Skip to main content

Anti-atherosclerotic activity1

  • Reference work entry
Drug Discovery and Evaluation

1 M.1 Induction of experimental atherosclerosis

1.1 M.1.0.1 General considerations

Experimental atherosclerosis was first successfully induced in rabbits by Saltykow (1908) and Ignatowski (1909). During the following years, various scientists found that dietary cholesterol was the responsible stimulus for development of atherosclerosis. Other species are also susceptible to diet-induced atherosclerosis (Reviews by Kritchevsky 1964; Hadjiinky et al. 1991). A unifying hypothesis of the pathogenesis of atherosclerosis has been proposed by Schwartz et al. (1991).

1.2 M.1.0.2 Cholesterol-diet induced atherosclerosis in rabbits and other species

1.2.1 Purpose and rationale

Rabbits are known to be susceptible to hypercholesterolemia and arteriosclerosis after excessive cholesterol feeding. Therefore, this approach has been chosen by many authors to study the effect of potential anti-arteriosclerotic drugs.

1.2.2 Procedure

Several modifications of the protocol have been described. Usually,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

References

  • Hadjiinky P, Bourdillon MC, Grosgogeat Y (1991) Modèles expérimentaux d'athérosclérose. Apports, limites et perspectives. Arch Mal Ceut Vaiss 84:1593–1603

    Google Scholar 

  • Ignatowski A (1909) Über die Wirkung des tierischen Eiweißes auf die Aorta und die parenchymatösen Organe der Kaninchen. Virchow's Arch pathol Anat Physiol 198:248–270

    Google Scholar 

  • Kritchevsky D (1964) Experimental Atherosclerosis. In Paoletti R (ed) Lipid Pharmacology, Academic Press, New York, London, Chapter 2, pp 63–130

    Google Scholar 

  • Saltykow S (1908) Die experimentell erzeugten Arterienveränderungen in ihrer Beziehung zu Atherosklerose und verwandten Krankheiten des Menschen. Zentralbl Allgem Pathol Pathol Anat 19:321–368

    Google Scholar 

  • Schwartz CJ, Valente AJ, Sprague EA, Kelley JL, Nerem RM (1991) The pathogenesis of atherosclerosis: an overview. Clin Cardiol 14:1–16

    Google Scholar 

References

  • Baxter A, Fitzgerald BJ, Hutson JL, McCarthy AD, Motteram JM, Ross BC, Sapra M, Snowden MA, Watson NS, Williams RJ, Wright C (1992) Squalestatin 1, a potent inhibitor of squalene synthase, which lowers cholesterol in vivo. J Biol Chem 267:11705–11708

    PubMed  CAS  Google Scholar 

  • Beere PA, Glagov S, Zarins ChK (1992) Experimental atherosclerosis at the carotid bifurcation of the cynomolgus monkey. Arterioscl Thrombos 12:1245–1253

    CAS  Google Scholar 

  • Beitz J, Mest HJ (1991) A new derivative of tradipil (AR 12456) as a potentially new antiatherosclerotic drug. Cardiovasc Drug Rev 9:385–397

    CAS  Google Scholar 

  • Blaton V, Peeters H (1976) The nonhuman primates as models for studying atherosclerosis: Studies on the chimpanzee, the baboon and the rhesus macacus. In: Day CE (ed) Atherosclerosis Drug Discovery, Plenum Press, New York and London, pp 33–64

    Google Scholar 

  • Bretherton KN, Day AJ, Skinner SL (1977) Hypertension-accelerated atherogenesis in cholesterol-fed rabbits. Atherosclerosis 27:79–87

    PubMed  CAS  Google Scholar 

  • Caldwell CT, Suydam DE (1959) Quantitative study of estrogen-induced atherosclerosis in cockerels. Proc Soc Exp Biol Med. 101:299–302

    PubMed  CAS  Google Scholar 

  • Chapman KP, Stafford WW, Day CE (1976) Produced by selective breeding of Japanese quail animal model for experimental atherosclerosis. In: Day CE (ed) Atherosclerosis Drug Discovery, Plenum Press, New York and London, pp 347–356

    Google Scholar 

  • Clarkson TB; Lofland HB (1961) Therapeutic studies on spontaneous arteriosclerosis in pigeons. In: Garattini S, Paoletti R (eds) Drugs affecting lipid metabolism. Elsevier Publ Comp., Amsterdam, pp 314–317

    Google Scholar 

  • Crook D, Weisgraber KH, Rall SC Jr., Mahley RW (1990) Isolation and characterization of several plasma apolipoproteins of common marmoset monkey. Arteriosclerosis 10:625–632

    PubMed  CAS  Google Scholar 

  • Day CE (1990) Comparison of hypocholesterolemic activities of the bile acid sequestrants cholestyramine and cholestipol hydrochloride in cholesterol fed sea quail. Artery 17:281–288

    PubMed  CAS  Google Scholar 

  • Day CE, Stafford WW (1975) New animal model for atherosclerosis research. In: Kritchevsky D, Paoletti R, Holmes WL (eds) Lipids, Lipoproteins, and Drugs. Plenum Press, New York, pp 339–347

    Google Scholar 

  • Day CE, Stafford WW, Schurr PE (1977) Utility of a selected line (SEA) of the Japanese quail (Coturnix coturnix japonica) for the discovery of new anti-atherosclerosis drugs. Anim Sci 27:817–821

    CAS  Google Scholar 

  • Day CE, Phillips WA, Schurr PE (1979) Animal models for an integrated approach to the pharmacologic control of atherosclerosis. Artery 5:90–109

    PubMed  CAS  Google Scholar 

  • Eggen DA, Bhattacharyya AK, Strong JP, Newman III WP, Guzman MA, Restrepo C (1991) Use of serum lipid and apolipoprotein concentrations to predict extent of diet-induced atherosclerotic lesions in aortas and coronary arteries and to demonstrate regression of lesions in individual Rhesus monkeys. Arterioscl Thrombos 11:467–475

    CAS  Google Scholar 

  • Fillios LC, Andrus StB, Mann GV, Stare FJ (1956) Experimental production of gross atherosclerosis in the rat. J Exper Med 104:539–552

    CAS  Google Scholar 

  • Fukushima H, Nakatani H (1969) Cholesterol-lowering effects of DL-N-(α-methylbenzyl)-linoleamide and its optically active isomers in cholesterol-fed animals J Atheroscler Res 9:65–71

    PubMed  CAS  Google Scholar 

  • Henry PD, Bentley KI (1981) Suppression of atherogenesis in cholesterol-fed rabbit treated with nifedipine. J Clin Invest 68:1366–1369

    PubMed  CAS  Google Scholar 

  • Hollander W, Prusty S, Nagraj S, Kirkpatrick B, Paddock J, Colombo M (1978) Comparative effects of cetaben (PHB) and dichlormethylene diphosphonate (Cl2MDP) on the development of atherosclerosis in the cynomolgus monkey. Atherosclerosis 31:307–325

    PubMed  CAS  Google Scholar 

  • Howard AN (1976) The baboon in atherosclerosis research: Comparison with other species and use in testing drugs affecting lipid metabolism. In: Day CE (ed) Atherosclerosis Drug Discovery, Plenum Press, New York and London, pp 77–87

    Google Scholar 

  • Inoue Y, Goto H, Horinuki R, Kimura Y, Toda T (1990) Experimental atherosclerosis in the rat carotid artery induced by balloon de-endothelialization and hyperlipemia. A histological and biochemical study. J Jpn Atheroscler Soc 18:1147–1154

    CAS  Google Scholar 

  • Kowala MC, Nunnari JJ, Durham SK, Nicolosi RJ (1991) Doxazin and cholestyramine similarly decrease fatty streak formation in the aortic arch of hyperlipidemic hamsters. Atherosclerosis 91:35–49

    PubMed  CAS  Google Scholar 

  • Kritchevsky D (1964) Animal techniques for evaluating hypocholesteremic drugs. In: Nodine JH, Siegler PE (eds) Animal and Clinical Pharmacologic Techniques in Drug Evaluation. Year Book Medical Publishers, Inc., Chicago, pp 193–198

    Google Scholar 

  • Kritchevsky D, Tepper SA, Davidson LM, Fisher EA, Klurfeld DM (1989) Experimental atherosclerosis in rabbits fed cholesterol-free diets. 13. Interactions of protein and fat. Atherosclerosis 75:123–127

    PubMed  CAS  Google Scholar 

  • Kushwaha RS, Lewis DS, Dee Carey K, McGill Jr. HC (1991) Effects of estrogen and progesterone on plasma lipoproteins and experimental atherosclerosis in the baboon (Papio sp.) Arterioscl Thrombos 11:23–31

    CAS  Google Scholar 

  • Lustalot P, Schuler W, Albrecht W (1961) Comparison of drug actions in a spectrum of experimental anti-atherosclerotic test systems. In: Garattini S, Paoletti R (eds) Drugs affecting lipid metabolism. Elsevier Publ Comp., Amsterdam, pp 271–276

    Google Scholar 

  • Malinow MR, McLaughlin P, Papworth L, Naito HK, Lewis L, McNulty WP (1976) A model for therapeutic intervention on established coronary atherosclerosis in a nonhuman primate. In: Day CE (ed) Atherosclerosis Drug Discovery, Plenum Press, New York and London, pp 3–31

    Google Scholar 

  • Ming-Peng S, Ren-Yi X, Bi-Fang R, Zong-Li W (1990) High density lipoproteins and prevention of experimental atherosclerosis with special reference to tree shrews. Ann New Acad Sci 598:339–351

    Google Scholar 

  • Moss JN, Dajani EZ (1971) Antihyperlipidemic agents. In: Turner RA, Hebborn P (eds) Screening Methods in Pharmacology. Vol. II, Academic Press, New York and London, pp 121–143

    Google Scholar 

  • Nistor A, Bulla A, Filip DA, Radu A (1987) The hyperlipidemic hamster as a model of experimental atherosclerosis. Atherosclerosis 68:159–173

    PubMed  CAS  Google Scholar 

  • O'Meara NMG, Devery RAM, Owens D, Collins PB, Johnson AH, Tomkin GH (1991) Serum lipoproteins and cholesterol metabolism in two hypercholesterolaemic rabbit models. Diabetologia 34:139–143

    PubMed  Google Scholar 

  • Paigen B, Morrow A, Holmes PA, Mitchell D, Williams RA (1987) Quantitative assessment of atherosclerotic lesions in mice. Atherosclerosis 68:231–240

    PubMed  CAS  Google Scholar 

  • Paigen B, Ishida BY, Verstuyft J, Winters RB, Albee D (1990) Atherosclerosis susceptibility differences among progenitors of recombinant inbred strains of mice. Atherosclerosis 10:316–323

    CAS  Google Scholar 

  • Riezebos J, Vleeming W, Beems RB, van Amsterdam JGC, Meijer GW, de Wildt DJ, Porsius AJ, Wemer J (1994) Comparison of Israpidine and Ramipril in cholesterol-fed rabbits: effect on progression of atherosclerosis and endothelial dysfunction. J Cardiovasc Pharmacol 23:415–423

    PubMed  CAS  Google Scholar 

  • Roberts A, Thompson JS (1976) Inbred mice and their hybrids as an animal model for atherosclerosis research. In: Day CE (ed) Atherosclerosis Drug Discovery, Plenum Press, New York and London, pp 313–327

    Google Scholar 

  • Schäfer H-L, Linz W, Bube A, Falk E, Hennig A, Hoffmann A, Leineweber M, Matthäi U, Schmalz M, Sendlbeck E, Kramer Schölkens BA (1999) The Syrian hamster as animal model for atherosclerosis. Naunyn-Schmiedeberg's Arch Pharmacol 359S: R111

    Google Scholar 

  • Scholz W, Albus U, Hropot M, KLaus E, Linz W, Schölkens BA (1990) Zunahme des Na+/H+-Austausches an Kaninchen-erythrozyzen unter atherogener Diät. In: Assmann G, Betz E, Heinle H, Schulte H (eds) Arteriosklerose. Neue Aspekte aus Zellbiologie und Molekulargenetik, Epidemiologie und Klinik. Tagung der Deutschen Gesellschaft für Arteriosklerose-Forschung. pp 296–302

    Google Scholar 

  • Shore B, Shore V (1976) Rabbits as a model for the study of hyperlipoproteinemia and atherosclerosis. In: Day CE (ed) Atherosclerosis Drug Discovery, Plenum Press, New York and London, pp 123–141

    Google Scholar 

  • Simpson CF, Harms RH (1969) Aortic atherosclerosis of turkeys induced by feeding of cholesterol. J Atheroscler Res 10:63–75

    PubMed  CAS  Google Scholar 

  • Soret MG, Blanks MC, Gerritsen GC, Day CE, Block EM (1976) Diet-induced hypercholesterinemia in the diabetic and non-diabetic Chinese hamster. In: Day CE (ed) Atherosclerosis Drug Discovery, Plenum Press, New York and London, pp 329–343

    Google Scholar 

  • Tennent DM, Siegel H, Zanetti ME, Kuron GW, Ott WH, Wolf FJ (1960) Plasma cholesterol lowering action of bile acid binding polymers in experimental animals. J Lipid Res 1:469–473

    PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Kitagawa S, Imaizumi N, Kunitomo M, Fujiwara M (1993) Enhancement of cholesterol deposition by dietary linoleic acid in cholesterol-fed mice: an animal model for primary screening of antiatherosclerotic agents. J Pharm Toxicol Meth 30:169–175

    CAS  Google Scholar 

References

  • Lutton C, Ouguerram K, Sauvage M, Magot T (1990) Turnover of [14C]sucrose HDL and uptake by organs in the normal or genetically hypercholesterolemic (RICO) rat using a constant infusion method. Reprod Nutr Dev 30:97–101

    PubMed  CAS  Google Scholar 

  • Müller KR, Li JR, Dinh DM, Subbiah MTR (1979) The characteristics and metabolism of a genetically hypercholesterolemic strain of rats (RICO). Biochim Biophys Acta 574:334–343

    PubMed  Google Scholar 

  • Ougueram K, Magot T, Lutton C (1991) Alterations in cholesterol metabolism in the genetically hypercholesterolemic RICO rat: an overview. In: Malmedier CL, Alaupovic P, Brewer Jr. HB (eds) Hypercholesterolemia, hypocholesterolemia, hypertriglyceridemia, in vivo kinetics. Adv Exp Med Biol 285:257–274. Plenum Press, New York and London

    Google Scholar 

  • Ougueram K, Magot T, Lutton C (1992) Metabolism of intestinal triglyceride-rich lipoproteins in the genetically hyper-cholesterolemic rat (RICO). Atherosclerosis 93:210–208

    Google Scholar 

  • Riottot M, Olivier Ph, Huet A, Caboche JJ, Parquet M, Khallou J, Lutton C (1993) Hypolipidemic effects of β-cyclodextrin in the hamster and in the genetically hypercholesterolemic RICO rat. Lipids 28:181–188

    PubMed  CAS  Google Scholar 

References

  • Bilheimer DW, Watanabe Y, Kita T (1982) Impaired receptor-mediated catabolism of low density lipoprotein in the WHHL rabbit, an animal model of familial hypercholesterolemia. Proc Natl Acad Sci, USA, 79:3305–3309

    PubMed  CAS  Google Scholar 

  • Gallagher PJ, Nanjee MN, Richards T, Roche WR, Miller NE (1988) Biochemical and pathological features of a modified strain of Watanabe heritable hyperlipidemic rabbits. Atherosclerosis 71:173–183

    PubMed  CAS  Google Scholar 

  • Kita T, Brown MS, Watanabe Y, Goldstein JL (1981) Deficiency of low density lipoprotein receptors in liver and adrenal gland of the WHHL rabbit, an animal model of familial hypercholesterolemia. Proc Natl Acad Sci, USA, 78:2268–2272

    PubMed  CAS  Google Scholar 

  • Kita T, Brown MS, Bilheimer DW, Goldstein JL (1982) Delayed clearance of very low density and intermediate density lipoproteins with enhanced conversion to low density lipoprotein in WHHL rabbits. Proc Natl Acad Sci, USA, 79:5693–5697

    PubMed  CAS  Google Scholar 

  • Makheja AN, Bloom S, Muesing R, Simon T, Bailey JM (1989) Anti-inflammatory drugs in experimental atherosclerosis. 7. Spontaneous atherosclerosis in WHHL rabbits and inhibition by cortisone acetate. Atherosclerosis 76:155–161

    PubMed  CAS  Google Scholar 

  • Rosenfeld ME, Tsukada T, Gown AM, Ross R (1987) Fatty streak initiation in Watanabe heritable hyperlipemic and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis 7:9–23

    PubMed  CAS  Google Scholar 

  • Schneider WJ, Brown MS, Goldstein JL (1983) Kinetic defects in the processing of the low density lipoprotein receptor in fibroblasts from WHHL rabbits and a family with familial hypercholesterolemia. Mol Biol Med 1:353–367

    PubMed  CAS  Google Scholar 

  • Tagawa H, Tomoike H, Nakamura M (1991) Putative mechanisms of the impairment of endothelium-dependent relaxation of the aorta with atheromatous plaque in heritable hyperlipidemic rabbits. Circ Res 68:330–337

    PubMed  CAS  Google Scholar 

  • Watanabe Y (1980) Serial inbreeding of rabbits with hereditary hyperlipidemia (WHHL)-rabbit). Incidence and development of atherosclerosis and xanthoma. Atherosclerosis 36:261–268

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Ito T, Kondo T (1977) Breeding of a rabbit strain of hyperlipidemia and characteristic of these strain. Exp Anim 26:35–42

    CAS  Google Scholar 

  • Watanabe Y, Ito T, Shiomi M (1985) The effect of selective breeding on the development of coronary atherosclerosis in WHHL rabbits. An animal model for familial hypercholesterolemia. Atherosclerosis 56:71–79

    PubMed  CAS  Google Scholar 

References

  • Harada K, Shimano H, Ishibashi S, Yamada N (1996) Transgenic mouse and gene therapy. Diabetes 45 (Suppl 3):S129–S132

    PubMed  CAS  Google Scholar 

  • Linton MF, Farese RV, Chiesa G, Grass DS, Chin P, Hammer RE, Hobbs HH, Young SG (1993) Transgenic mice expressing high plasma concentrations of human apolipoprotein B 100 and apolipoprotein (a). J Clin Invest 92:3029–3037

    PubMed  CAS  Google Scholar 

  • Plump AS, Smith JD, Hayek T, Aalto-Setälä K, Walsh A, Verstuyft JG, Rubin EM, Breslow JL (1992) Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71:343–353

    PubMed  CAS  Google Scholar 

  • Rubin EM, Ishida BY, Clift SM, Kraus RM (1991) Expression of human apolipoprotein A-I in transgenic mice results in reduced plasma levels of murine apolipoprotein A-I and the appearance of two new high density lipoprotein subclasses. Proc Natl Acad Sci USA 88:434–438

    PubMed  CAS  Google Scholar 

  • Stoltzfus L, Rubin EM (1993) Atherogenesis. Insights from the study of transgenic and gene-targeted mice. Trends Cardiovasc Med 3:130–134

    PubMed  CAS  Google Scholar 

  • Walsh A, Ito Y, Breslow JL (1989) High levels of human apolipoprotein A-I in transgenic mice result in increased plasma levels of small high density lipoprotein (HDL) particles comparable to human HDL3. J Biol Chem 264:6488–6494

    PubMed  CAS  Google Scholar 

  • Zhang SH, Reddick RL, Piedrahita JA, Maeda N (1992) Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258:468–471

    PubMed  CAS  Google Scholar 

References

  • Becker RHA, Wiemer G, Linz W (1991) Preservation of endothelial function by ramipril in rabbits on a long-term atherogenic diet. J Cardiovasc Pharmacol 18 (Suppl 2):S110–S115

    PubMed  CAS  Google Scholar 

  • Bossaller C, Habib GB, Yamamoto H, Williams C, Wells S, Henry PD (1987) Impaired muscarinic endothelium-dependent relaxation and cyclic guanosine 5'-monophosphate formation in atherosclerotic human coronary artery and rabbit aorta. J Clin Invest 79:170–174

    PubMed  CAS  Google Scholar 

  • Finta KM, Fischer MJ, Lee L, Gordon D, Pitt B, Webb RC (1993) Ramipril prevents impaired endothelium-dependent relaxation in arteries from rabbits fed an atherogenic diet. Atherosclerosis 100:149–156

    PubMed  CAS  Google Scholar 

  • Jayakody L, Kappagoda T, Senaratne MPJ, Thomson ABR (1988) Impairment of endothelium-dependent relaxation: an early marker for atherosclerosis in the rabbit. Br J Pharmacol 94:335–346

    PubMed  CAS  Google Scholar 

  • Rubanyi, GM, Lorenz RR, Vanhoutte PM (1985) Bioassay of endothelium-derived relaxing factor(s): inactivation by catecholamines. Am J Physiol 249:H95–H110

    PubMed  CAS  Google Scholar 

  • Tagawa H, Tomoike H, Nakamura M (1991) Putative mechanisms of the impairment of endothelium-dependent relaxation of the aorta with atheromatous plaque in heritable hyperlipidemic rabbits. Circ Res 68:330–337

    PubMed  CAS  Google Scholar 

  • Verbeuren TJ, Jordaens FH, Zonnekeyn LL, Van Hove CE, Coene MC, Herman AG (1986) Effect of hypercholesterolemia on vascular reactivity in the rabbit. I. Endothelium-dependent and endothelium-independent contractions and relaxations in isolated arteries of control and hypercholesterolemic rabbits. Circ Res. 58:552–564

    PubMed  CAS  Google Scholar 

  • Verbeuren TJ, Jordaens FH, Van Hove CE, Van Hoydonk AE, Herman AG (1990) Release and vascular activity of endothelium-derived relaxing factor in atherosclerotic rabbit aorta. Eur J Pharmacol 191:173–184

    PubMed  CAS  Google Scholar 

References

  • Berkenboom G, Unger P, Fontaine J (1989) Atherosclerosis and responses of human isolated coronary arteries to endothelium-dependent and-independent vasodilators. J Cardiovasc Pharmacol 14, Suppl 11:S35–S39

    PubMed  CAS  Google Scholar 

  • Bocan TMA, Mueller SB, Uhlendorf PD, Newton RS, Krause BR (1991) Comparison of CI-976, an ACAT inhibitor, and selected lipid-lowering agents for antiatherosclerotic activity in iliac-femoral and thoracic aortic lesions. Arterioscler Thrombosis 11:1830–1843

    CAS  Google Scholar 

  • Davies MG, Klyachkin ML, Kim JH, Hagen PO (1993) Endothelin and vein bypass grafts in experimental atherosclerosis. J Cardiovasc Pharmacol 22, Suppl 8:S348–S351

    PubMed  CAS  Google Scholar 

  • DeCampli WM, Kosek JC, Mitchell RS, Handen CE, Miller DC (1988) Effects of aspirin, dipyridamole, and cod liver oil on accelerated myointimal proliferation in canine veno-arterial allografts. Ann Surg 208:746–754

    PubMed  CAS  Google Scholar 

  • Farhy RD, Ho KL, Carretero OA, Scicli AG (1992) Kinins mediate the antiproliferative effect of ramipril in rat carotid artery. Biochem Biophys Res Commun 182:283–288

    PubMed  CAS  Google Scholar 

  • Groves PH, Levis MJ, Cheadle HA, Penny WJ (1993) SIN-1 reduces platelet adhesion and thrombus formation in a porcine model of balloon angioplasty. Circulation 87:590–597

    PubMed  CAS  Google Scholar 

  • Jackson CL, Bush RC, Bowyer DE (1988) Inhibitory effects of calcium antagonists on balloon catheter-induced arterial smooth muscle cell proliferation and lesion size. Atherosclerosis 69:115–122

    PubMed  CAS  Google Scholar 

  • Kawata M, Lee KT, Makiat T (1990) Detection of regenerating cells in the aorta after ballooning by immunocytochemical demonstration of the thymidine analogue 5-bromo-2'-deoxyuridine (BrUdR). In: Lee KT, Onodera K, Tanaka K (eds) Atherosclerosis II: Recent Progress in Atherosclerosis Research. Ann NY Acad Sci 598:514–516

    Google Scholar 

  • Linz W, Schölkens BA (1992) Role of bradykinin in the cardiac effects of angiotensin-converting enzyme inhibitors. J Cardiovasc Pharmacol 20(Suppl 9):S83–S90

    PubMed  CAS  Google Scholar 

  • Linz W, Wiemer G, Schölkens BA (1993) Contribution of bradykinin to the cardiovascular effects of ramipril. J Cardiovasc Pharmacol 22(Suppl 9):S1–S8

    PubMed  CAS  Google Scholar 

  • Linz W, Wiemer G, Gohlke P, Unger T, Schölkens BA (1994) The contribution of bradykinin to the cardiovascular actions of ACE inhibitors. In Lindpaintner K, Ganten D (eds) The Cardiac Renin Angiotensin System. Futura Publ Co., Inc., Armonk, NY, pp 253–287

    Google Scholar 

  • Lyle EM, Fujita T, Conner MW, Connolly TM, Vlasuk GP, Lynch JL (1995) Effect of inhibitors of factor Xa or platelet adhesion, heparin, and aspirin on platelet deposition in an atherosclerotic rabbit model of angioplastic injury. J Pharmacol Toxicol Meth 33:53–61

    CAS  Google Scholar 

  • Manderson JA, Cocks TM, Campbell GR (1990) Changes in vascular reactivity following endothelial denudation. In: Lee KT, Onodera K, Tanaka K (eds) Atherosclerosis II: Recent Progress in Atherosclerosis Research. Ann NY Acad Sci 598:564–566

    Google Scholar 

References

  • Fleckenstein-Grün, Frey M, Thimm F, Fleckenstein A (1992) Protective effects of various calcium antagonists against experimental arteriosclerosis. J Human Hypertens 6, Suppl 1:S13–S18

    Google Scholar 

  • Fronek K (1990) Calcium antagonists and experimental atherosclerosis. Cardiovasc Drug Rev 8:229–237

    CAS  Google Scholar 

  • Holmes WL (1964) Drugs affecting lipid synthesis. In: Paoletti R (ed) Lipid Pharmacology, Academic Press, New York, London, chapter 3, pp 131–184

    Google Scholar 

  • Illingworth DR (1987) Lipid-lowering drugs. An overview of indications and optimum therapeutic use. Drugs 33:259–279

    PubMed  CAS  Google Scholar 

  • Kjeldsen K, Stender S (1989) Calcium antagonists and experimental atherosclerosis. Proc Soc Exp Biol Med 190:219–228

    PubMed  CAS  Google Scholar 

  • Knorr AM, Kazda S (1990) Influence of nifedipine on experimental arteriosclerosis. Cardiovasc Drugs Ther 4:1027–1032

    PubMed  Google Scholar 

  • McCarthy PA (1993) New approaches to atherosclerosis: An overview. Med Res Rev 13:139–159

    PubMed  CAS  Google Scholar 

References

  • Allain CC, Poon LS, Chan CSG, Richmond W, Fu PC (1974) Enzymatic determination of total serum cholesterol. Clin Chem 20:470–475

    PubMed  CAS  Google Scholar 

  • Balasubramaniam S, Simons LA, Chang S, Roach PD, Nestel PJ (1990) On the mechanism by which an ACAT inhibitor (CL 277,082) influences plasma lipoproteins in the rat. Atherosclerosis 82:1–5

    PubMed  CAS  Google Scholar 

  • Cardin AD, Holdsworth G, Jackson RL (1984) Isolation and characterization of plasma lipoproteins and apolipoproteins. In: Schwartz A (ed) Methods in Pharmacology, Vol 5, Plenum Oress, New York and London, pp 141–166

    Google Scholar 

  • Dole VP, Meinertz H (1960) Microdetermination of longchain fatty acids in plasma and tissues. J Biol Chem 235:2595–2599

    PubMed  CAS  Google Scholar 

  • Eggstein M, Kreutz FH (1966a) Eine neue Bestimmung der Neutralfette im Blutserum und Gewebe. I. Mitteilung. Prinzip, Durchführung und Besprechung der Methode. Klin Wschr 44:262–267

    PubMed  CAS  Google Scholar 

  • Eggstein M, Kreutz FH (1966b) Eine neue Bestimmung der Neutralfette im Blutserum und Gewebe. II. Mitteilung. Zuverlässigkeit der Methode, andere Neutralfettbestimmungen, Normalwerte für Triglyceride und Gycerin im menschlichen Blut. Klin Wschr 44:267–273

    PubMed  CAS  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  • Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of low-density lipoprotein cholesterol in plasma, without use of the preparative centrifuge. Clin Chem 18:499–502

    PubMed  CAS  Google Scholar 

  • Getz GS (1990) The involvement of lipoproteins in atherogenesis: evolving concepts. In: Lee KT, Onodera K, Tanaka K (eds) Atherosclerosis II: Recent Progress in Atherosclerosis Research. Ann NY Acad Sci 598:17–28

    PubMed  CAS  Google Scholar 

  • Hatch FT, Lees RS (1968) Practical methods for plasma lipoprotein analysis. In: Paoletti R, Kritchevsky D (eds) Advances in Lipid Research, Vol 6, pp 1–68, Academic Press, New York

    Google Scholar 

  • Havel RJ, Eder HA, Bragdon JH (1955) The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest 34:1345–1353

    PubMed  CAS  Google Scholar 

  • Holub WR, Galli FA (1972) Automated direct method for measurement of serum cholesterol, with use of primary standards and a stable reagent. Clin Chem 18:239–243

    PubMed  CAS  Google Scholar 

  • Keul J, Linnet N, Eschenbruch E (1968) The photometric autotitration of free fatty acids. Z Klin Chem Klin Biochem 6:394–398

    PubMed  CAS  Google Scholar 

  • Kita T, Yokode M, Ishii K, Arai H, Nagano Y (1990) The role of atherogenic low density lipoproteins (LDL) in the pathogenesis of atherosclerosis. In: Lee KT, Onodera K, Tanaka K (eds) Atherosclerosis II: Recent Progress in Atherosclerosis Research. Ann NY Acad Sci 598:188–193

    PubMed  CAS  Google Scholar 

  • Koga S, Horwitz DL, Scanu AM (1969) Isolation and properties of lipoproteins from normal rat serum. J Lipid Res 10:577–588

    PubMed  CAS  Google Scholar 

  • Lopez A, Vial R, Gremillion L, Bell L (1971) Automated simultaneous turbidimetric determination of cholesterol in β-and pre-β-lipoproteins. Clin Chem 17:994–997

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • März W, Siekmeier R, Scharnagl H, Seiffert UB, Gross W (1993) Fast lipoprotein chromatography: a new method of analysis for plasma lipoproteins. Clin Chem 39:2276–2281

    PubMed  Google Scholar 

  • Moss JN, Dajani EZ (1971) Antihyperlipidemic agents. In: Turner RA, Hebborn P (eds) Screening Methods in Pharmacology. Vol. II, Academic Press, New York and London, pp 121–143

    Google Scholar 

  • Rudman D, Brown SJ, Malkin MF (1963) Adipokinetic actions of adrenocorticotropin, thyroid-stimulating hormone, vasopressin, α-and β-melanocyte-stimulating hormones, fraction H, epinephrine and norepinephrine in the rabbit, guinea pig, hamster, rat and dog. Endocrinology 72:527–543

    CAS  Google Scholar 

  • Schurr PE, Schultz JR, Day CE (1976) High volume screening procedures for hypobetalipoproteinemic activity in rats. In: Day CE (ed) Atherosclerosis Drug Discovery, Plenum Press, New York and London, pp 215–229

    Google Scholar 

  • Siedel J, Hägele EO, Ziegenhorn J, Wahlefeld AW (1983) Reagent for the enzymatic determination of serum total cholesterol with improved lipolytic efficiency. Clin Chem 29:1075–1080.

    PubMed  CAS  Google Scholar 

  • Sperry WM (1956) Lipid analysis. In: Glick D (ed) Methods in biochemical analysis, Vol. II, pp 83–111

    Google Scholar 

  • Wahlefeld AW (1974) Triglyceride. Bestimmung nach enzymatischer Verseifung. In: Bergmeier HU (ed) Methoden der enzymatischen Analyse, 3. Auflage, Band II, Verlag Chemie, pp 1878–1882

    Google Scholar 

References

  • Ahn YS, Smith D, Osada J, Li Z, Schaefer EJ, Ordovas M (1994) Dietary fat saturation affects apolipoprotein gene expression and high density lipoprotein size distribution in golden Syrian hamsters. J. Nutr. 124:2147–2155

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248

    PubMed  CAS  Google Scholar 

  • Bravo E, Cantafora A, Calcobrini A, Ortu G (1994) Why prefer the golden Syrian hamster (Mesocricetus auratus) to the Wistar rats in experimental studies on plasma lipoprotein metabolism. Comp Biochim Physiol Vol. 107B: pp 347–355

    CAS  Google Scholar 

  • Ingebritson GS, Gibson MD (1981) Assay of enzymes that modulate S-3-hydroxy-3-methylglutaryl coenzyme A reductase by reversible phosphorylation. Meth Enzymol 71:486

    Google Scholar 

  • März W, Scharnagel H, Siekmeier R, Träger L, Gross W (1989) Fast lipoprotein chromatography (FPLC) of plasma lipoproteins. J Clin Chem Clin Biochem 27:719

    Google Scholar 

  • März W, Siekmeier R, Scharnagel H, Seiffert UB, Gross W (1993) Fast lipoprotein chromatography: new method of analysis for plasma lipoproteins. Clin Chem 39:2276–2281

    PubMed  Google Scholar 

  • Ha Y-C, Barter PJ (1982) Differences in plasma cholesteryl ester transfer activity in sixteen vertebrate species. Comp Biochem Physiol Vol 71B:265–269

    CAS  Google Scholar 

  • Ha Y-C, Barter PJ (1986) Effects of sucrose feeding and injection of lipid transfer protein on rat plasma lipoproteins. Comp Biochem Physiol B 83:463–466

    PubMed  CAS  Google Scholar 

  • Kowala MC, Nunnari JJ, Durham SK, Nicolosi RJ (1991) Doxazin and cholestyramine similarly decrease fatty streak formation in the aortic arch of hyperlipidemic hamsters. Atherosclerosis 91:35–49

    PubMed  CAS  Google Scholar 

  • Kris-Etheron, PM, Dietschy J (1997) Design criteria for studies examining individual fatty acid effects on cardiovascular diseases risk factors: human and animal studies. Am J Clin Nutr 65 Suppl:1590S–1596S

    Google Scholar 

  • Suckling KE, Boyd GS, Smellie CG (1982) Properties of a solubilised and reconstituted preparation of acyl-CoA:cholesterol acyltransferase from rat liver. Biochem Biophys Acta 710:154

    PubMed  CAS  Google Scholar 

  • Suckling KE, Benson GM, Bond B, Gee A, Glen A, Haynes C, Jackson B (1991) Cholesterol lowering and bile acid excretion in the hamster with cholestyramine treatment. Atherosclerosis 89:183–190

    PubMed  CAS  Google Scholar 

  • Weingand KW, Daggy BP (1990) Quantification of high-density-lipoprotein cholesterol in plasma from hamsters by differential precipitation. Clin Chem 36:575–576

    PubMed  CAS  Google Scholar 

  • Weingand KW, Daggy BP (1991) Effects of dietary cholesterol and fasting on hamster lipoprotein lipids. Eur J Clin Chem Clin Biochem 29:425–428

    PubMed  CAS  Google Scholar 

References

  • Frantz ID, Hinkelman BT (1955) Acceleration of hepatic cholesterol synthesis by Triton WR-1339. J Exper Med 101:225–232

    CAS  Google Scholar 

  • Garattini S, Paoletti P, Paoletti R (1958) The effect of diphenylethylacetic acid on cholesterol and fatty acid biosynthesis. Arch Int Pharmacodyn 117:114–122

    PubMed  CAS  Google Scholar 

  • Garattini S, Paoletti R, Bizzi L, Grossi E, Vertua R (1961) A comparative evaluation of hypocholesteremizing drugs on several test. In: Garattini S, Paoletti R (eds) Drugs affecting lipid metabolism. Elsevier Publ Comp., Amsterdam, pp 144–157

    Google Scholar 

  • Holmes WL (1964) Drugs affecting lipid synthesis. In: Paoletti R (ed) Lipid Pharmacology, Academic Press, New York, London, chapter 3, pp 131–184

    Google Scholar 

  • Moss JN, Dajani EZ (1971) Antihyperlipidemic agents. In: Turner RA, Hebborn P (eds) Screening Methods in Pharmacology. Vol. II, Academic Press, New York and London, pp 121–143

    Google Scholar 

  • Tamasi G, Borsy J, Patthy A (1968) Comparison of the anti-lipemic effect of nicotinic acid (NA) and 4-methylpyrazole-5-carboxylic acid (MPC) in rats. Biochem Pharmacol 17:1789–1794

    PubMed  CAS  Google Scholar 

  • Tubbs PK, Garland PB (1969) Assay of coenzyme A and some acyl derivatives. Meth Enzymol 13:535–551

    CAS  Google Scholar 

References

  • Eggstein M, Kreutz FH (1966a) Eine neue Bestimmung der Neutralfette im Blutserum und Gewebe. I. Mitteilung. Prinzip, Durchführung und Besprechung der Methode. Klin Wschr. 44:262–267

    PubMed  CAS  Google Scholar 

  • Eggstein M, Kreutz FH (1966b) Eine neue Bestimmung der Neutralfette im Blutserum und Gewebe. II. Mitteilung. Zuverlässigkeit der Methode, andere Neutralfettbestimmungen, Normalwerte für Triglyceride und Glycerin im menschlichen Blut. Klin Wschr 44:267–273

    PubMed  CAS  Google Scholar 

  • Moss JN, Dajani EZ (1971) Antihyperlipidemic agents. In: Turner RA, Hebborn P (eds) Screening Methods in Pharmacology. Vol. II, Academic Press, New York and London, pp 121–143

    Google Scholar 

  • Richterich R, Lauber K (1962) Bestimmung des Gesamt-Cholesterins im Serum. VIII. Mitteilung über Ultramikromethoden im klinischen Laboratorium. Klin Wschr 40:1252–1256

    PubMed  CAS  Google Scholar 

References

  • Carlson LA, Rössner S (1972) A methodological study of an intravenous fat tolerance test with Intralipid® emulsion. Scand J Clin Lab Invest 29:271–280

    PubMed  CAS  Google Scholar 

  • D'Costa MA, Smigura FC, Kulhay K, Angel A (1977) Effects of clofibrate on lipid synthesis, storage, and plasma intralipid clearance. J Lab Clin Med 90:823–836

    PubMed  Google Scholar 

References

  • Gotoda T, Yamada N Kawamura M, Kozaki K, Mori N, Ishibashi S, Shimano H, Takaku F, Yazaki Y, Furuichi Y, Murase T (1991) Heterogeneous mutations in the human lipoprotein lipase gene in patients with familial lipoprotein lipase deficiency. J Clin Invest 88:1856–1864

    PubMed  CAS  Google Scholar 

  • Murase T, Uchimura H (1980) A selective decline of postheparin plasma hepatic triglyceride lipase in hypothyroid rats. Metabolism 29:797–801

    PubMed  CAS  Google Scholar 

  • Nilsson-Ehle P, Schotz MC (1976) A stable, radioactive substrate emulsion for assay of lipoprotein lipase. J Lipid Res 17:536–541

    PubMed  CAS  Google Scholar 

  • Tsusumi K, Inoue Y, Shima A, Iwasaki K, Kawamura M, Murase T (1993) The novel compound NO-1886 increases lipoprotein lipase activity with resulting elevation of high density lipoprotein cholesterol, and long term administration inhibits atherogenesis in the coronary arteries of rats with experimental atherosclerosis. J Clin Invest 92:411–417

    Google Scholar 

References

  • Assmann G, Shriewer H, Schmitz G, Hägele EO (1983) Quantification of high-density-lipoprotein cholesterol by precipitation with phosphotungstic acid/MgCl2. Clin Chem 29:2026–2030

    PubMed  CAS  Google Scholar 

  • Bernini F, Corsini A, Fumagalli R, Paoletti R (1994) Pharmacology of lipoprotein receptors. J Lipid Mediat Cell Signal 9:9–17

    PubMed  CAS  Google Scholar 

  • Cosgrove PG, Gaynor BJ, Harwood HJ (1992) Quantitation of hepatic low density lipoprotein receptor levels in the hamster. FASEB J 4:A533

    Google Scholar 

  • Harwood HJ, Schneider M, Stacpoole PW (1984) Measurement of human leukocyte microsomal HMG-CoA reductase activity. J Lipid Res 25:967–978

    PubMed  CAS  Google Scholar 

  • Harwood HJ, Chandler CE, Pellarin LD, Bangerter FW, Wilkins RW, Long CA, Cosgrove PG, Malinow MR, Marzetta CA, Pettini JK, Savoy YE, Mayne JT (1993) Pharmacologic consequences of cholesterol absorption inhibition: alteration in cholesterol metabolism and reduction in plasma cholesterol concentration induced by the synthetic saponin β-tigogenin cellobioside (CP-88818; tiqueside). J Lipid Res 34:377–395

    PubMed  CAS  Google Scholar 

  • Hylemon PB, Stude EJ, Pandak WM, Heuman DM, Vlahcevic ZR, Chinag JYL (1989) Simultaneous measurement of cholesterol 7α-hydroxylase activity by reverse-phase high-performance liquid chromatography using both endogenous cholesterol and exogenous [4-14C]cholesterol as substrate. Anal Biochem 182:212–216

    PubMed  CAS  Google Scholar 

  • Junker LH, Story JA (1985) An improved assay for cholesterol 7α-hydroxylase activity using phospholipid liposome-solubilized substrate. Lipids 20:712–718

    PubMed  CAS  Google Scholar 

  • Ogishima T, Okuda K (1986) An improved method for assay of cholesterol 7α-hydroylase activity. Analyt Biochem 158:228–232

    PubMed  CAS  Google Scholar 

  • Princen HMG, Meijer P (1990) Maintenance of bile acid synthesis and cholesterol 7α-hydroxylase activity in cultured rat hepatocytes. Biochem J 272:273–275

    PubMed  CAS  Google Scholar 

References

  • Abe I, Prestwich GD (1998) Development of new cholesterollowering drugs. Drug Dev Today 3:389–390

    Google Scholar 

  • Abe I, Zheng YF, Prestwich GD (1998a) Mechanism based inhibitors and other active-site targeted inhibitors of oxidosqualene cyclase and squalene cyclase. J Enzyme Inhib 13:385–398

    PubMed  CAS  Google Scholar 

  • Abe I, Zheng YF, Prestwich GD (1998b) Photoaffinity labeling of oxidosqualene cyclase and squalene cyclase by a benzo-phenone-containing inhibitor. Biochemistry 37:5779–5784

    PubMed  CAS  Google Scholar 

  • Amin D, Rutledge RZ, Needle SN, Hele DJ, Neuenschwander K, Bush RC, Bilder GE, Perrone MH (1996) RPR 101821, a new potent cholesterol-lowering agent: inhibition of squalene synthase and 7-dehydrocholesterol reductase. Naunyn-Schmiedeberg's Arch Pharmacol 353:233–240

    CAS  Google Scholar 

  • Amin D, Rutledge RZ, Needle SN, Galczenski HF, Neuenschwander K, Scotese AC, Maguire MP, Bush RC, Hele DJ, Bilder GE, Perrone MH (1997) RPR 107393, a potent squalene synthase inhibitor and orally effective cholesterol-lowering agent: comparison with inhibitors of HMG-CoA reductase. J Pharmacol Exp Ther 281:746–752

    PubMed  CAS  Google Scholar 

  • Bae S-H, Lee JN, Fitzky BU, Seong J, Paik Y-K (1999) Cholesterol biosynthesis from lanosterol. Molecular cloning, tissue distribution, expression, chromosomal location and regulation of rat 7-dehydrocholesterol reductase, a Smith-Lemli-Opitz syndrome-related protein. J Biol Chem 274:14624–14631

    PubMed  CAS  Google Scholar 

  • Baxter A, Fitzgerald BJ, Hutson JL, McCarthy AD, Motteram JM, Ross BC, Sapra M, Snowden MA, Watson NS, Williams RJ, Wright C (1992) Squalestatin 1, a potent inhibitor of squalene synthase, which lowers cholesterol in vivo. J Biol Chem 267:11705–11708

    PubMed  CAS  Google Scholar 

  • Biller SA, Forster C, Gordon EM, Harrity T, Rich LC, Marretta J, Ciosek CP (1991a) Isoprenyl phosphinylformates: new inhibitors of squalene synthetase. J Med Chem 34:1912–1914

    PubMed  CAS  Google Scholar 

  • Biller SA, Sofia MJ, DeLange B, Forster C, Gordon EM, Harrity T, Rich LC, Ciosek CP (1991b) The first potent inhibitor of squalene synthase: A profound contribution of an ether oxygen to inhibitor-enzyme interaction. J Am Chem Soc 113:8522–8524

    CAS  Google Scholar 

  • Cattel L, Ceruti M, Balliano G, Viola F, Grosa G, Schuber F (1989) Drug design based on biosynthetic studies: synthesis, biological activity, and kinetics of new inhibitors of 2,3-oxidosqualene cyclase and squalene epoxidase. Steroids 53:363–391

    PubMed  CAS  Google Scholar 

  • Chan C, Andreotti D, Cox B, Dymock BW, Hutson JL, Keeling SE, McCarthy AD, Procopiou PA, Ross BC, Sareen M, Scicinski JJ, Sharatt PJ, Snowden MA, Watson MS (1996) The squalestatins: decarboxy and 4-deoxy analogues as potent squalene synthase inhibitors. J Med Chem 39:207–215

    PubMed  CAS  Google Scholar 

  • Ciosek CP Jr., Magnin DR, Harrity DW, Logan JV, Dickson JK Jr., Gordon EM, Hamilton KA, Jolibois KG, Kunselman LK, Lawrence RM (1993) Lipophilic 1,1-bisphosphonates are potent squalene synthase inhibitors and orally active cholesterol lowering agents in vivo. J Biol Chem 268:24832–24837

    PubMed  CAS  Google Scholar 

  • Dollis D, Schuber F (1994) Effects of a 2,3-oxidosqualene-lanosterol cyclase inhibitor 2,3:22,23-dioxidosqualene and 24,25-epoxycholesterol on the regulation of cholesterol biosynthesis in human hepatoma cell line HepG2. Biochem Pharmacol 48:49–57

    PubMed  CAS  Google Scholar 

  • Dufresne C, Jones ETT, Omstead MN, Bergstrom JD, Wilsin KE (1996) Novel zaragozic acids from Leptodontidium elatius. J Nat Prod 59:52–54

    CAS  Google Scholar 

  • Eisele B, Budzinski R, Müller P, Maier R, Mark M (1997) Effects of a novel 2,3-oxidosqualene cyclase inhibitor on cholesterol biosynthesis and lipid metabolism in vivo. J Lipid Res 38:564–575

    PubMed  CAS  Google Scholar 

  • Gerst N, Schuber F, Viola F, Cattel L (1986) Inhibition of cholesterol biosynthesis in 3T3 fibroblasts by 2-aza-2,3-dihydrosqualene, a rationally designed 2,3-oxidosqualene cyclase inhibitor. Biochem Pharmacol 35:4243–4250

    PubMed  CAS  Google Scholar 

  • Goldstein JL, Brown MS (1990) Regulation of mevalonate pathway. Nature 343:425–430

    PubMed  CAS  Google Scholar 

  • Grayson NA, Westkaemper RB (1988) Stable analogs of acyl adenylates. Inhibition of acetyl-and acyl-CoA synthetase by adenosine 5′-alkylphosphates. Life Sci 43:437–444

    PubMed  CAS  Google Scholar 

  • Greenspan MD, Yudkowitz JB, Lo CYL, Chen JS, Alberts AW, Hunt VM, Chang MN, Yang SS, Thompson KL, Chiang YCP, Chabala JC, Monaghan RL, Schwartz RL (1987) Inhibition of hydroxymethylglutaryl-coenzyme A synthase by L-659,699. Proc Natl Acad Sci USA 84:7488–7492

    PubMed  CAS  Google Scholar 

  • Grieveson LA, Ono T, Sakakibara J, Derrick JP, Dickinson JM, McMahon A, Higson SPJ (1997) A simplified squalene epoxidase assay based on an HPCL separation and time-dependent UV/visible determination of squalene. Anal Biochem 252:19–23

    PubMed  CAS  Google Scholar 

  • Harris GH, Dufresne C, Joshua H, Koch LA, Zink DL, Salmon PM, Goklen KE, Kurtz MM, Rew DJ, Bergstrom JD, Wilson KE (1995) Isolation, structure determination and squalene synthase activity of L-731,120 and L-731,128, alkyl citrate analogs of zaragozic acids A and B. Bioorg Med Chem Lett 5:2403–2408

    CAS  Google Scholar 

  • Hiyoshi H, Yanagimachi M, Ito M, Ohtsuka I, Yoshida I, Saeki T, Tanaka H (2000) Effect of ER-27856, a novel squalene synthase inhibitor, on plasma cholesterol in monkeys: comparison with 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors. J Lipid Res 41:1136–1144

    PubMed  CAS  Google Scholar 

  • Horie M, Tsuchiya Y; Hayashi M, Iida Y, Iwasawa Y, Nagata Y, Sawasaki Y, Fukuzumi H, Kitani K, Kamei T (1990) NB-598: a potent competitive inhibitor of squalene epoxidase. J Biol Chem 265:18075–18078

    PubMed  CAS  Google Scholar 

  • Horie M, Sawasaki Y, Fukuzumi H, Watanabe K, Iuzuka Y, Tsuchiya Y, Kamei T (1991) Hypolipidemic effects of NB-598 in dogs. Atherosclerosis 88:183–192

    PubMed  CAS  Google Scholar 

  • Mark M, Müller P, Maier R, Eisele B (1996) Effects of a novel 2,3-oxidosqualene cyclase inhibitor on the regulation of cholesterol biosynthesis in HepG2 cells. J Lipid Res 37:148–158

    PubMed  CAS  Google Scholar 

  • McTaggart F, Brown GR, Davidson RG, Freeman S, Holdgate GA, Mallion KB, Mirrlees DJ, Smith GJ, Ward WH (1996) Inhibition of squalene synthase of rat liver by novel 3'substituted quinuclidines. Biochem Pharmacol 51:1477–1487

    PubMed  CAS  Google Scholar 

  • Miller LR, Pinkerton FT, Schroepfer GJ (1980) 5α-Cholest-8(14)-en-3β-ol-15-one, a potent inhibitor or sterol synthesis, reduces the levels of activity of enzymes involved in the synthesis and reduction of 3-hydroxy-3-methylglutaryl coenzyme A in CHO-K1 cells. Biochem Intern 1:223–228

    CAS  Google Scholar 

  • Moore WR, Schatzman GL, Jarvi ET, Gross RS, McCarthy JR (1992) Terminal difluoro olefin analogues of squalene are time-dependent inhibitors of squalene epoxidase. J Am Chem Soc 114:360–361

    CAS  Google Scholar 

  • Morand OH, Aebi JD, Dehmlow H, Ji Y-H, Gains N, Lengsfeld H, Himber J (1997) Ro 48-8071, a new 2,3-oxidosqualene: lanosterol cyclase inhibitor lowering plasma cholesterol in hamsters, squirrel monkeys, and minipigs: comparison to simvastin. J Lipid Res 38:373–390

    PubMed  CAS  Google Scholar 

  • Ness GC, Zhao Z, Keller RK (1994) Effect of squalene synthase inhibition on the expression of hepatic cholesterol biosynthesis enzymes, LDL receptor, and cholesterol 7-alpha-hydroxylase. Arch Biochem Biophys 311:277–285

    PubMed  CAS  Google Scholar 

  • Oehlschlager AC, Singh SM, Sharma S (1991) Squalene synthetase inhibitors: synthesis of sulfonium ion mimics of the carbocationic intermediates. J Org Chem 56:3856–3861

    CAS  Google Scholar 

  • Rosenberg SH (1998) Squalene synthase inhibitors. Exp Opin Ther Patents 8:521–530

    CAS  Google Scholar 

  • Ryder NS (1992) Terbenafine: mode of action and properties of the squalene epoxidase inhibition. Br J Dermatol 126:Suppl 39:2–7

    PubMed  Google Scholar 

  • Sen SE, Prestwich GD (1989) Squalene analogs containing isopropylidene mimics as potential inhibitors of pig liver squalene epoxidase and oxidosqualene cyclase. J Med Chem 32:2152–2158

    PubMed  CAS  Google Scholar 

  • Sliskovic DR, Picard JA (1997) Squalene synthase inhibitors. Emerg Drugs 2:93–107

    CAS  Google Scholar 

  • Ugawa T, Kakuta H, Moritani H, Matsuda K, Ishihara T, Yamaguchi M, Naganuma S, Iizumi Y, Shikama H (2000) YM53601, a novel squalene synthase inhibitor, reduces plasma cholesterol and triglyceride levels in several animal species. Br J Pharmacol 131:63–70

    PubMed  CAS  Google Scholar 

  • Vaidya S, Bostedor R, Kurtz MM, Bergstrom JD, Bansal VS (1998) Massive production of farnesol-derived dicarboxylic acids in mice treated with the squalene synthase inhibitor zaragozic acid A. Arch Biochem Biophys 355:84–92

    PubMed  CAS  Google Scholar 

  • Waterham HR, Wanders RJA (2000) Biochemical and genetic aspects of 7-dehydrocholesterol reductase and Smith-Lemli-Opitz syndrome. Biochem Biophys Acta 1529:340–356

    PubMed  CAS  Google Scholar 

References

  • Clinkenbeard KD, Sugiyama T, Reed WD, Lane MD (1975) Cytoplasmatic 3-hydroxy-3-methylglutaryl coenzyme A synthase from liver. Purification, properties, and role in cholesterol synthesis. J Biol Chem 250:3124–3135

    CAS  Google Scholar 

  • Flint OP, Masters BA, Gregg RE, Durham SK (1997) Inhibition of cholesterol synthesis by squalene synthase inhibitors does not induce myotoxicity in vitro. Toxicol Appl Pharmacol 145:91–98

    PubMed  CAS  Google Scholar 

  • Gotto AM (1990) Pravastatin: A hydrophilic inhibitor of cholesterol synthesis. J Drug Dev 3:155–161

    Google Scholar 

  • Jendralla H, Baader E, Bartmann W, Beck G, Bergmann A, Granzer E, v. Kerekjarto B, Kesseler K, Krause R, Schubert W, Wess G (1990) Synthesis and biological activity of new HMG-CoA reductase inhibitors. 2. Derivatives of 7-(1H-pyrrol-3-yl)-substituted-3,5-dihydroxyhept-6(E)-enoic (-heptanoic) acids. J Med Chem 33:61–70

    PubMed  CAS  Google Scholar 

  • Jungnickel PW, Cantral KA, Maloley PA (1992) Pravastin: A new drug for the treatment of hypercholesterinemia. Clin Pharm 11:677–689

    PubMed  CAS  Google Scholar 

  • Krause R, Neubauer H, Leven M, Kesseler K (1990) Inhibition of cholesterol synthesis in target tissues and extrahepatic organs after administration of HMG-CoA reductase inhibitors in normolipidaemic rats: organ selectivity and time course of the inhibition. J Drug Dev 3 (Suppl 1):255–257

    Google Scholar 

  • Mauro VF, MacDonald JL (1991) Simvastatin: A review of its pharmacology and clinical use. DICP, Annal Pharmacother 25:257–264

    CAS  Google Scholar 

  • Parish EJ, Nanduri VBB, Kohl HH, Taylor FR (1986) Oxysterols: Chemical synthesis, biosynthesis and biological activities. Lipids 21:27–30

    PubMed  CAS  Google Scholar 

  • Rodwell VW, Nordstrom JL, Mitschelen JJ (1976) Regulation of HMG-CoA reductase. In: Paoletti R, Kritchevsky D (eds) Advances in Lipid Research Vol 14:1–74, Academic Press, New York

    Google Scholar 

  • Saito Y, Kitahara MKS, Sakashita MSK, Toyoda KSK, Shibazaki TSK (1993) Novel inhibitors of atherosclerotic intimal thickening. Curr Opin Therap Patents 3:1241–1242

    Google Scholar 

  • Scott WA (1990) Hydrophilicity and the differential pharmacology of pravastin. In. Wood C (ed) Lipid management: Pravastin and the differential pharmacology of HMG-CoA reductase inhibitors. Royal Soc Medi Serv, Round Table Series, No 16:17–25

    Google Scholar 

  • Shapiro DJ, Rodwell VW (1969) Diurnal variation and cholesterol regulation of hepatic HMG-CoA reductase activity. Biochem Biophys Res Commun 37:687–872

    Google Scholar 

  • Shefer S, Hauser S, Lapar V, Mosbach EH (1972) Diurnal variation of HMG CoA reductase activity in rat intestine. J Lipid Res 13:571–573

    PubMed  CAS  Google Scholar 

  • Sirtori CR (1990) Pharmacology and mechanism of action of the new HMG-CoA reductase inhibitors. Pharmacol Res 22:555–563

    PubMed  CAS  Google Scholar 

  • Soma MR, Corsini A, Paoletti R (1992) Cholesterol and mevalonic acid modulation in cell metabolism and multiplication. Toxicology Letters 64/65:1–15

    PubMed  Google Scholar 

  • Trzaskos JM, Magolda RL, Favata MF, Fischer RT, Johnson PR, Chen HW, Ko SS, Leonard DA, Gaylor JL (1993) Modulation of 3-hydroxy-3-methylglutaryl-CoA reductase by 15α-fluorolanost-7-en-3β-ol. A mechanism-based in-hibitor of cholesterol biosynthesis. J Biol Chem 268:22591–22599

    PubMed  CAS  Google Scholar 

  • Tsujita Y (1990a) A potent HMG-CoA reductase inhibitor, pravastatin sodium. Tissue selective inhibition of cholesterogenesis and preventive effect on atherosclerosis in WHHL rabbits. J Drug Dev 3 (Suppl 1):155–159

    Google Scholar 

  • Tsujita Y (1990b) HMG-CoA reductase inhibitors. J Jpn Atheroscler Soc 18:165–171

    Google Scholar 

References

  • Avigan J, Bhathena SJ, Schreiner ME (1975) Control of sterol synthesis and of hydroxymethylglutaryl CoA reductase in skin fibroblasts grown from patients with homozygous type II hyperlipoproteinemia. J Lipid Res 16:151–154

    PubMed  CAS  Google Scholar 

  • Baker FC, Schooley DA (1979) Analysis and purification of acyl coenzyme A thioesters by reversed-phase ion-pair liquid chromatography. Analyt Biochem 94:417–424

    PubMed  CAS  Google Scholar 

  • Heller RA, Gould RG (1973) Solubilization and partial purification of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase. Biochem Biophys Res Comm 50:859–865

    PubMed  CAS  Google Scholar 

  • Kramer W, Wess G, Enhsen A, Bock K, Falk E, Hoffmann A, Neckermann G, Gantz D, Schulz S, Nickau B, Petzinger E, Turley S, Dietschy JM (1994) Bile acid derived HMG-CoA reductase inhibitors. Biochim Biophys Acta 1227:137–154

    PubMed  Google Scholar 

  • Kubo M, Strott CA (1987) Differential activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase in zones of the adrenal cortex. Endocrinol 120:214–221

    CAS  Google Scholar 

  • Philipp BW, Shapiro DJ (1979) Improved methods for the assay and activation of 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Lipid Res 20:588–593

    PubMed  CAS  Google Scholar 

  • Wess G, Kramer W, Han XB, Bock K, Enhsen A, Glombik H, Baringhaus KH, Böger G, Urmann M, Hoffmann A, Falk E (1994) Synthesis and biological activity of bile acid-derived HMG-CoA reductase inhibitors. The role of the 21-methyl in recognition of HMG-CoA reductase and the ileal bile acid transport system. J Med. Chem 37:3240–3246

    PubMed  CAS  Google Scholar 

References

  • Beck G, Kesseler K, Baader E, Bartmann W, Bergmann A, Granzer E, Jendralla H, von Kerekjarto B, Krause R, Paulus E, Schubert W, Wess G (1990) Synthesis and biological activity of new HMG-CoA reductase inhibitors. 1. Lactones of pyridine-and pyrimidine-substituted 3,5-dihydroxy-6-heptenoic (heptanoic) acids. J Med Chem 33:52–60

    PubMed  CAS  Google Scholar 

  • Chen HW, Kandutsch AA (1976) Effects of cholesterol derivatives on sterol biosynthesis. In: Day CE (ed) Atherosclerosis Drug Discovery, Plenum Press, New York and London, pp 405–417

    Google Scholar 

  • Gebhardt R (1993) Multiple inhibitory effects of garlic extracts on cholesterol biosynthesis in hepatocytes. Lipids 28:613–619

    PubMed  CAS  Google Scholar 

  • Gotto AM (1990) Pravastatin: A hydrophilic inhibitor of cholesterol synthesis. J Drug Dev 3:155–161

    Google Scholar 

  • Greenspan MD, Yudkovitz JB, Chen JS, Hanf DP, Chang MN, Chiang PYC, Chabala JC, Alberts AW (1989) The inhibition of cytoplasmatic acetoacetyl-CoA thiolase by a triyne carbonate (L-660,631) Biochem Biophys Res Commun 163:548–553

    PubMed  CAS  Google Scholar 

  • Hidaka Y, Hotta H, Nagata Y, Iwasawa Y, Horie M, Kamei T (1991) Effect of a novel squalene epoxidase inhibitor, NB-598, on the regulation of cholesterol metabolism in HEP G2 cells. J Biol Chem 266:13171–13177

    PubMed  CAS  Google Scholar 

  • Parker RA, Clark RW, Sit SY, Lanier TL, Grosso RA, Kim Wright JJ (1990) Selective inhibition of cholesterol synthesis in liver versus extrahepatic tissues by HMG-CoA reductase inhibitors. J Lipid Res 31:1271–1282

    PubMed  CAS  Google Scholar 

  • Pearce BC, Parker RA, Deason ME, Qureshi AA, Kim Wright JJ (1992) Hypocholesterolemic activity of synthetic and natural tocotrienols. J Med Chem 35:3595–3606

    PubMed  CAS  Google Scholar 

  • Raiteri M, Amaboldi L, McGeady P, Gelb MH, Veri D, Tagliabue C, Quarato P, Ferraboschi P, Santaniello E, Paoletti R, Fumagalli R, Corsini A (1997) Pharmacological control of mevalonate pathway: Effect on arterial smooth muscle cell proliferation. J Pharmacol Exp Ther 281:1144–1153

    PubMed  CAS  Google Scholar 

  • Scott WA (1990) Hydrophilicity and the differential pharmacology of pravastin. In: Wood C (ed) Lipid management: Pravastin and the differential pharmacology of HMG-CoA reductase inhibitors. Royal Society of Medicine Services, London, pp 17–25

    Google Scholar 

  • Shaw MK, Newton RS, Sliskovic DR, Roth BD, Ferguson E, Krause BR (1990) HEP-G2 cells and primary rat hepatocytes differ in their response to inhibitors of HMG-CoA reductase. Biochem Biophys Res Commun 170:726–734

    PubMed  CAS  Google Scholar 

  • Tsujita Y (1990) A potent HMG-CoA reductase inhibitor, pravastatin sodium. Tissue selective inhibition of cholesterogenesis and preventive effect on atherosclerosis in WHHL rabbits. J Drug Dev 3 (Suppl 1):155–159

    Google Scholar 

References

  • Amin D, Gustafson SK, Weinacht JM, Cornell SA, Neuenschwander K, Kosmider B, Scotese AC, Regan JR, Perrone MH (1993) RG 12561 (Dalvastatin): A novel synthetic inhibitor of HMG-CoA reductase and cholesterol-lowering agent. Pharmacology 46:13–22

    PubMed  CAS  Google Scholar 

  • Beck G, Kesseler K, Baader E, Bartmann W, Bergmann A, Granzer E, Jendralla H, von Kerekjarto B, Krause R, Paulus E, Schubert W, Wess G (1990) Synthesis and biological activity of new HMG-CoA reductase inhibitors. 1. Lactones of pyridine-and pyrimidine-substituted 3,5-dihydroxy-6-heptenoic (heptanoic) acids. J Med Chem 33:52–60

    PubMed  CAS  Google Scholar 

  • Bocan TMA, Ferguson E, McNally W, Uhlendorf PD, Mueller SB, Dehart P, Sliskovic DR, Roth BD, Krause BR, Newton RS (1992) Hepatic and non hepatic sterol synthesis and tissue distribution of a liver selective HMG-CoA reductase inhibitor, CI-981: comparison with selected HMG-CoA reductase inhibitors. Biochim Biophys Acta 1123:133–144

    PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL, Dietschy JM (1979) Active and inactive forms of 3-hydroxyx-3-methylglutaryl coenzyme A reductase in the liver of the rat. J Biol Chem 254:5144–5149

    PubMed  CAS  Google Scholar 

  • Koga T, Shimada Y, Kuroda M, Tsujita Y, Hasegawa K, Yamazaki M (1990) Tissue-selective inhibition of cholesterol synthesis in vivo by pravastin sodium, a 3-hydroxy-3-methylglutaryl-coenzym A reductase inhibitor. Biochim Biophys Acta 1045:115–120

    PubMed  CAS  Google Scholar 

References

  • Bocan TMA, Mazur MJ, Mueller SB, Brown EQ, Sliskovic DR, O'Brien PM, Creswell MW, Lee H, Uhlendorf PD, Roth BD, Newton RS (1994) Antiatherosclerotic activity of inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase in cholesterol-fed rabbits: a biochemical and morphological evaluation. Atherosclerosis 111:127–142

    PubMed  CAS  Google Scholar 

  • Booth RGF, Martin JF, Honey AC, Hassall DG, Beesley JE, Moncada S (1989) Rapid development of atherosclerotic lesions in the rabbit carotid artery induced by perivascular manipulation. Atherosclerosis 76:257–268

    PubMed  CAS  Google Scholar 

  • Ha YC, Barter PJ (1985) Rapid separation of plasma lipoproteins by gel permeation chromatography on agarose gel Superose 6B. J Chromatogr 341:154–159

    PubMed  CAS  Google Scholar 

  • Kasim SE, Elovson J, Khilnani S, Almario RU, Jen KLC (1993) The effect of lovastatin on the secretion of very low density lipoprotein lipids and apolipoprotein B in the hypertriglyceridemic Zucker obese rat. Atherosclerosis 104:147–152

    PubMed  CAS  Google Scholar 

  • Soma MR, Donetti E, Paroline C, Mazzini G, Ferrari C, Fumagalli R, Paoletti R (1993) HMG-CoA reductase inhibitors. In vivo effects on carotid intimal thickening in normocholesterolemic rabbits. Arterioscler Thrombos 13:571–578

    CAS  Google Scholar 

  • Tsujita Y (1990) A potent HMG-CoA reductase inhibitor, pravastatin sodium. Tissue selective inhibition of cholesterogenesis and preventive effect on atherosclerosis in WHHL rabbits. J Drug Dev 3 (Suppl 1):155–159

    Google Scholar 

  • Tsujita Y, Kuroda M, Shimada Y, Tanzawa K, Arai M, Kaneko I, Tanaka M, Masuda H, Tarumi Ch, Watanabe Y, Fujii S (1986) CS-514, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase: tissue-selective inhibition of sterol synthesis and hypolipidemic effect on various animal species. Biochim Biophys Acta 877:50–60

    PubMed  CAS  Google Scholar 

  • Watanabe Y (1980) Serial inbreeding of rabbits with hereditary hyperlipidemia (WHHL)-rabbit). Incidence and development of atherosclerosis and xanthoma. Atherosclerosis 36:261–268

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Ito T, Shiomi M (1985) The effect of selective breeding on the development of coronary atherosclerosis in WHHL rabbits. An animal model for familial hypercholesterolemia. Atherosclerosis 56:71–79

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Ito T, Shiomi M, Tsujita Y, Kuroda M, Arai M, Fukami M, Tamura A (1988) Preventive effect of pravastatin sodium, a potent inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, on coronary atherosclerosis and xanthoma in WHHL rabbits. Biochim Biophys Acta 960:294–302

    PubMed  CAS  Google Scholar 

References

  • Chang CCY, Huh HY, Cadigan KM, Chang TY (1993) Molecular cloning and functional expression of human acyl-coenzyme A:cholesterol acyltransferase cDNA in mutant Chinese hamster ovary cells. J Biol Chem 268:20747–20755

    PubMed  CAS  Google Scholar 

  • Clark SB, Tercyak AM (1984) Reduced cholesterol transmucosal transport in rats with inhibited mucosal acyl CoA:cholesterol acyltransferase and normal pancreatic function. J Lipid Res 25:148–159

    PubMed  CAS  Google Scholar 

  • Field FJ, Albright E, Mathur S (1991) Inhibition of acyl-coenzyme A:cholesterol acyltransferase activity by PD 128042: effect on cholesterol metabolism and secretion in CaCo-2 cells. Lipids 26:1–8

    PubMed  CAS  Google Scholar 

  • Fukushima H, Aono S, Nakamura Y, Endo M, Imai T (1969) The effect of N-(α-methylbenzyl)linoleamide on cholesterol metabolism in rats. J Atheroscler Res 10:403–414

    PubMed  CAS  Google Scholar 

  • Harnett KM, Walsh CT, Zhang L (1989) Effects of Bay o 2752, a hypocholesterolemic agent, on intestinal taurocholate absorption and cholesterol esterification. J Pharm Exp Ther 251:502–509

    CAS  Google Scholar 

  • Heider JG, Pickens CE, Kelly LA (1983) Role of acyl CoA:cholesterol acyltransferase in cholesterol absorption and its inhibition by 57-118 in the rabbit. J Lipid Res 24:1127–1134

    PubMed  CAS  Google Scholar 

  • Krause BR, Anderson M, Bisgaier CL, Bocan T, Bousley R, DeHart P, Essenburg A, Hamelehle K, Homan R, Kieft K, McNally W, Stanfield R, Newton RS (1993) In vivo evidence that the lipid-regulating activity of the ACAT inhibitor CI-976 in rats is due to inhibition of both intestinal and liver ACAT. J Lipid Res 34:279–294

    PubMed  CAS  Google Scholar 

  • Largis EE, Wang CW, DeVries VG, Schaffer SA (1989) CL 277,082, a novel inhibitor of ACAT-catalyzed cholesterol esterification and cholesterol absorption. J Lipid Res 30:681–690

    PubMed  CAS  Google Scholar 

  • Matsuda K (1994) ACAT inhibitors as antiatherosclerotic agents: Compounds and mechanisms. Med Res Rev 14:271–305

    PubMed  CAS  Google Scholar 

  • Nervi F, Brinfman M, Allalón W, Depiereux E, Del Pozo R (1984) Regulation of biliary cholesterol secretion in the rat. Role of hepatic esterification. J Clin Invest 74:2226–2237

    PubMed  CAS  Google Scholar 

  • O'Brien PM, Sliskovic DR (1992) ACAT inhibitors: A potential new approach to the treatment of hypercholesterolaemia and atherosclerosis. Curr Opin Ther Pat 2:507–526

    Google Scholar 

  • Picard JA (1993) ACAT inhibitors. Curr Opin Ther Pat 3:151–160

    Google Scholar 

  • Roark WH, Roth BC (1994) ACAT inhibitors: preclinical profiles of clinical candidates. Expert Opin Invest Drugs 3:1143–1152

    CAS  Google Scholar 

  • Rodgers JB (1969) Assay of acyl-CoA:monoglyceride acyltransferase from rat small intestine using continuous recording spectroscopy. J Lipid Res 10:427–432

    PubMed  CAS  Google Scholar 

  • Sliskovic DR, White AD (1991) Therapeutic potential of ACAT inhibitors as lipid lowering and anti-atherosclerotic agents. Trends Pharmacol Sci 12:194–199

    PubMed  CAS  Google Scholar 

  • Tanaka H, Kimura T (1994) ACAT inhibitors in development. Expert Opin Invest Drugs 3:427–436

    CAS  Google Scholar 

  • Tso P, Morshed KM, Nutting DF (1991) Importance of acyl CoA: cholesterol acyltransferase (ACAT) on the esterification of cholesterol by enterocytes. FASEB J 5:A709

    Google Scholar 

  • Windler E, Rücker W, Greeve J, Reimitz H, Greten H (1990) Influence of the acyl-coenzyme A:cholesterol-acyltransferase inhibitor octimibate on cholesterol transport in rat mesenteric lymph. Arzneim Forsch/Drug Res 40:1108–1111

    CAS  Google Scholar 

References

  • Bell FP, Gammil RB, John LCS (1992) U-73482: A novel ACAT inhibitor that elevates HDL-cholesterol, lowers plasma triglyceride and facilitates hepatic cholesterol mobilization in the rat. Atherosclerosis 92:115–122

    PubMed  CAS  Google Scholar 

  • Einarsson K, Benthin L, Ewerth S, Hellers G, Ståhlberg D, Angelin B (1989) Studies on acyl-CoA:cholesterol acyltransferase activity in human liver microsomes. J Lipid Res 30:739–746

    PubMed  CAS  Google Scholar 

  • Field FJ, Salome RG (1982) Effect of dietary fat saturation, cholesterol and cholestyramine on acylCoA:cholesterol acyltransferase activity in rabbit intestinal microsomes. Biochim Biophys Acta 712:557–570

    PubMed  CAS  Google Scholar 

  • Field FJ, Albright E, Mathur S (1991) Inhibition of acylcoenzyme A:cholesterol acyltransferase by PD 128042: effect on cholesterol metabolism and secretion in CaCo-2 cells. Lipids 26:1–8

    PubMed  CAS  Google Scholar 

  • Heffron F, Middleton B, White DA (1990) Inhibition of acyl coenzyme A:cholesterol acyltransferase by trimethylcyclohexanylmandelate (Cyclandelate). Biochem Pharmacol 39:575–580

    PubMed  CAS  Google Scholar 

  • Helgerud P, Saarem K, Norum KR (1981) Acyl-CoA:cholesterol acyltransferase in human small intestine: its activity and some properties of the enzymic reaction. J Lipd Res 22:271–277

    CAS  Google Scholar 

  • Krause BR, Anderson M, Bisgaier CL, Bocan T, Bousley R, DeHart P, Essenburg A, Hamelehle K, Homan R, Kieft K, McNally W, Stanfield R, Newton RS (1993) In vivo evidence that the lipid-regulating activity of the ACAT inhibitor CI-976 in rats is due to inhibition of both intestinal and liver ACAT: J Lipid Res 34:279–294

    PubMed  CAS  Google Scholar 

  • Largis EE, Wang CH, DeVries VG, Schaffer SA (1989) CL 277,082: a novel inhibitor of ACAT-catalyzed cholesterol esterification and cholesterol absorption. J Lipid Res 30:681–690

    PubMed  CAS  Google Scholar 

  • Mathur SN, Armstrong ML, Alber CA, Spector AA (1981) Hepatic acyl-CoA:cholesterol acyltransferase activity during diet-induced hypercholesterolemia in cynomolgus monkeys. J Lipid Res 22:659–667

    PubMed  CAS  Google Scholar 

  • Roth BD, Blankley CJ, Hoefle ML, Holmes A, Roark WH, Trivedi BK, Essenburg AD, Kieft A, Krause BR, Stanfield RL (1992) Inhibitors of acyl CoA:cholesterol acyltransferase. 1. Identification and structure-activity relationships of a novel series of fatty acid anilide hypocholesterolemic agents. J Med Chem 35:1609–1617

    PubMed  CAS  Google Scholar 

  • Rothblatt GH, Naftulin M, Arbogast LY (1977) Stimulation of acyl-CoA:cholesterol acyltransferase activity by hyperlipemic serum lipoproteins. Proc Soc Exp Biol Med 155:501–506

    Google Scholar 

  • Schmitz G, Niemann R, Brennhausen B, Krause R, Assmann G (1985) Regulation of high density lipoprotein receptors in cultured macrophages: role of acyl-CoA:cholesterol acyltransferase. EMBO J 4:2773–2779

    PubMed  CAS  Google Scholar 

References

  • Balasubramaniam S, Simons LA, Chang S, Roach PD, Nestel PJ (1990) On the mechanisms by which an ACAT inhibitor (CL 277,082) influences plasma lipoproteins in the rat. Atherosclerosis 82:1–5

    PubMed  CAS  Google Scholar 

  • Bocan TMA, Muellers BAK, Uhlendorf PD, Quenby-Brown E, Mazur MJ, Black AE (1993) Inhibition of acyl-CoA:cholesterol O-acyl transferase reduces the cholesterol enrichment of atherosclerotic lesions in the Yucatan micropig. Atherosclerosis 99:175–186

    PubMed  CAS  Google Scholar 

  • Cayen MN, Dvornik D (1979) Effect of diosgenin on lipid metabolism in rats. J Lipid Res 20:162–174

    PubMed  CAS  Google Scholar 

  • Gillies PJ, Robinson CS, Rathgeb KA (1990) Regulation of ACAT activity by a cholesterol substrate pool during the progression and regression phases of atherosclerosis: implications for drug discovery. Atherosclerosis 83:177–185

    PubMed  CAS  Google Scholar 

  • Harris NV, Smith C, Ashton MJ, Bridge AW, Bush RC, Coffee ECJ, Dron DI, Harper MF, Lythgoe DJ, Newton CG, Riddell D (1992) Acyl-CoA:cholesterol O-acyl transferase (ACAT) inhibitors. 1. 2-(Alkylthio)-4,5-diphenyl-1H-imidazoles as potent inhibitors of ACAT. J Med Chem 35:4384–4392

    PubMed  CAS  Google Scholar 

  • Heider JG, Pickes CE, Kelly LA (1983) Role of acyl-CoA:cholesterol acyltransferase in cholesterol absorption and its inhibition by 57-118 in the rabbit. J Lipid Res 24:1127–1134

    PubMed  CAS  Google Scholar 

  • Krause BR, Anderson M, Bisgaier CL, Bocan T, Bousley R, DeHart P, Essenburg A, Hamelehle K, Homan R, Kieft K, McNally W, Stanfield R, Newton RS (1993a) In vivo evidence that the lipid-regulating activity of the ACAT inhibitor CI-976 in rats is due to inhibition of both intestinal and liver ACAT: J Lipid Res 34:279–294

    PubMed  CAS  Google Scholar 

  • Krause BR, Black A, Bousley R, Essenburg A, Cornicelli J, Holmes A, Homan R, Kieft K, Sekere C, Shaw-Hes MK, Stanfield R, Trivedi B, Woolf T (1993b) Divergent pharmacological activities of PD 132301-2 and CL 277,082, urea inhibitors of acyl-CoA:cholesterol acyltransferase. J Pharm Exp Ther 267:734–743

    CAS  Google Scholar 

  • Nagata Y, Yonemoto M, Iwasawa Y, Shimuzi-Nagumo A, Hattori H, Sawazaki Y, Kamei T (1995) N-[2-[N′-Pentyl-(6,6-dimethyl-2,4-heptadinyl)amino]ethyl]-(2-methyl-1-naphthylthio)acetamide (FY-087). A new acyl coenzyme A:cholesterol acyltransferase (ACAT) inhibitor of diet-induced atherosclerosis formation in mice. Biochem Pharmacol 49:643–651

    PubMed  CAS  Google Scholar 

  • Tanaka H, Ohtsuka I, Kogushi M, Kimura T, Fujimori T, Saeki T, Hayashi K, Kobayashi H, Yamada T, Hiyoshi H, Saito I (1994) Effect of the acyl-CoA:cholesterol acyltransferase inhibitor, E5324, on experimental atherosclerosis in rabbits. Atherosclerosis 107:187–210

    PubMed  CAS  Google Scholar 

  • Zilversmit DB (1972) A single blood sample dual isotope method for the measurement of cholesterol absorption in rats. Proc Soc Exp Biol Med 140:862–865

    PubMed  CAS  Google Scholar 

References

  • Åkerlund JE, Björkhem I (1990) Studies on the regulation of cholesterol 7α-hydroxylase and HMG-CoA reductase in rat liver: effects of lymphatic drainage and ligation of the lymph duct. J Lipid Res 31:2159–2166

    PubMed  Google Scholar 

  • Björkhem I, Andersson U, Sudjama-Sugiaman E, Eggertsen G, Hylemon Ph (1993) Studies on the link between HMG-CoA reductase and cholesterol 7α-hydroxylase in lymph-fistula rats: evidence for both transcriptional and post-transcriptional mechanisms for down-regulation of the two enzymes by bile acids. J Lipid Res. 34:1497–1503

    PubMed  Google Scholar 

  • Clark SB, Tercyak AM (1984) Reduced cholesterol transmucosal transport in rats with inhibited mucosal acyl-CoA:cholesterol acyltransferase and normal pancreatic function. J Lipid Res 25:148–159

    PubMed  CAS  Google Scholar 

  • Gallo LL, Wadsworth JA, Vahouny GV (1987) Normal cholesterol absorption in rats deficient in intestinal acyl co-enzyme A:cholesterol acyltransferase activity. J Lipid Res 28:381–387

    PubMed  CAS  Google Scholar 

  • Krause BR, Sloop CH, Castle CK, Roheim PS (1981) Mesenteric lymph apolipoproteins in control and ethinyl estradiol-treated rats: a model for studying apolipoproteins from intestinal origin. J Lipid Res 22:610–619

    PubMed  CAS  Google Scholar 

  • Krause BR, Anderson M, Bisgaier CL, Bocan T, Bousley R, DeHart P, Essenburg A, Hamelehle K, Homan R, Kieft K, McNally W, Stanfield R, Newton RS (1993) In vivo evidence that the lipid-regulating activity of the ACAT inhibitor CI-976 in rats is due to inhibition of both intestinal and liver ACAT. J Lipid Res 34:279–294

    PubMed  CAS  Google Scholar 

  • Krause BR, Anderson M, Bisgaier CL, Bocan T, Bousley R, DeHart P, Essenbug A, Hamelehle K, Homan R, Kieft K, McNally W, Stanfield R, Newton RS (1993b) In vivo evidence that the lipid-regulating activity of the ACAT inhibitor CI-976 in rats is due to inhibition of both intestinal and liver ACAT: J Lipid Res 34:279–294

    PubMed  CAS  Google Scholar 

  • Slayback JRB, Cheung LWY, Geyer RP (1977) Quantitative extraction of microgram amounts of lipid from cultured human cells. Anal Biochem 83:372–384

    PubMed  CAS  Google Scholar 

  • Sugiyama Y, Ishikawa E, Odaka H, Miki N, Tawada H, Ikeda H (1995) TMP-153, a novel ACAT inhibitor, inhibits cholesterol absorption and lowers cholesterol in rats and hamsters. Atherosclerosis 113:71–78

    PubMed  CAS  Google Scholar 

References

  • Ast M, Frishman WH (1990) Bile acid sequestrants J Clin Pharmacol 30:99–106

    PubMed  CAS  Google Scholar 

  • Curtius HCh, Bürgi W (1966) Gaschromatographische Bestimmung des Serumcholesterins. Z klin Chem klin Biochem 4:38–42

    PubMed  CAS  Google Scholar 

  • Day ChE (1990) Comparison of hypocholesterolemic activities of the bile acid sequestrants cholestyramine and cholestipol hydrochloride in cholesterol fed sea quail. Artery 17:281–288

    PubMed  CAS  Google Scholar 

  • Fears R, Brown R, Ferres H, Grenier F, Tyrell AWR (1990) Effects of novel bile salts on cholesterol metabolism in rats and guinea-pigs. Biochem Pharmacol 40:2029–2037

    PubMed  CAS  Google Scholar 

  • Johns W, Bates T (1969) Quantification of the binding tendencies of cholestyramine I: Effect of structure and added electrolytes on the binding of unconjugated and conjugated bile salt anions. J Pharmac Sci 58:179–183

    CAS  Google Scholar 

  • Kihara K, Toda H, Mori M, Hashimoto M, Mizogami S (1988) The bile acid binding and hypocholesterolemic activity of anion-exchange resins bearing the imidazolium salt group. Eur J Med Chem 23:411–415

    CAS  Google Scholar 

  • Tennent DM, Siegel H, Zanetti ME, Kuron GW, Ott WH, Wolf FJ (1960) Plasma cholesterol lowering action of bile acid binding polymers in experimental animals. J Lipid Res 1:469–473

    PubMed  CAS  Google Scholar 

  • Toda H, Kihara K, Hashimoto M, Mizogami S (1988) Bile acid binding and hypocholesterolemic activity of a new anion exchange resin from 2-methylimidazol and epichlorhydrin. J Pharm Sci 77:531–533

    PubMed  CAS  Google Scholar 

References

  • Bruckdorfer KR (1990) Free radicals, lipid peroxidation and atherosclerosis. Curr Opin Lipidol 1:529–535

    Google Scholar 

  • Esterbauer H, Rotheneder M, Striegl G, Waeg G, Ashy A, Sattler W, Jürgens G (1989) Vitamin E and other lipophilic antioxidants protect LDL against oxidation. Fat Sci Technol 91:316–324

    CAS  Google Scholar 

  • Hussain MM, Strickland DK, Bakillah A (1999) The mammalian low-density lipoprotein receptor family. Annu Rev Nutr 19:141–172

    PubMed  CAS  Google Scholar 

  • Jürgens G (1989) Modified serum lipoproteins and atherosclerosis. Ann Rep Med Chem 25:169–176

    Google Scholar 

  • McCarthy PA (1993) New approaches to atherosclerosis: An overview. Med Res Rev 13:139–159

    PubMed  CAS  Google Scholar 

  • Parthasarathy S, Wieland E, Steinberg D (1989) A role for endothelial cell lipoxygenase in the oxidative modification of low density lipoprotein. Proc Natl Acad Sci USA 86:1046–1050

    PubMed  CAS  Google Scholar 

  • Rankin SM, Parthasarathy S, Steinberg D (1991) Evidence for a dominant role of lipoxygenase(s) in the oxidation of LDL by mouse peritoneal macrophages. J Lipid Res 32:449–456

    PubMed  CAS  Google Scholar 

  • Steinberg D (1990) Arterial metabolism of lipoproteins in relation to atherogenesis. In: Lee KT, Onodera K, Tanaka K (eds) Atherosclerosis II: Recent Progress in Atherosclerosis Research. Ann NY Acad Sci 598:188–193

    Google Scholar 

  • Steinbrecher UP (1987) Oxidation of human low density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid peroxide decomposition products. J Biol Chem 262:3603–3608

    PubMed  CAS  Google Scholar 

  • Steinbrecher UP (1990) Oxidatively modified lipoproteins. Curr Opin Lipidol 1:411–415

    Google Scholar 

  • Steinbrecher UP, Witztum JL, Parthasarathy S, Steinberg D (1987) Decrease in reactive amino groups during oxidation or endothelial cell modification of LDL. Arteriosclerosis 7:135–143

    PubMed  CAS  Google Scholar 

  • Steinbrecher UP, Zhang H, Lougheed M (1990) Role of oxidatively modified LDL in atherosclerosis. Free Rad Biol Med 9:155–158

    PubMed  CAS  Google Scholar 

  • Witztum JL, Steinberg D (1991) Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 88:1785–1792

    PubMed  CAS  Google Scholar 

References

  • Asakawa T, Matsushita S, (1980) Coloring conditions of thiobarbituric acid test for detecting lipid hydroperoxides. Lipids 15:137–140

    CAS  Google Scholar 

  • Barnhart RL, Busch SJ, Jackson RL (1989) Concentration-dependent antioxidant activity of probucol in low density lipoproteins in vitro: probucol degradation precedes lipoprotein oxidation. J Lipid Res 30:1703–1710

    PubMed  CAS  Google Scholar 

  • Bernheim F, Bernheim MLC, Wilbur KM (1948) The reaction between thiobarbituric acid and the oxidation products of certain lipids. J Biol Chem 174:257–264

    PubMed  CAS  Google Scholar 

  • Braughler JM, Pregenzer JF, Chase RL, Duncan LA, Jacobsen EJ, McCall JM (1987) Novel 21-amino steroids as potent inhibitors of iron-dependent lipid peroxidation. J Biol Chem 262:10438–10440

    PubMed  CAS  Google Scholar 

  • Carew TE, Schwenke DC, Steinberg D (1987) Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: Evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc Natl Acad Sci USA 84:7725–7729

    PubMed  CAS  Google Scholar 

  • Dresel HA, Deigner HP, Frübis J, Strein K, Schettler G (1990) LDL-metabolism of the arterial wall — new implications for atherogenesis. Z Kardiol 79: Suppl. 3:9–16

    PubMed  CAS  Google Scholar 

  • Gallagher PJ, Nanjee MN, Richards T, Roche WR, Miller NE (1988) Biochemical and pathological features of a modified strain of Watanabe heritable hyperlipidemic rabbits. Atherosclerosis 71:173–183

    PubMed  CAS  Google Scholar 

  • Kita T (1991) Oxidized lipoproteins and probucol. Curr Opin Lipidol 2:35–38

    CAS  Google Scholar 

  • Kita T, Nagano Y, Yokode M, Ishii K, Kume N, Ooshima A, Yoshida H, Kawai Ch (1987) Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia. Proc Natl Acad Sci USA 84:5928–5931

    PubMed  CAS  Google Scholar 

  • Mansuy D, Sassi A, Dansette PM, Plat M (1986) A new potent inhibitor of lipid peroxidation in vitro and in vivo, the hepatoprotective drug anisyldithiolthione. Biochem Biophys Res Commun 135:1015–1021

    PubMed  CAS  Google Scholar 

  • Mao SJT, Patton JG, Badimon JJ, Kottke BA, Alley MC, Cardin AD (1983) Monoclonal antibodies to human plasma low-density lipoproteins. I. Enhanced binding of 125I-labeled low-density lipoproteins by combined use of two monoclonal antibodies. Clin Chem 29:1890–1897

    PubMed  CAS  Google Scholar 

  • Mao SJT, Yates MT, Rechtin AN, Jackson RL, Van Sickle WA (1991) Antioxidant activity of probucol and its analogues in hypercholesterolemic Watanabe rabbits. J Med Chem 34:298–302

    PubMed  CAS  Google Scholar 

  • McLean LR, Hagaman KA (1989) Effect of probucol on the physical properties of low-density lipoproteins oxidized by copper. Biochemistry 28:321–327

    PubMed  CAS  Google Scholar 

  • Parthasarathy S, Young SG, Witztum JL, Pittman RC, Steinberg D (1986) Probucol inhibits oxidative modification of low density lipoprotein. J Clin Invest 77:641–644

    PubMed  CAS  Google Scholar 

  • Steinberg D, Parthasaraty S, Carew TE (1988) In vivo inhibition of foam cell development by probucol in Watanabe rabbits. Am J Cardiol 62:6B–12B

    PubMed  CAS  Google Scholar 

  • Yamamoto A, Takaishi S, Hara H, Nishikawa O, Yokoyama S, Yamamura T, Yamaguchi T (1986) Probucol prevents lipid storage in macrophages. Atherosclerosis 62:209–217

    PubMed  CAS  Google Scholar 

  • Yoshioka T, Fujita T, Kanai T, Aizawa Y, Kurumada T, Hasegawa K, Horikoshi H (1989) Studies with hindered phenols and analogues. 1. Hypolipidemic and hypoglycemic agents with ability to inhibit lipid peroxidation. J Med Chem 32:421–428

    PubMed  CAS  Google Scholar 

  • Zhang H, Basra HJK, Steinbrecher UP (1990) Effects of oxidatively modified LDL on cholesterol esterification in cultured macrophages. J Lipid Res 31:1361–1369

    PubMed  CAS  Google Scholar 

References

  • Cosgrove PG, Gaynor BJ, Harwood HJ Jr. (1992) Quantitation of hepatic LDL receptor levels in the hamster. FASEB J 4:A533

    Google Scholar 

  • Goldstein JL, Basu SK, Brown MS (1983) Receptor mediated endocytosis of LDL in cultured cells. Meth Enzymol 98:241–260

    PubMed  CAS  Google Scholar 

  • Huettinger M, Schneider WJ, Ho YK, Goldstein JL, Brown M (1984) Use of monoclonal anti-receptor antibodies to probe the expression of the low density lipoprotein receptor in tissues of normal and Watanabe heritable hyperlipidemic rabbits. J Clin Invest 74:1017–1026

    PubMed  CAS  Google Scholar 

  • Huettinger M, Herrmann M, Goldenberg H, Granzer E, Leineweber M (1993) Hypolipidemic activity of HOE-402 is mediated by stimulation of the LDL receptor pathway. Atheroscl Thromb 13:1005–1012

    CAS  Google Scholar 

  • Sprague EA, Kothapalli R, Kerbacher JJ, Edwards EH, Schwartz CJ, Elbein AD (1993) Inhibition of scavenger receptor-mediated modified low-density lipoprotein endocytosis in cultured bovine aortic endothelial cells by the glycoprotein processing inhibitor castanospermine. Biochemistry 32:8888–8895

    PubMed  CAS  Google Scholar 

  • Takano T, Mowri HO (1990) Peroxidized lipoproteins recognized by a new monoclonal antibody (DLR1a/104G) in atherosclerotic lesions. In: Lee KT, Onodera K, Tanaka K (eds) Atherosclerosis II: Recent Progress in Atherosclerosis Research. Ann NY Acad Sci 598:136–142

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag

About this entry

Cite this entry

Vogel, H.G., Vogel, W.H., Schölkens, B.A., Sandow, J., Müller, G., Vogel, W.F. (2002). Anti-atherosclerotic activity1 . In: Vogel, H.G., Vogel, W.H., Schölkens, B.A., Sandow, J., Müller, G., Vogel, W.F. (eds) Drug Discovery and Evaluation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29837-1_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-29837-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42396-6

  • Online ISBN: 978-3-540-29837-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics