with GnRH analogs in men and non-human primates. In: Bouchard P, Haour F, Franchimont P, Schatz B (eds) Recent Progress in GnRH and Gonadal Peptides. Elsevier Amsterdam, pp 181–194

    Google Scholar 

References

  • Beckers T, Marheineke K, Reiländer H, Hilgard P (1995) Selection and stable characterization of mammalian cell lines with stable over-expression of human pituitary receptors for gonadoliberin. Eur J Biochem 231:535–543

    PubMed  CAS  Google Scholar 

  • Beckers Th, Reiländer H, Hilgard P (1997) Characterization of gonadotropin-releasing hormone analogs based on a sensitive cellular luciferase reporter gene assay. Anal Biochem 251:17–23

    PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem 72:248–254

    PubMed  CAS  Google Scholar 

  • Fekete M, Redding TW, Comaru-Schally AM, Pontes JE, Connelly RW, Srkalovic G, Schally AV (1989) Receptors for luteinizing hormone-releasing hormone, somatostatin, prolactin, and epidermal growth factor in rat and human prostate cancers and in benign prostate hyperplasia. Prostate 14:191–208

    PubMed  CAS  Google Scholar 

  • Flanagan CA, Fromme BJ, Davidson JS, Millar RP (1998) A high affinity gonadotropin-releasing hormone (GnRH) tracer, radioiodinated at position 6, facilitates analysis of mutant GnRH receptors. Endocrinology 139:4115–4119

    PubMed  CAS  Google Scholar 

  • Halmos G, Rekasi Z, Szoke B, Schally AV (1993) Use of radioreceptor assay and cell superfusion system for in vitro screening of analogs of growth hormone-releasing hormone. Receptor 3:87–97

    PubMed  CAS  Google Scholar 

  • Halmos G, Schally AV, Pinski J, Vadillo-Buenfil M, Groot K (1996) Down-regulation of pituitary receptors for luteinizing hormone-releasing hormone (LH-RH) in rats by the LH-RH antagonist Cetorelix. Proc Natl Acad Sci USA 93:2398–2402

    PubMed  CAS  Google Scholar 

  • Jennes L, Conn PM (1994) Gonadotropin releasing hormone and its receptors in brain. Front Neuroendocrinol 15:51–77

    PubMed  CAS  Google Scholar 

  • Kakar SS, Musgrove LC, Devor DC, Sellers JC, Neill JD (1992) Cloning, sequencing, and expression of human gonadotropin releasing hormone (GnRH) receptor. Biochem Biophys Res Commun 189:289–295

    PubMed  CAS  Google Scholar 

  • Leung PCK, Peng C (1996) Gonadotropin-releasing hormone receptor: Gene structure, expression and regulation. Biol Signals 5:63–69

    PubMed  CAS  Google Scholar 

  • Li SL, Vuagnat B, Gruaz NM, Eshkol A, Sizonenko PC, Aubert ML (1994) Binding kinetics of the long-acting gonadotropin-releasing hormone (GnRH) antagonist Antide to rat pituitary GnRH receptors. Endocrinol 134:45–52

    Google Scholar 

  • Lovejoy DA, Corrigan AZ, Nahorniak CS, Perrin MH, Porter J, Kaiser R, Miller C, Pantoja D, Craig AG, Peter RE, Vale WW, Rivier JE, Sherwood NM (1995) Structural modifications of non-mammalian gonadotropin-releasing hormone (GnRH) isoforms: design of novel GnRH analogues. Regul Pept 60:99–115

    PubMed  CAS  Google Scholar 

  • Marheineke K, Lenhard T, Haase W, Beckers T, Michel H, Reilander H (1998) Characterization of the human gonadotropinreleasing hormone receptor heterologously produced using the baculovirus/insect cell and the semliki forest virus systems. Cell Mol Neurobiol 18:509–524

    PubMed  CAS  Google Scholar 

  • McPherson GA (1985) KINETIC, EBDA, LIGAND, LOWRY: A Collection of Radioligand Binding Analysis Programs (Elsevier Science Publ., Amsterdam)

    Google Scholar 

  • Munson PJ, Rodbard D (1980) Ligand, a versatile computerised approach for characterization of ligand binding systems. Anal Biochem 107:220–239

    PubMed  CAS  Google Scholar 

  • Nagy A, Schally AV, Armatis P, Szepeshazi K, Halmos G, Kovacs M, Zarandi M, Groot K, Miazaki M, Jungwirth A, Horvath J (1996) Cytotoxic analogs of luteinizing hormone-releasing hormone containing doxorubicin or 2-pyrrolidinodoxorubicin, a derivative 500–1000 more potent. Proc Natl Acad Sci USA 93:7269–7273

    PubMed  CAS  Google Scholar 

  • Perrin MH, Haas Y, Rivier JE, Vale WW (1982) Gonadotropin-releasing hormone binding to rat pituitary membrane homogenates. Comparison of antagonists and antagonists using radiolabeled antagonist and agonist. Molec Pharmacol 23:44–51

    Google Scholar 

  • Pinski J, Lamharzi N, Halmos G, Groot K, Jungwirth A, VadilloBuenfil M, Kakar SS, Schally AV (1996) Chronic administration of the luteinizing hormone-releasing hormone (LHRH) antagonist cetrorelix decreases gonadotrope responsiveness and pituitary LHRH receptor messenger ribonucleic acid levels in rats. Endocrinology 137:3430–3436

    PubMed  CAS  Google Scholar 

  • Szöke B, Horváth J, Halmos G, Rékási Z, Groot K, Nagy A, Schally AV (1994) LH-RH analogue carrying a cytotoxic radical is internalized by rat pituitary cells in vitro. Peptides 15:359–366

    PubMed  Google Scholar 

  • Tsutsumi M, Laws SC, Rodic V, Sealfon SC (1995) Translational regulation of the gonadotropin-releasing hormone receptor in αT3-1 cells. Endocrinol 136:1128–1136

    CAS  Google Scholar 

References

  • Arimura A, Schally AV (1970) Progesterone suppression of LH-releasing hormone-induced stimulation of LH release in rats. Endocrinology 87:653–657

    PubMed  CAS  Google Scholar 

  • Arimura A, Schally AV (1971) Augmentation of pituitary responsiveness to LH-releasing hormone (LH-RH) by estrogen. Proc Soc Exp Biol Med 136:290–293

    PubMed  CAS  Google Scholar 

  • Arimura A, Debeljuk L, Schally AV (1972) Stimulation of FSH release in vivo by prolonged infusion of synthetic LH-RH. Endocrinology 91:529–532

    PubMed  CAS  Google Scholar 

  • Daane TA, Parlow AF (1971) Periovulatory patterns of rat follicle stimulating hormone and luteinizing hormone during normal estrous cycle: Effects of pentobarbital. Endocrinology 88:653–663

    PubMed  CAS  Google Scholar 

  • Monahan MW, Amoss MS, Anderson HA, Vale W (1973) Synthetic analogs of the hypothalamic luteinizing hormone releasing factor with increased agonist and antagonist properties. Biochemistry 12:4616–4620

    PubMed  CAS  Google Scholar 

  • Niswender GD, Midgley AR Jr., Monroe SE, Reichert LE Jr. (1968) Radioimmunoassay for rat luteinizing hormone with antiovine LH serum and ovine LH-131I. Proc Soc Exp Biol Med 128:807–811

    PubMed  CAS  Google Scholar 

  • Parlow AF, Reichert LE Jr. (1963) Influence of follicle-stimulating hormone on the prostate assay of luteinizing hormone (LH, ICSH). Endocrinology 73:377–385

    PubMed  CAS  Google Scholar 

  • Ramirez VD, McCann SM (1963) A highly sensitive test for LH-releasing activity: The ovarectomized, estrogen progesteroneblocked rat. Endocrinology 73:193–198

    PubMed  CAS  Google Scholar 

  • Sandow J, Vogel HG (1972) Studies on the in vivo inactivation of synthetic LH-RH. Serono Foundation Conference, Acapulco (Mexico):21

    Google Scholar 

  • Sandow J, Enzmann F, Schröder HG Vogel HG (1972a) Inactivation of LH-RH by the plasma of various species. Naunyn Schmiedeberg's Arch exp Path Pharmakol 274:R95

    Google Scholar 

  • Sandow J, Schally AV, Schröder HG, Redding TW, Heptner W, Vogel HG (1972b) Pharmacological characteristics of a synthetic releasing hormone LH/FSH-RH (Hoe 471). Arzneim Forsch/Drug Res 22:1718–1721

    CAS  Google Scholar 

  • Sandow J, Seeger K, Vogel HG (1972c) A long-acting preparation of synthetic LH/FSH-releasing hormone. 3rd European Conference on Sterility, Athens 1972, Kaskarelis D (ed)

    Google Scholar 

  • Sandow J, v Rechenberg W, Jerzabek G (1976) The effect of LH-RH, prostaglandins and synthetic analogues of LH-RH on ovarian metabolism. Eur J Obstet Gynec Reprod Biol 6:185–190

    CAS  Google Scholar 

  • Schally AV, Arimura A, Baba Y, Nair RMG, Matsuo H, Redding TW, Debeljuk L (1971a) Isolation and properties of the FSH and LH-releasing hormone. Biochem Biophys Res Commun 43:393–399

    PubMed  CAS  Google Scholar 

  • Schally AV, Arimura A, Kastin AJ, Matsuo H, Baba Y, Redding TW, Nair RMG, Debeljuk L (1971b) Gonadotropin-releasing hormone: One polypeptide regulates secretion of luteinizing and follicle-stimulating hormones. Science 173:1036–1038

    PubMed  CAS  Google Scholar 

References

  • Buckingham JC, Cover PO (1983) Biological assay of luteinizing hormone-releasing hormone (gonadorelin). J Pharmacol Meth 9:239–247

    CAS  Google Scholar 

  • Csernus VJ, Schally AV (1991) The dispersed cell superfusion system. In: Greenstein B (ed) Neuroendocrine research Methods. Vol 1, Chapter 4, Harwood Academic Publ. pp 71–109

    Google Scholar 

  • Fekete M, Bajuz S, Groot K, Csernus VJ, Schally AV (1989) Comparison of different agonists and antagonists of luteinizing hormone-releasing hormone for receptor binding ability to rat pituitary and human breast cancer membranes. Endocrinology 124:946–955

    PubMed  CAS  Google Scholar 

  • Haviv F, Fitzpatrick TD; Swenson RE, Nichols CJ, Mort NA, Bush EN, Diaz G, Bammert G, Nguyen A, Rhutasel NS, Nellans HG, Hoffman DJ, Johnson ES, Greer J (1993) Effect of N-methyl substitution of peptide bonds in luteinizing hormone-releasing hormone agonists. J Med. Chem 36:363–369

    PubMed  CAS  Google Scholar 

  • Loughlin JS, Badger TM, Crowley WF Jr. (1981) Perifused pituitary cultures: A model for LHRH regulation of LH secretion. Am J Physiol 240:E591–E596

    PubMed  CAS  Google Scholar 

  • Martin JE, Sattler C (1979) Developmental loss of the acute inhibi-tory effect of melatonin on the in vitro pituitary luteinizing hor-mone and follicle-stimulating hormone response to luteinizing hormone-releasing hormone. Endocrinology 105:1007–1012

    PubMed  CAS  Google Scholar 

  • Mittler JC, Meites J (1964) In vitro stimulation of pituitary follicle-stimulating-hormone release by hypothalamic extract. Proc Soc Exp Biol Med 117:309–313

    PubMed  CAS  Google Scholar 

  • Mittler JC, Meites J (1966) Effects of hypothalamic extract and androgen on pituitary FSH release in vitro. Endocrinology 78:500–504

    PubMed  CAS  Google Scholar 

  • Mittler JC, Arimura A, Schally AV (1970) Release and synthesis of luteinizing hormone and follicle-stimulating hormone in pituitary cultures in response to hypothalamic preparations. Proc Soc Exp Biol Med 133:1321–1325

    PubMed  CAS  Google Scholar 

  • Niswender GD, Midgley AR Jr., Monroe SE, Reichert LE Jr. (1968) Radioimmunoassay for rats luteinizing hormone with antiovine LH serum and ovine LH-131I. Proc Soc Exp Biol Med 128:807–811

    PubMed  CAS  Google Scholar 

  • O'Connor JL, Lapp CA (1984) Luteinizing hormone releasing hormone of fixed pulse frequency and duration. A simplified system for studying the effect of varying pulse concentration on LH release from Cytodex I attached anterior pituitary cells. J Pharmacol Meth 11:195–205

    Google Scholar 

  • Parlow AF, Reichert LE Jr. (1963) Influence of follicle-stimulating hormone on the prostate assay of luteinizing hormone (LH, ICSH). Endocrinology 73:377–385

    PubMed  CAS  Google Scholar 

  • Sandow J, Schally AV, Redding TW, Heptner W, Vogel HG (1972a) LH-release by a synthetic decapeptide LH/FSH-RH. Naunyn Schmiedeberg's Arch exp Path Pharmakol 274:R96

    Google Scholar 

  • Sandow J, Schally AV, Schröder HG, Redding TW, Heptner W, Vogel HG (1972) Pharmacological characteristics of a synthetic releasing hormone LH/FSH-RH (Hoe 471). Arzneim Forsch/Drug Res 22:1718–1721

    CAS  Google Scholar 

  • Schally AV, Mittler JC (1970b) Failure of putrescine and other polyamines to promote FSH release in vitro. Endocrinology 86:903–908

    PubMed  CAS  Google Scholar 

  • Scheikl-Lenz B, Markert C, Sandow J, Träger L, Kuhl H (1985) Functional integrity of anterior pituitary cells separated by a density gradient. Acta Endocrin 109:25–31

    CAS  Google Scholar 

  • Scröder HG, Geiger R, Enzmann F, Heptner W, Vogel HG (1972) Effect of synthetic LH/FSH-RH on the release of FSH in the rat. Naunyn Schmiedeberg's Arch exper Path Pharmakol 274:R93

    Google Scholar 

  • Vale W, Grant G, Amoss M, Blackwell R, Guillemin R (1972) Culture of enzymatically dispersed anterior pituitary cells: Functional validation of a method. Endocrinology 91:562–572

    PubMed  CAS  Google Scholar 

References

  • Daane TA, Parlow AF (1971) Periovulatory patterns of rat serum follicle stimulating hormone and luteinizing hormone during the normal estrous cycle: Effects of pentobarbital. Endocrinology 88:653–663

    PubMed  CAS  Google Scholar 

  • Niswender GD, Midgley AR Jr., Monroe SE, Reichert LE Jr. (1968) Radioimmunoassay for rat luteinizing hormone with antiovine LH serum and ovine LH-131I. Proc Soc Exp Biol Med 128:807–811

    PubMed  CAS  Google Scholar 

  • Seki K, Seki M, Yoshihara T, Maeda H (1971) Radioimmunoassays for rat follicle stimulating and luteinizing hormones. Endocrinol Japan 18:477–485

    CAS  Google Scholar 

References

  • Beastall GH, Ferguson KM, O'Reilly DSTJ, Seth J (1987) Assays for follicle stimulating hormone and luteinizing hormone: guidelines for the provision of a clinical biochemistry service. Ann Clin Biochem 24:246–262

    PubMed  CAS  Google Scholar 

  • Midgley AR (1967) Radioimmunoassay for human follicle-stimulating hormone. J Clin Endocr Metab 27:295–299

    PubMed  CAS  Google Scholar 

References

  • British Pharmacopoeia 1988: Biological assay of gonadorelin. Appendix XIV C, pA166. London, Her Majesty's Stationary Office

    Google Scholar 

  • Mindlin RL, Butler AM (1938) The determination of ascorbic acid in plasma; a macromethod and a micromethod. J Biol Chem 122:673–686

    CAS  Google Scholar 

  • Parlow AF, Reichert LE Jr. (1963) Influence of follicle-stimulating hormone on the prostate assay of luteinizing hormone (LH, ICSH). Endocrinology 73:377–385

    PubMed  CAS  Google Scholar 

  • Ramirez VD, McCann SM (1963) A highly sensitive test for LH-releasing activity: The ovarectomized, estrogen progesterone-blocked rat. Endocrinology 73:193–198

    PubMed  CAS  Google Scholar 

  • Sandow J, Schally AV, Redding TW, Heptner W, Vogel HG (1972a) LH-release by a synthetic decapeptide LH/FSH-RH. Naunyn Schmiedeberg's Arch exp Path Pharmakol 274:R96

    Google Scholar 

  • Sandow J, Schally AV, Schröder HG, Redding TW, Heptner W, Vogel HG (1972b) Pharmacological characteristics of a synthetic releasing hormone LH/FSH-RH (Hoe 471). Arzneim Forsch/Drug Res 22:1718–1721

    CAS  Google Scholar 

  • Sandow J, v Rechenberg W, Jerzabek G (1976) The effect of LH-RH, prostaglandins and synthetic analogues of LH-RH on ovarian metabolism. Eur J Gynec Reprod Biol 6:185–190

    CAS  Google Scholar 

References

  • Sandow J, v Rechenberg W, Jerzabek G (1976) The effect of LH-RH, prostaglandins and synthetic analogues of LH-RH on ovarian metabolism. Eur J Obstet Gynec Reprod Biol 6:185–190

    CAS  Google Scholar 

References

  • Sandow J, Hahn M (1973) Influence of steroid hormones on the response to LH-RH in the ovary-eye-transplant of the rabbit. Acta Endocr, Suppl 173:82

    Google Scholar 

  • Sandow J, Schally AV, Redding TW, Heptner W, Vogel HG (1972) LH-release by a synthetic decapeptide LH/FSH-RH. Naunyn Schmiedeberg's Arch exp Path Pharmakol 274:R96

    Google Scholar 

  • Schröder HG, Seeger K, Vogel HG (1972) The effect of synthetic LH-RH on induction of ovulation near puberty. Abstract Serono Foundation Conference, Acapulco (Mexico) 29.6.-1.7.1972

    Google Scholar 

References

  • Sandow J, Schally AV, Redding TW, Heptner W, Vogel HG (1972) LH-release by a synthetic decapeptide LH/FSH-RH. Naunyn Schmiedeberg's Arch exp Path Pharmakol 274:R96

    Google Scholar 

References

  • Mizutani T, Sakata M, Terakawa N (1995) Effects of gonadotropin-releasing hormone agonists, nafarelin, buserelin, and leuprolide, on experimentally induced endometriosis in the rat. Int J Fertil 40:106–111

    CAS  Google Scholar 

  • Sakata M, Terakawa N, Mizutani T, Tanizawa O, Matsumoto K, Terada N, Sudo K (1990) Effects of danazol, gonadotropin-releasing hormone agonist and a combination of danazol and gonadotropin-releasing hormone agonist on experimental endometriosis. Am J Obstet Gynecol 163:1679–1684

    PubMed  CAS  Google Scholar 

References

  • Ayalon D, Farhi Y, Comaru-Schally AM, Schally AV, Eckstein N, Vagman I, Limor R (1993) Inhibitory effect of a highly potent antagonist of LH releasing hormone (SB-7) on the pituitary-gonadal axis in the intact and castrated rat. Neuroendocrinol 58:153–159

    CAS  Google Scholar 

  • Danz BJ (1995) The effects of a gonadotropin-releasing hormone antagonist on androgen-binding protein distribution and other parameters in the adult male rat. Endocrinology 136:4004–4011

    Google Scholar 

  • Fallest PC, Trader GL, Darrow JM, Shupnik MA (1995) Regulation of rat luteinizing hormone β gene expression in transgenic mice by steroids and a gonadotropin-releasing hormone antagonist. Biol Reprod 55:103–109

    Google Scholar 

  • Falvo RE, Nalbandov AV (1974) Radioimmunoassay of peripheral plasma testosterone in males from eight species using a specific antibody without chromatography. Endocrinology 95:1466–1468

    PubMed  CAS  Google Scholar 

  • Habenicht UF, Schneider MR, El Etreby MF (1990) Effect of the new potent LHRH antagonist Antide. J Steroid Biochem Molec Biol 37:937–942

    PubMed  CAS  Google Scholar 

  • Loy RA (1994) The pharmacology and the potential applications of GnRH antagonists. Curr Opin Obstet Gynecol 6:262–268

    PubMed  CAS  Google Scholar 

  • Reissmann T, Klenner T, Deger W, Hilgard P, McGregor GP, Voigt K, Engel J (1996) Pharmacological studies with Cetrorelix (SB-75), a potent antagonist of luteinizing hormone-releasing hormone. Eur J Cancer 32A:1574–1579

    PubMed  CAS  Google Scholar 

  • Rivier J Jiang G, Lahrichi SL, Porter J, Koerber SC, Rizo J, Corrigan A, Gierasch L, Hagler A, Vale W, Rivier C (1996) Dose relationship between GnRH antagonists and pituitary suppression. Hum Reprod 11; Suppl 3:133–147

    PubMed  CAS  Google Scholar 

References

  • Bowers CY, Humphries J, Wasiak T, Folkers K, Reynolds GA, Reichert LE Jr. (1980) On the inhibitory effects of luteinizing hormone-releasing hormone analogs. Endocrinology 106:674–683

    PubMed  CAS  Google Scholar 

  • Corbin A, Beattie CW (1975) Inhibition of the pre-ovulatory proestrus gonadotropin surge, ovulation and pregnancy with a peptide analogue of luteinizing hormone releasing hormone. Endocr Res Comm 2:1–23

    CAS  Google Scholar 

  • De la Cruz A, Coy DH, Schally AV, Coy EJ, de la Cruz KG, Arimura A (1975) Blockade of the pre-ovulatory LH surge in hamsters by an inhibitory analog of LH-RH (38855). Proc Soc Exp Biol Med 149:576–579

    Google Scholar 

  • Deckers GHJ, De Graaf JH, Kloosterboer HJ, Loozen HJJ (1992) Properties of a potent LHRH antagonist (ORG 30850) in female and male rats. J Steroid Biochem Molec Biol 42:705–712

    PubMed  CAS  Google Scholar 

  • Deghenghi R, Boutignon F, Wüthrich P, Lenaerts V (1993) Antarelix (EP 24332) a novel water soluble LHRH antagonist. Biomed Pharmacother 47:107–110

    PubMed  CAS  Google Scholar 

  • Kovács M, Koppán M, Mezö I, Teplán I, Flerkó B (1993) Antiovulatory doses of antagonists of LH-RH inhibit LH and progesterone but not FSH and estradiol release. J Neuroendocrinol 5:603–608

    PubMed  Google Scholar 

  • Litchfield JT, Wilcoxon F (1949) A simplified method for evaluating dose-effect experiments. J Pharmacol Exp Ther 96:99

    PubMed  CAS  Google Scholar 

  • McRae GI, Vickery BH, Nestor JJ Jr., Bremner WJ, Badger TM (1984) Biological activity of a highly potent LHRH antagonist. In: Vickery BH, Nestor JJ Jr., Hafez ESE (eds) LHRH and its analogs. Contraceptive and therapeutic applications. MTP Press Ltd., pp 137–151

    Google Scholar 

  • Pinski J, Yano T, Janaky T, Nagy A, Juhasz A, Bokser L, Groot K, Schally AV (1993) Evaluation of biological activities of new LH-RH antagonists (T-series)in male and female rats. Int Pept Protein Res 41:66–73

    CAS  Google Scholar 

  • Pinski J, Schally AV, Yano T, Groot K, Srkalovic G, Serfozo P, Reissmann T, Bernd M, Deger W, Kutscher B, Engel J (1995) Evaluation of the in vitro and in vivo activity of the L-, D,L-and D-Cit6 forms of the LH-RH antagonist Cetrorelix (SB-75). Int J Peptide Protein Res 43:410–417

    Google Scholar 

  • Rivier C, Rivier J, Perrin M, Vale W (1983) Comparison of the effect of several gonadotropin releasing hormone antagonists on luteinizing hormone secretion, receptor binding and ovulation. Biol Reprod 29:374–378

    PubMed  CAS  Google Scholar 

  • Rivier JE, Jiang G, Porter J, Hoeger CA, Craig AG, Corrigan A, Vale W, Rivier CL (1995) Gonadotropin-releasing hormone antagonists: novel members of the azaline B family. J Med Chem 38:2639–2662

    Google Scholar 

  • Sandow J, Schally AV, Redding TW, Heptner W, Vogel HG (1972) LH-release by a synthetic decapeptide LH/FSH-RH. Naunyn Schmiedeberg's Arch exp Path Pharmakol 274:R96

    Google Scholar 

  • Vilches-Martinez JA, Coy DH, Coy RJ, Arimura A, Schally AV (1976) Comparison of the anti-LH/FSH-RH and anti-ovulatory activities of [D-Phe2,D-Leu6]-LH-RH and [D-Phe2,D-Ala6]-LH-RH. Endocr Res Comm 3:231–241

    Google Scholar 

  • Yardley JP, Foell TJ, Beattie CW, Grant NH (1975) Antagonism of luteinizing hormone release and of ovulation by an analog of the luteinizing hormone-releasing hormone. J Med Chem 18:1244–1247

    PubMed  CAS  Google Scholar 

References

  • Debeljuk L, Maines VM, Coy DH, Schally AV (1983) Effect of a powerful antagonist of LH-RH on testicular function in prepubertal male rats. Arch Androl 11:89–93

    PubMed  CAS  Google Scholar 

  • Habenicht UF, Schneider MR, El Etreby MF (1990) Effect of the new potent LHRH antagonist Antide. J Steroid Biochem Molec Biol 37:937–942

    PubMed  CAS  Google Scholar 

  • Kikim APS, Swerdloff RS (1993) Temporal and stage-specific changes in spermatogenesis after gonadotropin deprivation by a potent gonadotropin-releasing hormone antagonist treatment. Endocrinology 133:2161–2170

    Google Scholar 

  • Kikim APS, Swerdloff RS (1994) Time course of recovery of spermatogenesis and Leydig cell function after cessation of gonadotropin-releasing hormone antagonist treatment in the adult rat. Endocrinology 134:1627–1634

    Google Scholar 

  • Kangasniemi M, Dodge K, Pemberton AE, Huhtaniemi I, Meistrich ML (1996) Suppression of mouse spermatogenesis by a gonadotropin-releasing hormone antagonist and antiandrogen. Failure to protect against radiation-induced damage. Endocrinology 137:949–955

    PubMed  CAS  Google Scholar 

  • Rivier C, Vale W, Rivier J (1983) Effects of gonadotropin hormone agonists and antagonists on reproductive functions. J Med Chem 26:1545–1550

    PubMed  CAS  Google Scholar 

References

  • Bowers CY, Humphries J, Wasiak T, Folkers K, Reynolds GA, Reichert LE Jr. (1980) On the inhibitory effects of luteinizing hormone-releasing hormone analogs. Endocrinology 106:674–683

    PubMed  CAS  Google Scholar 

  • Csernus VJ, Schally AV (1992) Evaluation of luteinizing hormone-releasing hormone antagonistic activity in vitro. Proc Natl Acad Sci USA 89:5759–5763

    PubMed  CAS  Google Scholar 

  • Ding YQ, Huhtaniemi I (1989) Human serum LH inhibitor(s): behaviour and contribution to in vitro bioassay of LH using dispersed mouse Leydig cells. Acta Endocr 121:46–54

    PubMed  CAS  Google Scholar 

  • Haviv F, Fitzpatrick TD; Swenson RE, Nichols CJ, Mort NA, Bush EN, Diaz G, Bammert G, Nguyen A, Rhutasel NS, Nellans HG, Hoffman DJ, Johnson ES, Greer J (1993) Effect of N-methyl substitution of peptide bonds in luteinizing hormone-releasing hormone agonists. J Med. Chem 36:363–369

    PubMed  CAS  Google Scholar 

  • Haviv F, Fitzpatrick TD, Nichols CJ, Bush EN, Diaz G, Bammert G, Nguyen AT, Johnson ES, Knittle J, Greer J (1994) In vitro and in vivo activities of reduced-size antagonists of luteinizing hormone-releasing hormone. J Med Chem 37:701–705

    PubMed  CAS  Google Scholar 

  • Humphries J, Wan YP, Folkers K (1978) Inhibitory analogues of the luteinizing hormone-releasing hormone having D-aromatic residues in positions 2 and 6 and variation in position 3. J Med Chem 21:120–123

    PubMed  CAS  Google Scholar 

  • Krummen LA, Wilfinger WW, Baldwin DM (1991) Primary culture of pituitary cells and assessment of the direct effects of testosterone on pituitary function in vitro. In: Greenstein B (ed) Neuroendocrine Research Methods. Harwood Acad Publ, Chur, Chapter 3, pp 57–69

    Google Scholar 

  • Labrie F, Ferland L, Lagace L, Drouin J, Asselin J, Azadian-Boulanger G, Raynaud P (1977) High inhibitory activity of RU 5020, a pure progestin, at the hypothalamic-hypophyseal level on gonadotropin secretion. Fertil Steril 28:1104–1112

    PubMed  CAS  Google Scholar 

  • McRae GI, Vickery BH, Nestor JJ Jr., Bremner WJ, Badger TM (1984) Biological activity of a highly potent LHRH antagonist. In: Vickery BH, Nestor JJ Jr., Hafez ESE (eds) LHRH and its analogs. Contraceptive and therapeutic applications. MTP Press Ltd., pp 137–151

    Google Scholar 

  • Rékási Z, Szöke B, Nagy A, Groot K, Rékási ES, Schally AV (1993) Effect of luteinizing hormone-releasing hormone analogs containing cytotoxic radicals on the function of rat pituitary cells: tests in a long term superfusion system. Endocrinol 132:1991–2000

    Google Scholar 

  • Vale W, Grant G, Rivier J, Monahan M, Amoss M, Blackwell R, Burgus R, Guillemin R (1972) Synthetic polypeptide antagonists of the hypothalamic luteinizing hormone releasing factor. Science 176:933–934

    PubMed  CAS  Google Scholar 

References

  • Horváth JE, Ertl T, Qin T, Groot K, Schally AV (1995) LH-RH and its antagonist Cetrorelix inhibit growth of JAR human chorioncarcinoma cells in vitro. Int J Oncol 6:969–975

    PubMed  Google Scholar 

  • Kleinman D, Roberts CT Jr., LeRoith D, Schally AV, Levy J, Sharoni Y (1993) Regulation of endometrial cancer cell growth by insulin-like growth factors and the luteinizing hormone-releasing hormone antagonist SB-75: Regul Pept 48:91–98

    PubMed  CAS  Google Scholar 

  • Manetta A, Gamboa-Vujicic G, Paredes P, Emma D, Liao S, Leong L, Asch B, Schally AV (1995) Inhibition of growth of human ovarian cancer in nude mice by luteinizing hormone-releasing hormone antagonist Cetrorelix (SB-75) Fertil Steril 63:282–287

    PubMed  CAS  Google Scholar 

  • Pinski J, Reile H, Halmos G, Groot K, Schally AV (1994) Inhibitory effects of analogues of luteinizing hormone-releasing hormone on the growth of androgen-independent Dunning R-3327-AT-1 rat prostate cancer. Int J Cancer Res 59:51–55

    CAS  Google Scholar 

  • Radulovic S, Comaru-Schally AM, Milovanovic S, Schally AV (1993) Somatostatin analogue RC-160 and LH-RH antagonist SB-75 inhibit growth of MIA RaCa-2 human pancreatic cancer xenografts in nude mice. Pancreas 8:88–97

    PubMed  CAS  Google Scholar 

  • Reissmann T, Klenner T, Deger W, Hilgard P, McGregor GP, Voigt K, Engel J (1996) Pharmacological studies with Cetrorelix (SB-75), a potent antagonist of luteinizing hormone-releasing hormone. Eur J Cancer 32A: 1574–1579

    PubMed  CAS  Google Scholar 

  • Szende B, Srkalovic G, Groot K, Lapis K, Schally AV (1990) Growth inhibition of mouse MXT mammary tumor by the luteinizing hormone-releasing hormone antagonist SB-75. J Natl Cancer Inst 82:513–517

    PubMed  CAS  Google Scholar 

  • Vincze B, Plyi I, Daubner D, Kalnay A, Mezo G, Hudecz F, Szekerke M, Teplan I, Mezo I (1994) Antitumour effect of a gonadotropin-releasing hormone antagonist (MI-1544) and its conjugate on human breast cancer lines and their xenografts. J Cancer Res Clin Oncol 20:578–584

    Google Scholar 

References

  • Andoh K, Kimura T, Saeki I, Tabata R, Yamazaki S, Eguchi J, Hanazuka M, Horii D, Munt PL, Davis AS, Templetom D, Algate DR, Takahashi K (1994) General pharmacological properties of human corticotropin-releasing hormone corticorelin (human). Arzneim Forsch/Drug Res 44:715–726

    CAS  Google Scholar 

  • Arai K, Ohata H, Shibasaki T (1998) Non-peptidic corticotropin-releasing hormone receptor type 1 antagonist reverses restraint stress-induced shortening of sodium pentobarbital-induced sleeping time of rats: Evidence that an increase in arousal induced by stress in mediated through CRH receptor type 1. Neurosci Lett 255:103–106

    PubMed  CAS  Google Scholar 

  • Behan DP, De Souza EB, Lowry PJ, Potter E, Sawchenko P, Vale WW (1995) Corticotropin releasing factor (CRF) binding protein: A novel regulator of CRF and related peptides. Front Neuroendocrinol 16:362–382

    PubMed  CAS  Google Scholar 

  • Brodish A (1979) Control of ACTH secretion by corticotropin-releasing factor(s). Vitam Horm 37:111–152

    PubMed  CAS  Google Scholar 

  • Chen C, Dagnino R, De Souza EB, Grigoriadis DE, Huang CQ, Kim KI, Liu Z, Moran T, Webb TR, Whitten JP, Xie YF, McCarthy JR (1996) Design and synthesis of a series of nonpeptide high-affinity human corticotropin-releasing factor receptor antagonists. J Med Chem 399:4358–4360

    Google Scholar 

  • Cortright DN, Nicoletti A, Seasholtz AF (1995) Molecular and biochemical characterization of the mouse brain corticotropin-releasing hormone-binding protein. Mol Cell Endocrinol 111:147–157

    PubMed  CAS  Google Scholar 

  • Cortright DN, Goosens KA, Lesh JS, Seasholtz AF (1997) Isolation and characterization of the rat corticotropin-releasing hormone (CRH)-binding protein gene: Transcriptional regulation by cyclic adenosine monophosphate and CRH. Endocrinology 138:2098–2108

    PubMed  CAS  Google Scholar 

  • Dahte M, Fabian H, Gast K, Zirwr D, Winter R, Beyermann M, Schumann M, Bienert M (1996) Conformational differences of ovine and human corticotropin releasing hormone: A CD, IR, NMR and dynamic light scattering study. Int J Pept Protein Res 47:383–393

    Google Scholar 

  • Donaldson DJ, Sutton SW, Perrin MJ, Corrigan AZ, Lewis KA, Rivier JE, Vaughn JM, Vale WW (1995) Urocortin, a mammalian neuropeptide related to fish urotensin 1 and to corticotropin-releasing factor. Nature 378:287–292

    PubMed  Google Scholar 

  • Guillemin R, Rosenberg B (1955) Humoral hypothalamic control of anterior pituitary: a study with combined tissue cultures. Endocrinology 57:599–607

    PubMed  CAS  Google Scholar 

  • Hobel CJ, Arora CP, Korst LM (1999) Corticotropin-releasing hormone and CRH-binding protein. In: Sandman CA, Chronwall BM, Strand FL, Flynn FW, Beckwith B, Nachman RJ (eds) Neuropeptides. Structure and Function in Biology and Behavior. Ann New York Acad Sci 897:54–65

    CAS  Google Scholar 

  • Koob GF (1999) Stress, corticotropin-releasing factor, and drug addiction. In: Sandman CA, Chronwall BM, Strand FL, Flynn FW, Beckwith B, Nachman RJ (eds) Neuropeptides. Structure and Function in Biology and Behavior. Ann New York Acad Sci 897:27–45

    CAS  Google Scholar 

  • Kornreich WD, Galyean RG, Hernandez JF, Craig AG, Donaldson CJ, Yamamoto G, Rivier C, Vale W, Rivier J (1992) Alanine series of ovine corticotropin releasing factor (oCRF): A structure-activity relationship study. J Med Chem 35:1870–1876

    PubMed  CAS  Google Scholar 

  • Livesey JH, Carne A, Irvine CHG, Ellis J, Evans MJ, Smith R, Donald RA (1991) Structure of equine corticotropin releasing factor. Peptides 12:1437–1440

    PubMed  CAS  Google Scholar 

  • Millan M, Samra ABA, Wynn C, Catt KJ, Aguilera G (1987) Receptors and actions of corticotropin-releasing hormone in the primate pituitary gland. J Clin Endocr Met 64:1036–1041

    CAS  Google Scholar 

  • Mastorakos G, Webster EL, Friedman TC, Chrousos GP (1993) Immunoreactive corticotropin-releasing hormone and its binding sites in the rat ovary. J Clin Invest 92:961–968

    PubMed  CAS  Google Scholar 

  • Patthy M, Horvath J, Mason-Garcia M, Szoke B, Schlesinger DH, Schally AV (1985) Isolation and amino acid sequence of corticotropin-releasing factor from pig hypothalami. Proc Natl Acad Sci, USA 82:8762–8766

    PubMed  CAS  Google Scholar 

  • Petraglia F, Florio P, Gallo R, Salvestroni C, Lombardo M, Genazzani AD, Di Carlo C, Stomati M, D'Ambrogio G, Artini PG (1996) Corticotropin-releasing factor-binding protein: Origins and possible functions. Horm Res 45:187–191

    PubMed  CAS  Google Scholar 

  • Rivier C, Rivier J, Lederis K, Vale WW (1983) ACTH releasing activity of ovine CRF, sauvagine and urotensin 1. Regul Pept 5:139–143

    PubMed  CAS  Google Scholar 

  • Rivier CL, Plotsky PM (1986) Mediation by corticotropin releasing factor (CRF) of adenohypophyseal hormone secretion. Ann Rev Physiol 48:475–494

    CAS  Google Scholar 

  • Rivier J, Rivier C, Vale W (1984) Synthetic competitive antagonists of corticotropin-releasing factor: Effect on ACTH secretion in the rat. Science 224:889–891

    PubMed  CAS  Google Scholar 

  • Saffran M, Schally AV (1955) The release of corticotrophin by anterior pituitary tissue in vitro. Can J Biochem Physiol 33:408–415

    PubMed  CAS  Google Scholar 

  • Schulz DW, Mansbach RS, Sprouse J, Braselton JP, Collins J, Corman M, Dunaikis A, Faraci S, Schmidt AW, Seeger T, Seymour P, Tingley III FD, Winston EN, Chen YL, Heym J (1996) CP-154-526: A potent and selective nonpeptide antagonist of corticotropin releasing factor receptors. Proc Natl Acad Sci, USA 93:10477–10482

    PubMed  CAS  Google Scholar 

  • Shibahara S, Morimoto Y, Furutani Y, Notake M, Takahashi H, Shimizu S, Horikawa S, Numa S (1983) Isolation and sequence analysis of the human corticotropin-releasing factor precursor gene. EMBO J 2:775–779

    PubMed  CAS  Google Scholar 

  • Stenzel-Poore MP, Duncan JE, Rittenberg MB, Bakke AC, Heinrichs SC (1996) CRH overproduction in transgenic mice. Behavioral and immune system modulation. Ann New York Acad Sci 780:36–48

    CAS  Google Scholar 

  • Taylor AL, Fishman LM (1988) Medical Progress: Corticotropin-releasing hormone. New Engl J Med 319:213–222

    PubMed  CAS  Google Scholar 

  • Vale W, Spiess J, Rivier C, Rivier J (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-endorphin. Science 213:1394–1397

    PubMed  CAS  Google Scholar 

  • Vaughn J, Donaldson C, Bittencourt J, Perrin MH, Lewis K, Sutton S, Chan R, Turnbull AV, Lovejoy D, Rivier C, Rivier J, Sawchenko PE, Vale WW (1995) Urocortin, a mammalian neuropeptide related to fish urotensin 1 and to corticotropin-releasing factor. Nature 378:287–292

    Google Scholar 

  • Vigh S, Merchenthaler I, Torres-Aleman I, Suieras-Diaz J, Coy DH, Carter WH, Petrusz P, Schally AV (1982) Corticotropin releasing factor (CRF): Immunocytochemical localization and radioimmunoassay (RIA). Life Sci 31:2441–2448

    PubMed  CAS  Google Scholar 

  • Webster EL, Lewis DB, Torpy DJ, Zachman EK, Rice KC, Chrousos GP (1996) In vivo and in vitro characterization of antalarmin, a nonpeptide corticotropin releasing hormone (CRH) receptor antagonist; Suppression of pituitary ACTH release and peripheral inflammation. Endocrinology 137:5747–5750

    PubMed  CAS  Google Scholar 

  • Webster LE, Torpy DJ, Elenkov IJ, Chrousos GP (1998) Corticotropin-releasing hormone and inflammation. Ann NY Acad Sci 840:21–32

    PubMed  CAS  Google Scholar 

  • Wynn PC, Aguilera G, Morell J, Catt KJ (1983) Properties and regulation of high-affinity pituitary receptors for corticotropin-releasing factor. Biochem Biophys Res Comm 110:602–608

    PubMed  CAS  Google Scholar 

  • Zhao L, Donaldson CJ, Smith GW, Vale WW (1998) The structure of the mouse and human urocortin genes (Ucn and UCN) Genomics 50:23–33

    PubMed  CAS  Google Scholar 

References

  • Aguilera G, Harwood JP, Wilson JX, Morell J, Brown JH, Catt KJ (1983) Mechanism of action of corticotropin-releasing factor and other regulators of corticotropin release in rat pituitary cells. J Biol Chem 258:8039–8045

    PubMed  CAS  Google Scholar 

  • Antoni FA, Holmes MC, Jones MT (1983) Oxytocin as well as vasopressin potentiate ovine CRF in vitro. Peptides 4:411–415

    PubMed  CAS  Google Scholar 

  • Bilezikjan LM, Vale WW (1983) Glucocorticoids inhibit corticotropin-releasing factor-induced production of adenosine 3′,5′-monophosphate in cultured anterior pituitary cells. Endocrinology 113:657–662

    Google Scholar 

  • Czernus V, Schally AV (1991) The dispersed cell superfusion system. In: Greenstein B (ed) Neuroendocrine Research Methods. Harwood Academic Publishers, London, pp 66–102

    Google Scholar 

  • Evans MJ, Brett JT, McIntosh RP, McIntosh JEA, McLay JL, Livesey JH, Donald RA (1988) Characteristics of the ACTH response to repeated pulses of corticotrophin-releasing factor and arginine vasopressin in vitro. J Endocrinol 117:387–395

    PubMed  CAS  Google Scholar 

  • Giguère V, Labrie F (1982) Vasopressin potentiates cyclic AMP accumulation and ACTH release induced by corticotropin-releasing factor (CRF) in rat anterior pituitary cells in culture. Endocrinology 111:1752–1754

    PubMed  Google Scholar 

  • Giguère V, Labrie F, Côte J, Coy DH, Sueiras-Diaz J, Schally AV (1982) Stimulation of cyclic AMP accumulation and corticotropin release by synthetic ovine corticotropin-releasing factor in rat anterior pituitary cells: Site of glucocorticoid action. Proc Natl Acad Sci 79:3466–3469

    PubMed  Google Scholar 

  • Guillemin R, Rosenberg B (1955) Humoral hypothalamic control of anterior pituitary: a study with combined tissue cultures. Endocrinology 57:599–607

    PubMed  CAS  Google Scholar 

  • Patthy M, Horvath J, Mason-Garcia M, Szoke B, Schlesinger DH, Schally AV (1985) Isolation and amino acid sequence of corticotropin-releasing factor from pig hypothalami. Proc Natl Acad Sci, USA 82:8762–8766

    PubMed  CAS  Google Scholar 

  • Saffran M, Schally AV (1955) The release of corticotrophin by anterior pituitary tissue in vitro. Can J Biochem Physiol 33:408–415

    PubMed  CAS  Google Scholar 

  • Saffran M, Schally AV, Benfey BG (1955) Stimulation of the release of corticotropin from the adenohypophysis by a neurohypophyseal factor. Endocrinology 57:439–444

    PubMed  CAS  Google Scholar 

  • Schally AV, Arimura A, Bowers CY, Kastin AJ, Sawano S, Redding TW (1968) Hypothalamic neurohormones regulating anterior pituitary function. Rec Progr Horm Res 24:497–588

    PubMed  CAS  Google Scholar 

  • Vale W, Rivier C, Brown MR, Spiess J, Koob G, Swanson L, Bilezikjan L, Bloom F, Rivier J (1983a) Chemical and biological characterization of corticotropin releasing factor. Rec Progr Horm Res 39:245–270

    PubMed  CAS  Google Scholar 

  • Vale W, Vaughan J, Yamamoto G, Bruhn T, Douglas C, Dalton D, Rivier C, Rivier J (1983b) Assay of corticotropin releasing factor. Meth Enzymol 103:565–577

    PubMed  CAS  Google Scholar 

  • Vigh S, Schally AV (1984) Interaction between hypothalamic peptides in a superfused pituitary cell system. Peptides 5, Suppl I:241–247

    PubMed  CAS  Google Scholar 

  • Widmaier and Dallman (1984) The effects of corticotropin-releasing factor on adrenocorticotropin secretion from perifused pituitaries in vitro: Rapid inhibition by glucocorticoids. Endocrinology 115:2368–2374

    PubMed  CAS  Google Scholar 

  • Yasuda N, Greer MA, Aizawa T (1982) Corticotropin-releasing factor. Endocr Rev 3:123–140

    PubMed  CAS  Google Scholar 

References

  • Arimura A, Saito T, Schally AV (1967) Assays for corticotropin-releasing factor (CRF) using rats treated with morphine, chlorpromazine, dexamethasone and nembutal. Endocrinology 81:235–245

    PubMed  CAS  Google Scholar 

  • Graf MV, Kastin AJ, Fischman AJ (1985) Interaction of arginine vasopressin and corticotropin releasing factor demonstrated with an improved bioassay. Proc Soc Exp Biol Med 179:303–308

    PubMed  CAS  Google Scholar 

  • Munson PL, Briggs FN (1955) The mechanism of stimulation of ACTH secretion. Rec Progr Horm Res 11:83–117

    Google Scholar 

  • Rivier C, Brownstein M, Spiess J, Rivier J, Vale W (1982) In vivo corticotropin-releasing factor-induced secretion of adrenocorticotropin, β-endorphin, and corticosterone. Endocrinology 110:272–278

    PubMed  CAS  Google Scholar 

  • Schally AV, Arimura A, Bowers CY, Kastin AJ, Sawano S, Redding TW (1968) Hypothalamic neurohormones regulating anterior pituitary function. Rec Progr Horm Res 24:497–588

    PubMed  CAS  Google Scholar 

  • Vernikos-Danellis J, Marks BH (1970) The assay of corticotropin-releasing factor. In: Hypophysiotropic hormones of the hypothalamus: Assay and chemistry. The Williams & Wilkins Co., pp 60–73

    Google Scholar 

  • Yasuda N, Greer MA, Aizawa T (1982) Corticotropin-releasing factor. Endocr Rev 3:123–140

    PubMed  CAS  Google Scholar 

References

  • Ben-Jonathan N, Oliver C, Weiner HJ, Mical RS, Porter JC (1977) Dopamine in hypophyseal portal plasma of the rat during the estrus cycle and throughout pregnancy. Endocrinology 100:452–458

    PubMed  CAS  Google Scholar 

  • Ching M (1982) Correlative surges of LHRH, LH and FSH in pituitary stalk plasma and systemic plasma of rat during proestrus. Effects of anesthetics. Neuroendocrinology 34:279–285

    PubMed  CAS  Google Scholar 

  • Cowell M, Cover PO, Gillies GE, Buckinham JC (1991) In vitro models for the examination of the mechanisms controlling the secretion of hypothalamic hormones. In: Greenstein B (ed) Neuroendocrine Research Methods. Vol 1, Harwood Acad Publ., Chur, Chapter 5, pp 111–130

    Google Scholar 

  • Fink G, Koch Y, Ben Aroya N (1982) Release of thyrotropin releasing hormone into hypophyseal portal blood is high relative to other neuropeptides and may be related to prolactin secretion. Brain Res 234:186–189

    Google Scholar 

  • Gibbs DM, Vale W (1982) Presence of corticotropin releasing factor-like immunoreactivity in hypophyseal portal blood. Endocrinology 111:1418–1420

    PubMed  CAS  Google Scholar 

  • Gibbs DM (1984) Collection of pituitary portal blood: A methodologic analysis. Neuroendocrinology 38:97–101

    PubMed  CAS  Google Scholar 

  • Gibbs DM (1985a) Measurement of hypothalamic corticotropin-releasing factors in hypophyseal portal blood. Fed Proc 44:203–206

    PubMed  CAS  Google Scholar 

  • Gibbs DM (1985b) Hypothalamic epinephrine is released into hypophyseal portal blood during stress. Brain Res 335:360–364

    PubMed  CAS  Google Scholar 

  • Petraglia F, Sutton S, Vale W, Plotsky P (1987) Corticotropin-releasing factor decreases plasma luteinizing hormone levels in female rats by inhibiting gonadotropin-releasing hormone release into hypophyseal-portal circulation. Endocrinology 120:1083–1088

    PubMed  CAS  Google Scholar 

  • Plotsky PM, Vale W (1985) Pattern of growth hormone-releasing factor and somatostatin secretion into hypophyseal-portal circulation of the rat. Science 230:461–463

    PubMed  CAS  Google Scholar 

  • Plotsky PM, Sawchenko PE (1987) Hypophyseal-portal plasma levels, median eminence content, and immunohistochemical staining of corticotropin-releasing factor, arginine vasopressin, and oxytocin after pharmacological adrenalectomy. Endocrinology 120:1361–1369

    PubMed  CAS  Google Scholar 

  • Porter JC, Smith KR (1967) Collection of hypophyseal stalk blood in rats. Endocrinology 81:1182–1185

    PubMed  CAS  Google Scholar 

  • Sarkar DK (1987) In vivo secretion of LHRH in ovarectomized rats is regulated by a possible autofeedback mechanism. Neuroendocrinology 45:510–513

    PubMed  CAS  Google Scholar 

  • Sarkar DK (1989) Evidence for prolactin feedback action on hypothalamic oxytocin, vasoactive intestinal peptide and dopamine secretion. Neuroendocrinology 49:520–524

    PubMed  CAS  Google Scholar 

  • Sarkar DK, Yen SSC (1985) Changes in β-endorphin-like immunoreactivity in pituitary portal blood during the estrus cycle and after ovarectomy in rats. Endocrinology 116:2075–2079

    PubMed  CAS  Google Scholar 

  • Sarkar DK, Minami S (1991) Pituitary portal blood collection in rats. A powerful technique for studying hypothalamic hormone secretion. In: Greenstein B (ed) Neuroendocrine Research Methods. Vol 1, Harwood Acad Publ., Chru, Chapter 11, pp 235–248

    Google Scholar 

  • Sutton SW, Mitsugi N, Plotsky PM, Sarkar DK (1988) Neuropeptide Y (NPY): a possible role in the initiation of puberty. Endocrinology 123:2152–2154

    PubMed  CAS  Google Scholar 

  • Worthington WC (1966) Blood samples from the pituitary stalk of the rat: method of collection and factors determining volume. Nature 210:710–712

    PubMed  CAS  Google Scholar 

References

  • Abs R, Smets G, Vauquelin G, Verhelst J, Mahler C, Verlooy J, Stevenaert A, Wouters L, Borgers M, Beckers A (1997) 125I-Tyr0-hCRH labeling characteristics of corticotropin-releasing hormone receptors: Differences between normal and adenomatous pituitary corticotrophs. Neurochem Int 30:291–297

    PubMed  CAS  Google Scholar 

  • Aguilera G, Jessop DS, Harbuz MS, Kiss A, Lightman SL (1997) Differential regulation of hypothalamic pituitary corticotropin releasing hormone receptors during development of adjuvant-induced arthritis in the rat. J Endocrinol 153:185–191

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    PubMed  CAS  Google Scholar 

  • Castro MG, Morrison E, Perone MJ, Brown OA, Murray CA, Ahmed I, Perkins AV, Europe-Finner G, Lowenstein PR, Linton EA (1996) Corticotropin-releasing hormone receptor type 1: Generation and characterization of polyclonal antipeptide antibodies and their localization in pituitary cells and cortical neurones in vitro. J Neuroendocrinol 8:521–531

    PubMed  CAS  Google Scholar 

  • Chen R, Lewis KA, Perrin MH, Vale WW (1993) Expression cloning of a human corticotropin-releasing-factor receptor. Proc Natl Acad Sci, USA, 90:8967–8971

    PubMed  CAS  Google Scholar 

  • Cortright DN, Nicoletti A, Seasholtz AF (1995) Molecular and biochemical characterization of the mouse brain corticotropin-releasing hormone-binding protein. Mol Cell Endocrinol 111:147–157

    PubMed  CAS  Google Scholar 

  • De Souza EB, Grigoriadis DE, Vale WW (1998) Corticotropin-releasing factor receptors. In: Girdlestone D (ed) The IUPHAR Compendium of Receptor Characterization and Classification. IUPHAR Media, London, pp 134–138

    Google Scholar 

  • Di Blasio AM, Giraldi FP, Vigano P, Petraglia F, Vignali M, Cavagnini F (1997) Expression of corticotropin-releasing hormone and its R1 receptor in human endometrial stroma cells. J Clin Endocrinol Metab 85:1594–1597

    Google Scholar 

  • Grammatopoulos D, Hillhouse EW (1998) Solubilization and biochemical characterization of the human myometrial corticotropin-releasing hormone receptor. Mol Cell Endocrinol 138:185–198

    PubMed  CAS  Google Scholar 

  • Grigoriadis DE Heroux JA, De Souza EB (1993) Characterization and regulation of corticotropin-releasing factor receptors in the central nervous, endocrine and immune system. In: Chadwick DJ, Marsh J, Ackrill K (eds) Ciba Foundation Symposium 172, John Wiley & Sons, West Sussex, England, pp 85–107

    Google Scholar 

  • Hauger RL, Aguilera G (1993) Regulation of pituitary corticotropin releasing hormone (CRH) receptors by CRH: Interaction with vasopressin. Endocrinol 133:1708–1714

    CAS  Google Scholar 

  • Kostich W, Chen A, Sperle K, Horlick RA, Patterson J, Largent BL (1996) Molecular cloning an expression analysis of human CRH receptor type 2 α and β isoforms. Soc Neurosci, Abst. 22:609

    Google Scholar 

  • Liaw CW, Lovenberg TW, Barry G, Oltersdorf T, Grigoriadis DE, De Souza EB (1996) Cloning and characterization of the human corticotropin-releasing factor-2 receptor complementary deoxyribonucleic acid. Endocrinology 137:72–77

    PubMed  CAS  Google Scholar 

  • Lovenberg TW, Liaw CW, Grigoriadis DE, Clevenger W, Chalmers DT, De Souza EB, Oltersdorf T (1995) Cloning and characterization of a functionally distinct corticotropin-releasing factor receptor subtype from rat brain. Proc Natl Acad Sci, USA, 92:838–840

    Google Scholar 

  • Lundkvist J, Chai Z, Teheranian R, Hasanvan H, Bartfai T, Jenck F, Widmer U, Moreau JL (1996) A non peptide corticotropin releasing factor antagonist attenuated fever and exhibits anxiolytic-like activity. Eur J Pharmacol 309:195–200

    PubMed  CAS  Google Scholar 

  • Ochedalski T, Rabdan-Diehl C, Aguilera G (1998) Interaction between glucocorticoids and corticotropin releasing hormone (CRH) in the regulation of the pituitary CRH receptor in vivo in rats. J Neuroendocrin 10:363–369

    CAS  Google Scholar 

  • Perrin MH, Donaldson CJ, Chen R, Lewis KA, Vale WW (1993) Cloning and functional expression of a rat brain corticotropin releasing factor (CRF) receptor. Endocrinology 133:3058–3061

    PubMed  CAS  Google Scholar 

  • Rabadan-Diehl C, Makara G, Kiss A, Zelena D, Aguilera G (1997) Regulation of pituitary corticotropin releasing hormone (CRH) receptor mRNA and CRH during adrenalectomy: Role of glucocorticoids and hypothalamic factors. J Neuroendocrinol 9:689–697

    PubMed  CAS  Google Scholar 

  • Rhode E, Furkert J, Fechner K, Beyermann M, Mulvany MJ, Richter RM, Denef C, Bienert M Berger H (1996) Corticotropin-releasing hormone (CRH) receptors in the mesenteric small arteries of rats resemble the (2)-subtype. Biochem Pharmacol 52:829–833

    Google Scholar 

  • Rominger DH, Rominger CM, Fitzgerald LW, Grzanna R, Largent BL, Zaczek R (1998) Characterization of [125I]sauvagine binding to CRH2 receptors: Membrane homogenate and autoradiographic studies. J Pharmacol Exp Ther 286:459–468

    PubMed  CAS  Google Scholar 

  • Schulz DW, Mansbach RS, Sprouse J, Braselton JP, Collins J, Corman M, Dunaikis A, Faraci S, Schmidt AW, Seeger T, Seymour P, Tingley III FD, Winston EN, Chen YL, Heym J (1996) CP-154-526: A potent and selective nonpeptide antagonist of corticotropin releasing factor receptors. Proc Natl Acad Sci, USA 93:10477–10482

    PubMed  CAS  Google Scholar 

  • Sperle K, Chen A, Kostich W, Largent BL (1997) CRH2: A novel CRH2 receptor isoform found in human brain. Soc Neurosci, Abst 23:689

    Google Scholar 

  • Stenzel P, Kesterson R, Yeung W, Cone RD, Rittenberg MB, Stenzel-Poore MP (1995) Identification of a novel murine receptor for corticotropin-releasing hormone expressed in the heart. Mol Endocrinol 9:637–645

    PubMed  CAS  Google Scholar 

  • Vita N, Laurent P, Lefort S, Chalon P, Lelias JM, Kaghad M, Le FG, Caput D, Ferrara P (1993) Primary structure and functional expression of mouse pituitary and human brain corticotropin releasing factor receptors. FEBS Lett 335:1–5

    PubMed  CAS  Google Scholar 

  • Webster EL, Lewis DB, Torpy DJ, Zachman EK, Rice KC, Chrousos GP (1996) In vivo and in vitro characterization of antalarmin, a nonpeptide corticotropin releasing hormone (CRH) receptor antagonist: Suppression of pituitary ACTH release and peripheral inflammation. Endocrinology 137:5747–5750

    PubMed  CAS  Google Scholar 

  • Wei ET, Thomas HA, Christian HC, Buckingham JC, Kishimoto T (1998) D-amino acid substituted analogs of corticotropin-releasing hormone (CRH) and urocortin with selective agonist activity at CRH1 and CRH receptors. Peptides 19:1183–1190

    PubMed  CAS  Google Scholar 

  • Zhao X J, Hoheisel G, Schauer J, Bornstein SR (1997) Corticotropin-releasing hormone-binding protein and its possible role in neuroendocrinological research. Horm Metab Res 29:373–378

    PubMed  CAS  Google Scholar 

References

  • Abribat T, Boulanger L, Gaudreau P (1990) Characterization of [125I-Tyr10] human growth hormone-releasing factor (1-44)-amide binding to rat pituitary: Evidence of high and low affinity classes of sites. Brain Res 528:291–299

    PubMed  CAS  Google Scholar 

  • Argente J, Garcia-Segura LM, Pozo J, Chowen JA (1996) Growth hormone-releasing peptides: Clinical and basic aspects. Horm Res 46:155–159

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal Biochem 72:248–254

    PubMed  CAS  Google Scholar 

  • Campbell RM, Lee Y, Rivier J, Reimer EP, Felix AM, Mowles TF (1991) GRF analogs and fragments: correlation between receptor binding and structure. Peptides 12:569–574

    PubMed  CAS  Google Scholar 

  • Carrick TA, Bingham B, Eppler CM, Baumbach WR, Zysk JR (1995) A rapid and sensitive binding assay for growth hormone releasing factor. Endocrinology 136:4701–4704

    PubMed  CAS  Google Scholar 

  • Gaudreau P, Boulanger L, Abribat T (1992) Affinity of human growth hormone-releasing factor (1–29)NH2 analogues for GRF binding sites in rat adenopituitary. J Med Chem 35:1864–1869

    PubMed  CAS  Google Scholar 

  • Greenwood FC, Hunter WH, Glower JS (1963) The preparation of 125I labeled growth hormone of high specific activity. Biochemistry 89:114–123

    CAS  Google Scholar 

  • Halmos G, Rekasi Z, Szoke B, Schally AV (1993) Use of radioreceptor assay and cell superfusion system for in vitro screening of analogs of growth hormone-releasing hormone. Receptor 3:87–97

    PubMed  CAS  Google Scholar 

  • Hassan HA, Hsiung HM, Zhang X Y, Smith DP, Smiley DL Heinman ML (1995) Characterization of growth hormone-releasing hormone (GHRH) binding to cloned porcine GHRH receptor. Peptides 16:1469–1473

    PubMed  CAS  Google Scholar 

  • Heiman MI, Nekola MV, Murphy WA, Lance VA, Coy DH (1985) An extremely sensitive in vitro model for elucidating structure-activity relationships of growth hormone-releasing factor analogs. Endocrinology 116:410–415

    PubMed  CAS  Google Scholar 

  • Kaijkowsi EM, Price LA, Pausch MH; Young KH, Ozenberger BA (1997) Investigation of growth hormone releasing hormone receptor structure and activity using yeast expression technologies. J Recept Signal Transduction Res 17:1–3

    Google Scholar 

  • Kovacs M, Gulyas J, Bajusz S, Schally AV (1988) An evaluation of intravenous, subcutaneous, and in vitro activity of new agmatine analogs of growth hormone-releasing hormone hGH-RH(1–29)NH2. Life Sci 42:27–35

    PubMed  CAS  Google Scholar 

  • Lefrancois L, Gaudreau P (1994) Identification of receptor binding pharmacophores of growth hormone-releasing factor in rat adenopituitary. Neuroendocrinol 59:363–370

    CAS  Google Scholar 

  • Mayo KE (1992) Molecular cloning and expression of a pituitary-specific receptor for growth hormone-releasing hormone. Molec Endocrinol 6:1734–1744

    CAS  Google Scholar 

  • Muccioli G, Ghè C, Ghigo MC, Papoti M, Arvat E, Boghen MF, Nilsson MHL, Deghengi R, Ong H, Ghigo E (1998) Specific receptors for synthetic GH secretagogues in the human brain and pituitary gland. J Endocrinol 157:99–106

    PubMed  CAS  Google Scholar 

  • Munson PJ, Rodbard D (1980) A versatile computerized approach for characterization of ligand-binding systems. Anal Biochem 107:220–239

    PubMed  CAS  Google Scholar 

  • Seifert H, Perrin M, Rivier J, Vale W (1985a) Binding sites for growth hormone releasing factor on rat pituitary cells. Nature 313:487–489

    PubMed  CAS  Google Scholar 

  • Seifert H, Perrin M, Rivier J, Vale W (1985b) Growth hormone-releasing factor binding sites in rat anterior pituitary membrane homogenates. Modulation by glucocorticoids. Endocrinology 117:424–426

    PubMed  CAS  Google Scholar 

  • Struthers RS, Perrin MH, Vale W (1989) Nucleotide regulation of growth hormone-releasing factor binding to rat pituitary receptors. Endocrinology 124:24–29

    PubMed  CAS  Google Scholar 

References

  • Brazeau P, Ling N, Böhlen P, Esch F, Ying SY, Guillemin R (1982) Growth hormone releasing factor, somatocrinin, releases pituitary growth hormone in vitro. Proc Natl Acad Sci USA 79:7909–7013

    PubMed  CAS  Google Scholar 

  • Cheng K, Chan WWS, Butler B, Wie L, Smith RG (1993) A novel non-peptidyl growth hormone secretagogue. Horm Res 40:109–115

    PubMed  CAS  Google Scholar 

  • Czernus V, Schally AV (1991) The dispersed cell superfusion system. In: Greenstein B (ed) Neuroendocrine Research Methods. Harwood Academic Publishers, London, pp 66–102

    Google Scholar 

  • Daughaday WH, Peake GT, Machlin LJ (1970) Assay of growth hormone releasing factor. In: Hypophysiotropic hormones of the hypothalamus: Assay and chemistry. The Williams & Wilkins Co., pp 151–170

    Google Scholar 

  • Gelato MC, Merriam GR (1986) Growth hormone releasing hormone. Ann Rev Physiol 48:569–591

    CAS  Google Scholar 

  • Halmos G, Rekasi Z, Szoke B, Schally AV (1993) Use of radioreceptor assay and cell superfusion system for in vitro screening of analogs of growth hormone-releasing hormone. Receptor 3:87–97

    PubMed  CAS  Google Scholar 

  • Horváth JE, Groot K, Schally AV (1995) Growth hormone-releasing hormone stimulates cAMP release from superfused rat pituitary cells. Proc Natl Acad Sci USA 92:1856–1860

    PubMed  Google Scholar 

  • Jacks T, Smith R, Judith F, Schleim K, Frazier E, Chen H, Krupa D, Hora D Jr., Nargund R, Patchett A, Hickey G (1996) MK-0677, a potent, novel, orally active growth hormone (GH) secretagogue: GH, insulin-like growth factor I, and other hormonal responses in beagles. Endocrinology 137:5284–5289.

    PubMed  CAS  Google Scholar 

  • Kovács M, Zarándi M, Halmos G, Groot K, Schally AV (1996a) Effects of acute and chronic administration of a new potent antagonist of growth hormone-releasing hormone in rats: mechanism of action. Endocrinology 137:5364–5369

    PubMed  Google Scholar 

  • Kovács M, Halmos G, Groot K, Izdebski J, Schally AV (1996b) Chronic administration of a new potent agonist of growth hormone-releasing hormone induces compensatory linear growth in growth hormone-deficient rats: Mechanism of action. Neuroendocrinology 64:169–176

    PubMed  Google Scholar 

  • Kovács M, Kineman RD, Schally AV, Zarándi M, Groot K, Frohman LA (1997) Effects of antagonists of growth hormone-releasing hormone (GHRH) on GH and insulin-like growth factor I levels in transgenic mice overexpressing the human GHRH gene, an animal model of acromegaly. Endocrinology 138:4536–4542

    PubMed  Google Scholar 

  • Ling N, Zeytin F, Böhlen P, Esch F, Brazeau P, Wehrenberg WB, Baird A, Guillemin R (1985) Growth hormone releasing factors. Ann Rev Biochem 54:403–423

    PubMed  CAS  Google Scholar 

  • Perkins SN, Evans WS, Thorner MO, Cronin MJ (1983) Beta-adrenergic stimulation of growth hormone release from perifused rat anterior pituitary cells. Neuroendocrin 37:473–475

    CAS  Google Scholar 

  • Rekasi Z, Schally AV (1993) A method for evaluation of activity of antagonistic analogs growth hormone-releasing hormone in a superfusion system. Proc Natl Acad Sci USA 90:2146–2149

    PubMed  CAS  Google Scholar 

  • Sanchez-Hormigo A, Castano JP, Torronteras R, Malagon MM, Ramirez JL, Gracia-Navarro F (1998) Direct effect of growth hormone (GH)-releasing hexapeptide (GHRP-6) and GH-releasing factor (GRF) on GH secretion from cultured porcine somatotropes. Life Sci 63:2079–2088

    PubMed  CAS  Google Scholar 

  • Schalch DS, Reichlin S (1966) Plasma growth hormone concentration in the rat determined by radioimmunoassay: Influence of sex, pregnancy, lactation, anesthesia, hypophysectomy and extrasellar pituitary transplants. Endocrinology 79:275–280

    PubMed  CAS  Google Scholar 

  • Scheikl-Lenz B, Markert C, Sandow J, Träger L, Kuhl H (1985) Functional integrity of anterior pituitary cells separated by a density gradient. Acta Endocrin 109:25–31

    CAS  Google Scholar 

  • Varga JL, Schally AV, Scernus VJ, Zarandi M, Halmos G, Groot K, Rekasi Z (1999) Synthesis and biological evaluation of antagonists of growth hormone-releasing hormone with high and protracted in vivo activities. Proc Natl Acad Sci USA 96:692–697

    PubMed  CAS  Google Scholar 

  • Vigh S, Schally AV (1984) Interaction between hypothalamic peptides in a superfused pituitary cell system. Peptides 5, Suppl I:241–247

    PubMed  CAS  Google Scholar 

References

  • Schalch DS, Reichlin S (1966) Plasma growth hormone concentration in the rat determined by radioimmunoassay: Influence of sex, pregnancy, lactation, anesthesia, hypophysectomy and extrasellar pituitary transplants. Endocrinology 79:275–280

    PubMed  CAS  Google Scholar 

  • Wehrenberg WB, Baird A, Zeytin F, Esch F, Böhlen P, Ling N, Ying SY, Guillemin R (1985) Physiological studies with somatocrinin, a growth hormone releasing factor. Ann Rev Pharmacol Toxicol 25:463–483

    CAS  Google Scholar 

  • Wehrenberg WB, Ling N (1983) In vivo biological potency of rat and human growth hormone-releasing factor and fragments of human growth hormone-releasing factor. Biochem Biophys Res Comm 115:525–530

    PubMed  CAS  Google Scholar 

References

  • Hunt G (1995) Melanocyte-stimulating hormone: A regulator of human melanocyte physiology. Pathobiology 63:12–21

    PubMed  CAS  Google Scholar 

  • Inouye K, Otsuka H (1987) ACTH: Structure-function relationship. In: Li CH (ed) Hormonal Proteins and Peptides, Vol XIII, Academic Press, Inc., New York, pp 1–29

    Google Scholar 

  • Landgrebe FW, Waring H (1950) Biological assay of the melanophore expanding hormone from the pituitary. In: Emmens CW (ed) Hormone Assay. Academic Press Inc., Publishers, New York, Chapter VI, pp 141–171

    Google Scholar 

  • Landgrebe FW, Waring H (1962) Melanophore-expanding activity. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Chapter 15, Academic Press, New York and London. pp 517–558

    Google Scholar 

  • Sandow J, Geiger R, Vogel HG (1977) Pharmacological effects of a short chain ACTH-analogue. Naunyn Schmiedeberg's Arch Pharmacol 297: Suppl II:162

    Google Scholar 

References

  • Bagutti C, Eberle AN (1993) Synthesis and biological properties of a biotinylated derivative of ACTH1–17 for MSH receptor studies. J Receptor Res 13:229–244

    CAS  Google Scholar 

  • Celis ME, Taleisnik S, Walter R (1971) Regulation of formation and proposed structure of the factor inhibiting the release of melanocyte-stimulating hormone. Proc Natl Acad Sci USA 68:1428–1433

    PubMed  CAS  Google Scholar 

  • Kastin AJ, Viosca A, SchallY AV (1969) Assay of mammalian MSH release-regulating factors. Proceedings of the Workshop Conference: Hypophysiotropic Hormones of the Hypothalamus: Assay and Chemistry. Tucson, Arizona

    Google Scholar 

  • Landgrebe FW, Waring H (1950) Biological assay of the melanophore expanding hormone from the pituitary. In: Emmens CW (ed) Hormone Assay. Academic Press Inc., Publishers, New York, Chapter VI, pp 141–171

    Google Scholar 

  • Landgrebe FW, Waring H (1962) Melanophore-expanding activity. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Chapter 15, Academic Press, New York and London. pp 517–558

    Google Scholar 

  • Sahm UG, Olivier GWJ, Branch SK, Moss SH, Pouton CW (1993) Influence of α-MSH terminal amino acids on binding affinity and biological activity in melanoma cells. Peptides 15:441–446

    Google Scholar 

  • Sahm UG, Olivier GWJ, Branch SK, Moss SH, Pouton CW (1994) Synthesis and biological evaluation of α-MSH analogues substituted with alanine. Peptides 15:1297–1302

    PubMed  CAS  Google Scholar 

  • Sahm UG, Olivier GWJ, Branch SK, Moss SH, Pouton CW (1996) Receptor binding affinities and biological activities of linear and cyclic melanocortins in B16 murine melanoma cells expressing the native MC1 receptor. J Pharm Pharmacol 48:197–200

    PubMed  CAS  Google Scholar 

  • Shizume K, Lerner AB, Fitzpatrick TB (1954) In vitro bioassay for the melanocyte stimulating hormone. Endocrinology 54:553–560

    PubMed  CAS  Google Scholar 

  • Schuler W, Schär B, Desaulles P (1963) Zur Pharmakologie eines ACTH-wirksamen, vollsynthetischen Polypeptids, des bl-24-Corticotropins, Ciba 30920-Ba, Synacthen. Schweiz Med Wschr 93:1027–1030

    PubMed  CAS  Google Scholar 

  • Siegrist W, Eberle AN (1986) In situ melanin assay for MSH using mouse B16 melanoma cells in culture. Analyt Biochem 159:191–197

    PubMed  CAS  Google Scholar 

  • Trendelenburg P (1926) Weitere Versuche über den Gehalt des Liquor cerebrospinalis an wirksamen Substanzen des Hypophysenhinterlappens. Naunyn Schmiedeberg's Arch exper Path Pharmakol 114:255–261

    Google Scholar 

  • Vogel HG (1965) Evaluation of synthetic peptides with ACTH-Activity. Acta Endocr. Suppl. (Kbh) 100:34

    Google Scholar 

  • Vogel HG (1969) Tierexperimentelle Untersuchungen über synthetische Peptide mit Corticotropinaktivität. A: Vergleich mit dem III. Int. Standard für Corticotropin. Arzneim-Forsch/Drug Res 19:20–24

    CAS  Google Scholar 

References

  • Adan RAH, Cone RD, Burbach JPH, Gispen WH (1994) Differential effects of melanocortin peptides on neural melanocortin receptors. Mol Pharmacol 46:1182–1190

    PubMed  CAS  Google Scholar 

  • Bagutti C, Stolz B, Albert R, Bruns C, Pless J, Eberle AN (1993) [111In]DTPA-labeled analogues of α-MSH for the detection of MSH receptors in vitro and in vivo. Ann NY Aced Sci 680:445–447

    CAS  Google Scholar 

  • Chhajlani V, Wikberg JES (1992) Molecular cloning of a novel human melanocyte stimulating hormone receptor cDNA. FEBS Lett 309:417–420

    PubMed  CAS  Google Scholar 

  • Chhajlani V, Muceniece R, Wikberg JES (1993) Molecular cloning of a novel human melanocortin receptor. Biochem Biophys Res Commun 195:866–873

    PubMed  CAS  Google Scholar 

  • Cone RD, Lu D, Koppula S, Vage DI, Klungland H, Boston B, Chen W, Orth DN, Pouton C, Kesterson RA (1996) The melanocortin receptors: agonists, antagonists, and the hormonal control of pigmentation. Recent Progr Horm Res 51:287–317

    PubMed  CAS  Google Scholar 

  • Desarnaud F, Labbe O, Eggerickx D, Vassart G, Parmentier M (1994) Molecular cloning, functional expression and pharmacological characterization of a mouse melanocortin receptor gene. Biochem J 299:367–373

    PubMed  CAS  Google Scholar 

  • Erskine-Grout ME, Olivier GWJ, Lucas P, Sahm UG, Branch SK, Moss SH, Notarianni LJ, Pouton CW (1996) Melanocortin probes for the melanoma MC1 receptor: Synthesis, receptor binding and biological activity. Melanoma Res 6:89–94

    PubMed  CAS  Google Scholar 

  • Fan W, Boston BA, Kesterson RA, Hruby VJ, Cone RD (1997) Role of melanocortin neurons in feeding and agouti obesity syndrome. Nature 386:165–168

    Google Scholar 

  • Fathi Z, Iben LG, Parker RM (1995) Cloning, expression, and tissue distribution of a fifth melanocortin receptor subtype. Neurochem Res 20; 107–113

    PubMed  CAS  Google Scholar 

  • Gantz I, Konda Y, Tashiro T, Shimoto Y, Miwa H, Munzert G, Watson SJ, Del Valle J, Yamada T (1993a) Moiecular cloning of a novel melanocortin receptor. J Biol Chem 268:8246–8250

    PubMed  CAS  Google Scholar 

  • Gantz I, Miwa H, Konda Y, Shimoto Y, Tashiro T, Watson SJ, Del Valle J, Yamada T (1993b) Molecular cloning, expression, and gene location of a fourth melanocortin receptor. J Biol Chem 268:15174–15179

    PubMed  CAS  Google Scholar 

  • Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier RL, Gu W, Hesterson RA, Boston BA, Cone RD, Smith FJ, Campfield LA, Burn P, Lee F: Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88:131–141

    Google Scholar 

  • Kask A, Rago L, Mutulis F, Pahkla R, Wikberg JES, Schioth HB (1998a) Selective antagonist for the melanocortin-4 receptor (HS014) increases food uptake in free-feeding rats. Biochem Biophys Res Commun 245:90–93

    PubMed  CAS  Google Scholar 

  • Kask A, Mutulis F, Muceniece R, Pahkla R, Mutule I, Wikberg JS, Rago L, Schioth HB (1998b) Discovery of a novel superpotent and selective melanocortin-4 receptor antagonist (HS024): Evaluation in vitro and in vivo. Endocrinology 139:5006–5014

    PubMed  CAS  Google Scholar 

  • Labbé O, Desarnaud F, Eggerickx D, Vassart G, Parmentier M (1994) Molecular cloning of a mouse melanocortin 5 receptor gene widely expressed in peripheral tissues. Biochemistry 93:4543–4549

    Google Scholar 

  • Peng PJ, Sahm UG, Doherty RVM, Kinsman RG, Moss SH, Pouton CW (1997) Binding and biological activity of C-terminally modified melanocortin peptides: A comparison of their actions at rodent MC1 and MC3 receptors. Peptides 18:1001–1008

    PubMed  CAS  Google Scholar 

  • Quillan JM, Sadée W (1996) Structure-based search for peptide ligands that cross-react with melanocortin receptors. Pharmaceut Res 13:1624–1630

    CAS  Google Scholar 

  • Sahm UG, Qarawi MA, Olivier GWJ, Ahmed AHR, Branch SK, Moss SH, Pouton CW (1994) The melanocortin (MC3) receptor from rat hypothalamus: photoaffinity labelling and binding of alanine-substituted analogues. FEBS Lett 350:29–32

    PubMed  CAS  Google Scholar 

  • Sahm UG, Olivier GWJ, Branch SK, Moss SH, Pouton CW (1996) Receptor binding affinities and biological activities of linear and cyclic melanocortins in B16 murine melanoma cells expressing the native MC1 receptor. J Pharm Pharmacol 48:197–200

    PubMed  CAS  Google Scholar 

  • Schiöth HB, Muceniece R, Wikberg JES, Chhajlani V (1995) Characterization of melanocortin receptor subtypes by radioligand binding analysis. Eur J Pharmacol 288:311–317

    PubMed  Google Scholar 

  • Schiöth HB, Chhajlani V, Muceniece R, Klusa V, Wikberg JES (1996a) Major pharmacological distinction of the ACTH receptor from other melanocortin receptors. Life Sc 59:797–801

    Google Scholar 

  • Schiöth HB, Muceniece R, Wikberg JES (1996b) Characterization of the melanocortin 4 receptor by radioligand binding. Pharmacol Toxicol 79:161–165

    PubMed  Google Scholar 

  • Schiöth HB, Muceniece R, Larsson M, Mutulis F, Szardenings M, Prusis P, Lindeberg G, Wikberg JES (1997) Binding of cyclic and linear MSH core peptides to the melanocortin receptor subtypes. Eur J Pharmacol 319:369–373

    PubMed  Google Scholar 

  • Schiöth HB, Mutulis F, Muceniece R, Prusis P, Wikberg JES (1998a) Selective properties of C-and N-terminals and core residues of the melanocyte-stimulating hormone on the binding to the human melanocortin receptor subtypes. Eur J Pharmacol 349:359–366

    PubMed  Google Scholar 

  • Schiöth HB, Mutulis F, Muceniece R, Prusis P, Wikberg JES (1998b) Discovery of novel melanocortin4 receptor selective MSH analogues. Br J Pharmacol 124:75–82

    PubMed  Google Scholar 

  • Skuladottir GV, Jonsson L, Skarphedinsson JO, Mutulis F, Muceniece R, Raine A, Mutule I, Helgason J, Prusis J, Wikberg JES, Schioth HB (1999) Longterm orexigenic effect of a novel melanocortin-4 receptor selective antagonist. Br J Pharmacol 126:27–34

    PubMed  CAS  Google Scholar 

  • Strand FL (1999) New vistas for melanocortins. Finally an explanation for their pleiotropic function. In: Sandman CA, Chronwall BM, Strand FL, Flynn FW, Beckwith B, Nachman RJ (eds) Neuropeptides. Structure and Function in Biology and Behavior. Ann New York Acad Sci 897:1–16

    CAS  Google Scholar 

References

  • Bani D (1997) Relaxin: a pleiotropic hormone. Gen Pharmac 28:13–22

    CAS  Google Scholar 

  • Büllesbach EE, Schwabe C (1993) Mouse relaxin: Synthesis and biological activity of the first relaxin with an unusual crosslinking pattern. Biochem Biophys Res Commun 196:311–319

    PubMed  Google Scholar 

  • Canova-Davis E, Baldonado IP, Teshima GM (1990) Characterization of chemically synthesized human relaxin by high-performance liquid chromatography. J Chromatogr 508:81–96

    PubMed  CAS  Google Scholar 

  • Coulson CC, Thorp Jr. JM, Mayer DC, Cefalo RC (1996) Central hemodynamic effects of recombinant human relaxin in the isolated, perfused rat heart model. Obstet Gynecol 87:610–612

    PubMed  CAS  Google Scholar 

  • Evans BA, John M, Fowler KJ, Summers RJ, Crink M, Shine J, Tregear GW (1993) The mouse relaxin gene: nucleotide sequence and expression. J Mol Endocrinol 10:15–23

    PubMed  CAS  Google Scholar 

  • Goldsmith LT, Weiss G, Steinetz BG (1995) Relaxin and its role in pregnancy. Endocrinol Metab Clin North Am 24:171–186

    PubMed  CAS  Google Scholar 

  • Jockenhövel F, Peterson MA, Johnston PD, Swerdloff RS (1991) Directly iodinated rat relaxin as a tracer for use in radioimmunoassays. Eur J Clin Chem Clin Biochem 29:71–75

    PubMed  Google Scholar 

  • Klonisch T, Hombach-Klonisch S, Froehlich C, Kauffold J, Steger K, Steinetz BG, Fischer B (1999) Canine preprorelaxin: Nucleic acid sequence and localization within the canine placenta. Biol Reprod 60:551–557

    PubMed  CAS  Google Scholar 

  • Layden SS; Tregear GW (1996) Purification and characterization of porcine prorelaxin. J Biochem Biophys Methods 31:69–80

    PubMed  CAS  Google Scholar 

  • Lucas C, Bald LN, Martin MC, Jaffe RB, Drolet DW, Mora-Worms M, Bennett G, Chen AB, Johnston PD (1989) An enzyme-linked immunoassay to study human relaxin in human pregnancy and in pregnant rhesus monkeys. J Endocrinol 120:449–457

    PubMed  CAS  Google Scholar 

  • Pusch W, Balvers M, Ivell R (1996) Molecular cloning and expression of the relaxin-like factor from the mouse testis. Endocrinology 137:3009–3013

    PubMed  CAS  Google Scholar 

  • Schwabe C, Büllesbach EE (1994) Relaxin: structures, functions, and nonevolution. FASEB J 8:1152–1160

    PubMed  CAS  Google Scholar 

  • Sherwood OD (1979) Relaxin. In: Jaffe BM, Behrman HR (eds) Methods of Hormone Radioimmunoassay. Academic Press New York, pp 875–886

    Google Scholar 

  • Steinetz BG, Büllesbach EE, Godsmith LT, Schwabe C, Lust G (1996) Use of synthetic canine relaxin to develop a rapid homologous radioimmunoassay. Biol Reprod 54:1252–1260

    PubMed  CAS  Google Scholar 

  • Taylor MJ, Clark CL (1989) Analysis of relaxin release by cultured porcine luteal cells using a reverse hemolytic plaque assay: Effects of arachidonic acid, cyclo-and lipoxygenase blockers, phospholipase A2, and melittin. Endocrinology 125:1389–1397

    PubMed  CAS  Google Scholar 

  • Taylor MJ, Clark CL (1992a) Basic fibroblast growth factor inhibits basal and stimulated relaxin secretion by cultured luteal cells: Analysis by reverse hemolytic plaque assay. Endocrinology 130:1951–1956

    PubMed  CAS  Google Scholar 

  • Taylor MJ, Clark CL (1992b) Discordant secretion of relaxin by individual porcine large luteal cells: quantitative analysis by a reverse hemolytic plaque assay. J Endocrinol 134:77–83

    PubMed  CAS  Google Scholar 

  • Wade JD, Layden SS, Lambert PF, Kakouris H, Tregear GW (1994) Primate relaxin: synthesis of gorilla and rhesus monkey relaxins. J Protein Chem 13:315–321

    PubMed  CAS  Google Scholar 

  • Zarreh-Hoshyari-Khah MR, Einspanier A, Ivell R (1999) Differential splicing and expression of the relaxin-like factor gene in reproductive tissues of the marmoset monkey (Callithrix jacchus) Biol Reprod 60:445–453

    PubMed  CAS  Google Scholar 

References

  • Hisaw FL (1929) The corpus luteum hormone. I. Experimental relaxation of the pelvic ligaments of the guinea pig. Physiol Zool 2:59–79

    CAS  Google Scholar 

  • Kroc RL, Steinetz BG, Beach VL, Stasilli NR (1956) Bioassay of relaxin extracts in guinea pigs and mice, using a reference standard. J Clin Endocrinol Metab 16:966

    Google Scholar 

  • Kroc RL, Steinetz BG, Beach VL (1959) The effects of estrogens, progestagens, and relaxin in pregnant and nonpregnant laboratory rodents. Ann NY Acad Sci 75:942–980

    PubMed  CAS  Google Scholar 

  • Steinetz BG, Lust G (1994) Inhibition of relaxin-induced pubic symphyseal ‘relaxation’ in guinea pigs by glycosaminoglycan polysulfates and pentosan polysulfate. Agents Actions 42:74–80

    PubMed  CAS  Google Scholar 

  • Steinetz BG, Beach VL, Kroc RL (1969a) Relaxin. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Chapter 16, Academic Press, New York and London. pp 559–589

    Google Scholar 

  • Steinetz BG, Beach VL, Kroc RL (1969b) Bioassay of relaxin. In: Dorfman RI (ed) Methods in Hormone Research, Vol IIA, Chapter 13. Academic Press, New York and London. pp 481–513

    Google Scholar 

References

  • Bullesbach EE, Schwabe C (1996) The chemical synthesis of rat relaxin and the unexpectedly high potency of the synthetic hormone in the mouse. Eur J Biochem 241:533–537

    PubMed  CAS  Google Scholar 

  • Dorfman RI, Marsters RW, Dinerstein J (1953) Bioassay of relaxin. Endocrinology: 52:204–214

    PubMed  CAS  Google Scholar 

  • Hall K (1948) Further notes on the action of oestrone and relaxin on the pelvis of the spayed mouse, including a single-dose test of potency of relaxin. J Endocrinol 5:314–321

    PubMed  CAS  Google Scholar 

  • Kroc RL, Steinetz BG, Beach VL (1959) The effects of estrogens, progestagens, and relaxin in pregnant and nonpregnant laboratory rodents. Ann NY Acad Sci 75:942–980

    PubMed  CAS  Google Scholar 

  • Samuel CS, Coghlan JP, Bateman JF (1998) Effects of relaxin, pregnancy and parturition on collagen metabolism in the rat pubic symphysis. J Endocrinol 159:1178–125

    Google Scholar 

  • Steinetz BG, Beach VL, Kroc RL, Stasilli NR, Nussbaum RE, Nemith PJ, Dunn RK (1960) Bioassay of relaxin using a reference standard: A simple and reliable method utilizing direct measurement of interpubic ligament formation in mice. Endocrinology 67:102–115

    PubMed  CAS  Google Scholar 

  • Steinetz BG, Beach VL, Kroc RL (1969a) Bioassay of relaxin. In: Dorfman RI (ed) Methods in Hormone Research, Vol IIA, Chapter 13, Academic Press, New York and London. pp 481–513

    Google Scholar 

  • Steinetz BG, Beach VL, Kroc RL (1969b) Relaxin. In: Dorfman RI (ed) Methods in Hormone Research, Vol II, Chapter 16, Academic Press, New York and London. pp 559–589

    Google Scholar 

References

  • Del Angel Meza AR, Beas-Zárate C, Alfaro FL, Morales-Villagran A (1991) A simple biological assay for relaxin measurement. Comp Biochem Physiol 99 C:35–39

    Google Scholar 

  • Downing SJ, Hollingsworth M (1993) Action of relaxin on uterine contractions. A review. J Reprod Fertil 99:275–282

    PubMed  CAS  Google Scholar 

  • Downing SJ, Sherwood OD (1985) The physiological role of relaxin in the pregnant rat. III. The influence of relaxin on cervical distensibility. Endocrinology 116:1215–1220

    PubMed  CAS  Google Scholar 

  • Felton LC, Frieden EH, Bryant HH (1953) The effects of ovarian extracts upon activity of the guinea pig uterus in situ. J Pharmacol Exp Ther 107:160–164

    PubMed  CAS  Google Scholar 

  • Porter DG, Downing SJ, Bradshaw JMC (1979) Relaxin inhibits spontaneous and prostaglandin-driven myometrial activity in anaesthetized rats. J Endocrinol 83:183–192

    PubMed  CAS  Google Scholar 

  • Steinetz BG, Beach VL, Kroc RL (1969) Bioassay of relaxin. In: Dorfman RI (ed) Methods in Hormone Research, Vol IIA, Chapter 13, Academic Press, New York and London. pp 481–513

    Google Scholar 

  • Vu AL, Green CB, Roby KF, Soares MJ, Fei DTW, Chen AB, Kwok SCM (1993) Recombinant porcine prorelaxin produced in Chinese hamster ovary cells is biologically active. Life Sci 52:1055–1061

    PubMed  CAS  Google Scholar 

  • Wiqvist N, Paul KG (1958) Inhibition of the spontaneous uterine motility in vitro as a bioassay of relaxin. Acta Endocrinol 31:135–146

    Google Scholar 

References

  • Dean DD, Woessner JF Jr. (1985) A sensitive specific assay for tissue collagenase using telopeptide-free 3H-acetylated collagen. Anal Biochem 148:174–181

    PubMed  CAS  Google Scholar 

  • Mushayandebvu TI, Rajabi MR (1995) Relaxin stimulates interstitial collagenase activity in cultured uterine cervical cells from nonpregnant and pregnant but not immature guinea pigs; estradiol-17β restores relaxin's effect in immature cervical cells. Biol Reprod 53:1030–1037

    PubMed  CAS  Google Scholar 

  • Rajabi MR, Dean DD, Beydoun SN, Woessner JF Jr. (1988) Elevated tissue levels of collagenase during dilatation of uterine cervix in human parturition. Am J Obstet Gynec 159:971–976

    PubMed  CAS  Google Scholar 

  • Rajabi MR, Solomon S, Poole AR (1991) Biochemical evidence of collagenase-mediated collagenolysis as a mechanism of cervical dilatation in the guinea pig at parturition. Biol Reprod 45:764–772

    PubMed  CAS  Google Scholar 

References

  • Bryan-Greenwood GD, Greenwood FC, Mercado-Simmen R, Weiss T, Yamamoto S, Ueno M, Arakaki R (1982) Relaxin secretion and relaxin receptors: the linkages. Ann NY Acad Sci 380:110

    Google Scholar 

  • Büllesbach EE, Schwabe C (1988) On the receptor binding site of relaxin. Int J Peptide Protein Res 32:361–367

    Google Scholar 

  • Büllesbach EE, Yang S, Schwabe C (1992) The recepor binding site of human relaxin II. A dual prong-binding mechanism. J Biol Chem 267:22957–22960

    PubMed  Google Scholar 

  • Mercado-Simmen RC, Bryant-Greenwood GD, Greenwood FC (1982a) Relaxin receptor in the rat myometrium: regulation by estrogen and relaxin. Endocrinol 110:220–226

    CAS  Google Scholar 

  • Mercado-Simmen RC, Goodwin B, Ueno MS (1982b) Relaxin receptors in the myometrium and cervix of pig. Biol Reprod 26:120–128

    PubMed  CAS  Google Scholar 

  • Min G, Sherwood OD (1996) Identification of specific relaxin-binding cells in the cervix, mammary glands, nipples, small intestine, and skin of pregnant pigs. Biol Reprod 55:1243–1252

    PubMed  CAS  Google Scholar 

  • Osheroff PL, Phillips HS (1991) Autoradiographic localization of relaxin binding sites in rat brain. Proc Natl Acad Sci, USA 88:6413–6417

    PubMed  CAS  Google Scholar 

  • Segaloff A, Gabbard RB (1982) Preparation of fluoresceinyl-thiocarbamyl relaxin for the demonstration of relaxin receptors. Ann NY Acad Sci 380:198–199

    PubMed  CAS  Google Scholar 

  • Yang S, Rembiesa B, Büllesbach EE, Schwabe C (1992) Relaxin receptors in mice: demonstration of ligand binding in symphyseal tissues and uterine membrane fragments. Endocrinol 130:179–185

    CAS  Google Scholar 

References

  • Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature (London) 289:240–244

    Google Scholar 

  • Amara SG, Arriza JI, Swanson LW, Evans RM, Rosenfeld MG (1985) Expression in brain of a messenger RNA encoding a novel neuropeptide homologous to calcitonin gene-related peptide. Science 229:1094–1097

    PubMed  CAS  Google Scholar 

  • Barakat A, Rosselin G; Marie J-C (1993) Characterization of specific calcitonin gene-related peptide receptors present in hamster pancreatic β-cells. Biosci Rep 13:221–231

    PubMed  CAS  Google Scholar 

  • Born W, Fischer A (1993) Calcitonin gene products: molecular biology, chemistry, and actions. Handbuch Exp Pharmakol 107:569–616

    CAS  Google Scholar 

  • Brain SD, Hughes SR, Cambridge H, O'Driscoll G (1993) The contribution of calcitonin gene-related peptide (CGRP) to neurogenic vasodilator responses. Agents Actions 38/Spec Iss I:C19–C21

    Google Scholar 

  • Cadieux A, Monast NP, Pomerleau F, Fournier A, Lanoue C (1999) Bronchoprotector properties of calcitonin gene-related peptide in guinea pig and human airways: Effect of pulmonary inflammation. Am J Respir Crit Care Med 159:235–243

    PubMed  CAS  Google Scholar 

  • Castellucci A, Maggi CA, Evangelista S (1993) Calcitonin gene-related peptide (CGRP)1 receptor mediates vasodilation in the ratisolated and perfused kidney. Life Sci 53:PL153–PL158

    PubMed  CAS  Google Scholar 

  • Champion HC, Akers DL, Santiago JA, Lambert DG, McNamara DB, Kadowitz PJ (1997) Analysis of the responses to human synthetic adrenomedullin and calcitonin gene-related peptides in the hindlimb vascular bed of the cat. Mol Cell Biochem 176:5–11

    PubMed  CAS  Google Scholar 

  • Chatzipantelli K, Goldberg RB, Howard GA, Roos BA (1996) Calcitonin gene-related peptide is an adipose-tissue neuropeptide with lipolytic actions. Endocrinol Metab 3:235–242

    Google Scholar 

  • Clementi G, Amico-Roxas M, Caruso A, Cutuli VMC, Maugeri S, Prato A (1993) Protective effects of calcitonin gene-related peptide in different experimental models of gastric ulcers. Eur J Pharmacol 238:101–104

    PubMed  CAS  Google Scholar 

  • Clementi G, Caruso A, Prato A, De Bernardis E, Fiore CE, AmicoRoxas M (1994a) A role of nitric oxide in the anti-ulcer activity of calcitonin gene-related peptide. Eur J Pharmacol 256:R7–R8

    PubMed  CAS  Google Scholar 

  • Clementi G, Amico-Roxas M, Caruso A, Cutuli VMC, Prato A, Maugeri S, de Bernardis E, Scapagnini U (1994b) Effects of CGRP in different models of mouse ear inflammation. Life Sci 54:119–124

    Google Scholar 

  • Dumont Y, Fournier A, St-Pierre S, Quirion R (1997) A potent and selective CGRP2 agonist, [Cys(Et)2.7]hCGRPα: comparison in prototypical CGRP1 and CGRP2 in vitro bioassays. Can J Physiol Pharmacol 75:671–676

    PubMed  CAS  Google Scholar 

  • Evangelista S, Renzi D (1997) A protective role for calcitonin gene-related peptide in water-immersion stress-induced gastric ulcers in rats. Pharmacol Res 35:347–350

    PubMed  CAS  Google Scholar 

  • Fleming NW, Lewis BK, White DA, Dretchen KL (1993) Acute effects of calcitonin gene-related peptide on the mechanical and electrical responses of the rat hemidiaphragm. J Pharmacol Exp Ther 265:1199–1204

    PubMed  CAS  Google Scholar 

  • Howitt SG, Poyner DR (1997) The selectivity and structural determinants of peptide antagonists at the CGRP receptor of rat, L6 myocytes. Br J Pharmacol 121:1000–1004

    PubMed  CAS  Google Scholar 

  • Kitamura K, Kanagawa K, Kawamoto M, Ichiki Y, Nakamura S, Matsuo H, Ato T (1993) Adrenomedullin, a novel hypotensive peptide isolated from human phaeochromocytoma. Biochem Biophys Res Commun 192:553–560

    PubMed  CAS  Google Scholar 

  • Kurz V, von Gaudecker B, Kranz A, Krisch B, Mentlein R (1995) Calcitonin gene-related peptide and its receptor in the thymus. Peptides 16: 1497–1503

    PubMed  CAS  Google Scholar 

  • Leighton B, Cooper GJS (1988) Pancreatic amylin and calcitonin gene-related peptide cause resistance to insulin in skeletal muscle. Nature 335:632–634

    PubMed  CAS  Google Scholar 

  • Li J, Matsuura JE, Waugh DJJ; Adrian TE, Abel PW, Manning MC, Smith DD (1997) Structure — activity studies on position 14 of human α-calcitonin gene-related peptide. J Med Chem 40:3071–3076

    PubMed  CAS  Google Scholar 

  • Lutz TA, Rossi R, Althaus J, Del Prete E, Scharrer E (1997) Evidence for a physiological role of central calcitonin gene-related peptide (CGRP) receptors in the control of food intake in rats. Neurosci Lett 230:159–162

    PubMed  CAS  Google Scholar 

  • Maggi CA, Giuliani S, Santicioli P (1995) CGRP inhibition of electromechanical coupling in the guinea-pig isolated rat pelvis. Naunyn Schmiedeberg's Arch Pharmacol 352:529–537

    CAS  Google Scholar 

  • McMurdo L, Lockhart JC, Ferrell WR (1997) Modulation of synovial blood flow by the calcitonin gene-related peptide (CGRP) receptor antagonist, CGRP8–37. Br J Pharmacol 121:1075–1080

    PubMed  CAS  Google Scholar 

  • Meini S, Santicioli P, Maggi CA (1995) Propagation of impulses in the guinea-pig ureter and its blockade by calcitonin gene-related peptide (CGRP). Naunyn Schmiedeberg's Arch Pharmacol 351:79–86

    CAS  Google Scholar 

  • Menard DP, Van Rossum D, Kar S, St Pierre S, Sutak M, Jhamandas K, Quirion R (1996) A calcitonin gene-related peptide antagonists prevents the development of tolerance to spinal morphine analgesia. J Neurosci 16:2342–2351

    PubMed  CAS  Google Scholar 

  • Merchant NB, Dempsey DT, Grabowski MW, Rizzo M, Ritchie WP Jr. (1994) Capsaicin-induced gastric mucosal hyperemia and protection: the role of calcitonin gene-related peptide. Surgery 116:419–425

    PubMed  CAS  Google Scholar 

  • Morley JE, Farr SA, Flood JF (1996) Peripherally administered calcitonin gene-related peptide decreases food intake in mice. Peptides 17:511–516

    PubMed  CAS  Google Scholar 

  • Morris HR, Panico M, Etienne T, Tippins J, Girgis SI, MacIntyre I (1984) Isolation and characterization of human calcitonin gene-related peptide. Nature 308:746–748

    PubMed  CAS  Google Scholar 

  • Nuki C, Kawasaki H, Takasaki K, Wada A (1994) Structure-activity study of chicken calcitonin gene-related peptide (CGRP) on vasorelaxation in rat mesenteric resistance vessels

    Google Scholar 

  • Poyner DR (1992) Calcitonin-gene-related peptide: multiple actions, multiple receptors. Pharmacol Ther 56:23–51

    PubMed  CAS  Google Scholar 

  • Poyner DR (1997) Molecular pharmacology of receptors for calcitonin-gene-related peptide, amylin and adrenomedullin. Biochem Soc Transact 25:1032–1036

    CAS  Google Scholar 

  • Poyner DR, Taylor GM, Tomlinson AE, Richardson AG, Smith DM (1999) Characterization of receptors for calcitonin gene-related peptide and adrenomedullin on the guinea pig vas deferens. Br J Pharmacol 126:1276–1282

    PubMed  CAS  Google Scholar 

  • Preibisz JJ (1993) Calcitonin gene-related peptide and regulation of human cardiovascular honeostasis Am J Hypertens 6:434–450

    PubMed  CAS  Google Scholar 

  • Raddino R, Pela G, Manca C, Barbagallo M, D'Aloia A, Passeri M, Visioli O (1997) Mechanism of action of human calcitonin gene-related peptide in rabbit heart and human mammary arteries. J Cardiovasc Pharmacol 29:463–470

    PubMed  CAS  Google Scholar 

  • Rink TJ, Beaumont K, Koda J, Young AA (1993) Trends Pharmacol Sci 14:113–118

    PubMed  CAS  Google Scholar 

  • Sakai K, Saito K, Akima M (1998) Synergistic effect of calcitonin gene-related peptide on adenosine-induced vasodepression in rats. Eur J Pharmacol 344:153–159

    PubMed  CAS  Google Scholar 

  • Schaible H-G (1996) On the role of tachykinins and calcitonin gene-related peptide in the spinal mechanisms of nociception and in the induction and maintenance of inflammation-evoked hyperexcitability in spinal cord neurons (with special reference to nociception in joints). In: Kumazawa T, Kruger L, Mizumura K (eds) Progress in Brain Research, Vol 113, Chapter 25, pp 423–441, Elsevier Science BV

    Google Scholar 

  • Smith DD, Li J, Wang Q, Murphy RF, Adrian TE, Elias Y, Bockman CS, Abel PW (1993) Synthesis and biological activity of C-terminally truncated fragments of human α-calcitonin gene-related peptide. J Med. Chem 36:2536–2541

    PubMed  CAS  Google Scholar 

  • Tomobe YI, Ishikawa T, Goto K (1998) Enhanced endothelium-independent vasodilator response to calcitonin gene-related peptide in hypertensive rats. Eur J Pharmacol 35:351–355

    Google Scholar 

  • Van Rossum D, Hanisch UK, Quirion R (1997) Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors. Neurosci Biobehav Rev 21:649–678

    PubMed  Google Scholar 

  • Wang F, Millet I, Bottomly K, Vignery A (1992) Calcitonin generelated peptide inhibits interleukin 2 production by murine T lymphocytes. J Biol Chem 267:21052–21057

    PubMed  CAS  Google Scholar 

  • Wisskirchen FM, Burt RP, Marshall I (1998) Pharmacological characterization of CGRP receptors of the rat pulmonary artery and inhibition of twitch responses f the rat deferens. Br J Pharmacol 123:1673–1683

    PubMed  CAS  Google Scholar 

References

  • Aiyar N, Rand K, Elshourbagy NA, Zeng Z, Adamou JE, Bergma DJ, Li Y (1996) A cDNA encoding the calcitonin gene-related peptide type 1 receptor J Biol Chem 271:11325–11329

    PubMed  CAS  Google Scholar 

  • Born W, Fischer JA (1993) Calcitonin gene products: molecular biology, chemistry, and actions. Handbuch Exp Pharmakol 107:569–616

    CAS  Google Scholar 

  • Dennis T, Fournier A, St. Pierre S, Quirion R (1989) Structure-activity profile of calcitonin gene-related peptide in peripheral and brain tissues. Evidence for receptor multiplicity. J Pharmacol Exp Ther 251:718–725

    PubMed  CAS  Google Scholar 

  • Dennis T, Fournier A, Guard S, St. Pierre S, Quirion R (1991) Calcitonin gene-related peptide (hCGRP alpha) binding sites in nucleus accumbens. Atypical structural requirements and marked phylogenetic differences. Brain Res 539:59–66

    PubMed  CAS  Google Scholar 

  • Juaneda C, Dumont Y, Quirion R (2000) The molecular pharmacology of CGRP and related peptide receptor subtypes. Trends Pharmacol Sci 21:432–438

    PubMed  CAS  Google Scholar 

  • Muff R, Born W, Fischer JA (1995) Receptors for calcitonin, calcitonin gene related peptide, amylin, and adrenomedullin. Can J Physiol Pharmacol 73:963–967

    PubMed  CAS  Google Scholar 

  • Poyner DR (1997) Molecular pharmacology of receptors for calcitonin-gene-related peptide, amylin and adrenomedullin. Biochem Soc Transact 25:1032–1036

    CAS  Google Scholar 

  • Quirion R, van Rossum D, Dumont Y, St. Pierre S, Fournier A (1992) Characterization of CGRP1 and CGRP2 receptor subtypes. Ann NY Acad Sci 657:88–105

    PubMed  CAS  Google Scholar 

  • Van Rossum D, Ménard DP, Fournier A, St-Pierre S, Quirion R (1994) Binding profile of a selective calcitonin gene-related peptide (CGRP) receptor antagonist ligand, [125I-Tyr]hCGRP8–37, in rat brain and peripheral tissues. J Pharmacol Exp Ther 269:846–853

    PubMed  Google Scholar 

  • Van Rossum D, Hanisch UK, Quirion R (1997) Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors. Neurosci Biobehav Rev 21:649–678

    PubMed  Google Scholar 

  • Wimalawansa SJ (1989) A sensitive and specific radioreceptor assay for calcitonin gene-related peptide. J Neuroendocr 1:15–18

    CAS  Google Scholar 

  • Wimalawansa SJ (1996) Calcitonin gene-related peptide and its receptors: molecular genetics, physiology, pathophysiology, and therapeutic potentials. Endocrine Rev 17:533–585

    CAS  Google Scholar 

  • Wimalawansa SJ, El-Kholy AA (1993) Comparative study of distribution and biochemical characterization of brain calcitonin gene-related peptide receptors in five different species. Neurosci 54:513–519

    CAS  Google Scholar 

References

  • De Kretser DM, Robertson DM (1989) The isolation and physiology of inhibin and related proteins. Biol Reprod 40:33–47

    PubMed  Google Scholar 

  • Forage RG, Ring JM, Brown RW et al. (1986) Cloning and sequence analysis of cDNA species coding for the two subunits of inhibin from bovine follicular fluid. Proc Natl Acad Sci USA 83:3091–3095

    PubMed  CAS  Google Scholar 

  • Franchimont P, Verstraelen-Proyard J, Hazee-Hagelstein MT, Renard Ch, Demoulin A, Bourguignon JP, Hustin J (1979) Inhibin: From concept to reality. In: Munson PL, Diczfalusy E, Glover J, Olson RE (eds) Vitamins and Hormones. Advances in Research and Applications. Vol 37, Academic Press, New York, London, pp 243–302

    Google Scholar 

  • Franchimont P, Hazee-Hagelstein MT, Jaspar JM, Charlet-Renard C, Demoulin A (1989) Inhibin and related peptides: Mechanisms of action and regulation of secretion. J Steroid Biochem 32:193–197

    PubMed  CAS  Google Scholar 

  • Gaines Das RE, Rose M, Zanelli JM (1992) International collaborative study by in vitro bioassays of the first International Standard for porcine inhibin. J Reprod Fertil 96:803–814

    PubMed  CAS  Google Scholar 

  • Halvorson LM, DeCherney AH (1996) Inhibin, activin, and follistatin in reproductive medicine. Fertil Steril 65:459–469

    PubMed  CAS  Google Scholar 

  • Mason AJ, Niall HD, Seeburg PH (1986) Structure of two human ovarian inhibins. Biochem Biophys Res Comm 135:957–964

    PubMed  CAS  Google Scholar 

  • McGullagh DR (1932) Dual endocrine activity of the testes. Science 76:19–20

    Google Scholar 

  • Moore A, Krummen LA, Mather JP (1994) Inhibins, activins, their binding proteins and receptors: interactions underlying paracrine activity in the testis. Mol Cell Endocrinol 100:81–86

    PubMed  CAS  Google Scholar 

  • Robertson DM (1991) Transforming growth factor-β/inhibin family. Baillière's Clinical Endocrinol Metab 5:615–634

    CAS  Google Scholar 

  • Robertson DM, Giacometti MS, de Kretser DM (1986) The effects of inhibin purified from bovine follicular fluid in several in vitro pituitary culture systems. Mol Cell Endocrinol 46:29–36

    PubMed  CAS  Google Scholar 

  • Robertson DM, Foulds LM, Prosk M, Hedger MP (1992) Inhibin/activin β-subunit monomer: isolation and characterization. Endocrinology 130:1680–1687

    PubMed  CAS  Google Scholar 

  • Rose MP, Gaines Das RE (1996) International collaborative study by in vitro bioassays and immunoassays of the first international standard for inhibin, human recombinant. Biologicals 24:1–18

    PubMed  CAS  Google Scholar 

  • Stewart AG, Millborrow HM; Ring JM, Crowther CE, Forage RG (1986) Human inhibin genes: genomic characterization and sequencing. FEBS Lett 206:329–334

    PubMed  CAS  Google Scholar 

  • Tierney ML, Goss NH, Tomkins SM, Kerr DB, Pitt DE, Forage RG, Robertson DM, Hearn MTW, de Kretser DM (1990) Physicochemical and biological characterization of recombinant human inhibin A. Endocrinology 126:3268–3270

    PubMed  CAS  Google Scholar 

  • Tio S, Koppenaal D, Bardin CW, Cheng CY (1994) Purification of gonadotropin surge-inhibiting factor from Sertoli cell-enriched medium. Biochem Biophys Res Commun 199:1229–1236

    PubMed  CAS  Google Scholar 

  • Vale W, Rivier C, Hsueh AJW, Campen C, Meunier H, Bicsak T, Vaughan J, Corrigan A, Bardin W, Sawchenko P, Petraglia F, Yu J, Plotsky P, Spiess J; Rivier J (1986) Chemical and biological characterization of inhibin family of proteins. Recent Progr Horm Res 44:1–34

    Google Scholar 

  • Woodruff TK, Besecke LM, Groome N, Draper LB, Schwartz NB, Weiss J (1996) Inhibin A and inhibin B are inversely correlated to follicle-stimulating hormone, yet are discordant during the follicular phase of the rat estrus cycle, and inhibin A is expressed in a sexually dimorphic manner. Endocrinology 137:5463–5467

    PubMed  CAS  Google Scholar 

References

  • Allenby G, Foster PMD, Sharpe RM (1991) Evaluation of changes in the secretion of immunoreactive inhibin by adult rat seminiferous tubules in vitro as an indicator of early toxicant action on spermatogenesis. Fundam Appl Toxicol 16:710–724

    PubMed  CAS  Google Scholar 

  • Blumenfeld Z, Ritter M, Shen-Orr Z, Shariki K, Ben-Shahar M, Haim N (1998) Inhibin A concentrations in the sera of young women during and after chemotherapy for lymphoma: Correlation with ovarian toxicity. Am J Reprod Immunol 39:33–40

    PubMed  CAS  Google Scholar 

  • Brown JL, Dahl KD, Chakraborty PK (1991) Effects of follicular fluid administration on serum bioactive and immunoreactive FSH concentrations and compensatory testosterone secretion in hemicastrated adult rats. J Andrology 12:221–225

    CAS  Google Scholar 

  • Demura R, Suzuki T, Tajima S, Kubo O, Yoshimoto T, Demura H (1996) Inhibin α, βA and βB subunit messenger ribonucleic acid levels in cultured rat pituitary: Studies by a quantitative RT-PCR. Endocr J 43:403–410

    PubMed  CAS  Google Scholar 

  • Gaines Das RE, Rose M, Zanelli JM (1992) International collaborative study by in vitro bioassays of the first International Standard for porcine inhibin. J Reprod Fertil 96:803–814

    PubMed  CAS  Google Scholar 

  • Hertan R, Farnworth PG, Fitzsimmons KL, Robertson DM (1999) Identification of high affinity binding sites for inhibin on ovine pituitary cells in culture. Endocrinology 140:6–12

    PubMed  CAS  Google Scholar 

  • Jakubowiak A, Janecki A, Steinberger A (1989) Similar effects of inhibin and cycloheximide on gonadotropin release in superfused pituitary cell cultures. Biol Reprod 41:454–463

    PubMed  CAS  Google Scholar 

  • Knight PG, Groome M, Beard AJ (1991) Development of a two-site immunoradiometric assay for dimeric inhibin using antibodies against chemically synthesized fragments of the α and β subunit. J Endocrinol 129:R9–R12

    PubMed  Google Scholar 

  • Knight PG, Muttukrishna S (1994) Measurement of dimeric inhibin using a modified two-site immunoradiometric assay specific for oxidized (Met O) inhibin. J Endocrinol 141:417–425

    PubMed  CAS  Google Scholar 

  • Magoffin DA, Jakimiuk AJ (1998) Inhibin A, inhibin B and activin A concentrations in follicular fluid from women with polycystic ovary syndrome. Hum Reprod 13:2693–2698

    PubMed  CAS  Google Scholar 

  • Mason AJ, Farnworth PG, Sullivan J (1996) Characterization and determination of the biological activities of noncleavable high molecular weight forms of inhibin A and activin A. Mol Endocrinol 10:1055–1065

    PubMed  CAS  Google Scholar 

  • Munson PJ, Rodbard D (1980) Ligand, a versatile computerised approach for characterization of ligand binding systems. Anal Biochem 107:220–239

    PubMed  CAS  Google Scholar 

  • Robertson DM, Prisk M, McMaster JW, Irby DC, Findlay JK, de Kretser DM (1991) Serum FSH-suppressing activity of human recombinant inhibin A in male and female rats. J Reprod Fertil 91:321–328

    PubMed  CAS  Google Scholar 

  • Robertson D, Burger HG, Sullivan J, Cahir N, Groome N, Poncelet E, Franchimont P, Woodruff T, Mather CP (1996) Biological and immunological characterization of inhibin forms in human plasma. J Clin Endocrinol Metab 81:669–676

    PubMed  CAS  Google Scholar 

  • Rose MP, Gaines Das RE (1996) International collaborative study by in vitro bioassays and immunoassays of the first international standard for inhibin, human recombinant. Biologicals 24:1–18

    PubMed  CAS  Google Scholar 

  • Simpson BJB, Hedger MP, de Kretser DM (1992) Characterisation of adult Sertoli cell cultures from cryptorchid rats: inhibin secretion in response to follicle-stimulating hormone. Mol Cell Endocrinol Mol Cell Endocrinol 87:167–177

    CAS  Google Scholar 

  • Wallace EM, Crossley JA, Ritoe SC, Aitken DA, Spencer K, Groome NP (1998) Evolution of an inhibin A ELISA method: Implications for Down's syndrome screening. Ann Clin Biochem 35:656–664

    PubMed  CAS  Google Scholar 

  • Wenstrom KD, Owen J, Chu DC, Boots L (1997) Elevated second-trimester dimeric inhibin A levels identify Down syndrome pregnancies. Am J Obstet Gynecol 177:992–996

    PubMed  CAS  Google Scholar 

  • Wreford NG, O'Connor AE, de Kretser DM (1994) Gonadotropin-suppressing activity of human recombinant inhibin in the male rat is age dependent. Biol Reprod 50:1066–1071

    PubMed  CAS  Google Scholar 

References

  • Dalkin AC, Haisenleder DJ, Yasin M, Gilrain JT, Marshall JC (1996) Pituitary activin receptor subtypes and follistatin gene expression in female rats: Differential regulation by activin and follistatin. Endocrinology 137:548–554

    PubMed  CAS  Google Scholar 

  • De Paolo LV (1997) Inhibins, activins, follistatins: the saga continues. Proc Soc Exp Biol Med 214:328–339

    Google Scholar 

  • Eto Y, Tsuji T, Takezawa M, Takano S, Tokagawa Y, Shibai H (1987) Purification and characterization of erythroid differentiation factor (EDF) isolated from human leukemia cell line THP-1. Biochem Biophys Res Commun 142:1095–1103

    PubMed  CAS  Google Scholar 

  • Hashimoto O, Yamato K, Koseki T, Ohguchi M, Ishisaki A, Shoji H, Nakamura T, Hayashi Y, Sugino H, Nishihara T (1998) The role of activin type I receptors in activin A-induced growth arrest and apoptosis in mouse B-cell hybridoma cells. Cell Signal 10:743–749

    PubMed  CAS  Google Scholar 

  • Hötten G, Neidhardt H, Schneider C, Pohl J (1995) Cloning of a new member of the TGF-β family: a putative new activin βc chain. Biochem Biophys Res Commun 206:608–613

    Google Scholar 

  • Lee W, Mason AJ, Schwall R, Szonyi E, Mather JP (1989) Secretion of activin by interstitial cells in the testis. Science 243:396–398

    PubMed  CAS  Google Scholar 

  • Ling N, Ying SY, Ueno N, Shimasaki S, Etsch F, Hott M, Guillemin R (1986) Pituitary FSH is released by a homodimer of the beta subunit from the two forms of inhibin. Nature 321:779–782

    PubMed  CAS  Google Scholar 

  • Loveland KL, McFarlane JR, de Kretser DM (1996) Expression of activin βC subunit mRNA in reproductive tissue. J Mol Endocrinol 17:61–65

    PubMed  CAS  Google Scholar 

  • MacConnell LA, Lawson MA, Mellon PL, Roberts VJ (1999) Activin A regulation of gonadotropin-releasing hormone synthesis and release in vitro. Neuroendocrinology 70:246–254

    Google Scholar 

  • Mason AJ (1988) Structure and recombinant expression of human inhibin and activin. In: Nonsteroidal Gonadal Factors: Physiological Roles and Possibilities in Contraceptive Development. The Jones Institute Press, pp 1–19

    Google Scholar 

  • Mason AJ, Berkemeier LM, Schmelzer CH, Schwall RH (1989) Activin B: precursor sequences, genomic structure and in vitro activities. Mol Endocrinol 3:1352–1358

    PubMed  CAS  Google Scholar 

  • Mather JP, Attie KM, Woodruff DK, Rice GC, Phillips DM (1990) Activin stimulates spermatogonial proliferation in germ-Sertoli cell cocultures from immature rat testis. Endocrinology 127:3206–3214

    PubMed  CAS  Google Scholar 

  • Nakamura T, Asashima M, Eto Y, Takio K, Uchiyama H, Moriya M, Ariizumi T, Yashiro T, Sugino K, Titani K, Sugino H (1992) Isolation and characterization of native activin B. J Biol Chem 267:16385–16389

    PubMed  CAS  Google Scholar 

  • Phillips DJ, Brauman JN, Mason AJ, de Kretser DM, Hedger MP (1999) A sensitive and specific in vitro bioassay for activin using a mouse plasmacytoma cell line, MPC-11. J Endocrinol 162:111–116

    PubMed  CAS  Google Scholar 

  • Thomsen G, Woolf T, Whitman M, Solkol S, Vaughan J, Vale W et al. (1990) Activins are expressed early in Xenopus embryogenesis and can induce axial mesoderm and anterior structures. Cell 63:485–493

    PubMed  CAS  Google Scholar 

  • Vale W, Rivier J, McClintock R, Corrigan A, Woo W, Karr D, Spiess J (1986) Purification and characterization of an FSH releasing protein from porcine ovarian follicular fluid. Nature 321:776–779

    PubMed  CAS  Google Scholar 

References

  • Attardi B, Miklos J (1990) Rapid stimulatory effect of activin-A on messenger RNA encoding the follicle-stimulating hormone b-subunit in pituitary cell cultures. Mol Endocrinol 4:721–726

    PubMed  CAS  Google Scholar 

  • Brosh N, Sternberg D, Honigswachs-Sha'anani J, Lee B C, Shav-Tal Y, Tzehoval E, Shulman LM, Toledo J, Hacham Y, Carmi P, Jiang W, Sasse J, Horn F, Burstein Y, Zipori D (1995) The plasmacytoma growth inhibitor restrictin-P is an antagonist of interleukin 6 and interleukin 11. Identification as a stroma-derived activin A. J Biol Chem 270:29594–29600

    PubMed  CAS  Google Scholar 

  • Carroll RS, Corrigan AZ, Vale W; Chin WW (1991) Activin stabilizes follicle-stimulating hormone-beta messenger ribonucleic acid levels. Endocrinology 129:1721–1726

    PubMed  CAS  Google Scholar 

  • Demura R, Suzuki T, Tajima S, Mitsuhashi S, Odagiri E, Demura H (1993) Activin and inhibin secretion by cultured porcine granulosa cells is stimulated by FSH and LH. Endocrine Journal 40:447–451

    PubMed  CAS  Google Scholar 

  • De Winter JP, Timmermann MA, Vanderstichele HMJ, Klaij IA, Grootenhuis AJ, Rommerts FFG, de Jong FH (1992) Testicular Leydig cells in vitro secrete only inhibin α-subunits, whereas Leydig cell tumors can secrete bioactive inhibin. Mol Cell Endocrinol 83:105–115

    PubMed  Google Scholar 

  • Knight PG, Muttukrishna S, Groome NP (1996) Development and application of a two-site enzyme immunoassay for the determination of ‘total’ activin-A concentrations in serum and follicular fluid. J Endocrinol 148:267–279

    PubMed  CAS  Google Scholar 

  • LaPolt PS, Soto D, Su J-G, Campen CA, Vaughan J, Vale W, Hsueh AJW (1989) Activin stimulation of inhibin secretion and messenger RNA levels in cultured granulosa cells. Mol Endocrinol 3:1666–1673

    PubMed  CAS  Google Scholar 

  • Laskov R, Scharff MD (1970) Synthesis, assembly, and secretion of gamma globulin by mouse myeloma cells. I. Adaptation of the Mervin plasma cell tumor-11 to culture, cloning and characterization of gamma globulin subunits. J Exp Med 131:515–541

    PubMed  CAS  Google Scholar 

  • Liu Z H, Shintani Y, Wakatsuki M, Sakamoto Y, Harada K, Zhang CY, Saito S (1996) Regulation of immunoreactive activin A secretion from cultured rat anterior pituitary cells. Endocr J 43:39–44

    PubMed  CAS  Google Scholar 

  • McFarlane JR, Foulds LM, Pisciotta A, Robertson DM, de Kretser DM (1996) Measurement of activin in biological fluids by radioimmunoassay, utilizing dissociating agents to remove the interference of follistatin. Eur J Endocrinol 134:481–489

    PubMed  CAS  Google Scholar 

  • Miyamoto S, Irahara M, Ushigoe K, Kuwahara A, Sugino H, Aono T (1990) Effects of activin on hormone secretion by single female rat pituitary cells: analysis by cell immunoblot assay. J Endocrinol 161:375–382

    Google Scholar 

  • Nieuwkoop PD, Faber J (1967) Normal Table of Xenopus laevis. Daudlin, Amsterdam

    Google Scholar 

  • Peng C, Ohno T, Loo Yee Koh, Chen VTS, Leung PCK (1999) Human ovary and placenta express messenger RNA for multiple activin receptors. Life Sci 64:983–994

    PubMed  CAS  Google Scholar 

  • Phillips DJ, Brauman JN, Mason AJ, de Kretser DM, Hedger MP (1999) A sensitive and specific in vitro bioassay for activin using a mouse plasmacytoma cell line, MPC-11. J Endocrinol 162:111–116

    PubMed  CAS  Google Scholar 

  • Robertson DM, Foulds LM, Prisk M, Hedger MP (1992) Inhibin/activin β-subunit monomer: Isolation and characterization. Endocrinology 130:345–351

    Google Scholar 

  • Saito S, Nakamura T, Titani K, Sugino H (1991) Production of activin-binding protein by rat granulosa cells in vitro. Biochem Biophys Res Commun 176:413–422

    PubMed  CAS  Google Scholar 

  • Schwall RH, Lai C (1991) Erythroid differentiation assays for activin. Meth Enzymol 198:340–346

    PubMed  CAS  Google Scholar 

  • Shao L, Frigon NL Jr., Sehy DW, Yu AL, Lofgren J, Schwall R, Yu J (1992) Regulation of production of activin A in human marrow stromal cells and monocytes. Exp Hematology 20:1235–1242

    CAS  Google Scholar 

  • Shintani Y, Takada Y, Yamasaki R, Saito S (1991) Radioimmunoassay for activin A/EDF. Method and measurement of immunoreactive A/EDF levels in various biological materials. J Immunol Meth 137:267–274

    CAS  Google Scholar 

  • Uchimaru K, Motokura T, Takahashi S, Sakurai T, Asano S, Yamashita T (1995) Bone marrow stromal cells produce and respond to activin A: interactions with basic fibroblast growth factor and platelet-derived growth factor. Exp Hematology 23:613–618

    CAS  Google Scholar 

  • Wuytens G, Verschueren K, de Winter JP, Gajendran N, Beek L, Devos K, Bosman F, de Waele P, Andries M, van den Eijndenvan Raaij AJM, Smith JC, Huylebroeck D (1999) Identification of two amino acids in activin A that are important for biological activity and binding to the activin type II receptors. J Biol Chem 274:9821–9827

    PubMed  CAS  Google Scholar 

  • Yamashita T, Takahashi S, Ogata E (1992) Expression of activin A/erythroid differentiation factor in murine bone marrow stromal cells. Blood 79:304–307

    PubMed  CAS  Google Scholar 

References

  • Bohnsack BL, Szabo M, Kilen SM, Tam DH, Schwartz HB (2000) Follistatin suppresses steroid-enhanced follicle-stimulating hormone release in vitro in rats. Biol Reprod 62:636–641

    PubMed  CAS  Google Scholar 

  • Inouye S, Guo Y, de Paolo L, Shimonaka M, Ling N, Shimasaki S (1991) Recombinant expression of human follistatin with 315 and 288 amino acids: chemical and biological comparison with native porcine follistatin. Endocrinology 129:815–822

    PubMed  CAS  Google Scholar 

  • Namakura T, Takio K, Eto Y, Shibai H, Titani K, Sugino H (1990) Activin-binding protein from rat ovary is follistatin. Science 247:836–838

    Google Scholar 

  • Patel K (1998) Follistatin. Int J Biochem Cell Biol 30:1087–1093

    PubMed  CAS  Google Scholar 

  • Robertson DM, Klein R, de Vos FL, McLachlan RI, Wettenhall REH, Hearn MTW, Burger HG, de Kretser DM (1987) The isolation of polypeptides with FSH suppressing activity from bovine follicular fluid which are structurally different to inhibin. Biochem Biophys Res Commun 149:744–749

    PubMed  CAS  Google Scholar 

  • Shimonaka M, Inouye S, Shimasaki S, Ling N (1991) Follistatin binds to both activin and inhibin through the common beta-subunit. Endocrinology 128:3313–3315

    PubMed  CAS  Google Scholar 

  • Sugino K, Kurosawa N, Nakamura T, Takio K, Shimasaki S, Guillemin R (1993) Molecular heterogeneity of follistatin, an activin-binding protein. J Biol Chem 268:15579–15587

    PubMed  CAS  Google Scholar 

  • Ueno N, Ling N, Ying SY, Esch F, Shimasaki S, Guillemin R (1987) Isolation and partial characterization of follistatin: a single-chain, monomeric protein that inhibits the release of follicle-stimulating hormone. Proc Natl Acad Sci USA 84:8282–8286

    PubMed  CAS  Google Scholar 

  • de Winter JP, ten Dijke P, de Vries CJM, van Achterberg TAE, Sugino H, de Waele P, Huylebroeck D, Verschueren K, van den Eijnden-van Raaij AJM (1996) Follistatins neutralize activin bioactivity by inhibition of activin binding to its type II receptors. Mol Cell Endocrinol 116:105–114

    PubMed  Google Scholar 

  • Ying SY, Becker A, Swanson G, Tan P, Ling N, Esch F, Ueno N, Shimasaki S, Guillemin R (1987) Follistatin specifically inhibits pituitary follicle-stimulating hormone release in vitro. Biochem Biophys Res Comm 149:133–139

    PubMed  CAS  Google Scholar 

References

  • DePaolo LV, Shimonaka M, Schwall RH, Ling N (1991) In vivo comparison of the follicle-stimulating hormone-suppressing activity of follistatin and inhibin in ovariectomized rats. Endocrinology 128:668–674

    PubMed  CAS  Google Scholar 

  • Evans LW, Muttukrishna S, Groome NP (1998) Development, validation and application of an ultra-sensitive immunoassay for human follistatin. J Endocrinol 156:275–282

    PubMed  CAS  Google Scholar 

  • Galfre G, Milstein C (1981) Preparation of monoclonal antibodies: Strategies and procedures. In: Langone JJ, Vunakis HV (eds) Methods in Enzymology, Academic Press, New York, pp 3–36

    Google Scholar 

  • Groome NP, Illingworth PJ, O'Brien M, Priddle J, Weaver K, McNeilly AS (1995) Quantification of inhibin pro-αC-containing forms in human serum by a new ultrasensitive two-site enzyme-linked immunosorbent assay. J Clin Endocrinol Metab 80:2926–2932

    PubMed  CAS  Google Scholar 

  • Ishikawa A, Imagawa M, Hashida S, Yoshitake S, Hamaguchi Y, Ueno T (1983) Enzyme labeling of antibodies and their fragments for enzyme immunoassay and immunocytochemistry. J Immunoassay 4:209–327

    PubMed  CAS  Google Scholar 

  • Nakamura T, Hasegawa Y, Sugino K, Kogawa K, Titani K, Sugino H (1992) Follistatin inhibits activin-induced differentiation of rat follicular granulosa cells in vitro. Biochim Biophys Acta 1135:103–109

    PubMed  CAS  Google Scholar 

  • Xiao S, Robertson DM, Findlay JK (1992) Effects of activin and follicle-stimulating hormone (FSH)-suppressing protein/follistatin on FSH receptors and differentiation of cultured rat granulosa cells. Endocrinology 131:1009–1016

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag

About this entry

Cite this entry

Vogel, H.G., Vogel, W.H., Schölkens, B.A., Sandow, J., Müller, G., Vogel, W.F. (2002). Endocrinology1 . In: Vogel, H.G., Vogel, W.H., Schölkens, B.A., Sandow, J., Müller, G., Vogel, W.F. (eds) Drug Discovery and Evaluation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29837-1_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-29837-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42396-6

  • Online ISBN: 978-3-540-29837-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics