Skip to main content

Antidiabetic activity1

  • Reference work entry
Drug Discovery and Evaluation

1 K.1 Methods to induce experimental diabetes mellitus

1.1 K.1.0.1 Pancreatectomy in dogs

1.1.1 GENERAL CONSIDERATIONS

Dysfunction of the visceral tract has been considered for a long time to be the cause of diabetes mellitus. Bomskov (1910) reported severe diabetic symptoms in dogs after cannulation of the ductus lymphaticus. This observation, however, could not be confirmed in later experiments (Vogel 1963). The technique was similar to that described by Gryaznova (1962, 1963) for ligation of the thoracic duct in dogs.

Von Mehring and Minkowski (1890) noted polyuria, polydipsia, polyphagia, and severe glucosuria following removal of the pancreas in dogs. The final proof for the existence of a hormone in the pancreas was furnished by Banting and Best (1922) who could reduce the elevated blood sugar levels in pancreatectomized dogs by injection of extracts of the pancreatic glands. The role of the pituitary gland in development of diabetes has first been elucidated by Houssay (1930,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    2Contributions by G. Müller.

  2. 2.

    3Contributions by G. Müller.

  3. 3.

    5Contributions by G. Müller.

References

References

  • Banting FG, Best CH (1922) The internal secretion of the pancreas. J Lab Clin Med 7:251–266

    CAS  Google Scholar 

  • Beyer J, Schöffling K (1968) Die Houssay-Präparation (Methodisches Vorgehen und Auswirkungen der Versuchsanordnung auf Stoffwechsel und endokrines System). In: Pfeiffer EF (ed) Handbook of Diabetes mellitus, Pathophysiology and Clinical Considerations. Vol. I, Lehmanns Verlag, München. pp 745–761

    Google Scholar 

  • Bonner-Weir S, Trent DF, Weir GC (1983) Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release. J Clin Invest 71:1544–1553

    PubMed  CAS  Google Scholar 

  • Foà PP (1971) Pankreatektomie. In: Dörzbach E (ed) Handbook of Experimental Pharmacology Vol 32/1, Insulin, Springer-Verlag, Berlin Heidelberg New York, pp 146–158

    Google Scholar 

  • Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130

    CAS  Google Scholar 

  • Greeley PO (1937) Pancreatic diabetes in the rabbit. Proc Soc Exp Biol 37:390

    Google Scholar 

  • Grayaznova AV (1962) Ligation of the thoracic duct in dogs. Arkhiv Anatomii, Gistologii i Embriologii 42:90–95

    Google Scholar 

  • Gryaznova AV (1963) Ligation of the thoracic duct in dogs. Fed Proc 22/II, T886

    Google Scholar 

  • Houssay BA (1930) Le diabète pancréatique des chiens hypophysectomisés. Les troubles diabétiques chez les chiens privés d'hypophyse et de pancréas. Compt rend Soc Biol, Paris 105:121–126

    CAS  Google Scholar 

  • Houssay BA, Biasotti A (1931) Pankreasdiabetes und Hypophyse am Hund. Pflüger's Arch ges Physiol 227:664–685

    Google Scholar 

  • Itoh A, Maki T (1996) Protection of nonobese diabetic mice from autoimmune diabetes by reduction of islet mass before insulitis. Proc Natl Acad Sci 93:11053–11056

    PubMed  CAS  Google Scholar 

  • Lau TS, McMillan N, Cherrington A, Lo S, Drucker WR, Koven IH (1976) Insulin metabolism in depancreatized dogs during hemorrhagic shock. J Surg Oncol 8:49–52

    PubMed  CAS  Google Scholar 

  • von Mehring J, Minkowski O (1890) Diabetes mellitus nach Pankreasexstirpation. Arch exper Path Pharmakol 26:371–387

    Google Scholar 

  • Noguchi Y, Younes RN, Konlon KC, Vydelingum NA, Matsumoto A, Brennan MF (1994) The effect of prolonged hyperglycemia on metabolic alterations in the subtotally pancreatectomized rat. Surg Today, Jpn J Surg 24:987–994

    CAS  Google Scholar 

  • Rappaport AM, Vranic M, Wrenshall GA (1966) A pedunculated subcutaneous autotransplant of an isolated pancreas remnant for the temporary deprivation of internal secretion in the dog. Surgery 59:792–798

    PubMed  CAS  Google Scholar 

  • Scow RO (1957) “Total” pancreatectomy in the rat: operation, effects and post-operative care. Endocrinology 60:359–367

    PubMed  CAS  Google Scholar 

  • Scow RO, Wagner EM, Cardeza A (1957) Effect of hypophysectomy on the insulin requirement and response to fasting of “totally” pancreatectomized rats. Endocrinology 61:380–391

    PubMed  CAS  Google Scholar 

  • Sirek A (1968) Pancreatectomy and diabetes. In: Pfeiffer EF (ed) Handbook of Diabetes mellitus, Pathophysiology and Clinical Considerations. Vol. I, Lehmanns Verlag, München. pp 727–743

    Google Scholar 

  • Tanigawa K, Nakamura S, Kawaguchi M, Xu G, Kin S, Tamura K (1997) Effect of aging on B-cell function and replication in rat pancreas after 90% pancreatectomy. Pancreas 15:53–59

    PubMed  CAS  Google Scholar 

  • Vogel HG (1963) Unpublished data

    Google Scholar 

  • Wagner EM, Cardeza A (1957) Effect of hypophysectomy on the insulin requirement and response to fasting of totally pancreatectomized rats. Endocrinology 61:380–388

    PubMed  Google Scholar 

References

  • Baily CC, Baily OT (1943) Production of diabetes mellitus in rabbits with alloxan. A preliminary report. J Am Med Ass 122:1165–1166

    Google Scholar 

  • Bänder A, Pfaff W, Schmidt FH, Stork H, Schröder HG (1969) Zur Pharmakologie von HB 419, einem neuen, stark wirksamen oralen Antidiabeticum. Arzneim Forsch/Drug Res 19:1363–1372

    Google Scholar 

  • Blum F, Schmid R (1954) Über den Einfluss der Konzentration auf den Ablauf des experimentellen Alloxandiabetes. Helv Physiol Acta 12:181–183

    CAS  Google Scholar 

  • Brunschwig A, Allen JG, Goldner MG, Gomori G (1943) Alloxan. J Am Med Ass 122:966

    Google Scholar 

  • Dunn JS, McLetchie NGB (1943) Experimental alloxan diabetes in the rat. Lancet II:384–387

    CAS  Google Scholar 

  • Frerichs H, Creutzfeldt W (1968) Diabetes durch Beta-Zytotoxine. In: Pfeiffer EF (ed) Handbook of Diabetes mellitus, Pathophysiology and Clinical Considerations. Vol. I, Lehmanns Verlag, München. pp 811–840

    Google Scholar 

  • Frerichs H, Creutzfeldt W (1971) Der experimentelle chemische Diabetes. In: Dörzbach E (ed) Handbook of Experimental Pharmacology Vol 32/1, Insulin, Springer-Verlag, Berlin Heidelberg New York, pp 159–202

    Google Scholar 

  • Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130

    CAS  Google Scholar 

  • Goldner MG, Gomori G (1944) Studies on the mechanism of alloxan diabetes. Endocrinology 35:241–248

    CAS  Google Scholar 

  • Heikkila RE, Barden H, Cohen G (1974) Prevention of alloxan-induced diabetes by ethanol administration. J Pharm Exp Ther 190:501–506

    CAS  Google Scholar 

  • Katsumata K, Katsumata Y (1990) Effect of single administration of tolbutamide on the occurrence of alloxan diabetes in rats. Horm Metabol Res 22:192–193

    CAS  Google Scholar 

  • Katsumata K, Katsumata Y, Ozawa T, Katsumata Jr. (1993) Potentiating effect of combined usage of three sulfonylurea drugs on the occurrence of alloxan diabetes in rats. Horm Metab Res 25:125–126

    PubMed  CAS  Google Scholar 

  • Kodoma T, Iwase M, Nunoi K, Maki Y, Yoshinari M, Fujishima M (1993) A new diabetes model induced by neonatal alloxan treatment in rats. Diab Res Clin Pract 20:183–189

    Google Scholar 

  • Pincus IJ, Hurwitz JJ, Scott ME (1954) Effect of rate of injection of alloxan on development of diabetes in rabbits. Proc Soc Exp Biol Med 86:553–558

    PubMed  CAS  Google Scholar 

  • Tasaka Y, Inoue Y, Matsumoto H, Hirata Y (1988) Changes in plasma glucagon, pancreatic polypeptide and insulin during development of alloxan diabetes mellitus in dog. Endocrinol Japon 35:399–404

    CAS  Google Scholar 

References

  • Bleich D, Chen S, Zipser B, Sun D, Funk CD, Nadler JL (1999) Resistance to tpye1 diabetes induction in 12-lipoxygenase knockout mice. J Clin Invest 103:1431–1436

    PubMed  CAS  Google Scholar 

  • Freichs H, Creutzfeldt W (1971) Der experimentelle chemische Diabetes. In: Dörzbach E (ed) Handbook of Experimental Pharmacology Vol 32/1, Insulin, Springer-Verlag, Berlin Heidelberg New York, pp 159–202

    Google Scholar 

  • Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130

    CAS  Google Scholar 

  • Grussner R, Nakleh R, Grussner A, Tomadze G, Diem P, Sutherland D (1993) Streptozotocin-induced diabetes mellitus in pigs. Horm Metab Res 25:199–203

    PubMed  CAS  Google Scholar 

  • Iwakiri R, Nagafuchi S, Kounoue E, Nakano S, Koga T, Nakayama M, Nakamura M. Niho Y (1987) Cyclosporin A enhances streptozotocin induced diabetes in CD-1 mice. Experientia 43:324–327

    PubMed  CAS  Google Scholar 

  • Katsumata K, Katsumata K Jr., Katsumata Y (1992) Protective effect of diltiazem hydrochloride on the occurrence of alloxanor streptozotocin-induced diabetes in rats. Horm Met Res 24:508–510

    CAS  Google Scholar 

  • Like AA, Rossini AA (1976) Streptozotocin-induced pancreatic insulitis: A new model of diabetes mellitus. Science 193:415–417

    PubMed  CAS  Google Scholar 

  • Masutani M, Suzuki H, Kamada N, Watanabe M, Ueda O, Nozaki T, Jishage K-I, Watanabe T, Sugimoto T, Nakagama H, Ochiya T, Sugimura T (1998) Poly(ADP-ribose)polymerase gene disruption conferred mice resistant to streptozotocin-induced diabetes. Proc Natl Acad Sci USA 96:2301–2304

    Google Scholar 

  • Miller DL (1990) Experimental diabetes: Effect of streptozotocin on the golden Syrian hamster. Lab Anim Sci 40:539–540

    PubMed  CAS  Google Scholar 

  • Rakieten N, Rakieten ML, Nadkarni MV (1963) Studies on the diabetogenic action of streptozotocin (NSC-37917). Cancer Chemother Rep 29:91–102

    Google Scholar 

  • Rossini AA, Like AA, Chick A, Appel MC, Cahill GF (1977) Studies of streptozotocin-induced insulitis and diabetes. Proc Natl Acad Sci, USA, 74:2485–2489

    PubMed  CAS  Google Scholar 

  • Stisic-Grujicic S, Dimitrijevic M, Bartlett R (1999) Leflunomide protects mice from multiple low dose streptozotocin (MLD-SZ)-induced insulitis and diabetes. Clin Exp Immunol 117:44–50

    Google Scholar 

  • Tancrède G, Rousseau-Migneron S, Nadeau A (1983) Long-term changes in the diabetic state induced by different doses of streptozotocin in rats. Br J Exp Path 64:117–123

    Google Scholar 

References

  • Bavelsky ZE, Zavyazkina TV, Moisev YS, Medvedev VI (1992) Zinc content in pancreatic islets in experimental diabetes induced by chelating agents. Patol Fiziol Eksp Ter 36:29–32

    Google Scholar 

  • Caterson ID, Cooney GJ, Vanner MA, Nicks JL, Williams PF (1988) The activities of the pyruvate dehydrogenase complex and of acety1-CoA carboxylase in various tissues in experimental obesity: tissue differences and insulin resistance. Diab Nutr Metab 1:65–70

    Google Scholar 

  • Frerichs H, Creutzfeldt W (1971) Der experimentelle chemische Diabetes. In: Dörzbach E (ed) Handbook of Experimental Pharmacology Vol 32/1, Insulin, Springer-Verlag, Berlin Heidelberg New York, pp 159–202

    Google Scholar 

  • Goldberg ED, Eshchenko VA, Bovt VD (1991) The diabetogenic and acidotropic effects of chelators. Exp Pathol 42:59–64

    PubMed  CAS  Google Scholar 

  • Hansen WA, Christie MR, Kahn R, Norgard A, Abel I, Petersen AM, Jorgensen DW, Baekkeskov S, Nielsen JH, Lernmark A, Egeberg J, Richter-Olesen H, Grainger T, Kristensen JK, Brynitz S, Bilde T (1989) Supravital dithizone staining in the isolation of human and rat pancreatic islets. Diabetes Res 10:53–57

    PubMed  CAS  Google Scholar 

  • Heydrick SJ, Gautier N, Olichon-Berte C, Van Obberghen E, Le Marchand Brustel Y (1995) Early alteration of insulin stimulation of PI 3-kinase in muscle and adipocyte from gold thioglucose obese mice. Am J Physiol Endocrinol Metab 268:E604–E612

    CAS  Google Scholar 

  • Maske H, Weinges K (1957) Untersuchungen über das Verhalten der Meerschweinchen gegenüber verschiedenen diabetogenen Noxen. Alloxan und Dithizon. Naunyn-Schmiedeberg's Arch exper Path Pharmakol 230:406–420

    CAS  Google Scholar 

  • Sartin JL, Lamperti AA, Kemppainen RJ (1985) Alterations in insulin and glucagon secretion by monosodium glutamate lesions of the hypothalamic arcuate nucleus. Endocr Res 11:145–155

    PubMed  CAS  Google Scholar 

  • Silva E, Hernandez L (1989) Goldthioglucose causes brain and serotonin depletion correlated with increased body weight. Brain Res 490:192–195

    PubMed  CAS  Google Scholar 

  • Stauffacher W, Lambert AE; Vecchio D, Renold AE (1967) Measurement of insulin activities in pancreas and serum of mice with spontaneous (“obese” and “New Zealand obese”) and induced (goldthioglucose) obesity and hyperglycemia, with considerations on the pathogenesis of the spontaneous syndrome. Diabetologia 3:230–237

    PubMed  CAS  Google Scholar 

References

  • Abelove WA, Paschkis KE (1954) Comparison of the diabetogenic action of cortisone and growth hormone in different species. Endocrinology 55:637–654

    PubMed  CAS  Google Scholar 

  • Bellens R, Bastenie PA (1968) Experimental steroid diabetes. In: Pfeiffer EF (ed) Handbook of Diabetes mellitus, Pathophysiology and Clinical Considerations. Vol. I, Lehmanns Verlag, München. pp 797–810

    Google Scholar 

  • Hausberger FX, Ramsay AJ (1953) Steroid diabetes in guinea pigs. Effect of cortisone administration on blood-and urinary glucose, nitrogen excretion, fat deposition, and the islets of Langerhans. Endocrinology 53:423–435

    PubMed  CAS  Google Scholar 

  • Ingle DJ (1941) The production of glycosuria in the normal rat by means of 17-hydroxy-11-dehydrocorticosterone. Endocrinology 29:649–652

    CAS  Google Scholar 

  • Ingle DJ, Li CH, Evans HM (1946) The effect of adrenocorticotropic hormone on the urinary excretion of sodium, chloride, potassium, nitrogen and glucose in normal rats. Endocrinology 39:32–39

    PubMed  CAS  Google Scholar 

References

  • Arnim J, Grant RT, Wright PH (1960) Acute insulin deficiency provoked by single injections of anti-insulin serum. J Physiol (London) 153:131–145

    Google Scholar 

  • Moloney PJ, Coval M (1955) Antigenicity of insulin: diabetes induced by specific antibodies. Biochem J 59:179–185

    PubMed  CAS  Google Scholar 

  • Wright PH (1968) Experimental insulin-deficiency due to insulin antibodies. In: 841–865. Pfeiffer EF (ed) Handbook of Diabetes mellitus, Pathophysiology and Clinical Considerations. Vol. I, Lehmanns Verlag, München. pp 841–865

    Google Scholar 

References

  • Craighead J (1978) Current views on the etiology of insulin-dependent diabetes mellitus. New Engl J Med 299:1439–1445

    PubMed  CAS  Google Scholar 

  • Ellerman KE, Richards CA, Guberski DL, Shek WR, Like AA (1996) Kilham rat virus triggers T-cell-dependent autoimmune diabetes in multiple strains of rat. Diabetes 45:557–562

    PubMed  CAS  Google Scholar 

  • Giron DJ, Patterson RR (1982) Effect of steroid hormones on virus-induced diabetes mellitus. Infect Immun 37:820–822

    PubMed  CAS  Google Scholar 

  • Giron DJ, Cohen SJ, Lyons SP, Trombley ML, Gould CL (1983) Virus-induced diabetes mellitus in ICR Swiss mice is age dependent. Infect Immun 41:834–836

    PubMed  CAS  Google Scholar 

  • Gould CL, McMannama KG, Bigley NJ, Giron DJ (1985) Virus-induced murine diabetes. Enhancement by immunosuppression. Diabetes 34:1217–1221

    PubMed  CAS  Google Scholar 

  • Hayashi T, Yamamoto S, Onodera T (1995) Prevention of reovirus type2-induced diabetes-like syndrome in DBA/1 suckling mice by treatment with antibodies against intracellular adhesion molecule-1 and lymphocyte function-associated antigen-1. Int J Exp Path 76:403–409

    CAS  Google Scholar 

  • Hirasawa K, Jun HS, Maeda K, Kawaguchi Y, Itagaki S, Mikami T, Baek HS, Doi K, Yoon JW (1997) Possible role of macrophage-derived soluble mediators in the pathogenesis of encephalomyelitis virus-induced diabetes in mice. J Virol 71:4024–4031

    PubMed  CAS  Google Scholar 

  • See DM, Tilles JG (1995) Pathogenesis of virus-induced diabetes in mice. J Infect Dis 171:1131–1138

    PubMed  CAS  Google Scholar 

  • Stubbs M, Guberski DL, Like AA (1994) Preservation of GLUT2 expression in islet beta cells of Kilham rat virus (KRV)-infected diabetes-resistant BB/Wor rats. Diabetologia 37:1186–1194

    PubMed  CAS  Google Scholar 

  • Utsugi T, Kanda T, Tajima Y, Tomono S, Suzuki T, Murata K, Dan K, Seto Y, Kawazu S (1992) A new animal model of non-insulin-dependent diabetes mellitus induced by the NDK25 variant of encephalomyocarditis virus. Diab Res 20:109–119

    CAS  Google Scholar 

  • Vialettes B, Baume D, Charpin C, De Maeyer-Guignard J, Vague P (1983) Assessment of viral and immune factors in EMC virus-induced diabetes: effects of cyclosporin A and interferon. J Lab Clin Immunol 10:35–40

    CAS  Google Scholar 

  • Yoon JW, McClintock PR, Onodera T, Notkins AL (1980) Virus-induced diabetes mellitus. XVII. Inhibition by a nondiabetogenic variant of encephalomyocarditis virus. J Exp Med 152:878–892

    PubMed  CAS  Google Scholar 

References

  • Brunk R (1971) Spontandiabetes bei Tieren. In: Dörzbach E (ed) Handbook of Experimental Pharmacology Vol 32/1, Insulin, Springer-Verlag, Berlin Heidelberg New York, pp 203–272

    Google Scholar 

  • Friedman JF, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770

    PubMed  CAS  Google Scholar 

  • Herberg L, Coleman DL (1977) Laboratory animals exhibiting obesity and diabetes syndromes. Metabolism 26:59–99

    PubMed  CAS  Google Scholar 

  • Herberg L, Berger M, Buchanan KD, Gries FA, Kern H (1976) Tiermodelle in der Diabetesforschung: metabolische und hormonelle Besonderheiten. Z Versuchstierk 18:91–105

    CAS  Google Scholar 

  • Shafrir E (1992) Animal models of non-insulin-dependent diabetes. Diabetes/Metab Rev 8:179–208

    CAS  Google Scholar 

  • Velasquez MT, Kimmel PL, Michaelis OE,IV (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4:2850–2859

    PubMed  CAS  Google Scholar 

  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JF (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    PubMed  CAS  Google Scholar 

References

  • Berg S, Dunger A, Vogt L, Schmidt S (1997) Circadian variations in blood pressure and heart rate in diabetes prone and resistant rat strains compared with spontaneously hypertensive rats. Exp Clin Endocrinol Diabetes 105, Suppl 2:7–9

    PubMed  CAS  Google Scholar 

  • Ellerman K, Wroblewski M, Rabinovitch A, Like A (1993) Natural killer cell depletion and diabetes mellitus in the BB/Wor rat. Diabetologia 36:596–601

    PubMed  CAS  Google Scholar 

  • Gottlieb PA, Berrios JP, Mariani G, Handler ES, Greiner D, Mordes JP, Rossini AA (1990) Autoimmune destruction of islets transplanted into RT6-depleted diabetes-resistant BB/Wor rats. Diabetes 39:643–645

    PubMed  CAS  Google Scholar 

  • Hao L, Chan SM, Lafferty KJ (1993) Mycophenolate mofetil can prevent the development of diabetes in BB rats. Ann NY Acad Sci 969:328–332

    Google Scholar 

  • Klöting I, Vogt L (1991) BB/O(TTAWA)K(ARLSBURG) rats: features of a subline of diabetes prone BB rats. Diabetes Res 18:79–87

    PubMed  Google Scholar 

  • Kolb H, Burkart V, Appels B, Hanenberg H, Kantwerk-Funke G, Kiesel U, Funda J, Schraermeyer U, Kolb-Bachofen V (1990) Essential contribution of macrophages to islet cell destruction in vivo and in vitro. J Autoimmun 3 (Suppl):117–120

    PubMed  Google Scholar 

  • Lee KU, Pak CY, Amano K, Yoon JW (1988) Prevention of lymphocytic thyroiditis and insulitis in diabetes-prone BB rats by the depletion of macrophages. Diabetologia 31:400–402

    PubMed  CAS  Google Scholar 

  • Lefkowith J, Schreiner G, Cormier J, Handler ES, Driscoll HK, Greiner D, Mordes JP, Rossini AA (1990) Prevention of diabetes in the BB rat by essential fatty acid deficiency. J Exp Med 171:729–743

    PubMed  CAS  Google Scholar 

  • Like AA, Butler L, Williams RM, Appel MC, Weringer EJ, Rossini AA (1982) Spontaneous autoimmune diabetes mellitus in the BB rat. Diabetes 31 (Suppl 1):7–11

    PubMed  CAS  Google Scholar 

  • Nakhooda AF, Like AA, Chappel CI, Murray FT, Marliss EB (1977) The spontaneously diabetic Wistar rat; metabolic and morphologic studies. Diabetes 26:100–112

    PubMed  CAS  Google Scholar 

  • Nakhooda AF, Like AA, Chappel CI, Wei CN, Marliss EB (1978) The spontaneously diabetic Wistar rat (the “BB” rat). Studies prior to and during development of the overt syndrome. Diabetologia 14:199–207

    PubMed  CAS  Google Scholar 

  • Papaccio G, Mezzogiorno V (1989) Morphological aspects of glucagon and somatostatin islet cells in diabetic Bio Breeding and low-dose streptozotocin-treated Wistar rats. Pancreas 4:289–294

    PubMed  CAS  Google Scholar 

  • Pipeleers D, Pipeleers-Marichal M, Markholst H, Hoorens A, Klöppel G (1991) Transplantation of purified islet cells in diabetic BB rats. Diabetologia 34:390–396

    PubMed  CAS  Google Scholar 

  • Sima AAF (1984) Neuropathic and ocular complications in the BB-Wistar rat. In: Shafrir R, Reynold A (eds) Lesson from Diabetes, London, pp 447–453

    Google Scholar 

  • Solomon SS, Deaton J, Harris G, Smoake JA (1989) Studies of insulin resistance in the streptozotocin diabetic and BB rat: Activation of low Km cAMP phosphodiesterase by insulin. Am J Med Sci 297:372–376

    PubMed  CAS  Google Scholar 

  • Velasquez MT, Kimmel PL, Michaelis OE (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4:2850–2859

    PubMed  CAS  Google Scholar 

  • Koizumi M, Shimoda I, Sato K, Shishido T, Ono T, Ishizuka J, Toyota T, Goto Y (1989) Effects of CAMOSTAT on development of spontaneous diabetes in the WBN/Kob rats. Biomed Res 10, Suppl 1:45–50

    CAS  Google Scholar 

  • Nakama K, Shichinohe K, Kobayashi K, Naito K, Ushida O, Yasuhara K, Zobe M (1985) Spontaneous diabetes-like syndrome in WBN/Kob rats. Acta Diabetol Lat. 122:335–342

    Google Scholar 

  • Shimoda I, Koizumi M, Shimosegawa T, Shishido T, Ono T, Sato K, Ishizuka J, Toyota T (1993) Physiological characterization of spontaneously developed diabetes in male WBN/Kob rat and prevention of development of diabetes by chronic oral administration of synthetic trypsin inhibitor (FOY-305). Pancreas 8:196–203

    PubMed  CAS  Google Scholar 

  • Tsichitani M Saegusa T, Narama I, Nishikawa T, Gonda T (1985) A new diabetic strain of rat (WBN/Kob) Laboratory Animals 19:200–207

    Google Scholar 

  • Yagihashi S, Wada RI, Kamijo M, Nagai K (1993) Peripheral neuropathy in the WBN/Kob rat with chronic pancreatitis and spontaneous diabetes. Lab Invest 68:296–307

    PubMed  CAS  Google Scholar 

  • Cohen AM, Teitelbaum A, Saliternik R (1972) Genetics and diet as factors in the development of diabetes mellitus. Metabolism 21:235–240

    CAS  Google Scholar 

  • Velasquez MT, Kimmel PL, Michaelis OE (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4:2850–2859

    PubMed  CAS  Google Scholar 

  • Avignon A, Yamada K, Zhou X (1996) Chronic activation of protein kinase C in soleus muscles and other tissues of insulin-resistant type II diabetic Goto-Kakizaki (GK), obese/aged and obese/Zucker rats. A mechanism for inhibiting glycogen synthesis. Diabetes 45:1396–1404

    PubMed  CAS  Google Scholar 

  • Begum N, Ragiola L (1998) Altered regulation of insulin signaling components in adipocytes of insulin-resistant type II diabetic Goto-Kakizaki rats. Metabolisms 47:54–62

    CAS  Google Scholar 

  • Goto Y, Kakizaki M, Masaki N (1975) Spontaneous diabetes produced by selective breeding of normal Wistar rats. Proc Jpn Acad 51:80–85

    Google Scholar 

  • Portha B, Serradas P, Bailbe D (1991) β Cell insensivity in the GK rat, a spontaneous non-obese model for type II diabetes. Diabetes 40:486–491

    PubMed  CAS  Google Scholar 

  • Villar-Palsi C, Farese RV (1994) Impaired skeletal muscle glycogen synthase activation by insulin in the Goto-Kakizaki (G/K) rat. Diabetologia 37:885–888

    Google Scholar 

  • Abadie JM, Wright B, Correa G, Browne ES, Porter JR, Svec F (1993) Effect of dihydro-epiandrosterone on neurotransmitter levels and appetite regulation of the obese Zucker rat. Diabetes 42:662–669

    PubMed  CAS  Google Scholar 

  • Alamzadeh R, Slonim AE, Zdanowicz MM (1993) Modification of insulin resistance by diazoxide in obese Zucker rats. Endocrinology 133:705–712

    Google Scholar 

  • Bray GA (1977) The Zucker-fatty rat: A review. Fed Proc 36:148–153

    PubMed  CAS  Google Scholar 

  • Clark JB, Palmer CJ, Shaw WN (1983) The diabetic Zucker fatty rat. Proc Soc Exp Biol Med 173:68–75

    PubMed  CAS  Google Scholar 

  • Fujiwara T, Yoshioka S, Yoshioka T, Ushiyama I, Horikoshi H (1988) Characterization of new oral antidiabetic agent CS-045. Studies in KK and ob/ob mice and Zucker fatty rats. Diabetes 37:1549–1558

    PubMed  CAS  Google Scholar 

  • Galante P, Maerker E, Scholz R, Rett K, Herberg L. Mosthaf L, Häring HU (1994) Insulin-induced translocation of GLUT 4 in skeletal muscle of insulin-resistant Zucker rats. Diabetologia 37:3–9

    PubMed  CAS  Google Scholar 

  • Kasim SE, Elovson J, Khilnani S, Almario RU, Jen KLC (1993) Effect of lovostatin on the secretion of very low density lipoproteins and apolipoprotein B in the hypertriglyceridemic Zucker obese rat. Atherosclerosis 104:147–152

    PubMed  CAS  Google Scholar 

  • Kava R, Greenwoof MRC, Johnson PR (1990) Zucker (fa/fa) rat. Ilar News 32:4–8

    Google Scholar 

  • McCaleb ML, Sredy J (1992) Metabolic abnormalities of the hyperglycemic obese Zucker rat. Metabolism 41:522–525

    PubMed  CAS  Google Scholar 

  • Shafrir E (1992) Animal models of non-insulin-dependent diabetes. Diabetes/Metab Rev 8:179–208

    CAS  Google Scholar 

  • Stern J, Johnson PR, Greenwood RC, Zucker LM, Hirsch J (1972) Insulin resistance and pancreatic insulin release in the genetically obese Zucker rat. Proc Soc Exp Biol Med 139:66–69

    PubMed  CAS  Google Scholar 

  • Stern JS, Johnson PR, Batchelor BR, Zucker LM, Hirsch J (1975) Pancreatic insulin release and peripheral tissue resistance in Zucker obese rats fed high-and low-carbohydrate diets. Am J Physiol 228:543–548

    PubMed  CAS  Google Scholar 

  • Vasselli JR, Flory T, Fried KS (1987) Insulin binding and glucose transport in adipocytes of acarbose-treated Zucker lean and obese rats. Int J Obesity 11:71–75

    CAS  Google Scholar 

  • Yoshioka S, Nishino H, Shiraki T, Ikeda K, Koike H, Okuno A, Wada M, Fujiwara T, Horikoshi H (1993) Antihypertensive effects of CS-045 treatment in obese Zucker rats. Metabolism 42:75–80

    PubMed  CAS  Google Scholar 

  • Zucker LM (1965) Hereditary obesity in the rat associated with hyperlipidemia. Ann NY Acad Sci 131:447–458

    PubMed  CAS  Google Scholar 

  • Zucker LM, Antoniades HN (1972) Insulin and obesity in the Zucker genetically obese rat “Fatty”. Endocrinology 90:1320–1330

    PubMed  CAS  Google Scholar 

  • Peterson RG, Shaw WN, Neel M-AN, Little LA, Eicheberg J (1990) Zucker Diabetic Fatty rat as a model for non-insulin-dependent diabetes mellitus. ILAR News 32:16–19

    Google Scholar 

  • Lee Y, Hirose H, Ohneda M, Johnson JH, McGarry JD, Unger RH (1994) β-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocytes-β-cell relationships. Proc Natl Acad Sci 91:10878–10882

    PubMed  CAS  Google Scholar 

  • Ikeda H, Shino A, Matsuo T, Iwatsuka H, Suzuoki Z (1981) A new genetically obese-hyperglycemic rat (Wistar fatty). Diabetes 30:1045–1050

    PubMed  CAS  Google Scholar 

  • Kava RA, West DB, Lukasik VA, Greenwood MRC (1989) Sexual dimorphism of hyperglycemia and glucose tolerance in Wistar fatty rats. Diabetes 38:159–163

    PubMed  CAS  Google Scholar 

  • Kava RA, Peterson RG, West DB, Greenwood MRC (1990) Ilar News 32:9–13

    Google Scholar 

  • Kobayashi M, Iwanshi M, Egawa K, Shigeta Y (1992) Pioglitazone increases insulin sensitivity by activating insulin receptor kinase. Diabetes 41:476–483

    PubMed  CAS  Google Scholar 

  • Madar Z, Omusky Z (1991) Inhibition of intestinal α-glucosidase activity and postprandial hyperglycemia by α-glucosidase inhibitors in fa/fa rats. Nutr Res 11:1035–1046

    CAS  Google Scholar 

  • Peterson RG, Little LA, Neel MA (1990) WKY fatty rat as a model of obesity and non-insulin dependent diabetes mellitus. Ilar News 32:13–15

    Google Scholar 

  • Sugiyama Y, Taketomi S, Shimura Y, Ikeda H, Fujita T (1990) Effects of pioglitazone on glucose and lipid metabolism in Wistar fatty rats. Arzneim Forsch/Drug Res 40:263–267

    CAS  Google Scholar 

  • Velasquez MT, Kimmel PL, Michaelis OE,IV (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4:2850–2859

    PubMed  CAS  Google Scholar 

  • Aizawa T, Taguchi N, Sato Y, Nakabayashi T, Kobuchi H, Hidaka H, Nagasawa T, Ishihara F, Itoh N, Hashizume K (1995) Prophylaxis of genetically determined diabetes by diazoxide: a study in a rat model of naturally occurring obese diabetes. J Pharmacol Exp Ther 275:194–199

    PubMed  CAS  Google Scholar 

  • Ishida K, Mizuno A, Sano T, Shima K (1995) Which is the primary etiologic event in Otsuka Long-Evans Tokushima fatty rats, a model of spontaneous non-insulin-dependent diabetes mellitus, insulin resistance, or impaired insulin secretion? Metabolism 44:940–945

    PubMed  CAS  Google Scholar 

  • Kawano K, Hirashima T, Mori S, Kurosumi M, Saitoh Y (1991) A new rat strain with non-insulin dependent diabetes mellitus, “OLETF”. Rat News Lett 25:24–26

    Google Scholar 

  • Kawano K, Hirashima T, Mori S, Saitoh YA, Kurosumi M, Natori T (1992) Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima fatty (OLETF) strain. Diabetes 41:1422–1428

    PubMed  CAS  Google Scholar 

  • Dumm CLAG, Semino MC, Gagliardino JJ (1990) Sequential changes in pancreatic islets of spontaneously diabetic rats. Pancreas 5:533–539

    Google Scholar 

  • Herberg L, Coleman DL (1977) Laboratory animals exhibiting obesity and diabetes syndromes. Metabolism 26:59–99

    PubMed  CAS  Google Scholar 

  • Tarrés MC, Martínez SM, Liborio MM, Rabasa SL (1981) Diabetes mellitus en una línea endocrinada de rata. Mendeliana 5:39–48

    Google Scholar 

  • Friedman JE, Ishizuka T, Liu S, Farrell CJ, Bedol D, Koletsky RJ, Kaung HL, Ernsberger P (1997) Reduced insulin receptor signaling in the obese spontaneously hypertensive Koletsky rat. Am J Physiol Endocrinol Metab 273:E1014–1023

    CAS  Google Scholar 

  • Koletsky S (1973) Obese spontaneous hypertensive rats-a model for study of arteriosclerosis. Exp Mol Pathol 19:53–60

    PubMed  CAS  Google Scholar 

  • Koletsky S (1975) Pathologic findings and laboratory data in a new strain of obese hypertensive rats. Am J Pathol 80:129–142

    PubMed  CAS  Google Scholar 

  • Russell JC, Graham S, Hameed M (1994) Abnormal insulin and glucose metabolism in the JCR: LA-corpulent rat. Metabolism 43:538–543

    PubMed  CAS  Google Scholar 

  • Velasquez MT, Kimmel PL, Michaelis OE (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4:2850–2859

    PubMed  CAS  Google Scholar 

  • Adamo M, Shemer J, Aridor M, Dixon J, Carswell N, Bhathena SJ, Michaelis OE, IV, LeRoith D (1989) Liver insulin receptor tyrosine kinase activity in a model of type II diabetes mellitus and obesity. J Nutr 119:484–489

    PubMed  CAS  Google Scholar 

  • Hansen CT (1983) Two new congenic rat strains for nutrition and obesity research. Fed Proc 42:573

    Google Scholar 

  • Hansen CT (1988) The development of the SRH/N-and LA/N-cp (corpulent) congenic rat strains. In: Hansen CT, Michaelis OE, IV (eds) New models of genetically obese rats for studies in diabetes, heart disease, and complications of obesity. Summaries of Workshop Papers and Current Bibliography. National Institutes of Health, Bethesda, MD, pp 7–10

    Google Scholar 

  • McCune SA, Baker PB, Stills HF (1990) SHHF/Mcc-cp rat: a model of obesity, non-insulin-dependent diabetes, and congestive heart failure. Ilar News 32:23–27

    Google Scholar 

  • Michaelis OE, Hansen CT (1990) The spontaneous hypertensive/NIH corpulent rat: a new rodent model for the study of non-insulin dependent diabetes mellitus and its complications. Ilar News 32:19–22

    Google Scholar 

  • Michaelis OE, Patrick DH, Hansen A, Canry JJ, Werner RM, Carswell N (1986) Spontaneous hypertensive/NIH-corpulent rat. An animal model for insulin-independent diabetes mellitus (type II). Am J Pathol 123:398–400

    PubMed  Google Scholar 

  • Velasquez MT, Kimmel PL, Michaelis OE (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4:2850–2859

    PubMed  CAS  Google Scholar 

  • Berdanier CD (1974) Metabolic abnormalities in BHE rats. Diabetologia 10:691–695

    PubMed  CAS  Google Scholar 

  • Durand AMA, Fisher M, Adams M (1964) Histology in rats as influenced by age and diet. Arch Pathol 77:268–277

    PubMed  CAS  Google Scholar 

  • Velasquez MT, Kimmel PL, Michaelis OE (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4:2850–2859

    PubMed  CAS  Google Scholar 

References

  • Fujiwara T, Yoshioka S, Yoshioka T, Ushiyama I, Horikoshi H (1988) Characterization of new oral antidiabetic agent CS-045. Studies in KK and ob/ob mice and Zucker fatty rats. Diabetes 37:1549–1558

    PubMed  CAS  Google Scholar 

  • Herberg L, Coleman DL (1977) Laboratory animals exhibiting obesity and diabetes syndromes. Metabolism 26:59–99

    PubMed  CAS  Google Scholar 

  • Kondo K, Nozawa K, Tomida T, Ezaki K (1957) Inbred strains resulting from Japanese mice. Bull Exp Animals 6:107–112

    Google Scholar 

  • Nakamura M (1962) A diabetic strain of the mouse. Proc Jap Acad 38:348–352

    Google Scholar 

  • Nakamura M, Yamada K (1967) Studies on a diabetic (KK) strain of the mouse. Diabetologia 3:212–221

    PubMed  CAS  Google Scholar 

  • Diani AR, Sawada GA, Zhang NY, Wyse BM, Connell CL, Vidmar TJ, Connell MA (1987) The KKAy mouse: a model for the rapid development of glomerular capillary basement membrane thickening. Blood Vessels 24:297–303

    PubMed  CAS  Google Scholar 

  • Hofmann CA, Edwards CW, Hillman RM, Colca JR (1992) Treatment of insulin-resistant mice with the oral antidiabetic agent pioglitazone: evaluation of liver GLUT2 and phosphoenol-pyruvate carboxykinase expression. Endocrinol 130:735–740

    CAS  Google Scholar 

  • Iwatsuka H, Shino A, Suzouki Z (1970) General survey of diabetic features of yellow KK mice. Endocrinol Japon 17:23–35

    CAS  Google Scholar 

  • Shafrir E (1992) Animal models of non-insulin-dependent diabetes. Diabetes/Metab Rev 8:179–208

    CAS  Google Scholar 

  • Sohda T, Momose Y, Meguro K, Kawamatsu Y, Sugiyama Y, Ikeda H (1990) Studies on antidiabetic agents. Synthesis and hypoglycemic activity of 5-[4-(pyridylalkoxy)benzyl]-2,4-thiazolidinediones. Arzneim Forsch/Drug Res 40:37–42

    CAS  Google Scholar 

  • Baeder WL, Sredy J, Sehgal SN, Chang JY, Adams LM (1992) Rapamycin prevents the onset of insulin dependent diabetes mellitus (IDDM) in NOD mice. Clin Exp Immunol 89:174–178

    PubMed  CAS  Google Scholar 

  • Bergerot I, Ploix C, Petersen J, Moulin V, Rask C, Fabien N, Lindblad M, Mayer A, Czerkinsky C, Holmgren J, Thivolet C (1997) A cholera toxoid-insulin conjugate as an oral vaccine against spontaneous autoimmune diabetes. Proc Natl Acad Sci, USA, 94:4610–4614

    PubMed  CAS  Google Scholar 

  • Charlton B, Bacelj A, Mandel TE (1988) Administration of silica particles or anti-Lyt2 antibody prevents β-cell destruction in NOD mice given cyclophosphamide. Diabetes 37:930–935

    PubMed  CAS  Google Scholar 

  • Geisen K, Deutschländer H, Gorbach S, Klenke C, Zimmermann U (1990) Function of barium alginate-microencapsulated xenogenic islets in different diabetic mouse models. In: Shafrir E (ed) Frontiers in Diabetes Research. Lessons from Animal Diabetes III. Smith-Gordon, pp 142–148

    Google Scholar 

  • Hutchings PR, Cooke A (1995) Comparative study of the protective affect afforded by intravenous administration of bovine or ovine insulin to young NOD mice. Diabetes 44:906–910

    PubMed  CAS  Google Scholar 

  • Lee KU, Amano K, Yoon JW (1988) Evidence for initial involvement of macrophage in development of insulitis in NOD mice. Diabetes 37:989–991

    PubMed  CAS  Google Scholar 

  • Matsuba H, Jitsukawa T, Yamagata N, Uchida S, Watanabe H (1994) Establishment of rat glutamic acid decarboxylase (GAD)-reactive T-cell clones from NOD mice. Immunol Lett 42:101–103

    PubMed  CAS  Google Scholar 

  • Nicoletti F, Di Marco R, Barcellini W, Magro G, Schorlemmer HU, Kurrle R, Lunetta M, Grasso S, Zaccone P, Meroni PL (1994) Protection from experimental autoimmune diabetes in the non-obese diabetic mouse with soluble interleukin-1 receptor. Eur J Immunol 24:1843–1847

    PubMed  CAS  Google Scholar 

  • Serreze DV, Leiter EH (1994) Genetic and pathogenetic basis of autoimmune diabetes in NOD mice. Curr Opin Immunol 6:900–906

    PubMed  CAS  Google Scholar 

  • Tochino Y (1984) Breeding and characteristics of a spontaneously diabetic non obese strain (NOD mouse) of mice. In: Shafrir E, Renold AE (eds) Lessons from Animal Diabetes. John Libbey, London, pp 93–98

    Google Scholar 

  • Velasquez MT, Kimmel PL, Michaelis OE (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4:2850–2859

    PubMed  CAS  Google Scholar 

  • Verdaguer J, Schmidt D, Amrani A, Anderson B, Averill N, Santamaria P (1997) Spontaneous autoimmune diabetes in monoclonal T cell nonobese diabetic mice. J Exp Med 186:1663–1676

    PubMed  CAS  Google Scholar 

  • Bleisch VR, Mayer J, Dickie MM (1952) Familial diabetes mellitus in mice associated with insulin resistance, obesity and hyperplasia of the islands of Langerhans. Am J Pathol 28:369–385

    PubMed  CAS  Google Scholar 

  • Coleman DL, Hummel KP (1973) The influence of genetic background on the expression of obese (ob) gene in the mouse. Diabetologia 9:287–293

    PubMed  CAS  Google Scholar 

  • Dickie MM (1962) New mutations. Mouse News Letter 27:37

    Google Scholar 

  • Gill AM, Yen TT (1991) Effects of ciglitazone on endogenous plasma islet amyloid polypeptide and insulin sensitivity in obese-diabetic viable yellow mice. Life Sci 48:703–710

    PubMed  CAS  Google Scholar 

  • Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM (1995) Weightreducing effects of the plasma protein encoded by the obese gene. Science 269:543–546

    PubMed  CAS  Google Scholar 

  • Hellman B (1967) Some metabolic aspects of the obese-hyperglycemic syndrome in mice. Diabetologia 3:222–229

    PubMed  CAS  Google Scholar 

  • Herberg L, Coleman DL (1977) Laboratory animals exhibiting obesity and diabetes syndromes. Metabolism 26:59–99

    PubMed  CAS  Google Scholar 

  • Ingalls AM, Dickie MM, Snell GT (1950) Obese, a new mutation in the house mouse. J Hered 14:317–318

    Google Scholar 

  • Mayer J, Bates MW, Dickie MM (1951) Hereditary diabetes in genetically obese mice. Science 113:746–747

    PubMed  CAS  Google Scholar 

  • Sirek A (1968) Spontaneous hereditary diabetes in laboratory animals. in: Pfeiffer EF (ed) Handbook of Diabetes mellitus, Pathophysiology and Clinical Considerations. Vol. I, Lehmanns Verlag, München. pp 715–726

    Google Scholar 

  • Stauffacher W, Lambert AE; Vecchio D, Renold AE (1967) Measurement of insulin activities in pancreas and serum of mice with spontaneous (“obese” and “New Zealand obese”) and induced (goldthioglucose) obesity and hyperglycemia, with considerations on the pathogenesis of the spontaneous syndrome. Diabetologia 3:230–237

    PubMed  CAS  Google Scholar 

  • Stein JM, Bewsher PD, Stowers JN (1970) The metabolism of ketones, triglyceride and monoglyceride in livers of obese hyperglycaemic mice. Diabetologia 6:570–574

    PubMed  CAS  Google Scholar 

  • Westman S (1968) Development of the obese-hyperglycaemic syndrome in mice. Diabetologia 4:141–149

    PubMed  CAS  Google Scholar 

  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JF (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    PubMed  CAS  Google Scholar 

  • Berglund O, Frankel BJ, Hellman B (1980) Development of the insulin secretory defect in genetically diabetic (db/db) mouse. Acta Endocrinol 87:543–551

    Google Scholar 

  • Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, Lakey ND, Culpepper J, Moore KJ, Breitbart RE, Duyk GM, Tepper RI, Morgenstern JP (1996) Evidence that the diabetes gene encodes the leptin receptor. Identification of a mutation in the leptin receptor gene in db/db mice. Cell 84:491–495

    PubMed  CAS  Google Scholar 

  • Coleman DL, Hummel KP (1967) Studies with the mutation diabetes in the mouse. Diabetologia 3:238–248

    PubMed  CAS  Google Scholar 

  • Coleman DL, Hummel KP (1969) Effects of parabiosis of normal with genetically diabetic mice. Am J Physiol 217:1298–1304

    PubMed  CAS  Google Scholar 

  • Friedman JF, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770

    PubMed  CAS  Google Scholar 

  • Gardner K (1978) Glomerular hyperfiltration during the onset of diabetes mellitus in two strains of diabetic mice (C57BL/6J db/db and C57BL/KsJ db/db) Diabetologia 15:59–63

    Google Scholar 

  • Herberg L, Coleman DL (1977) Laboratory animals exhibiting obesity and diabetes syndromes. Metabolism 26:59–99

    PubMed  CAS  Google Scholar 

  • Hummel KP, Dickie MM, Colemann DL (1966) Diabetes, a new mutation in the mouse. Science 153:1127–1128

    PubMed  CAS  Google Scholar 

  • Lee SM (1982) The effect of chronic α-glycosidase inhibition on diabetic nephropathy in the db/db mouse. Diabetes 13:249–254

    Google Scholar 

  • Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Li JI, Friedman JM (1996) Abnormal splicing in the leptin receptor in diabetic mice. Nature 379:632–635

    PubMed  CAS  Google Scholar 

  • Leiter EH, Coleman DL, Ingram DK, Reynold MA (1983) Influence of dietary carbohydrate on the induction of diabetes in C5BL/KsJ-db/db diabetes mice. J Nutr 113:184–195

    PubMed  CAS  Google Scholar 

  • Li C, Ioffe E, Fidahusein N, Connolly E, Friedman JM (1998) Absence of soluble leptin receptor in plasma from db Pas/db Pas and other db/db mice. J Biol Chem 10078–10082

    Google Scholar 

  • Like AA, Lavine RL, Poffenbarger PL, Chick WI (1972) Studies on the diabetic mutant mouse. VI Evolution of glomerular lesions and associated proteinuria. Am J Pathol 66:193–224

    PubMed  CAS  Google Scholar 

  • Raizada MK, Tan G, Fellows RE (1980) Fibroblastic cultures from the diabetic db/db mouse. Demonstration of decreased insulin receptors and impaired responses to insulin. J Biol Chem 255:9149–9155

    PubMed  CAS  Google Scholar 

  • Stearns SB, Benz CA (1978) Glucagon and insulin relationships in genetically diabetic (db/db) and streptozotocin-induced diabetic mice. Horm Metab Res 10:20–33

    PubMed  CAS  Google Scholar 

  • Tartaglia LA, Dembski M, Wenig X, Deng N, Culpepper J, Devos R, Richards GJ, Campfield LA, Clark FT, Deeds J (1995) Identification and expression cloning of a leptin receptor, OB-R. Cell 83:1263–1271

    PubMed  CAS  Google Scholar 

  • Campbell IL, Das AK (1982) A spontaneous diabetic syndrome in the CBA/Ca laboratory mouse. Biochem Soc Trans 10:392

    Google Scholar 

  • Connelly DM, Taberner PV (1985) Insulin independent diabetes in male mice from an inbred CBA strain. Endocrinol 104(Suppl):139

    Google Scholar 

  • Connelly DM, Taberner PV (1989) Characterization of spontaneous diabetes obesity syndrome in mature CBA/Ca mice. Pharmacol Biochem Behav 34:255–259

    PubMed  CAS  Google Scholar 

  • Sclafani A (1984) Animal models in obesity: classification and characterization. Int J Obes 8:491–508

    PubMed  CAS  Google Scholar 

  • Cahill GF, Jones EE, Lauris V, Steinke J, Soeldner JS (1967) Studies on experimental diabetes in the Wellesley hybrid mouse. II. Serum insulin levels and response of peripheral tissues. Diabetologia 3:171–174

    PubMed  CAS  Google Scholar 

  • Gleason RE, Lauris V, Soeldner JS (1967) Studies on experimental diabetes in the Wellesley hybrid mouse. III. Dietary effects and similar changes in a commercial Swiss-Hauschke strain. Diabetologia 3:175–178

    PubMed  CAS  Google Scholar 

  • Jones E (1964) Spontaneous hyperplasia of the pancreatic islets associated with glycosuria in hybrid mice. In: Brolin SE, Hellman B, Knutson H (eds) The structure and metabolism of pancreatic islets. Pergamon Press, Oxford, pp 189–191

    Google Scholar 

  • Like AA, Jones EE (1967) Studies on experimental diabetes in the Wellesley hybrid mouse. IV. Morphologic changes in islet tissue. Diabetologia 3:179–187

    PubMed  CAS  Google Scholar 

References

  • Butler L (1967) The inheritance of diabetes in the Chinese hamster. Diabetologia 3:124–129

    PubMed  CAS  Google Scholar 

  • Frenkel BJ, Gerich JE, Hagura R, Fanska RE, Gerritsen GC, Grodsky GM (1974) Abnormal secretion of insulin and glucagon by the in vitro perfused pancreas of the genetically diabetic Chinese hamster. J Clin Invest 53:1637–1646

    Google Scholar 

  • Gerritsen GC (1982) The Chinese hamster as a model for the study of diabetes mellitus. Diabetes 31 (Suppl 1):14–23.

    PubMed  CAS  Google Scholar 

  • Gerritsen GC, Dulin WE (1967) Characterization of diabetes in the Chinese hamster. Diabetologia 3:74–78

    PubMed  CAS  Google Scholar 

  • Gundersen K, Yerganian G, Lin BJ, Gagnon H, Bell F, McRae W, Onsberg T (1967) Diabetes in the Chinese hamster. Some clinical and metabolic aspects. Diabetologia 3:85–91

    PubMed  CAS  Google Scholar 

  • Luse SA, Caramia F, Gerritsen G, Dulin WE (1967) Spontaneous diabetes mellitus in the Chinese hamster: An electron microscopic study of the islets of Langerhans. Diabetologia 3:97–108

    PubMed  CAS  Google Scholar 

  • Malaisse W, Malaisse-Lagae F, Gerritsen GC, Dulin WE, Wright PH (1967) Insulin secretion in vitro by the pancreas of the Chinese hamster. Diabetologia 3:109–114

    PubMed  CAS  Google Scholar 

  • Meier H, Yerganian GA (1959) Spontaneous hereditary diabetes mellitus in Chinese hamster (Cricetulus griseus). I. Pathological findings. Proc Soc Exper Biol Med 100:810–815

    CAS  Google Scholar 

  • Meier H, Yerganian G (1961a) Spontaneous diabetes mellitus in the Chinese hamster (Cricetulus griseus). II. Findings in the offspring of diabetic parents. Diabetes 10:12–18

    PubMed  CAS  Google Scholar 

  • Meier H, Yerganian G (1961b) Spontaneous hereditary diabetes mellitus in the Chinese hamster (Cricetulus griseus). III. Maintenance of a diabetic hamster colony with the aid of hypoglycemic therapy. Diabetes 10:19–21

    PubMed  CAS  Google Scholar 

  • Shirai T, Welsh GW, Sims EAH (1967) Diabetes mellitus in the Chinese hamster. II. The evolution of renal glomerulopathy. Diabetologia 3:266–286

    PubMed  CAS  Google Scholar 

  • Sims EAH, Landau BR (1967) Diabetes mellitus in the Chinese hamster. I. Metabolic and morphologic studies. Diabetologia 3:115–123

    PubMed  CAS  Google Scholar 

  • Sirek A (1968) Spontaneous hereditary diabetes in laboratory animals. in: Pfeiffer EF (ed) Handbook of Diabetes mellitus, Pathophysiology and Clinical Considerations. Vol. I, Lehmanns Verlag, München. pp 715–726

    Google Scholar 

  • Sirek OV, Sirek A (1967) The colony of Chinese hamsters of the C.H. Best institute. A review of experimental work. Diabetologia 3:65–73

    PubMed  CAS  Google Scholar 

  • Soret MG, Dulin WE, Matthew's J, Gerritsen GC (1974) Morphologic abnormalities observed in retina, pancreas and kidney of diabetic Chinese hamsters. Diabetologia 10:567–579

    PubMed  CAS  Google Scholar 

References

  • Brodoff BN, Penhos JC, Levine R, White R (1967) The effect of feeding and various hormones on the glucose tolerance of the sand rat (Psammomys obesus) Diabetologia 3:167–170

    PubMed  CAS  Google Scholar 

  • DeFronzo R, Miki E, Steinke J (1967) Diabetic syndrome in sand rats. Diabetologia 3:140–142

    CAS  Google Scholar 

  • Dubault J, Boulanger M, Espinal J, Marquie G, Petkov P, du Boistesselin R (1995) Latent autoimmune diabetes mellitus in adult humans with non-insulin-dependent diabetes: Is Psammomys obesus a suitable animal model? Acta Diabetol 32:92–94

    Google Scholar 

  • Hackel BB, Frohman LA, Mikat E, Lebovitz HE, Schmidt-Nielsen K (1965a) Review of current studies on the effect of diet on the glucose tolerance of the sand rat (Psammomys obesus). Ann N Y Acad Sci 131:459–463

    PubMed  CAS  Google Scholar 

  • Hackel DB, Schmidt-Nielson K, Haines HB, Miai E (1965b) Diabetes mellitus in the sand rat (Psammomys obesus) — pathologic studies. Lab Invest 14:200–207

    PubMed  CAS  Google Scholar 

  • Hackel DB, Mikat E, Lebovitz HE, Schmidt-Nielsen K, Horton ES, Kinney TD (1967) The sand rat (Psammomys obesus) as an experimental animal in studies of diabetes mellitus. Diabetologia 3:130–134

    PubMed  CAS  Google Scholar 

  • Haines H, Hackel DB, Schmidt-Nielsen K (1965) Experimental diabetes mellitus induced by diet in the sand rat. Am J Physiol 208:297–300

    PubMed  CAS  Google Scholar 

  • Kalderon B, Gutman A, Levy E, Shafrir E, Adler JH (1986) Characterization of stages in the development of obesity-diabetes syndrome in the sand rat (Psammomys obesus). Diabetes 35:717–724

    PubMed  CAS  Google Scholar 

  • Marquie G, Duhault J, Jacotot B (1984) Diabetes mellitus in sand rats (Psammomys obesus). Metabolic pattern during development of the diabetic syndrome. Diabetes 33:438–443

    PubMed  CAS  Google Scholar 

  • Miki E, Like AA, Steinke J, Soeldner JS (1967) Diabetic syndrome in sand rats. Diabetologia 3:135–139

    PubMed  CAS  Google Scholar 

  • Schmidt-Nielsen K, Haines HB, Hackel DB (1964) Diabetes mellitus in the sand rat induced by standard laboratory diets. Science 143:689–690

    PubMed  CAS  Google Scholar 

  • Shafrir E (1992) Animal models of non-insulin-dependent diabetes. Diabetes/Metab Rev 8:179–208

    CAS  Google Scholar 

  • Strasser H (1968) A breeding program for spontaneously diabetic experimental animals.: Psammomys obesus (sand rat) and Acomys cahirinus (spiny mouse). Lab Anim Care 18:328–338

    PubMed  CAS  Google Scholar 

  • Brunk R (1971) Spontandiabetes bei einer weiteren Stachelmausform (Acomys c. cahirinus Desmarest, 1819) Z Versuchstierk 13:81–86

    Google Scholar 

  • Gonet AE, Stauffacher W, Pictet R, Renold AE (1965) Obesity and diabetes mellitus with striking congenital hyperplasia of the islets of Langerhans in spiny mice (Acomys cahirinus) I. Histological findings and preliminary metabolic observations. Diabetologia 1:162–171

    Google Scholar 

  • Junod A, Letarte J, Lambert AE, Stauffacher W (1969) Studies in spiny mice (Acomys cahirinus): Metabolic state and pancreatic insulin release in vitro. Horm Metab Res 1:45–52

    PubMed  CAS  Google Scholar 

  • Pictet R, Orci L, Gonet AE, Rouiller Ch, Renold AE (1967) Ultrastructural studies of the hyperplastic islets of Langerhans of spiny mice (Acomys cahirinus) before and during the development of hyperglycemia. Diabetologia 3:188–211

    PubMed  CAS  Google Scholar 

  • Renold AE, Dulin WE (1967) Spontaneous diabetes in laboratory animals. Diabetologia 3:63–64

    Google Scholar 

  • Shafrir E, Teitelbaum A, Cohen AM (1972) Hyperlipidemia and impaired glucose tolerance in Acomys cahirinus maintained on synthetic carbohydrate diets. Isr J Med Sci 8:990–992

    PubMed  CAS  Google Scholar 

  • Packer JT, Kraner KL, Rose SD, Stuhlman A, Nelson RL (1970) Diabetes mellitus in Mystromys albicaudatus. Arch Pathol 89:410–415

    PubMed  CAS  Google Scholar 

  • Schmidt G, Martin AP, Stuhlman RA, Townsend JF, Lucas FV, Vorbeck ML (1974) Evaluation of hepatic mitochondrial function in the spontaneously diabetic Mystromys albicaudatus. Lab Invest 30:451–457

    PubMed  CAS  Google Scholar 

  • Stuhlman RA, Packer JT, Doyle RE (1972) Spontaneous diabetes mellitus in Mystromys albicaudatus. Repeated glucose values from 620 animals. Diabetes 21:715–721

    PubMed  CAS  Google Scholar 

  • Stuhlman RA, Srivastava PK, Schmidt G, Vorbeck ML, Townsend JF (1974) Characterization of diabetes mellitus in South African Hamsters (Mystromys albicaudatus). Diabetologia 10:685–690

    PubMed  Google Scholar 

  • Stuhlman RA, Packer JT, Doyle RE, Brown RV, Townsend JF (1975) Relationship between pancreatic lesions and serum glucose values in Mystromys albicaudatus. Lab Anim Sci 25:168–174

    PubMed  CAS  Google Scholar 

  • Velasquez MT, Kimmel PL, Michaelis OE (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4:2850–2859

    PubMed  CAS  Google Scholar 

  • Wise PH, Weir BJ, Hime JM, Forrest E (1972) The diabetic syndrome in the Tuco-Tuco (Ctenomis talarum). Diabetologia 8:165–172

    PubMed  CAS  Google Scholar 

  • Howard CF jr. (1972) Spontaneous diabetes in Macaca nigra. Diabetes 21:1977–1090

    Google Scholar 

  • Howard CF jr. (1974a) Diabetes in Macaca nigra: metabolic and histologic changes. Diabetologia 10:671–677

    PubMed  CAS  Google Scholar 

  • Howard CF jr. (1974b) Correlations of serum triglyceride and prebetalipoprotein levels to the severity of spontaneous diabetes in Macaca nigra. J Clin Endocr Metab 38:856–860

    PubMed  CAS  Google Scholar 

  • Howard CF jr. (1975) Basement membrane thickness in muscle capillaries of normal and spontaneously diabetic Macaca nigra. Diabetes 24:201–206

    PubMed  Google Scholar 

References

  • Aichele P, Hyburtz D, Ohashi POS, Odermatt B, Zinkernagel, Hengartner H, Pircher H (1994) Peptide-induced T-cell tolerance to prevent autoimmune diabetes in a transgenic mouse model. Proc Natl Acad Sci USA 91:444–448

    PubMed  CAS  Google Scholar 

  • Birk OS, Douek DC, Elias D, Takacs K, Dewchand H, Gur SL, Walker MD, Van der Zee R, Cohen IR, Altman DM (1996) A role Hsp60 in autoimmune diabetes: Analysis of a transgenic model. Proc Natl Acad Sci USA 93:1032–1037

    PubMed  CAS  Google Scholar 

  • Brüning JC, Winnay J, Bonner-Weir S, Taylor SI, Accili D, Kahm CR (1997) Development of a novel polygenic model of NIDDM in mice heterozygous for IR and IRS-1 null alleles. Cell 88:561–572

    PubMed  Google Scholar 

  • Hebert LF, Daniels MC, Zhou J, Crook ED, Turner RL, Simmons ST, Neidigh JL, Zhu JS, Baron AD, MacClain AD (1996) Overexpression of glutamine: fructose-6-phosphate amidotransferase in transgenic mice leads to insulin resistance. J Clin Invest 98:930–936

    PubMed  CAS  Google Scholar 

  • Jenkins AB, Storlien LH (1997) Insulin resistance and hyperin-sulinaemia in insulin receptor substrate-1 knockout mice. Diabetologia 40:1113–1114

    PubMed  CAS  Google Scholar 

  • Kulkarni RN, Brüning JC, Winnay JN, Postic C, Magnuson MA, Kahn RC (1999) Tissue specific knockout of the insulin receptor in pancreatic β cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96:329–339

    PubMed  CAS  Google Scholar 

  • Moller DE (1994) Transgenic approaches to the pathogenesis of NIDDM. Diabetes 43:1394–1401

    PubMed  CAS  Google Scholar 

  • Moritani M, Yoshimoto K, Ii S, Kondo M, Iwahana H, Yamaoka T, Sano T, Nakano N, Kikutani H, Itakura M (1996) Prevention of adoptively transferred diabetes in nonobese diabetic mice with IL-10-transduced islet-specific Th1 lymphocytes: A gene therapy model of autoimmune diabetes. J Clin Invest 98:1851–1859

    PubMed  CAS  Google Scholar 

  • Ohashi PS, Oehen S, Buerki K, Pircher H, Ohashi CT, Odermatt B, Malissen B, Zinkernagel RM, Hengartner H (1991) Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65:305–317

    PubMed  CAS  Google Scholar 

  • Oldstone MBA, Nerenberg M, Southern P, Price J, Lewicki H (1991) Virus infection triggers insulin-dependent diabetes mellitus in a trasgenic model: role of anti-self (virus) immune response. Cell 65:319–331

    PubMed  CAS  Google Scholar 

  • Palmiter RD, Behringer RR, Quaife CJ, Maxwell F, Maxwell IH, Brinster RL (1987) Cell lineage ablation in transgenic mice by cell-specific expression of a toxin gene. Cell 50:435–443

    PubMed  CAS  Google Scholar 

  • Schaefer EM, Viard V, Morin J, Ferré P, Pénicaud L, Ramos P, Maika SD, Ellis L, Hammer RE (1994) A new transgenic mouse model of chronic hyperglycemia. Diabetes 43:143–153

    PubMed  CAS  Google Scholar 

  • Terauchi Y, Iwamoto K, Tamemoto H, Komeda K, Ishii C, Kanazawa Y, Asanuma N, Aizawa T, Akanuma Y, Yasuda K, Kodama T, Tobe K, Yazaki Y, Kadowaki T (1997) Development of non-insulin-dependent diabetes mellitus in the double knockout mice with disruption of insulin receptor substrate-1 and β-cell glucokinase genes. Genetic reconstruction of diabetes as a polygenic disease. J Clin Invest 99:861–866

    PubMed  CAS  Google Scholar 

  • Ueki K, Ymauchi T, Tamamoto H, Tobe K, Yamamoto-Honda R, Kaburagi Y, Akanuma Y, Yazaki Y, Aizawa S, Nagi R, Kodawaki T (2000) Restored insulin-sensitivity in IRS-1-deficient mice treated by adenovirus-mediated gene therapy. J Clin Invest 105:1437–1445

    PubMed  CAS  Google Scholar 

  • Von Herrath MG, Holz A (1997) Pathological changes in the islet milieu precede infiltration of islets and destruction in β-cells by autoreactive lymphocytes in a transgenic model of virus-induced IDDM. J Autoimmun 10:231–238

    Google Scholar 

  • Von Herrath MG, Dockter J, Oldstone MBA (1994) How virus induces a rapid or slow onset insulin-dependent diabetes mellitus in a transgenic mouse model. Immunity 1:231–242

    Google Scholar 

  • Von Herrath MG, Guerder S, Lewicki H, Flavell RA, Oldstone MBA (1995) Coexpression of B7-1 and viral (“self”) transgenes in pancreatic β-cells can break peripheral ignorance and lead to spontaneous autoimmune diabetes. Immunity 3:727–738

    Google Scholar 

  • Von Herrath MG, Hormann D, Gairin JE, Oldstone MBA (1997) Pathogenesis and treatment of virus-induced autoimmune diabetes: novel insights gained from the RIP-LCVM transgenic mouse model. Biochem Soc Transact 25:630–635

    Google Scholar 

  • Withers DJ, Gutierrez JS, Towery H, Burks DJ, Ren J-M, Previs S, Zhang Y, Bernal D, Pons S, Shulman GI, Bonner-Weir S, White MF (1998) Disruption of IRS-2 caused type 2 diabetes. Nature 391:900–907

    PubMed  CAS  Google Scholar 

References

  • Biological Assay of Insulin. British Pharmacopoeia (1988) Vol. II, London, Her Majesty's Stationary Office, pp A168–A170

    Google Scholar 

  • Bristow AF, Gaines Das RE, Bangham DR (1988) World Health Organization. International standards for highly purified human, porcine and bovine insulins. J Biol Standard 16:165–178

    CAS  Google Scholar 

  • British Pharmacopoeia (1999) Vol I, London: The Stationery Office, pp 789–794

    Google Scholar 

  • Deutsches Arzneibuch (1986) 9. Ausgabe: Wertbestimmung von Insulin. Deutscher Apotheker Verlag Stuttgart, pp 50–52

    Google Scholar 

  • European Pharmacopoeia (1980) Second Edition, V.2.2.3. Assay of Insulin

    Google Scholar 

  • European Pharmacopoeia (1997) Third Edition, Insulin, pp 1020–1022

    Google Scholar 

  • Harrison GA, Lawrence RD, Marks HP, Dale HH (1925) The strength of insulin preparations: a comparison between laboratory and clinical measurements. Br Med J 2:1102–1105

    PubMed  CAS  Google Scholar 

  • Insulin assay (1990) Rabbit blood-sugar method. United States Pharmacopoeia XXII. The National Formulary XVII. United States Pharmacopoeial Convention, Inc., Rockville, MD, pp 1513–1514

    Google Scholar 

  • Rafaelsen OJ, Lauris V, Renold AE (1965) Localized intraperitoneal action of insulin on rat diaphragm and epididymal adipose tissue in vivo. Diabetes 14:19–26

    PubMed  CAS  Google Scholar 

  • Salehi C, Atanasov P, Yang SP, Wilkins E (1996) A telemetry-instrumentation system for long-term implantable glucose and oxygen sensors. Anal Lett 29:2289–2308

    CAS  Google Scholar 

  • Shults MC, Rhodes RK, Updike ST, Gilligan BJ, Reining WN (1994) A telemetry-instrumentation system for monitoring multiple subcutaneously implanted glucose sensors. IEEE Trans Biomed Eng 41:937–942

    PubMed  CAS  Google Scholar 

  • Skyler JS (1988) Insulin pharmacology. Med Clin North Am 72:1337–1354

    PubMed  CAS  Google Scholar 

  • Smith KL (1969) Insulin. In: Dofman RI (ed) Methods in Hormone Research, Vol IIA, Bioassay. New York, Acad Press. pp 365–414

    Google Scholar 

  • Underhill LA, Dabbah R, Grady LT, Rhodes CT (1994) Alternatives to animal testing in the USP-NF: Present and future. Drug Devel Industr Pharmacy 20:165–216

    CAS  Google Scholar 

  • USP 23 (1995) Design and analysis of biological assays. The United States Pharmacopeia. pp 1705–1715

    Google Scholar 

  • USP 23 (1995) Insulin assay. The United States Pharmacopeia. pp 1716–1717

    Google Scholar 

  • USP 24 (2000) Insulin assays. The United States Pharmacopeia. pp 1848–1849

    Google Scholar 

  • Young DAB (1967) A serum inhibitor of insulin action on muscle. I. Its detection and properties. Diabetologia 3:287–298

    PubMed  CAS  Google Scholar 

References

  • Biological Assay of Insulin (1988) British Pharmacopoeia, Vol. II, London, Her Majesty's Stationary Office, pp A168–A170

    Google Scholar 

  • British Pharmacopoeia (1999) Vol I, London: The Stationery Office, pp 789–794

    Google Scholar 

  • European Pharmacopeia (1980) Second Edition, V.2.2.3. Assay of Insulin

    Google Scholar 

  • European Pharmacopoeia (1997) Third Edition, Insulin, pp 1020–1022

    Google Scholar 

  • Fraser DT (1923) White mice and the assay of insulin. J Lab Clin Med 8:425–428

    CAS  Google Scholar 

  • Hemmingsen AM, Krogh A (1926) The assay of insulin by the convulsive-dose method on white mice. In: League of Nations; Health Organisation; The Biological Standardisation of Insulin. Publications of The League of Nations. III. Health, 1926, III. 7. pp 40–46

    Google Scholar 

  • Litchfield JT, Wilcoxon F (1949) A simplified method for evaluating dose-effect experiments. J Pharmacol Exp Ther 96:99

    PubMed  CAS  Google Scholar 

  • Stewart GA (1974) Historical review of the analytical control of insulin. Analyst 99:913–928

    PubMed  CAS  Google Scholar 

  • Trethewey J (1989) Bio-assays for the analysis of insulin. J Pharm Biomed Anal 7:189–197

    PubMed  CAS  Google Scholar 

  • Trevan JW, Boock E (1926) The standardisation of insulin by the determination of the convulsive dose for mice. In: League of Nations; Health Organisation; The Biological Standardisation of Insulin. Publications of The League of Nations. III. Health, 1926, III. 7. pp 47–56

    Google Scholar 

  • Vogel HG (1964) Unpublished data

    Google Scholar 

  • Wertbestimmung von Insulin. Deutsches Arzneibuch, 9. Ausgabe 1986, Deutscher Apotheker Verlag Stuttgart, pp 50–52

    Google Scholar 

  • Young DM, Lewis AH (1947) Detection of hypoglycemic reactions in the mouse assay for insulin. Science 105:368–369

    PubMed  CAS  Google Scholar 

References

  • Biological Assay of Insulin (1988) British Pharmacopoeia, Vol. II, London, Her Majesty's Stationary Office, pp A168–A170

    Google Scholar 

  • Eneroth G, Åhlund K (1968) Biologcial assay of insulin by blood sugar determination in mice. Acta Pharm Suecica 5:691–594

    Google Scholar 

  • Eneroth G, Åhlund K (1970a) A twin crossover method for bioassay of insulin using blood glucose levels in mice — a comparison with the rabbit method. Acta Pharm Suecica 7:457–462

    CAS  Google Scholar 

  • Eneroth G, Åhlund K (1970b) Exogenous insulin and blood glucose levels in mice. Factors affecting the dose-response relationship. Acta Pharm Suecica 7:491–500

    CAS  Google Scholar 

  • European Pharmacopeia (1980) Second Edition, V.2.2.3. Assay of Insulin

    Google Scholar 

  • Hoffman WS (1937) A rapid photoelectric method for the determination of glucose in blood and urine. J Biol Chem 120:51–55

    CAS  Google Scholar 

  • Wertbestimmung von Insulin (1986) Deutsches Arzneibuch, 9. Ausgabe, Deutscher Apotheker Verlag Stuttgart, pp 50–52

    Google Scholar 

References

  • Ball EG, Merrill MA (1961) A manometric assay of insulin and some results of the application of the method to sera and islet-containing tissue. Endocrinology 69:596–607

    PubMed  CAS  Google Scholar 

  • Basi NS, Thomaskutti KG, Pointer RH (1992) Regulation of glucose transport in isolated adipocytes by levamisole. Can J Physiol Pharmacol 70:1190–1194

    PubMed  CAS  Google Scholar 

  • Beigelman PM (1959) Insulin-like activity of normal and diabetic human serum. Diabetes 8:29–35

    PubMed  CAS  Google Scholar 

  • Clancy BM, Czech MP (1990) Hexose transport stimulation and membrane redistribution of glucose transporter isoforms in response to cholera toxin, dibutyryl cyclic AMP, and insulin in 3T3-L1 adipocytes. J Biol Chem 265:12434–12443

    PubMed  CAS  Google Scholar 

  • Clarke DW, Boyd FT Jr. Kappy MS, Raizada MK (1984) Insulin binds to specific receptors and stimulates 2-deoxy-D-glucose uptake in cultured glial cells from rat brain. J Biol Chem 259:11672–11675

    PubMed  CAS  Google Scholar 

  • Ditschuneit H, Chang SA, Pfeiffer M, Pfeiffer EF (1959) Über die Bestimmung von Insulin im Blute am epididymalen Fettanhang der Ratte mit Hilfe markierter Glukose. Klin Wschr 37:1234–1239

    PubMed  CAS  Google Scholar 

  • Doisy RJ (1963) Plasma insulin assay and adipose tissue metabolism. Endocrinol 72:273–278

    CAS  Google Scholar 

  • Etherton TD, Chung CS (1981) Preparation, characterization, and insulin sensitivity of isolates swine adipocytes: comparison with adipose tissue slices. J Lipid Res 22:1053–1059

    PubMed  CAS  Google Scholar 

  • Etherton TD, Walker OA (1982) Characterization of insulin binding to isolated swine adipocytes. Endocrinol 110:1720–1724

    CAS  Google Scholar 

  • Faulhaber JD, Ditschuneit H (1975) The biological assay of insulin-like serum activity (ILA) in: Hasselblatt A, v. Bruchhausen F (eds) Insulin, Part 2, Handbook of Experimental Pharmacology, Vol 32/2, Springer-Verlag, Berlin Heidelberg New York, pp 671–691

    Google Scholar 

  • Foley JE, Gliemann J (1981) Accumulation of 2-deoxyglucose against its concentration gradient in rat adipocytes. Biochim Biophys Acta 648:100–106

    PubMed  CAS  Google Scholar 

  • Foley JE, Cushman SW, Salans LB (1978) Glucose transport in isolated rat adipocytes with measurement of L-arabinose uptake. Am J Physiol 234:E112–E119

    PubMed  CAS  Google Scholar 

  • Froesch ER, Bürgi H, Ramseier EB, Bally P, Labhart A (1963) Antibody-suppressible and nonsuppressible insulin-like activities in human serum and their physiologic significance. An insulin assay with adipose tissue of increased precision and specificity. J Clin Invest 42:1816–1834

    PubMed  CAS  Google Scholar 

  • Frost SC, Lane MD (1985) Evidence for the involvement of vicinal sulfhydryl groups in insulin-activated hexose transport by 3T3-L1 adipocytes. J Biol Chem 260:2646–2652

    PubMed  CAS  Google Scholar 

  • Gerritsen ME, Burke TM (1985) Insulin binding and effects of insulin on glucose uptake and metabolism in cultured rabbit coronary microvessel endothelium. Proc Soc Exp Biol Med 180:17–23

    PubMed  CAS  Google Scholar 

  • Gliemann J (1965) Insulin-like activity of dilute human serum assayed by an isolated adipose cell method. Diabetes 14:643–649

    PubMed  CAS  Google Scholar 

  • Gliemann J (1967a) Assay of insulin-like activity by the isolated fat cell method. II. The suppressible and non-suppressible insulin-like activity of serum. Diabetologia 3:389–394

    PubMed  CAS  Google Scholar 

  • Gliemann J (1967b) Insulin assay by the isolated fat cell method. I. Factors influencing the response to crystalline insulin. Diabetologia 3:382–388

    PubMed  CAS  Google Scholar 

  • Gliemann J, Sørensen HH (1970) Assay of insulin-like activity by the isolated fat cell method. IV. The biological activity of proinsulin. Diabetologia 6:499–504

    PubMed  CAS  Google Scholar 

  • Gliemann J, Østerlind K, Vinten J, Gammeltoft S (1972) A procedure for measurement of distribution spaces in isolated fat cells. Biochim Biophys Acta 286:1–9

    PubMed  CAS  Google Scholar 

  • Green H, Kehinde O (1974) Subines of mouse 3T3 cells that accumulate lipid. Cell 1:113–116

    CAS  Google Scholar 

  • Grunfeld C, Jones DS (1983) Insulin-stimulated methylaminoisobutyric acid uptake in 3T3-L1 fibroblasts and fat cells. Endocrinol 113:1763–1770

    CAS  Google Scholar 

  • Guilherme A, Czech MP (1998) Stimulation of IRS-1-associated phosphatidylinositol 3-kinase and Akt/protein kinase B but not glucose transport by β1-integrin signaling in rat adipocytes. J Biol Chem 273:33119–33122

    PubMed  CAS  Google Scholar 

  • Guilherme A, Torres K, Czech MP (1998) Cross-talk between insulin receptor and integrin α5β1 signaling pathways. J Biol Chem 273:22899–22903

    PubMed  CAS  Google Scholar 

  • Hernvann A, Cynober L, Aussel C, Agneray J, Ekindjian O (1987) Sensitivity of cultured fibroblasts to human, bovine and porcine insulins. Cell Biol Intern Rep 11:591–598

    CAS  Google Scholar 

  • Humbel RE (1959) Messung der Serum-Insulin-Aktivität mit epididymalem Fettgewebe in vitro. Experientia (Basel) 15:256–258

    PubMed  CAS  Google Scholar 

  • Jacobs DB, Hayer GR, Lockwood DH (1987) Effect of chlorpropamide on glucose transport in rat adipocytes in the absence of changes in insulin binding and receptor-associated tyrosine kinase activity. Metabolism 36:548–554

    PubMed  CAS  Google Scholar 

  • Karnieli E, Zarnowski MJ, Hissin PJ, Simpson IA, Salans LB, Cushman SW (1981) Insulin-stimulated translocation of glucose transport systems in the isolated rat adipose cell. J Biol Chem 256:4772–3777

    PubMed  CAS  Google Scholar 

  • Kletzien RF, Foellmi LA, Harris PKW, Wyse BM, Clarke SD (1992) Adipocyte fatty acid-binding protein: Regulation of gene expression in vivo and in vitro by an insulin-sensitizing agent. Mol Pharmacol 42:558–562

    PubMed  CAS  Google Scholar 

  • Kreutter DKL, Andrews KM, Gibbs EM, Hutson NJ, Stevenson RW (1990) Insulin-like activity of new antidiabetic agent CP 68722 in 3T3-L1 adipocytes. Diabetes 39:1414–1419

    PubMed  CAS  Google Scholar 

  • Larner AC, Fleming JW (1984) Hormone-sensitive adenylate cyclase. In: Larner J, Pohl SL (eds) Methods in Diabetes Research Vol I: Laboratory Methods. Part B. John Wiley & Sons, New York, pp 23–36

    Google Scholar 

  • Lingsøe J (1961) Determination of the insulin-like activity in serum using rat epididymal adipose tissue. Scand J Clin Lab Invest 13:628–636

    Google Scholar 

  • Liu Y-L, Stock MJ (1995) Acute effects of the β3-adrenoceptor agonist BRL 35135, on tissue glucose utilisation. Br J Pharmacol 114:888–894

    PubMed  CAS  Google Scholar 

  • Maloff BL, Lockwood DH (1981) In vitro effects of a sulfonylurea on insulin action in adipocytes. J Clin Invest 68:85–90

    PubMed  CAS  Google Scholar 

  • Marshall S, Garvey WT, Geller M (1984) Primary culture of adipocytes. J Biol Chem 259:6376–6384

    PubMed  CAS  Google Scholar 

  • Martin DB, Renold AE, Dagenais YM (1958) An assay for insulin-like activity using rat adipose tissue. Lancet II/76–77

    Google Scholar 

  • McKeel DW, Jarett L (1970) Preparation and characterization of a plasma membrane fraction from isolated fat cells. J Cell Biol 44:417–432

    PubMed  CAS  Google Scholar 

  • Moody AJ, Stan MA, Stan M (1974) A simple free fat cell bioassay for insulin. Horm Metab Res 6:12–16

    PubMed  CAS  Google Scholar 

  • Müller G, Wied S (1993) The sulfonylurea drug, glimepiride, stimulates glucose transport, glucose transporter translocation, and dephosphorylation in insulin-resistant rat adipocytes in vitro. Diabetes 42:1852–1867

    PubMed  Google Scholar 

  • Müller G, Korndörfer A, Saar K, Karbe-Thönges B, Fasold H, Müllner S (1994) 4'-amino-benzamido-taurocholic acid selectively solubilizes glycosyl-phophatidylinositol-anchored membrane proteins and improves lipolytic cleavage of their membrane anchors by specific phospholipases. Arch Biochem Biophys 309:329–340

    PubMed  Google Scholar 

  • Pillion DJ (1985) Differential effects of insulin, antibodies against rat adipocyte plasma membranes, and other agents that mimic insulin action in rat adipocytes. Metabolism 34:1012–1019

    PubMed  CAS  Google Scholar 

  • Quon MJ, Zarnowski MJ, Guerre-Millo M, de la Luz Sierra M, Taylor SI, Cushman SW (1993) Transfection of DNA into isolated rat adipose cells by electroporation. Biochem Biophys Res Commun 194:338–346

    PubMed  CAS  Google Scholar 

  • Renold AE, Martin DB, Dagenais YM, Steinke J, Nickerson RJ, Lauris V (1960) Measurement of small quantities of insulin-like activity using rat adipose tissue. I. A proposed procedure. J Clin Invest 39:1487–1498

    PubMed  CAS  Google Scholar 

  • Rodbell M (1964) Metabolism of isolated fat cells. I. Effect of hormones on glucose metabolism and lipolysis. J Biol Chem 239:375–380

    PubMed  CAS  Google Scholar 

  • Shibata H, Robinson FW, Benzing CF, Kono T (1991) Evidence that protein kinase C may not be involved in the insulin action on cAMP phosphodiesterase: Studies with electroporated rat adipocytes that were highly responsive to insulin. Arch Biochem Biophys 285:97–104

    PubMed  CAS  Google Scholar 

  • Siess E, Teinzer A, Wieland O (1965) Eine vereinfachte Methode zur Insulinbestimmung im Serum. Diabetologia 1:201–207

    Google Scholar 

  • Slater JDH, Samaan N, Fraser R, Stillman D (1961) Immunological studies with circulating insulin. Br Med J I:1712–1715

    Google Scholar 

  • Sönksen PH, Ellis JP, Lowy C, Rutherford A, Nabarro JDN (1965) Plasma insulin: a correlation between bioassay and immunoassay. Br Med J (1965 II):209–210

    Google Scholar 

  • Spooner PM, Chernick SS, Garrison MM, Scow RO (1979) Insulin regulation of lipoprotein lipase activity and release in 3T3-L1 adipocytes. J Biol Chem 254:10021–10029

    PubMed  CAS  Google Scholar 

  • Steelman SL, Oslapas R, Busch RD (1961) An improved in vitro method for determination of “insulin-like” activity. Proc Soc Exp Biol Med 105:595–598

    Google Scholar 

  • Steinke J, Sirek A, Lauris V, Lukens FDW, Renold AE (1962) Measurement of small quantities of insulin-like activity with rat adipose tissue. III. Persistence of serum insulin-like activity after pancreatectomy. J Clin Invest 41:1699–1707

    PubMed  CAS  Google Scholar 

  • Steinke J, Miki E, Cahill GF (1965) Assay of crystalline insulin and of serum insulin-like activity of different species on adipose tissue of the rat, mouse and guinea pig. New Engl J Med 273:1464–1467

    PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon, J. (1979) Electrophoretic transfer from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    PubMed  CAS  Google Scholar 

  • Traxinger RR; Marshall S (1989) Role of amino acids in modulating glucose induced desensitization of the glucose transport system. J Biol Chem 264:20910–20916

    PubMed  CAS  Google Scholar 

  • Van Putten JPM, Krans HMJ (1986) Characterization of the sulfonylurea-induced potentiation of the insulin response in cultured 3T3 adipocytes. Biochem Pharmacol 35:2141–2144

    PubMed  Google Scholar 

  • Whitesell RR, Gliemann J (1979) Kinetic parameters of 3-O-methylglucose and glucose in adipocytes. J Biol Chem 254:5276–5283

    PubMed  CAS  Google Scholar 

  • Weiland M, Brandenburg C, Brandenburg D, Joost HG (1990) Antagonistic effect of a covalently dimerized insulin derivative on insulin receptors in 3T3-L1 adipocytes. Proc Natl Acad Sci USA 87:1154–1158

    PubMed  CAS  Google Scholar 

  • Zuber MX, Wang S-M, Thammavaram KV, Reed DK, Reed BC (1985) Elevation of the number of cell-surface insulin receptors and the rate of 2-deoxyglucose uptake by exposure of 3T3-L1 adipocytes to tolbutamide. J Biol Chem 260:14045–14052

    PubMed  CAS  Google Scholar 

References

  • Abe H, Morimatsu M, Nikami H, Miyashige T, Saito M (1997) Molecular cloning and mRNA expression of the bovine insulin-responsive glucose transporter GLUT4. J Anim Sci 75:182–188

    PubMed  CAS  Google Scholar 

  • Assimacopoulos-Jeannet F, Cusin I, Greco-Perotto RM, Terrettaz J, Rohner-Jeanrenaud F, Zarjevski N, Jeanrenaud B (1991) Glucose transporters: structure, function, and regulation. Biochemie 73:76–70

    Google Scholar 

  • Bähr M, von Holtey M, Müller G, Eckel J (1995) Direct stimulation of myocardial glucose transport and glucose transporter-1 (GLU1) and GLUT4 protein expression by the sulfonylurea glimepiride. Endocrinology 136:2547–2553

    PubMed  Google Scholar 

  • Baldwin JM, Gorga JC, Lienhard GE (1981) The monosaccharide transporter of the human erythrocyte. J Biol Chem 256:3685–3689

    PubMed  CAS  Google Scholar 

  • Begum N, Draznin B (1992) The effect of streptozotocin-induced diabetes on GLUT-4 phosphorylation in rat adipocytes. J Clin Invest 90:1254–1262

    PubMed  CAS  Google Scholar 

  • Cusin I, Terrettaz J, Rohner-Jeanrenaud F, Zarjevski N, Assimacopoulos-Jeannet F, Jeanrenaud B (1990) Hyperinsulinemia increases the amount of GLUT4 mRNA in white adipose tissue and decreases that of muscles: a clue for increased fat depot and insulin resistance. Endocrinology 127:3246–3248

    PubMed  CAS  Google Scholar 

  • Ezaki O, Kasuga M, Akanuma Y, Takata K, Hirano H, Fujita-Yamaguchi Y, Kasahara M (1986) Recycling of the glucose transporter, the insulin receptor, and insulin in rat adipocytes. J Biol Chem 261:3295–3305

    PubMed  CAS  Google Scholar 

  • Galante P, Maerker E, Scholz R, Rett K, Herberg L, Mosthaf L, Häring HU (1994) Insulin-induced translocation of GLUT4 in skeletal muscle of insulin-resistant Zucker rats. Diabetologia 37:3–9

    PubMed  CAS  Google Scholar 

  • Gould GW, Holman GD (1993) The glucose transporter family: structure, function and tissue-specific expression. Biochem J 295:329–341

    PubMed  CAS  Google Scholar 

  • Hofmann C, Lorenz K, Colca JR (1991) Glucose transport deficiency in diabetic animals is corrected by treatment with the oral antihyperglycemic agent pioglitazone. Endocrinol 129:1915–1925

    CAS  Google Scholar 

  • Jacobs DB, Jung CY (1985) Sulfonylurea potentiates insulin-induced recruitment of glucose transport carrier in rat adipocytes. J Biol Chem 260:2593–2596

    PubMed  CAS  Google Scholar 

  • Jacobs DB, Hayes GR, Lockwood DHl (1989) In vitro effect of sulfonylurea on glucose transport and translocation of glucose transporters in adipocytes from streptozotocin-induced diabetic rats. Diabetes 38:205–211

    PubMed  CAS  Google Scholar 

  • James DE, Strube M, Mueckler M (1989) Molecular cloning and characterization of an insulin-regulatable glucose transporter. Nature 338:83–87

    PubMed  CAS  Google Scholar 

  • Klip A, Marette A (1992) Acute and chronic signals controlling glucose transport in skeletal muscle. J Cell Biochem 48:51–60

    PubMed  CAS  Google Scholar 

  • Klip A, Pâquet MR (1990) Glucose transport and glucose transporters in muscle and their metabolic regulation. Diabetes Care 13:228–243

    PubMed  CAS  Google Scholar 

  • Klip A, Ramlal T, Young DA, Holloszy JO (1987) Insulin-induced translocation of glucose transporters in rat hind-limb muscles. FEBS Lett 224:224–230

    PubMed  CAS  Google Scholar 

  • Laurie SM, Cain CC, Lienhard GE, Castle JD (1993) The glucose transporter GLUT4 and secretory membrane proteins (SCAMPs) colocalize in rat adipocytes and partially segregate during insulin stimulation. J Biol Chem 268:19110–19117

    PubMed  CAS  Google Scholar 

  • Li W-M, McNeill JH (1997) Quantitative methods for measuring the insulin-regulatable glucose transporter (Glut4). J Pharmacol Toxicol Meth 38:1–10

    CAS  Google Scholar 

  • Matthei S, Hamann A, Klein HH, Benecke H, Kreymann G, Flier JS, Greten H (1991) Association of metformin's effect to increase insulin-stimulated glucose transport with potentiation of insulin-induced translocation of glucose transporters from intracellular pool to plasma membrane in rat adipocytes. Diabetes 40:850–857

    Google Scholar 

  • Matthei S, Trost B, Hammann A, Kausch C, Benecke H, Greten H, Höppner W, Klein HH (1995) The effect of in vivo thyroid hormone status on insulin signalling and GLUT1 and GLUT4 glucose transport systems in rat adipocytes. J Endocrinol 144:347–357

    Google Scholar 

  • Mueckler M (1994) Facilitative glucose transporters. Eur J Biochem 219:713–725

    PubMed  CAS  Google Scholar 

  • Mühlbacher C, Karnieli E, Schaff P, Obermaier B, Mushack J, Rattenhuber E, Häring HU (1988) Phorbol esters imitate in rat fat-cells the full effect of insulin on glucose-carrier translocation, but not on 3-O-methylglucose-transport activity. Biochem J 249:865–870

    PubMed  Google Scholar 

  • Müller G, Wied S (1993) The sulfonylurea drug, glimepiride, stimulates glucose transport, glucose transporter translocation, and dephosphorylation in insulin-resistant rat adipocytes in vitro. Diabetes 42:1852–1867

    PubMed  Google Scholar 

  • Rampal AL, Jhun BH, Kim S, Liu H, Manka M, Lachaal M, Spangler RA, Jung CY (1995) Okadaic acid stimulates glucose transport in rat adipocytes by increasing the externalization rate constant of GLUT4 recycling. J Biol Chem 270:3938–3943

    PubMed  CAS  Google Scholar 

  • Ren JM, Marshall BA, Mueckler MM, McCaleb M, Amatruda JM, Shulman GI (1995) Overexpression of Glut4 protein in muscle increases basal and insulin-stimulated whole body glucose disposal in conscious mice. J Clin Invest 95:429–432

    PubMed  CAS  Google Scholar 

  • Reusch JEB, Sussman KE, Draznin B (1993) Inverse relationship between GLUT-4 phosphorylation and its intrinsic activity. J Biol Chem 268:3348–3351

    PubMed  CAS  Google Scholar 

  • Simpson IA, Yver DR, Hissin PJ, Wardzala LJ, Karnieli E, Salans LB, Cushman SW (1983) Insulin-stimulated translocation of glucose transporters in the isolated rat adipose tissue cells: characterization of subcellular fractions. Biochim Biophys Acta 763:393–407

    PubMed  CAS  Google Scholar 

  • Terasaki J, Anai M, Funaki M, Shibata T, Inukai K, Ogihara T, Ishihara H, Katagiri H, Onishi Y, Sadoka H, Fukushima Y, Yataki Y, Kikuchi M, Oka Y, Asana T (1998) Role of JTT-501, a new insulin sensitizer, in restoring impaired GLUT4 translocation in adipocytes of rats fed a high fat diet. Diabetologia 41:400–409

    PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J. (1979) Electrophoretic transfer from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    PubMed  CAS  Google Scholar 

  • Uphues I, Kolter T, Eckel J (1995) Failure of insulin-regulated recruitment of the glucose transporter GLUT4 in cardiac muscle of obese Zucker rats is associated with alterations of small-molecular-mass GTP-binding proteins. Biochem J 311:161–166

    PubMed  CAS  Google Scholar 

  • Zeller K, Vogel J, Rahner-Welsch S, Kuschinsky W (1995) GLUT1 distribution in adult rat brains. Pflügers Arch Eur J Physiol 429:R63/201

    Google Scholar 

References

  • Honnor RC, Dhillon GS, Londos C (1985a) cAMP-dependent protein kinase and lipolysis in rat adipocytes I. Cell preparation, manipulation, and predictability in behavior. J Biol Chem 260:15122–15129

    PubMed  CAS  Google Scholar 

  • Honnor RC, Dhillon GS, Londos C (1985b) cAMP-dependent protein kinase and lipolysis in rat adipocytes II. Definition of steady-state relationship with lipolytic and antilipolytic modulators. J Biol Chem 260:15130–15138

    PubMed  CAS  Google Scholar 

  • Kono T, Robinson FW, Sarver JA (1975) Insulin-sensitive phosphodiesterase. Its localization, hormonal stimulation, and oxidative stabilization. J Biol Chem 250:7826–7835

    PubMed  CAS  Google Scholar 

  • Londos C, Honnor RC, Dhillon GS (1985) cAMP-dependent protein kinase and lipolysis in rat adipocytes III. Multiple modes of insulin regulation of lipolysis and regulation of insulin responses by adenylate cyclase regulators. J Biol Chem 260:15139–15145

    PubMed  CAS  Google Scholar 

  • Müller G, Wied S, Wetekam EM, Crecelius A, Pünter J (1994) Stimulation of glucose utilization in 3T3 adipocytes and rat diaphragm in vitro by the sulfonylureas glimiperide and glibenclamide, is correlated with modulations of the cAMP regulatory cycle. Biochem Pharmacol 48:985–996

    PubMed  Google Scholar 

  • Müller G, Grey S, Jung C, Bandlow W (2000) Insulin-like signaling in yeast: Modulation of protein phosphatase 2A, protein kinase A, cAMP-specific phosphodiesterase, and glycosyl-phosphatidylinositol-specific phospholipase C activities. Biochemistry 39:1475–1488

    PubMed  Google Scholar 

  • Müller HK, Kellerer M, Ermel B, Mühlhöfer A, Obermaier-Kusser B, Vogt B, Häring HU (1991) Prevention by protein kinase C inhibitors of glucose-induced insulin-receptor tyrosine kinase in rat fat cells. Diabetes 40:1440–1448

    PubMed  Google Scholar 

  • Okuno S, Inaba M, Nishizawa Y, Inoue A, Morii H (1988) Effect of tolbutamide and glyburide on cAMP-dependent protein kinase activity in rat liver cytosol. Diabetes 37:857–861

    PubMed  CAS  Google Scholar 

  • Osegawa M, Makino H, Kanatsuka A, Kumagai A (1982) Effects of sulfonylureas on membrane-bound low K m cyclic AMP phosphodiesterase in rat fat cells. Biochim Biophys Acta 721:289–296

    PubMed  CAS  Google Scholar 

  • Roskoski R (1983) Assays of protein kinase. Meth Enzymol 99:3–6

    PubMed  CAS  Google Scholar 

  • Saltiel AR, Steigerwalt RW (1985) Purification of putative insulin-sensitive cAMP phosphodiesterase or its catalytic domain from adipose tissue. Diabetes 35:698–704

    Google Scholar 

  • Solomon SS, Deaton J, Shankar TP, Palazzolo M (1986) Cyclic AMP phosphodiesterase in diabetes. Effect of glyburide. Diabetes 35:1233–1236

    PubMed  CAS  Google Scholar 

  • Sooranna SR, Saggerson ED (1976) Interactions of insulin and adrenaline with glycerol phosphate acylation processes in fat cells from rat. FEBS Lett 64:36–39

    PubMed  CAS  Google Scholar 

  • Vila MDC, Milligan G, Standaert ML, Farese RV (1990) Insulin activates glycerol-3-phosphate-acyltransferase (de novo phosphatidic acid synthesis) through a phospholipid-derived mediator. Apparent involvement of Giα and activation of a phospholipase C. Biochem 29:8735–8740

    CAS  Google Scholar 

  • Wieland O (1974) Glycerin UV-Methode. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse. Verlag Chemie Weinheim, pp 1448–1453

    Google Scholar 

References

  • Alessi DR, Downes CP (1998) The role of PI 3-kinase in insulin action. Biochim Biophys Acta 1436:151–164

    PubMed  CAS  Google Scholar 

  • Argetsinger LS, Hsu, GW, Myers MG, Billestrup N, White MF, Carter-Su C (1995) Growth hormone, interferon-γ, and leukemia inhibitory factor promoted tyrosyl phosphorylation of insulin receptor substrate-1. J Biol Chem 270:14685–14692

    PubMed  CAS  Google Scholar 

  • Baron V, Calleja V, Ferrari P, Alengrin F, Van Obberghen E (1998) pp125FAK focal adhesion kinase is a substrate for the insulin and insulin-like growth factor-I tyrosine kinase receptors. J Biol Chem 273:7162–7166

    PubMed  CAS  Google Scholar 

  • Burgering BM, Coffer PJ (1995) Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376:599–602

    PubMed  CAS  Google Scholar 

  • Cheatham RB, Vlahos CJ, Cheatham L, Wang L, Blenis J, Kahn CR (1994) Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70S6 kinase, DNA synthesis, and glucose transporter translocation. Mol Cell Biol 14:4902–4911

    PubMed  CAS  Google Scholar 

  • Frick W, Bauer A, Bauer J, Wied S, Müller G (1998) Insulin-mimetic signalling of synthetic phosphoinositolglycans in isolated rat adipocytes. Biochem J 336:163–181

    PubMed  CAS  Google Scholar 

  • Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Drug Res 38:1120–1130

    CAS  Google Scholar 

  • Gustafson TA, Moodie SA, Lavan BE (1998) The insulin receptor and metabolic signaling. In: Reviews Physiology, Biochemistry and Pharmacology, vol. 137, pp 71–192, Springer-Verlag, Berlin, Heidelberg, New York. The insulin receptor and metabolic signaling

    Google Scholar 

  • Herbst JJ, Andrews GC, Contillo LG, Singleton PH, Genereux PE, Gibbs EM, Lienhard GE (1995) Effect of the activation of phosphatidylinositol 3-kinase by a thiophosphotyrosine peptide on glucose transport in 3T3-L1 adipocytes. J Biol Chem 270:26000–26005

    PubMed  CAS  Google Scholar 

  • Holman GD, Kasuga M (1997) From receptor to transporter: insulin signalling to glucose transport. Diabetologia 40:991–1003

    PubMed  CAS  Google Scholar 

  • Huppertz C, Schwartz C, Becker W, Horn F, Heinrich PC, Joost H-G (1996) Comparison of the effects of insulin, PDGF, interleukin-6, and interferon-γ on glucose transport in 3T3-L1 cells: lack of cross-talk between tyrosine kinase receptors and JAK/STAT pathways. Diabetologia 39:1432–1439

    PubMed  CAS  Google Scholar 

  • Hurel SJ, Rochford JJ, Borthwick AC, Wells AM, Vandenheede JR, Turnbull DM, Yeaman SJ (1996) Insulin action in cultured human myoblasts: contribution of different signalling pathways to regulation of glycogen synthesis. Biochem J 320:871–877

    PubMed  CAS  Google Scholar 

  • Kessler A, Müller G, Wied S, Crecelius A, Eckel J (1998) Signalling pathways of an insulin-mimetic phosphoinositolgly-canpeptide in muscle and adipose tissues. Biochem J 330:277–286

    PubMed  CAS  Google Scholar 

  • Kowalski-Chauvel A, Pradayrol L, Vaysse N, Seva C (1996) Gastrin stimulates tyrosine phosphorylation of insulin receptor substrate 1 and its association with Grb2 and the phosphatidylinositol 3-kinase. J Biol Chem 271:26356–26361

    PubMed  CAS  Google Scholar 

  • Müller G, Geisen K (1996) Characterization of the molecular mode of action of the sulfonylurea, glimepiride, at adipocytes. Horm Metab Res 28:469–487

    PubMed  Google Scholar 

  • Müller G, Wied S, Wetekam E-M, Crecelius A, Unkelbach A, Pünter J (1994) Stimulation of glucose utilization in 3T3 adipocytes and rat diaphragm in vitro by the sulfonylureas, glimepiride and glibenclamide, is correlated with modulations of the cAMP regulatory cascade. Biochem Pharmacol 48:985–996

    PubMed  Google Scholar 

  • Müller G, Satoh Y, Geisen K (1995) Extrapancreatic effects of sulfonylureas — a comparison between glimepiride and conventional sulfonylureas. Diabetes Res Clin Pract 28 (Suppl.):S115–S137

    PubMed  Google Scholar 

  • Müller G, Wied S, Crecelius A, Kessler A, Eckel J (1997) Phosphoinositolglycan-peptides from yeast potently induce metabolic insulin actions in isolated rat adipocytes, cardiomyocytes, and diaphragms. Endocrinology 138:3459–3475

    PubMed  Google Scholar 

  • Myers MG, White MF (1995) New frontiers in insulin receptor substrate signaling. Trends Endocrinol Metab 6:209–215

    PubMed  CAS  Google Scholar 

  • Ricort JM, Tanti JF, Obberghen E, Le Marchand-Brustel Y (1997) Cross-talk between the platelet-derived growth factor and the insulin signaling pathways in 3T3-L1 adipocytes. J Biol Chem 272:19814–19818

    PubMed  CAS  Google Scholar 

  • Saltiel AR (1996) Diverse signaling pathways in the cellular actions of insulin. Am J Physiol 270:375–385

    Google Scholar 

  • Shepherd PR, Nave BT, Rincon J, Haigh RJ, Foulstone E, Proud C (1997) Involvement of phosphoinositide 3-kinase in insulin stimulation of MAP-kinase and phosphorylation of protein kinase-B in human skeletal muscle: implications for glucose metabolism. Diabetologia 40:1172–1177

    PubMed  CAS  Google Scholar 

  • Shepherd PR, Withers DJ, Siddle K (1998) Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem J 333:471–490

    PubMed  CAS  Google Scholar 

  • Velloso LA, Folli F, Sun X-U, White MF, Saad MJA, Kahn CR (1996) Cross-talk between the insulin and angiotensin signaling systems. Proc Natl Acad Sci USA 93:12490–12495

    PubMed  CAS  Google Scholar 

  • Verdier F, Chretien S, Billat C, Gisselbrecht S, Lacombe C, Mayeux P (1997) Erythropoietin induces the tyrosine phosphorylation of insulin receptor substrate-2. J Biol Chem 272:26173–26178

    PubMed  CAS  Google Scholar 

  • White MF (1996) The IRS-signalling system in insulin and cytokine action. Philos. Trans R Soc Lond B Biol Sci 351:181–189

    CAS  Google Scholar 

  • White MF (1997) The insulin signalling system and the IRS proteins. Diabetologia 40:S2–S17

    PubMed  CAS  Google Scholar 

  • White MF (1998) The IRS-signalling system: a network of docking proteins that mediate insulin action. Mol Cell Biochem 182:3–11

    PubMed  CAS  Google Scholar 

  • Yeh JI, Gulve EA, Rameh L, Birmbaum MJ (1997) The effects of wortmannin on rat skeletal muscle. Dissociation of signalling pathways for insulin-and contraction-activated hexose transport. J Biol Chem 270:2107–2111

    Google Scholar 

  • Yenush L, White MF (1997) The IRS-signalling system during insulin and cytokine action. Bioassays 19:491–500

    CAS  Google Scholar 

References

  • Burcelin R, Eddouks M, Maury J, Kande J, Assan R, Girard J (1995) Excessive glucose production, rather than insulin resistance, accounts for hyperglycemia in recent-onset streptocotozin-diabetic rats. Diabetologia 38:283–290

    PubMed  CAS  Google Scholar 

  • DeFronzo RA, Bonadonna RC, Ferrannini E (1992) Pathogenesis of NIDDM: a balanced overview, Diabetologia 35:389–394

    PubMed  CAS  Google Scholar 

  • Eldar-Finkelman H, Argast GM, Foord O, Fischer EH, Krebs EG (1996) Expression and characterization of glycogen synthase kinase-3 mutants and their effect on glycogen synthase activity in intact cells. Proc Natl Acad Sci USA 93:10228–10233

    PubMed  CAS  Google Scholar 

  • Firth R, Bell P, Rizza R (1987) Insulin action in non-insulin-dependent diabetes mellitus: the relationship between hepatic and extrahepatic insulin resistance and obesity, Metabolism 36:1091–1095

    PubMed  CAS  Google Scholar 

  • Folli F, Saad M, Backer J, Kahn C (1993) Regulation of phosphatidylinositol 3-kinase activity in liver and muscle of animal models of insulin-resistant and insulin-deficient diabetes mellitus. J Clin Invest 92:1787–1794

    PubMed  CAS  Google Scholar 

  • Frick W, Bauer A, Bauer J, Wied S, Müller G (1998) Insulinmimetic signalling of synthetic phosphoinositolglycans in isolated rat adipocytes. Biochem J 336:163–181

    PubMed  CAS  Google Scholar 

  • Müller G, Wied S, Frick W (2000) Cross talk of pp125FAK and pp59Lyn non-receptor tyrosine kinases to insulin-mimetic signaling in adipocytes. Mol Cell Biol 20:4708–4723

    PubMed  Google Scholar 

  • Müller WA, Faloona GR, Aguilar-Parada E (1970) Abnormal alpha-cell function in diabetes: response to carbohydrate and protein ingestion, N Engl J Med 283:109–115

    PubMed  Google Scholar 

  • Nonogaki K (2000) New sights into sympathetic regulation of glucose and fat metabolism, Diabetologia 43:533–549

    PubMed  CAS  Google Scholar 

  • Noce PS, Utter MF (1975) Decarboxylation of oxalacetate to pyruvate by purified avian liver phosphoenolpyruvate carboxykinase. J Biol Chem 250:9099–9105

    PubMed  CAS  Google Scholar 

  • Valera A, Pujol A, Pelegin M. (1994) Transgenic mice overexpressing phosphoenolpyruvate carboxykinase develop non-insulin-dependent diabetes mellitus, Proc Natl Acad Sci USA 91:9151–9154

    PubMed  CAS  Google Scholar 

  • Wang QM, Fiol C.J, DePaoli-Roach AA, Roach PJ (1994) Glycogen synthase kinase-3β is a dual specificity kinase differentially regulated by tyrosine and serine/threonine phosphorylation. J Biol Chem 269:14566–14574

    PubMed  CAS  Google Scholar 

References

  • Anderson RGW (1993a) Caveolae: where incoming and outgoing messengers meet. Proc Natl Acad Sci USA 90:10909–10913

    PubMed  CAS  Google Scholar 

  • Anderson RGW (1993b) Plasmalemmal caveolae and GPI-anchored membrane proteins. Curr Opin Cell Biol 5:647–652

    PubMed  CAS  Google Scholar 

  • Anderson RGW (1998) The caveolae membrane system. Annu Rev Biochem 67:199–225

    PubMed  CAS  Google Scholar 

  • Araki E, Lipes MA, Patti ME, Brüning JC, Haag B III, Johnson RS, Kahn CR (1994) Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature 372:186–190

    PubMed  CAS  Google Scholar 

  • Berti L, Mosthaf L, Kroder GF, Kellerer M, Tippmer S, Mushack J, Seffer E, Seedorf K, Häring H (1994) Glucose-induced translocation of protein kinase C isoforms in rat-1 fibroblasts is paralleled by inhibition of the insulin receptor tyrosine kinase. J Biol Chem 269:3381–3386

    PubMed  CAS  Google Scholar 

  • Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544

    PubMed  CAS  Google Scholar 

  • Brown DA, London E (1997) Breakthroughs and Views. Structure of detergent-resistant membrane domains: Does phase separation occur in biological membranes? Biochem Biophys Res Commun 240:1–7

    PubMed  CAS  Google Scholar 

  • Couet J, Li S, Okamoto T, Ikezu T, Lisanti MP (1997) Identification of peptide and protein ligands for the caveolin-scaffolding domain. J Biol Chem 272:6525–6533

    PubMed  CAS  Google Scholar 

  • DeMeyts P, Christoffersen CT, Ursø B, Ish-Shalom D, Sacerdoti-Sierra N, Drejer K, Schäffer L, Shymko RM, Naor D (1993) Insulin's potency as a mitogen is determined by the half-life of the insulin-receptor complex. Exp Clin Endocrinol 101:22–23

    Google Scholar 

  • Fantin VR, Sparling JD, Slot JW, Keller SR, Lienhard GE, Lavan BE (1998) Characterization of insulin receptor substrate 4 in human embryonic kidney 293 sells. J Biol Chem 273:10726–10732

    PubMed  CAS  Google Scholar 

  • Jackson JG, White MF, Yee D (1998) Insulin receptor substrate-1 is the predominant signalling molecule activated by insulinlike growth factor-I, insulin, and interleukin-4 in estrogen receptor-positive human breast cancer cells. J Biol Chem 273:9994–10003

    PubMed  CAS  Google Scholar 

  • Kurzchalia TV, Dupree P, Monier S (1994) VIP-21 Caveolin, a protein of the trans-Golgi network and caveolae. FEBS Lett 346:88–91

    PubMed  CAS  Google Scholar 

  • Lisanti MP, Scherer PE, Tang ZL, Sargiacomo M (1994) Caveolae, caveolin and caveolin-rich membrane domains: A signaling hypothesis. Trends Cell Biol 4:231–235

    PubMed  CAS  Google Scholar 

  • Müller G (2000) The molecular mechanism of the insulin-mimetic/sensitizing activity of the antidiabetic sulfonylurea drug Amaryl. Mol Med 6:907–933

    PubMed  Google Scholar 

  • Müller G, Frick W (1999) Signalling via caveolin: involvement in the cross-talk between phosphoinositolglycans and insulin. CMLS, Cell Mol Life Sci 56:945–970

    Google Scholar 

  • Myers MG, Sun X-J, White MF (1994) The IRS-1 signaling system. Trends Biochem Sci 19:289–293

    PubMed  CAS  Google Scholar 

  • Okamoto T, Schlegel A, Scherer PE, Lisanti MP (1998) Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem 273:5419–5422

    PubMed  CAS  Google Scholar 

  • Parton RG (1996) Caveolae and caveolins. Curr Opin Cell Biol 8:542–548

    PubMed  CAS  Google Scholar 

  • Pelicci G, Lanfrancone L, Grignani F, McGlade J, Cavallo F, Forni G, Nicoletti I, Grignani F, Pawson T, Pelicci PG (1992) A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction. Cell 70:93–104

    PubMed  CAS  Google Scholar 

  • Pronk GJ, McGlade J, Pelicci G, Pawson T, Bos JL (1993) Insulin-induced phosphorylation of the 46-and 52-kDA Shc proteins. J Biol Chem 268:5748–5753

    PubMed  CAS  Google Scholar 

  • Quon MJ, Butte AT, Zarnowski MJ, Sesti G, Cushman SW, Taylor SI (1994) Insulin receptor substrate 1 mediates the stimulatory effect of insulin on GLUT4 translocation in transfected rat adipose cells. J Biol Chem 269:27920–27924

    PubMed  CAS  Google Scholar 

  • Rothberg KG, Henser JE, Donzell WC, Ying Y-S, Glenney JR, Anderson RGW (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682

    PubMed  CAS  Google Scholar 

  • Sasaoka T, Draznin B, Leitner JW, Langlois WJ, Olefsky JM (1994) She is the predominant signaling molecule coupling insulin receptors to activation of guanine nucleotide releasing factor and p21ras-GPT formation. J Biol Chem 269:10734–10738

    PubMed  CAS  Google Scholar 

  • Schlegel A, Volonte D, Engelman JA, Galbiati F, Mehta P, Zhang X-L (1998) Crowded little caves: structure and function of caveolae. Cell Signal 10:457–463

    PubMed  CAS  Google Scholar 

  • Sun XJ, Miralpeix M, Myers MG, Glasheen EM, Backer JM, Kahn CR, White MF (1992) Expression and function of IRS-1 in insulin signal transmission. J Biol Chem 267:22662–22672

    PubMed  CAS  Google Scholar 

  • Tamemoto H, Kadowaki T, Tobe K, Yagi T, Sakura H, Hayakawa T, Terauchi Y, Ueki K, Kaburagi Y, Satoh S, Sekihara H, Yoshioka S, Horokoshi H, Furuta Y, Ikawa Y, Kasuga M, Yazaki Y, Aizawa S (1994) Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372:182–186

    PubMed  CAS  Google Scholar 

  • Tanti JF, Grémeaux T, Van Obberghen E, Le Marchand-Brustel Y (1994) Serine/threonine phosphorylation of insulin substrate 1 modulates insulin receptor signaling. J Biol Chem 269:6051–6057

    PubMed  CAS  Google Scholar 

  • Taouis M, Dupont J, Gillet A, Derouet M, Simon J (1998) Insulin receptor substrate 1 antisense expression in an hepatoma cell line reduces cell proliferation and induces overexpression of the Src homology 2 domain and collagen protein (SHC). Mol Cell Endocrinol 137:177–186

    PubMed  CAS  Google Scholar 

  • White MF (1998) The IRS-signalling system: A network of docking proteins that mediate insulin action. Mol Cell Biochem 182:3–11

    PubMed  CAS  Google Scholar 

  • White MF, Maron R, Kahn RC (1985) Insulin rapidly stimulates tyrosine phosphorylation of a M r-185,000 protein in intact cells. Nature 318:183–186

    PubMed  CAS  Google Scholar 

  • Yonazawa K, Ando A, Kaburagi Y, Yamamoto-Honda R, Kitamura T, Hara K, Nakafuku M, Okabayashi Y, Kadowaki T, Kaziro Y, Kasuga M (1994) Signal transduction pathways from insulin receptor to ras. Analysis by mutant insulin receptors. J Biol Chem 269:4634–4640

    Google Scholar 

References

  • Asplin I, Galasko G, Larner J (1993) Chiro-inositol deficiency and insulin resistance: a comparison of the chiro-inositol and the myo-inositol-containing insulin mediators isolated from urine, hemodialysate, and muscle of control and type II diabetic subjects. Proc Natl Acad Sci USA 90:5924–5928

    PubMed  CAS  Google Scholar 

  • Bordier C (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 256:1604–1607

    PubMed  CAS  Google Scholar 

  • Chan BL, Lisanti MP, Rodriguez-Boulan E, Saltiel AR (1988) Insulin-stimulated release of lipoprotein lipase by metabolism of its phosphatidinylinositol anchor. Science 241:1670–1672

    PubMed  CAS  Google Scholar 

  • Cross GAM (1990) Glycolipid anchoring of plasma membrane proteins. Ann Rev Cell Biol 6:1–39

    PubMed  CAS  Google Scholar 

  • Farese RV (1990) Lipid-derived mediators in insulin action. Proc Soc Exp Biol Med 195:312–324

    PubMed  CAS  Google Scholar 

  • Ferguson MAJ (1991) Lipid anchors on membrane proteins. Curr Opin Struct Biol 1:522–529

    CAS  Google Scholar 

  • Ferguson MAJ, Williams AF (1988) Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Ann Rev Biochem 57:285–320

    PubMed  CAS  Google Scholar 

  • Fonteles MC, Huang LC, Larner J (1996) Infusion of pH 2.0 D-chiro-inositol glycan insulin putative mediator normalizes plasma glucose in streptozotocin diabetic rats at a dose equivalent to insulin without inducing hypoglycemia. Diabetologia 39:731–734

    PubMed  CAS  Google Scholar 

  • Gaulton GN, Pratt JC (1994) Glycosylated phosphatidylinositol molecules as second messengers. Semin Immunol 6:97–104

    PubMed  CAS  Google Scholar 

  • Jones DR, Varela-Nieto I (1998) The role of glycosyl-phosphatidylinositol in signal transduction. Int J Biochem Cell Biol 30:313–326

    PubMed  CAS  Google Scholar 

  • Larner J (1987) Banting lecture: Insulin signaling mechanisms. Lessons from the old testament of glycogen metabolism and the new testament of molecular biology. Diabetes 37:262–275

    Google Scholar 

  • Lawrence JC, Hiken JF, Inkster M, Scott CW, Mumby MC (1986) Insulin stimulates the generation of an adipocyte phosphoprotein that is isolated with a monoclonal antibody against the regulatory subunit of bovine heart cAMP-dependent protein kinase. Proc Natl Acad Sci USA 83:3649–3653

    PubMed  CAS  Google Scholar 

  • Lazar DF, Knez JJ, Medof ME, Cuatrecasas P, Saltiel AR (1994) Stimulation of glycogen synthesis by insulin in human erythroleukemia cells requires the synthesis of glycosyl-phosphatidylinositol. Proc Natl Acad Sci USA 91:9665–9669

    PubMed  CAS  Google Scholar 

  • Lewis KA, Garigapati VR, Zhou C, Roberts MF (1993) Substrate requirements of bacterial phosphatidinylinositol-specific phospholipase C. Biochem 32:8836–8841

    CAS  Google Scholar 

  • Lisanti MP, Darnell JC, Chan BL, Rodriguez-Boulan E, Saltiel AR (1989) The distribution of glycosyl-phosphatidylinositol anchored proteins is differentially regulated by serum and insulin. Biochem Biophys Res Comm 164:824–832

    PubMed  CAS  Google Scholar 

  • Low MG (1989) The glycosyl-phosphatidylinositol anchor of membrane proteins. Biochim Biophys Acta 988:427–454

    PubMed  CAS  Google Scholar 

  • Low MG (1990) Degradation of glycosyl-phosphatidylinositol anchors by specific phospholipases. In: Turner AJ (ed) Molecular and Cell Biology of Membrane Proteins. Glycolipid Anchors of Cell-surface Proteins. Ellis Horwood, New York, pp 35–63

    Google Scholar 

  • Low MG, Saltiel AR (1988) Structural and functional roles of glycosyl-phosphatidylinositol in membranes. Science 239:268–275

    PubMed  CAS  Google Scholar 

  • Low MG, Stiernberg J, Waneck GL, Flavell RA, Kincade PW (1988) Cell-specific heterogeneity in sensitivity of phosphatidinylinositol-anchored membrane antigens to release by phospholipase C. J Immunol Meth 113:101–111

    CAS  Google Scholar 

  • Marshall S, Garvey WT, Geller M (1984) Primary culture of adipocytes. J Biol Chem 259:6376–6384

    PubMed  CAS  Google Scholar 

  • Mato JM (1989) Insulin mediators revisited. Cell Signal 1:143–146

    PubMed  CAS  Google Scholar 

  • Movahedi S, Hooper NM (1997) Insulin stimulates the release of the glycosyl phosphatidylinositol-anchored membrane dipeptidase from 3T3-L1 adipocytes through the action of a phospholipase C. Biochem J 326:531–537

    PubMed  CAS  Google Scholar 

  • Müller G, Bandlow W (1991) A cAMP binding ectoprotein in the yeast Saccharomyces cerevisiae. Biochemistry 30:10181–10190

    PubMed  Google Scholar 

  • Müller G, Dearey EA, Pünter J (1993) The sulfonylurea drug, glimepiride, stimulates release of glycosylphosphatidylinositol-anchored plasma membrane proteins from 3T3 adipocytes. Biochem J 289:509–521

    PubMed  Google Scholar 

  • Müller G, Korndörfer A, Saar K, Karbe-Thönges B, Fasold H, Müllner S (1994a) 4′-amino-benzamido-taurocholic acid selectively solubilizes glycosyl-phosphatidylinositol-anchored membrane proteins and improves lipolytic cleavage of their membrane anchors by specific phospholipases. Arch Biochem Biophys 309:329–340

    PubMed  Google Scholar 

  • Müller G, Wied S, Wetekam EM, Crecelius A, Pünter J (1994b) Stimulation of glucose utilization in 3T3 adipocytes and rat diaphragm in vitro by the sulfonylureas glimiperide and glibenclamide, is correlated with modulations of the cAMP regulatory cycle. Biochem Pharmacol 48:985–996

    PubMed  Google Scholar 

  • Müller G, Wetekam E-A, Jung C, Bandlow W (1994c) Membrane association of lipoprotein lipase and a cAMP-binding ectoprotein in rat adipocytes. Biochemistry 33:12149–12159

    PubMed  Google Scholar 

  • Müller G, Dearey E-A, Korndörfer A, Bandlow W (1994d) Stimulation of a glycosyl phosphatidylinositol-specific phospholipase by insulin and the sulfonylurea, glimepiride, in rat adipocytes depends on increased glucose transport. J Cell Biol 126:1267–1276

    PubMed  Google Scholar 

  • Nosjean O, Briolay A, Roux B (1997) Mammalian GPI proteins: sorting, membrane residence and functions. Biochim Biophys Acta 1331:153–186

    PubMed  CAS  Google Scholar 

  • Pryde JG, Phillips JH (1986) Fractionation of membrane proteins by temperature-induced phase separation in Triton X-114. Biochem J (1986) 233:525–533

    PubMed  CAS  Google Scholar 

  • Romero G, Larner J (1993) Insulin mediators and the mechanism of insulin action. Adv Pharm 24:21–50

    CAS  Google Scholar 

  • Romero G, Luttrell L, Rogol A, Zeller K, Hewlett E, Larner J (1988) Phosphatidylinositol-glycan anchors of membrane proteins: Potential precursors of insulin mediators. Science 240:509–512

    PubMed  CAS  Google Scholar 

  • Romero GL, Gamez G, Huang LC, Lilley K, Luttrell L (1990) Antiinositolglycan antibodies selectively block some of the actions of insulin in intact BC3H1 cells. Proc Natl Acad Sci USA 87:1476–1480

    PubMed  CAS  Google Scholar 

  • Satiel AR (1990) Second messengers of insulin action. Trends Endocrinol Metab 1:158–163

    Google Scholar 

  • Saltiel AR, Cuatrecasas P (1986) Insulin stimulates the generation from hepatic plasma membranes of modulators derived from an inositol glycolipid. Proc Natl Acad Sci USA 83:5793–5797

    PubMed  CAS  Google Scholar 

  • Saltiel AR, Fox JA, Sherline P, Cuatrecasas P (1986) Insulin stimulates the generation from hepatic plasma membranes of modulators derived from an inositol glycolipid. Science 233:967–972

    PubMed  CAS  Google Scholar 

  • Saltiel AR, Osterman DG, Darnell JC, Sorbara-Cazan LR, Chan BL, Low MG, Cuatrecasas P (1988) The function of glycosyl phosphoinositides in hormone action. Phil Trans R Soc Lond B320:345–358

    Google Scholar 

  • Shashkin PN, Shashkina EF, Fernqvist-Forbes E, Zhou Y-P, Grill V, Katz A (1997) Insulin mediators in man: Effects of glucose and insulin resistance. Diabetologia 40:557–563

    PubMed  CAS  Google Scholar 

  • Thomas JR, Dwek RA, Rademacher TW (1990) Structure, biosynthesis and function of gylcosylphosphatidinylinositols. Biochem 29:5413–5422

    CAS  Google Scholar 

  • Varela-Nieto I, Leon Y, Caro HN (1996) Cell signalling by inositol phosphoglycans from different species. Comp Biochem Physiol 115B:223–241

    CAS  Google Scholar 

References

  • Anderson RGW (1998) The caveolae membrane system. Annu. Rev Biochem 67:199–225

    PubMed  CAS  Google Scholar 

  • Bauman, CA, Ribon V, Kanzaki M, Thurmond DC, Mora S, Shigematsu S, Bickel PE, Pessin JE, Saltiel AR (2000) CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature 407:202–207

    Google Scholar 

  • Brown DA, London E (1997) Breakthroughs and views. Structure of detergent-resistant membrane domains: Does phase separation occur in biological membranes? Biochem Biophys Res Commun 240:1–7

    PubMed  CAS  Google Scholar 

  • Brown DA, London E (1998) Structure and origin of ordered lipid domains in biological membranes. J Membr Biol 164:103–114

    PubMed  CAS  Google Scholar 

  • Couet, J, Li S, Okamoto T, Ikezu T, Lisanti MP (1997a) Identification of peptide and protein ligands for the caveolin-scaffolding domain. J Biol Chem. 272:6525–6533

    PubMed  CAS  Google Scholar 

  • Couet J, Sargiacomo M, Lisanti MP (1997b) Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J Biol Chem 272:30429–30438

    PubMed  CAS  Google Scholar 

  • de Weerd WFC, Leeb-Lundberg LMF (1997) Bradykinin sequesters B2 bradykinin receptors and the receptor coupled Gα subunits Gαq and Gαi in caveolae in DDT1 MF-2 smooth muscle cells. J Biol Chem 272:17858–17866

    PubMed  Google Scholar 

  • Engelman JA, Zhang X, Galbiati F, Volonte D, Sotgia F, Pestell RG, Minetti C, Scherer PE, Okamoto T, Lisanti MP (1998) Molecular genetics of the caveolin gene family: implications for human cancers, diabetes, Alzheimer disease, and muscular dystrophy. Am J Hum Genet 63:1578–1587

    PubMed  CAS  Google Scholar 

  • Kobzik T, Smith W, Kelly RA, Michel T (1996) Endothelial nitric oxide synthase targeting to caveolae. J Biol Chem 271:22810–22814

    PubMed  Google Scholar 

  • Feron O, Smith TW, Michel T, Kelly RA (1997) Dynamic targeting of the agonist-stimulated m2 muscarinic acetylcholine receptor to caveolae in cardiac myocytes. J Biol Chem 272:17744–17748

    PubMed  CAS  Google Scholar 

  • Garcia-Cardena G, Martasek P, Siler-Masters BS, Skidd PM, Couet JC, Li S, Lisanti MP, Sessa WC (1997) Dissecting the interaction between nitric oxide synthase (NOS) and caveolin: functional significance of the NOS caveolin binding domain in vivo. J Biol Chem 272:25437–25440

    PubMed  CAS  Google Scholar 

  • Glenney JR (1992) The sequence of human caveolin reveals identity with VIP 21, a component of transport vesicles. FEBS Lett 314:45–48

    PubMed  CAS  Google Scholar 

  • Gustavsson J, Parpal S, Karlsson M, Ramsing C, Thorn H, Borg M, Lindroth M, Peterson KH, Magnusson K-E, Stralfors P (1999) Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB J 13:1961–1971

    PubMed  CAS  Google Scholar 

  • Harder TP, Scheiffele P, Verkade P, Simons K (1998) Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141:929–942

    PubMed  CAS  Google Scholar 

  • Ishizaka N, Griendling KK, Lassegue B, Alexander RW (1998) Angiotensin II type 1 receptor: relationship with caveolae and caveolin after initial agonist stimulation. Hypertension 32:459–466

    PubMed  CAS  Google Scholar 

  • Jones DR, Varela-Nieto I (1999) Diabetes and the role of inositol-containing lipids in insulin signaling. Mol Med 5:505–514

    PubMed  CAS  Google Scholar 

  • Ju H, Zou R, Venema VJ, Venema RC (1997) Direct interaction of endothelial nitric-oxide synthase and caveolin-1 inhibits synthase activity. J Biol Chem 272:18522–18525

    PubMed  CAS  Google Scholar 

  • Koleske A, Baltimore JD, Lisanti MP (1995) Reduction of caveolin and caveolae in oncogenically transformed cells. Proc Natl Acad Sci, USA: 92:1381–1385

    PubMed  CAS  Google Scholar 

  • Langtry HD, Balfour JA (1998) Glimepiride — A review of its pharmacological and clinical efficacy in the management of type 2 diabetes mellitus. Drugs 55:563–584

    PubMed  CAS  Google Scholar 

  • Mineo C, Ying Y-S, Chapline C, Jaken S, Anderson RGW (1998) Targeting of protein kinase C alpha to caveolae. J Cell Biol 141:601–610

    PubMed  CAS  Google Scholar 

  • Moffett S, Brown DA, Linder ME (2000) Lipid-dependent targeting of G proteins into rafts. J Biol Chem 275:2191–2198

    PubMed  CAS  Google Scholar 

  • Müller G, Frick W (1999) Signalling via caveolin: involvement in the cross-talk between phosphoinositolglycans and insulin. Cell Mol Life Sci 56:945–970

    PubMed  Google Scholar 

  • Müller G, Wied S (1993) The sulfonylurea drug, glimepiride, stimulates glucose transport, glucose transporter translocation, and dephosphorylation in insulin-resistant rat adipocytes in vitro. Diabetes 42:1852–1867

    PubMed  Google Scholar 

  • Müller G, Dearey E-A, Korndörfer A, Bandlow W (1994a) Stimulation of a glycosyl phosphatidylinositol-specific phospholipase by insulin and the sulfonylurea, glimepiride, in rat adipocytes depends on increased glucose transport. J Cell Biol 126:1267–1276

    PubMed  Google Scholar 

  • Müller G, Wetekam EA, Jung C, Bandlow W (1994b) Membrane association of lipoprotein lipase and a cAMP-binding ectoprotein in rat adipocytes. Biochemistry 33:12149–12159

    PubMed  Google Scholar 

  • Müller G, Wied S, Frick W (2000) Cross talk of pp125FAK and pp59Lyn non-receptor tyrosine kinases to insulin-mimetic signaling in adipocytes. Mol Cell Biol 20:4708–4723

    PubMed  Google Scholar 

  • Okamoto T, Schlegel A, Scherer PE, Scherer MP (1998) Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem 273:5419–5422

    PubMed  CAS  Google Scholar 

  • Parton RG (1996) Caveolae and caveolins. Curr Opin Cell Biol 8:542–548

    PubMed  CAS  Google Scholar 

  • Ribon V, Printen JA, Hoffman NG, Kay BK, Saltiel RA (1998) A novel, multifunctional c-Cbl binding protein in insulin receptor signaling in 3T3-L1 adipocytes. Mol Cell Biol 18:872–879

    PubMed  CAS  Google Scholar 

  • Rietveld A, Simons K (1998) The differential miscibility of lipids as the basis for the formation of functional membrane rafts. Biochim Biophys Acta 1376:467–479

    PubMed  CAS  Google Scholar 

  • Rothberg KG, Henser JE, Donzell WC, Ying Y-S, Glenney JR, Anderson RGW (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682

    PubMed  CAS  Google Scholar 

  • Scherer PE, Scherer MP (1997) Association of phosphofructokinase-M with caveolin-3 in differentiated skeletal myotubes. J Biol Chem 272:20698–20705

    PubMed  CAS  Google Scholar 

  • Scherer PE, Lewis RY, Volonte D, Engelman JA, Galbiati F, Couet J, Kohtz DS, van Donselaar E, Peters P, Lisanti MP (1997) Cell-type and tissue-specific expression of caveolin-2. Caveolin 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J Biol Chem 272:29337–29346

    PubMed  CAS  Google Scholar 

  • Schlegel A, Volonte D, Engelmann JA (1999) Crowded little caves: structure and function of caveolae. Cell Signal 10:457–463

    Google Scholar 

  • Shaul PW, Anderson RG (1998) Role of plasmalemmal caveolae in signal transduction. Am J Physiol 275:L843–L851

    PubMed  CAS  Google Scholar 

  • Smart EJ, Graf GA, McNiven MA, Sessa WC, Engelman JA, Scherer PE, Okamoto T, Lisanti MP (1999) Caveolins, liquidordered domains, and signal transduction. Mol Cell Biol 19:7289–7304

    PubMed  CAS  Google Scholar 

  • Taggert MJ, Leavis P, Feron O, Morgan KG (2000) Inhibition of PKCα and rhoA translocation in differentiated smooth muscle by a caveolin scaffolding domain peptide. Exp Cell Res 258:72–81

    Google Scholar 

References

  • Adolfsson S, Arvill A, Ahren K (1967) Stimulation by insulin of accumulation and incorporation of L-[3H]proline in the intact levator ani muscle from the rat. Biochem Biophys Acta 135:176–178

    PubMed  CAS  Google Scholar 

  • Altan N, Altan VM, Mikolay L, Larner J, Schwartz CFW (1985) Insulin-like and insulin-enhancing effects of the sulfonylurea glyburide on rat adipose tissue glycogen synthase. Diabetes 34:281–286

    PubMed  CAS  Google Scholar 

  • Antoniades HN (1961) The state and transport of insulin in blood. Endocrinology 68:7–16

    PubMed  CAS  Google Scholar 

  • Chen-Zion M, Bassukevitz Y, Beitner R (1992) Sequence of insulin effects on cytoskeletal and cytosolic phosphofructokinase, glucose 1,6-biphosphate and fructose 2,6-biphosphate levels, and the antagonistic action of calmodulin inhibitors, in diaphragm muscle. Int J Biochem 24:1661–1667

    PubMed  CAS  Google Scholar 

  • Geiger R, Geisen K, Summ HD (1982) Austausch von Al-Glycin in Rinderinsulin gegen L-und D-Tryptophan. Hoppe Seyler's Z Physiol Chem 363:1231–1239

    PubMed  CAS  Google Scholar 

  • Groen J, Kamminga CE, Willebrands AF, Blickman JR (1952) Evidence for the presence of insulin in blood serum. A method for the approximate determination of the insulin content of blood. J Clin Invest 31:97–106

    PubMed  CAS  Google Scholar 

  • Guinovart JJ, Salavert A, Massagué J, Ciudad CJ, Salsas E, Itarte E (1979) Glycogen synthase: A new activity ratio assay expressing a high sensitivity to the phosphorylation state. FEBS Lett 106:284–288

    PubMed  CAS  Google Scholar 

  • Hothersall JS, Muirhead RP, Wimalawansa S (1990) The effect of amylin and calcitonin gene-related peptide on insulin-stimulated glucose transport in the diaphragm. Biochem Biophys Res Commun 169:451–454

    PubMed  CAS  Google Scholar 

  • Ishizuka T, Cooper DR, Hernandez H, Buckley D, Standaert M, Farese RV (1990) Effects of insulin on diacylglycerol-protein kinase C signaling in rat diaphragm and soleus muscle and relationship to glucose transport. Diabetes 39:181–190

    PubMed  CAS  Google Scholar 

  • Lowry OH, Passonneau JV (1972) A flexible system of enzymatic analysis. Chapter 9: A collection of metabolite assays. Academic Press, New York, pp 174–177

    Google Scholar 

  • Moody AJ, Felber JP (1964) A diaphragm bioassay for the measurement of total ‘insulin-like activity’ and of ‘antigenic insulin’ in serum. Experientia 20:105–108

    PubMed  CAS  Google Scholar 

  • Müller G, Wied S, Wetekam EM, Crecelius A, Pünter J (1994) Stimulation of glucose utilization in 3T3 adipocytes and rat diaphragm in vitro by the sulfonylureas glimiperide and glibenclamide, is correlated with modulations of the cAMP regulatory cycle. Biochem Pharmacol 48:985–996

    PubMed  Google Scholar 

  • Oron Y, Larner J (1979) A modified rapid filtration assay of glycogen synthase. Anal Biochem 94:409–410

    PubMed  CAS  Google Scholar 

  • Pletscher A, Gey KF (1957) Über die Wirkung blutzuckersenkender Sulfonylharnstoffe auf das isolierte Rattenzwerchfell. Experientia 13:447–449

    PubMed  CAS  Google Scholar 

  • Randle PJ (1954) Assay of plasma insulin activity by the rat diaphragm method. Br Med J 1:1237–1240

    PubMed  CAS  Google Scholar 

  • Robinson KA, Boggs KP, Buse MG (1993) Okadaic acid, insulin, and denervation effects on glucose and amino acid transport and glycogen synthesis in muscle. Am J Physiol; Endocrinol Metab 265:E36–E43

    CAS  Google Scholar 

  • Smith RL, Lawrence JC (1984) Insulin action in denervated rat hemidiaphragm. J Biol Chem 259:2201–2207

    PubMed  CAS  Google Scholar 

  • Standing VF, Foy JM (1970) The effect of glibenclamide on glucose uptake in the isolated rat diaphragm. Postgrad Med J, Dec Suppl 16–20

    Google Scholar 

  • Stock W (1973) Methode zur Differenzierung insulinähnlicher Aktivitäten am trypsin-behandelten Rattendiaphragma. (Method to differentiate insulin-like activities in rats diaphragm.) Z Naturforsch 28 c:319–321

    Google Scholar 

  • Vallance-Owen J, Hurlock B (1954) Estimation of plasma insulin by the rat diaphragm method. Lancet 268:68–70

    Google Scholar 

  • Vallance-Owen J, Wright PH (1960) Assay of insulin in blood. Physiol Rev 40:219–244

    PubMed  CAS  Google Scholar 

  • Willebrands AF, v.d. Geld H, Groen J (1958) Determination of serum insulin using the isolated rat diaphragm. The effect of serum dilution. Diabetes 7:119–124

    PubMed  CAS  Google Scholar 

  • Wright PH (1957) Plasma-insulin estimation by the rat diaphragm method. Lancet II, 621–624

    Google Scholar 

References

  • Cam MC, McNeill JH (1996) A sensitive radioimmunoassay optimized for reproducible measurement of rat plasma insulin. J Pharmacol Toxicol Meth 35:111–119

    CAS  Google Scholar 

  • Ditschuneit H, Faulhaber JD (1975) Radioimmunoassay of insulin. In: Hasselblatt A, v. Bruchhausen F (eds) Insulin, Part 2, Handbook of Experimental Pharmacology, Vol 32/2, Springer-Verlag, Berlin Heidelberg New York, pp 655–670

    Google Scholar 

  • Freedlender AE, Vandenhoff GE, Macleod MS, Malcolm RR (1984) Radioimmunoassay of insulin. In: Larner J, Pohl SL (eds) Methods in Diabetes Research, Vol I: Laboratory Methods, Part B., John Wiley & Sons, New York, pp 295–305

    Google Scholar 

  • Grodsky GM, Forsham PH (1960) An immunochemical assay of total extractable insulin in man. J Clin Invest 39:1070–1079

    PubMed  CAS  Google Scholar 

  • Hales CN, Randle PJ (1963) Immunoassay of insulin with insulin-antibody precipitate. Biochem J 88:137–146

    PubMed  CAS  Google Scholar 

  • Melani F, Ditschuneit H, Bartelt KM, Friedrich H, Pfeiffer EF (1965) Über die radioimmunologische Bestimmung von Insulin im Blut. Klin Wschr 43:1000–1007

    PubMed  CAS  Google Scholar 

  • Melani F, Lawecki J, Bartelt KM, Pfeiffer EF (1967) Immunologisch nachweisbares Insulin (IMI) bei Stoffwechselgesunden, Fettsüchtigen und adipösen Diabetikern nach intravenöser Gabe von Glukose, Tolbutamid und Glucagon. Diabetologia 3:422–426

    PubMed  CAS  Google Scholar 

  • Morgan CR, Lazarow A (1963) Immunoassay of insulin: Two antibody system. Plasma insulin levels of normal, subdiabetic and diabetic rats. Diabetes 12:115–126

    Google Scholar 

  • Starr JI, Horwitz DL, Rubenstein AH, Mako ME (1979) Insulin, proinsulin and C-peptide. In: Jaffe BM, Behrman HR (eds) Methods of Hormone Radioimmunoassay, 2nd ed., Academic Press, New York, pp 613–642

    Google Scholar 

  • Wright PH, Makulu DR, Malaisse WJ, Roberts NM, Yu PL (1968) A method for the immunoassay of insulin. Diabetes 17:537–546

    PubMed  CAS  Google Scholar 

  • Yalow R, Black H, Villazon M, Berson SA (1960) Comparison of plasma insulin levels following administration of tolbutamide and glucose. Diabetes 9:356–362

    PubMed  CAS  Google Scholar 

  • Yalow RS, Berson SA (1959) Assay of plasma insulin in human subjects by immunological methods. Nature (London) 21:1648–1649

    Google Scholar 

  • Yalow RS, Berson SA (1960) Immunoassay of endogenous plasma insulin in man. J Clin Invest 39:1157–1175

    PubMed  CAS  Google Scholar 

References

  • Awasthi V, Gambhir S, Sewatkar AB (1994) 99mTc-Insulin: Labeling, biodistribution and scintiimaging in animals. Nucl Med Biol 21:251–254

    PubMed  CAS  Google Scholar 

  • Bornfeldt KE, Gidlöf RA, Wasteson A, Lake M, Skottner A, Arnqvist JH (1991) Binding and biological effects of insulin, insulin analogues and insulin-like growth factors in rat aortic smooth muscle cells. Comparison of maximal growth promoting activities. Diabetologia 34:307–313

    PubMed  CAS  Google Scholar 

  • Breiner M, Weiland M, Becker W, Müller-Wieland D, Streicher R, Fabry M, Joost HG (1993) Heterogeneity of insulin receptors in rat tissues as detected with the partial agonist B29,B29'-suberoyl-insulin. Molec Pharmacol 44:271–276

    CAS  Google Scholar 

  • Burke GT, Chanley JD, Okada Y, Cosmatos A, Ferderigos N, Katsoyannis PG (1980) Divergence of the in vitro biological activity and receptor binding affinity of a synthetic insulin analogue, [21-asparaginamide-A]insulin. Biochemistry 19:4547–4556

    PubMed  CAS  Google Scholar 

  • DeMeyts P (1976) Insulin and growth hormone receptors in human cultured lymphocytes and peripheral blood monocytes. In: Blecher M (ed) Methods in Receptor Research. Part I, Marcel Dekker Inc., New York and Basel, pp 301–383

    Google Scholar 

  • DeMeyts P, Bianco AR, Roth J (1976) Site-site interactions among insulin receptors. Characterization of the negative cooperativity. J Biol Chem 251:1877–1888

    PubMed  CAS  Google Scholar 

  • Drejer K, Kruse V, Larsen UD, Hougaard P, Bjørn S, Gammeltoft S (1991) Receptor binding and tyrosine kinase activation by insulin analogues with extreme affinities studied in human hepatoma HepG2 cells. Diabetes 40:1488–1495

    PubMed  CAS  Google Scholar 

  • Freychet P (1976) Insulin receptors. In: Blecher M (ed) Methods in Receptor Research, Part II, Marcel Dekker, Inc., New York and Basel, pp 385–428

    Google Scholar 

  • Gammeltoft S (1984) Insulin receptors: binding kinetics and structure-function relationship of insulin. Physiol Rev 64:1321–1378

    PubMed  CAS  Google Scholar 

  • Gammeltoft S (1988) Binding properties of insulin receptors in different tissues. In: Insulin Receptors, Part A: Methods for the Study of Structure and Function. Alan R. Liss, Inc., pp 15–27

    Google Scholar 

  • Gavin III JR, Kahn CR, Gorden P, Roth J, Neville DM (1975) Radioreceptor assay of insulin: Comparison of plasma and pancreatic insulins and proinsulins. J Clin Endocr Metab 41:438–445

    PubMed  CAS  Google Scholar 

  • Häring HU (1991) The insulin receptor: signalling mechanisms and contribution to the pathogenesis of insulin resistance. Diabetologia 34:848–861

    PubMed  Google Scholar 

  • Hjøllund E (1991) Insulin receptor binding and action in human adipocytes. Dan Med Bull 38:252–270

    PubMed  Google Scholar 

  • Hollenberg MD, Cuatrecasas P (1976) Methods for the biochemical identification of insulin receptors. In: Blecher M (ed) Methods in Receptor Research, Part II, Marcel Dekker, Inc., New York and Basel, pp 429–477

    Google Scholar 

  • Hurrell DG, Pedersen O, Kahn CR (1989) Alteration in the hepatic insulin receptor kinase in genetic and acquired obesity in rats. Endocrinology 125:2454–2462

    PubMed  CAS  Google Scholar 

  • Kellerer M, Kroder G, Tippmer S, Berti L, Kiehn R, Mosthaf L, Häring H (1994) Troglitazone prevents glucose-induced insulin resistance of insulin receptor in rat-1 fibroblasts. Diabetes 43:447–453

    PubMed  CAS  Google Scholar 

  • Kergoat M, Simon J, Portha B (1988) Insulin binding and insulin receptor tyrosine kinase activity are not altered in the liver of rats with non-insulin-dependent diabetes. Biochem Biophys Res Commun 152:1015–1022

    PubMed  CAS  Google Scholar 

  • Klein HH, Freidenberg GR, Kladde M, Olefsky JM (1986) Insulin activation of insulin receptor tyrosine kinase in intact rat adipocytes. J Biol Chem 261:4691–4697

    PubMed  CAS  Google Scholar 

  • Koch R, Weber U (1981) Partial purification of the solubilized insulin receptor from rat liver membranes by precipitation with concanavalin A. Hoppe-Seyler's Z Physiol Chem 362:347–351

    PubMed  CAS  Google Scholar 

  • Kurose T, Pashmforoush M, Yoshimasa Y, Carroll R, Schwartz GP, Thompson Burke G, Katsoyannis PG, Steiner DF (1994) Cross-linking of a B25 azidophenylalanine insulin derivative to the carboxy-terminal region of the α-subunit of the insulin receptor. J Biol Chem 269:29190–29197

    PubMed  CAS  Google Scholar 

  • Levy JR, Belsky M (1990) Down-regulated insulin receptors in HepG2 cells have an altered intracellular itinerary. Am J Med Sci 299:302–308

    PubMed  CAS  Google Scholar 

  • Markussen J, Halstrøm, Wiberg FC, Schäffer L (1991) Immobilized insulin for high capacity affinity chromatography of insulin receptors. J Biol Chem 266:18814–18818

    PubMed  CAS  Google Scholar 

  • Müller HK, Kellerer M, Ermel B, Mühldorfer A, Obermaier-Kusser B, vogt B, Häring HU (1991) Prevention by protein kinase C inhibitors of glucose-induced insulin-receptor tyrosine kinase resistance in rat fat cells. Diabetes 40:1440–1447

    PubMed  Google Scholar 

  • Nenoff P, Remke H, Müller F, Arndt T, Mothes T (1993) In vivo assessment of insulin binding in different organs of growing and adult glutamate-induced obese rats. Exp Clin Endocrinol 101:215–221

    PubMed  CAS  Google Scholar 

  • Olefsky JM (1976) Decreased insulin binding to adipocytes and circulating monocytes from obese subjects. J Clin Invest 57:1165–1172

    PubMed  CAS  Google Scholar 

  • Olichon-Berthe C, Hauguel-De Mouzon S, Péraldi P, Van Obberghen E, Le Marchand-Brustel Y (1994) Insulin receptor dephosphorylation by phosphotyrosine phosphatases obtained from insulin-resistant obese mice. Diabetologia 37:56–60

    PubMed  CAS  Google Scholar 

  • Pedersen O, Hjøllund E, Beck-Nielsen H, Lindskov HO, Sonne O, Gliemann J (1981) Insulin receptor binding and receptor-mediated insulin degradation in human adipocytes. Diabetologia 20:636–641

    PubMed  CAS  Google Scholar 

  • Pedersen O, Hjøllund E, Linkskov HO (1982) Insulin binding and action on fat cells from young healthy females and males. Am J Physiol 243:E158–E167

    PubMed  CAS  Google Scholar 

  • Podlecki DA, Frank BH, Olefsky JM (1984) In vitro characterization of human proinsulin. Diabetes 33:111–118

    PubMed  CAS  Google Scholar 

  • Podskalny JM, Takeda S, Silverman RE, Tran D, Carpentier JL, Orci L, Gorden P (1985) Insulin receptors and bioresponses in a human liver cell line (Hep G-2) Eur J Biochem 150:401–407

    PubMed  CAS  Google Scholar 

  • Ribel U, Hougaard P, Drejer K, Sørensen AR (1990) Equivalent in vivo biological activity of insulin analogues and human insulin despite different in vitro potencies. Diabetes 39:1033–1039

    PubMed  CAS  Google Scholar 

  • Robertson DA, Singh BM, Hale PJ, Jensen I, Nattrass M (1992) Metabolic effects of monomeric insulin analogues of different receptor affinity. Diabetes Med 9:240–246

    CAS  Google Scholar 

  • Schäffer L, Kjeldsen T, Andersen AS, Wiberg FC, Larsen UD, Cara JF, Mirmira RG, Nakagawa SH, Tager HS (1993) Interaction of a hybrid insulin/insulin-like growth factor-I analog with chimeric insulin/type I insulin-like growth factor receptors. J Biol Chem 268:3044–3047

    PubMed  Google Scholar 

  • Schumacher R, Soos MA, Schlessinger J, Brandenburg D, Siddle K, Ullrich A (1993) Signaling-competent receptor chimeras allow mapping of major insulin receptor binding domain determinants. J Biol Chem 268:1087–1094

    PubMed  CAS  Google Scholar 

  • Schwartz GP, Burke GT, Katsoyannis PG (1987) A superactive insulin: [B10-aspartic acid]insulin(human). Proc Natl Acad Sci USA 84:6408–6411

    PubMed  CAS  Google Scholar 

  • Shah N, Zhang S, Harada S, Smith RM, Jarett L (1995) Electronic microscopic visualization of insulin translocation into the cytoplasm and nuclei of intact H35 hepatoma cells using covalently linked nanogold-insulin. Endocrinology 136:2825–2835

    PubMed  CAS  Google Scholar 

  • Simonescu L, Aman E, Zamfir-Grigorescu D, Dimitriu V, Oniciu CD (1985) Radioreceptor assay of insulin using human erythrocytes. Rev Roum Med Endocrinol 23:29–38

    Google Scholar 

  • Standaert ML, Schimmel SD, Pollet RJ (1984) The development of insulin receptors and responses in the differentiating nonfusing muscle cell line BC3H-1. J Biol Chem 259:2337–2345

    PubMed  CAS  Google Scholar 

  • Vølund A, Brange J, Drejer K, Jensen I, Markussen J, Ribel U, Sørensen AR (1991) In vitro and in vivo potency of insulin analogues designed for clinical use. Diabetes Med 8:839–847

    Google Scholar 

  • Weiland M, Brandenburg C, Brandenburg D, Joost HG (1990) Antagonistic effects of a covalently dimerized insulin derivative on insulin receptors in 3T3-L1 adipocytes. Proc Natl Acad Sci USA 87:1154–1158

    PubMed  CAS  Google Scholar 

  • Whitcomb DC, O'Dorisio TM, Cataland S, Nishikawara MT (1985a) Theoretical basis for a new in vivo radioreceptor assay for polypeptide hormones. Am J Physiol 249 (Endocrinol Metab 12) E555–E560

    PubMed  CAS  Google Scholar 

  • Whitcomb DC, O'Dorisio TM, Cataland S, Shetzline MA, Nishikawara MT (1985b) Identification of tissue insulin receptors. Am J Physiol 249 (Endocrinol Metab 12) E61–E567

    Google Scholar 

  • Wyse BM, Chang AY (1982) Insulin binding in cultured Chinese hamster kidney epithelial cells: the effect of serum in the medium. In vitro 18:243–250

    PubMed  CAS  Google Scholar 

  • Zeuzem S, Taylor R, Agius L, Albisser AM, Alberti KGMM (1984) Differential binding of sulphated insulin to adipocytes and hepatocytes. Diabetologia 27:184–188

    PubMed  CAS  Google Scholar 

  • Zeuzem S, Stahl E, Jungmann E, Zoltobrocki M, Schöffling K, Caspary WF (1990) In vitro activity of biosynthetic human diarginylinsulin. Diabetologia 33:65–71

    PubMed  CAS  Google Scholar 

References

  • Bell GI, Sanchez-Pescador R, Laybourn PJ, Najarian RC (1983) Exon duplication and divergence in the human pre-proglucagon gene. Nature 304:368–371

    PubMed  CAS  Google Scholar 

  • Biological assay of glucagon. British Pharmacopoeia 1988, Vol II, London, Her Majesty's Stationary Office, pp A70–A171

    Google Scholar 

  • Harris V, Faloona GR, Unger RH (1978) Glucagon. In: Jaffe BM, Behrman HR (eds) Methods of Hormone Radioimmunoassay. Second edition, Academic Press New York, San Francisco, London, pp 643–656

    Google Scholar 

  • Sheetz MJ, Tager HS (1988) Receptor-linked proteolysis of membrane-bound glucagon yields a membrane associated hormone fragment. J Biol Chem 263:8509–8514

    PubMed  CAS  Google Scholar 

  • Tucker JD, Dhanvantari S, Brubaker PL (1996) Proglucagon processing in islet and intestinal cell lines. Regul Pept 62:29–35

    PubMed  CAS  Google Scholar 

  • Unger RH, Eisentraut AM, McCall MS, Keller S, Lanz HC, Madison LL (1959) Glucagon antibodies and their use for immunoassay for glucagon. Proc Soc Exp Biol Med 102:621–623

    PubMed  CAS  Google Scholar 

  • von Schenk H (1984) Radioimmunoassay of glucagon. In: Larner J, Pohl SL (eds) Methods in Diabetes Research, Vol I: Laboratory Methods, Part A, John Wiley & Sons, New York, pp 327–345

    Google Scholar 

References

  • Azizeh BY, Van Tine BA, Sturm NS, Hutzler AM, David C, Trivedi D, Hruby VJ (1995) [des His1, des Phe6, Glu9]-glucagon amide: a newly designed “pure” glucagon antagonist. Bioorg Med Chem Lett 5:1849–1852

    CAS  Google Scholar 

  • Azizeh BY, Ahn J-M, Caspari R, Shenderovich MD, Trivedi D, Hruby VJ (1997) The role of phenylalanine in position 6 in glucagon's mechanism of action: multiple replacement analogues of glucagon. J Med Chem 40:2555–2562

    PubMed  CAS  Google Scholar 

  • Goldstein St, Blecher M (1976) Isolation of glucagon receptor proteins from rat liver plasma membranes. In: Blecher M (ed) Methods in Receptor Research, Part I, Marcel Decker, Inc., New York and Basel, pp 119–142

    Google Scholar 

  • Hagopian WA, Tager HS (1983) Receptor binding and cell-mediated metabolism of [125I]monoiodoglucagon by isolated hepatocytes. J Biol Chem 259:8986–8993

    Google Scholar 

  • Hruby VJ, Gysin B, Trivedi D, Johnson DG (1993) New glucagon analogues with conformational constrictions and altered amphiphilicity: Effects on binding, adenylate cyclase and glycogenolytic activities. Life Sci 52:845–855

    PubMed  CAS  Google Scholar 

  • Ishibashi H, Cottam GL (1978) Glucagon-stimulation of pyruvate kinase in hepatocytes. J Biol Chem 253:8767–8771

    PubMed  CAS  Google Scholar 

  • Jørgensen KH, Larsen UD (1972) Purification of 125I-glucagon by ion exchange chromatography. Horm Metab Res 4:223–224

    PubMed  Google Scholar 

  • Lin MC, Wright DE, Hruby VJ, Rodbell M (1975) Structure-function relationships in glucagon: Properties of highly purified des-His1-, monoiodo-, and [des-Asn28,Thr29](homoserine lactone27)-glucagon. Biochemistry 14:1559–1563

    PubMed  CAS  Google Scholar 

  • Lin ME, Wright DE, Hruby VL, Rodbell M (1985) Structure-function relationships in glucagon: properties of highly purified des-his1-monoiodo-, and [des-asn28,thr29](homoserine lactone27) glucagon. Biochemistry 14:1559–1563

    Google Scholar 

  • McVittie LD, Gurd RS (1989) Stabilization of soluble active rat liver glucagon receptor. Arch Biochem Biophys 273:254–263

    PubMed  CAS  Google Scholar 

  • Neville DM (1968) Isolation of an organ specific protein antigen from cell-surface membrane of rat liver. Biochim Biophys Acta 154:540–552

    PubMed  CAS  Google Scholar 

  • Pohl SL (1976) The glucagon receptor in plasma membranes prepared from rat liver. In: Blecher M (ed) Methods in Receptor Research, Part I, Marcel Decker, Inc., New York and Basel, pp 159–174

    Google Scholar 

  • Pohl SL, Birnbaumer L, Rodbell M (1971) The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. J Biol Chem 246:1849–1856

    PubMed  CAS  Google Scholar 

  • Sato N, Irie M, Kajinuma H, Suzuki K (1990) Glucagon inhibits insulin activation of glucose transport in rat adipocytes mainly through a postbinding process. Endocrinol 127:1072–1077

    CAS  Google Scholar 

  • Unson CG, McDonald D, Ray K, Durrah TL, Merrifield RB (1991) Position 9 replacement analogs of glucagon uncouple biological activity and receptor binding. J Biol Chem 266:2763–2766

    PubMed  CAS  Google Scholar 

  • Wright DE, Rodbell M (1979) Glucagon1–6 binds to the glucagon receptor and activates hepatic adenylate cyclase. J Biol Chem 254:268–269

    PubMed  CAS  Google Scholar 

  • Zechel Ch, Trivedi D, Hruby VJ (1991) Synthetic glucagon agonists and antagonists. Int J Peptide Protein Res 38:131–138

    CAS  Google Scholar 

References

  • Adelhorst K, Hedegaard BB, Knudsen LB, Kirk O (1994) Structure-activity studies of glucagon-like peptide-1. J Biol Chem 289:6275–6278

    Google Scholar 

  • Baer AR, Dupré J (1989) Suppression of insulin binding by prolonged enteral or parenteral nutrient infusion in the rat: role of gastric inhibitory polypeptide. Can J Physiol Phamacol 67:1105–1109

    CAS  Google Scholar 

  • Creutzfeldt W, Ebert R (1985) New developments in the incretin concept. Diabetologia 28:565–573

    PubMed  CAS  Google Scholar 

  • Dillon JS, Tanizawa Y, Wheeler MB, Leng XH, Ligon BB, Rabin DU, Yoo-Warren H, Permutt MA, Boyd III AE (1993) Cloning and functional expression of the human glucagon-like peptide 1 (GLP-1) receptor. Endocrinology 133:1907–1910

    PubMed  CAS  Google Scholar 

  • Fehmann HC, Habener JF (1991a) Homologus desensitization of the insulinotropic glucagon-like peptide-1(7–37) receptor in insulinoma (HIT-T15) cells. Endocrinology 128:2880–2888

    PubMed  CAS  Google Scholar 

  • Fehmann HC, Habener JF (1991b) Functional receptors for the insulinotropic hormone glucagon-like peptide-1(7–37) on a somatostatin secreting cell line. FEBS Lett 279:335–340

    PubMed  CAS  Google Scholar 

  • Fehmann HC, Habener JF (1992) Insulinotropic hormone glucagon-like peptide-1(7–37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma βTC-1 cells. Endocrinology 130:159–166

    PubMed  CAS  Google Scholar 

  • Fehmann HC, Göke B, Göke R, Trautmann ME, Arnold R (1989) Synergistic effect of glucagon-like peptide-1 (7–36) amide and glucose-dependent insulin-releasing polypeptide on the endocrine rat pancreas. FEBS Lett 252:109–112

    PubMed  CAS  Google Scholar 

  • Fehmann HC, Göke B, Weber V, Göke R, Trautmann ME, Richter G, Arnold R (1990) Interaction of glucagon-like peptide-1 (7–36)amide and cholecystokinin-8 in the endocrine and exocrine rat pancreas. Pancreas 5:361–365

    PubMed  CAS  Google Scholar 

  • Fehmann HC, Göke R, Göke B, Bächle R, Wagner B, Arnold R (1991a) Priming effect of glucagon-like peptide-1 (7–36) amide, glucose-dependent insulinotropic polypeptide and cholecystokinin-8 at the isolated perfused rat pancreas. Biochem Biophys Acta 1091:356–363

    PubMed  CAS  Google Scholar 

  • Fehmann HC, Göke R, Eissele R, Arnold R (1991b) Helodermin and islet hormone release in isolated rat pancreas. Int J Pancreatol 8:289–303

    PubMed  CAS  Google Scholar 

  • Fehmann HC, Göke R, Göke B (1992) Glucagon-like peptide-1(7–37)/(7–36)amide is a new incretin. Mol Cell Endocrin 85:C39–C44

    CAS  Google Scholar 

  • Fehmann HC, Göke R, Göke B (1995) Cell and molecular biology of the incretin hormones glucagon-like peptide-I and glucose-dependent insulin releasing polypeptide. Endocr Rev 16:390–410

    PubMed  CAS  Google Scholar 

  • Gazdar AF, Chick WL, Oie HK, Sims HL, King DL, Weir GC, Lauris V (1980) Continuous, clonal insulin-and somatostatin-secreting cell line established from a transplantable rat islet cell tumor. Proc Natl Acad Sci, USA 77:3519–3523

    PubMed  CAS  Google Scholar 

  • Göke R, Conlon JM (1988) Receptors for glucagon-like peptide-1(7–36)amide on rat insulinoma-derived cells. J Endocrinol 116:357–362

    PubMed  Google Scholar 

  • Göke R, Fehmann HC, Richter G, Trautmann M, Göke B (1989a) Interaction of glucagon-like peptide-1(7–36)amide and somatostatin-14 in RINm5F cells and in the perfused rat pancreas. Pancreas 4:668–673

    PubMed  Google Scholar 

  • Göke R, Trautmann ME, Haus E, Richter G, Fehmann HC, Arnold R, Göke B (1989b) Signal transmission after GLP-1(7–36)amide binding in RINm5F cells. Am J Physiol 257 (Gastrointest Liver Physiol 20):G397–G401

    PubMed  Google Scholar 

  • Göke R, Oltmer B, Sheikh SP, Göke B (1992) Solubilization of active GLP-1(7–36)amide receptors from RINm5F plasma membranes. FEBS Lett 300:232–236

    PubMed  Google Scholar 

  • Göke R, Wagner B, Fehmann HC, Göke B (1993a) Glucose-dependency of the insulin stimulatory effect of glucagon-like peptide-1(7–36)amide on the rat pancreas. Res Exp Med 193:97–103

    Google Scholar 

  • Göke R, Fehmann HC, Linn Th, Schmidt H, Krause M, Eng J, Göke B (1993b) Exendin-4 is a high potency agonist and truncated exendin-(9–39)-amide an antagonist at the glucagon-like peptide-1(7–36)amide receptor of insulin-secreting β-cells. J Biol Chem 268:19650–19655

    PubMed  Google Scholar 

  • Gutniak M, Ørskov C, Holst JJ, Ahrén B, Efendic S (1992) Antidiabetogenic effect of glucagon-like peptide-1(7–36)amide in normal subjects and patients with diabetes mellitus. New Engl J; ed 326:1316–1322

    CAS  Google Scholar 

  • Hjorth SA, Schwartz TW (1996) Glucagon and GLP-1 receptors: lessons from chimeric ligands and receptors. Acta Physiol Scand 157:343–345

    PubMed  CAS  Google Scholar 

  • Holz GG, Kühtreiber WM, Habener JF (1993) Pancreatic betacells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7–37). Nature 361:362–365

    PubMed  CAS  Google Scholar 

  • Jehle PM, Jehle D, Fußgänger RD, Adler G (1995) Effects of glucagon-like peptide-1 (GLP-1) in RINm5F insulinoma cells. Exp Clin Endocrinol 103:31–36

    Google Scholar 

  • Komatsu R, Matsuyama T, Namba M, Watanabe N, Itoh H, Kono N, Tarui S (1989) Glucagonostatic and insulinotropic action of glucagon-like peptide 1(7–36)-amide. Diabetes 38:902–905

    PubMed  CAS  Google Scholar 

  • Kreymann B, Williams G, Ghatei MA, Bloom SR (1987) Glucagon-like peptide-1 7–37: a physiological incretin in man. Lancet, Dec 1987:1300–1303

    Google Scholar 

  • Lankat-Buttgereit B, Göke R, Fehmann HC, Richter G, Göke B (1994) Molecular cloning of a cDNA encoding for the GLP-1 receptor expressed in rat lung. Exp Clin Endocrinol 102:341–347

    PubMed  CAS  Google Scholar 

  • Montrose-Rafizadeh C, Yang H, Rodgers BD, Beday A, Pritchette LA, Eng J (1997) High potency antagonists of the pancreatic glucagon-like peptide-1 receptor. J Biol Chem 272:21201–21206

    PubMed  CAS  Google Scholar 

  • Nathan DM, Schreiber E, Fogel H, Mojsov S, Habener JF (1992) Insulinotropic action of glucagon-like peptide-1-(7–37) in diabetic and nondiabetic subjects. Diabetes Care 15:270–276

    PubMed  CAS  Google Scholar 

  • Nauck MA, Heimesaat MM, Ørskov C, Holst JJ, Ebert R, Creutzfeldt W (1993) Preserved incretin activity of glucagon-like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory peptide in patients with type-2 diabetes mellitus. J Clin Invest 91:301–307

    PubMed  CAS  Google Scholar 

  • Ørskov C, Wettergren A, Holst JJ (1993) Biological effects and metabolic rates of glucagonlike peptide-1 7-36 amide and glucagonlike peptide-1 7-37 in healthy subjects are indistinguishable. Diabetes 42:658–661

    PubMed  Google Scholar 

  • Praz GA, Halban PA, Wollheim CB, Blondel B, Strauss JA, Reynold AE (1983) Regulation of immunoreactive insulin release from a rat cell line (RINm5F) Biochem J 210:345–352

    PubMed  CAS  Google Scholar 

  • Schepp W, Schmidtler J, Riedel T, Dehne K, Schusdziarra V, Holst JJ, Eng J, Raufman JP, Classen M (1994) Exendin-4 and exendin-(9-39)NH2: Agonist and antagonist, respectively, at the rat parietal cell receptor for glucagon-like peptide-1-(7-36)NH2. Eur J Pharmacol Mol Pharmacol Sect 269:183–191

    CAS  Google Scholar 

  • Schepp W, Dehne K, Riedel T, Schmidtler J, Schaffer K, Classen M (1996) Oxyntomodulin: A cAMP-dependent stimulus of rat parietal cell function via the receptor for glucagon-like peptide-1 (7-36)NH2. Digestion 57:398–405

    PubMed  CAS  Google Scholar 

  • Thorens B (1992) Expression cloning of the pancreatic β cell receptor for the gluco-incretin hormone glucagon-like peptide 1. Proc Natl Acad Sci, USA 89:8641–8645

    PubMed  CAS  Google Scholar 

  • Turton MD, O'Shea D, Gunn I, Beak SA, Edwards CMB, Meeran K, Chol SJ, Taylor GM, Heath MM, Lambert PD, Wilding JPH, Smith DM, Ghatei MA, Herbert J, Bloom SR (1996) A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379:69–72

    PubMed  CAS  Google Scholar 

  • Valverde I, Merida E, Delgado E, Trapote MA, Villanueva-Penacarillo ML (1993) Presence and characterization of glucagon-like peptide-1(7-36)amide receptors in solubilized membranes of rat adipose tissue. Endocrinol 132:75–79

    CAS  Google Scholar 

  • Van Delft J, Uttenthal LO, Hermida OG, Fontela T, Ghiglione M (1997) Identification of amidated forms of GLP-1 in rat tissues using a highly sensitive radioimmunoassay. Regul Pept 70:191–198

    PubMed  Google Scholar 

  • Volz A, Göke R, Lankat-Buttgereit B, Fehmann HC, Bode HP, Göke B (1995) Molecular cloning, functional expression, and signal transduction of the GIP-receptor cloned from a human insulinoma. FEBS Lett 373:23–29

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Kawai K, Ohashi S, Yokota C, Suzuki S, Yamashita K (1994) Structure-activity of glucagon-like peptide-1(7-36)amide: insulinotropic activities in perfused rat pancreas, and receptor binding and cyclic AMP production in RINm5F cells. J Endocrinol 140:45–52

    PubMed  CAS  Google Scholar 

References

  • Ballard FJ, Wallace JC, Francis GL, Read LC, Tomas FM (1996) Des(1-3)IGF-I: A truncated form of insulin-like growth factor-I. Int J Biochem Cell Biol 28:1085–1087

    PubMed  CAS  Google Scholar 

  • Boge A, Sauerwein H, Meyer HHD (1994) An enzyme immunoreceptor assay for the quantitation of insulin-like growth factor-1 and insulin receptors in bovine muscle tissue. Anal Biochem 216:406–412

    PubMed  CAS  Google Scholar 

  • Burvin R, LeRoith D, Harel H, Zloczower M, Marbach M, Karnieli E (1998) The effect of acute insulin-like growth factor-II administration on glucose metabolism in the rat. Growth Horm IGF Res 8:205–210

    PubMed  CAS  Google Scholar 

  • Cascieri MA, Saperstein R, Hayes NS, Green BG, Chicchi GG, Applebaum J, Bayne ML (1988) Serum half-live and biolo-gical activity of mutants of human insulin-like growth factor I which do not bind to serum binding proteins. Endocrinol 123:373–381

    CAS  Google Scholar 

  • Damon SE, Haugk KL, Swisshelm K, Quinn LS (1997) Developmental regulation of mac25/insulin-like growth factor-binding prtein-7 expression in skeletal myogenesis. Exp Cell Res 237:192–195

    PubMed  CAS  Google Scholar 

  • DeMeyts P (1994) The structural basis of insulin and insulin-like growth factor-I receptor binding and negative co-operativity, and its relevance to mitogenic versus metabolic signalling. Diabetologia 37[Suppl 2]:S135:S148

    CAS  Google Scholar 

  • Dideriksen LH, Jørgensen LN, Drejer K (1992) Carcinogenic effect on female rats after 12 months administration of the insulin analogue B10 Asp. Diabetes 41 (Suppl I):143A

    Google Scholar 

  • Drejer K (1992) The bioactivity of insulin analogues from in vitro receptor binding to in vivo glucose uptake. Diabetes/Metab Rev 8:259–286

    CAS  Google Scholar 

  • Ernst CW, White ME (1996) Hormonal regulation of IGF-binding protein-2 expression in C2C12 myoblasts. J Endocrinol 149:417–429

    PubMed  CAS  Google Scholar 

  • Fantl WJ, Johnson DE, Williams LT (1993) Signalling by receptor tyrosine kinases. Annu Rev Biochem 62:453–481

    PubMed  CAS  Google Scholar 

  • Froesch ER, Schmid C, Schwander J, Zapf J (1985) Actions of insulin-like growth factors. Ann Rev Physiol 47:443–467

    CAS  Google Scholar 

  • Frystyk J, Baxter RC (1998) Competitive assay for determination of rat insulin-like growth factor binding protein-3. Endocrinology 139:1454–1457

    PubMed  CAS  Google Scholar 

  • Gammeltoft S, Drejer K (1991) Increased mitogenic potency of high affinity insulin analogues in mouse NIH 3T3 fibroblasts. J Cell Biol (Suppl 15B):54

    Google Scholar 

  • Gazzano-Santoro H, Chen A, Mukku V (1998) A cell-based potency assay for insulin-like growth factor-1. Biologicals 26:61–68

    PubMed  CAS  Google Scholar 

  • Heinze E, Vetter U, Holl RW, Brenner RE (1995) Glibenclamide stimulates growth of human chondrocytes by IGF 1 dependent mechanisms. Exp Clin Endocrinol 103:260–265

    CAS  Google Scholar 

  • Hodgson D, May FEB, Westley BR (1995) Mutations at positions 11 and 60 of insulin-like growth factor 1 reveal differences between its interaction with the type I insulin-like-growth-factor receptor and the insulin receptor. Eur J Biochem 233:299–309

    PubMed  CAS  Google Scholar 

  • Jonsson KB, Frost A, Larrson R, Ljunghall S, Ljunggren O (1997) A new fluorometric assay for the determination of osteoblastic proliferation: Effects of glucocorticoids and insulin-like growth factor-1. Calcif Tissue Int 60:30–36

    PubMed  CAS  Google Scholar 

  • Kobayashi K, Agrawal K, Jackson IT, Vega JB (1996) The effect of insulin-like growth factor 1 on cranofacial bone healing. Plast Reconstr Surg 97:1129–1135

    PubMed  CAS  Google Scholar 

  • Laron Z (1999) Somatomedin-1 (recombinant insulin-like growth factor-1): Clinical pharmacology and potential treatment of endocrine and metabolic disorders. Biodrugs 11:55–70

    PubMed  CAS  Google Scholar 

  • Lee Y-R, Oshita Y, Tsuboi R, Ogawa H (1996) Combination of insulin-like growth factor (IGF)-I and IGF-binding protein-1 promotes fibroblast-embedded collagen gel contraction. Endocrinology 137:5278–5283

    PubMed  CAS  Google Scholar 

  • Moxley RT, Arner P, Moss A, Skottner A, Fox M, James D, Livingston JN (1990) Acute effects of insulin-like growth factor I and insulin on glucose metabolism in vivo. Am J Physiol; Endocrinol Metab 259:E561–E567

    CAS  Google Scholar 

  • Naruse K, Sakakibara F, Nakamura J, Koh N, Hotta N (1996) Enhancement and inhibition of mitogenic action of insulin-like growth factor I by high glucose in cultured bovine retinal pericytes. Life Sci 58:267–276

    PubMed  CAS  Google Scholar 

  • Nevo Z (1982) Somatomedins as regulators of proteoglycan synthesis. Conn Tiss Res 10:109–113

    CAS  Google Scholar 

  • Nielsen FC, Haselbacher G, Christiansen J, Lake M, Grønborg M, Gammeltoft S (1993) Biosynthesis of 10 kDa and 7.5 kDa insulin-like growth factor II in a human rhabdomyosarcoma cell line. Mol Cell Endocrinol 93:87–95

    PubMed  CAS  Google Scholar 

  • Pierson RW, Temin HM (1972) The partial purification from calf serum of a fraction with multiplication-stimulating activity for chicken fibroblasts in the cell culture and with non-suppressible insulin-like activity. J Cell Physiol 79:319–330

    PubMed  CAS  Google Scholar 

  • Rechler MM (1985) The nature and regulation of the receptors for insulin-like growth factors. Ann Rev Physiol 47:425–442

    CAS  Google Scholar 

  • Rinderknecht E, Humbel RE (1978a) The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem 253:2769–2776

    PubMed  CAS  Google Scholar 

  • Rinderknecht E, Humbel RE (1978b) Primary structure of human insulin-like growth factor II. FEBS Lett 89:283–286

    PubMed  CAS  Google Scholar 

  • Roth RA (1988) Structure of the receptor for insulin-like growth factor II: the puzzle amplified. Science 239:1269–1271

    PubMed  CAS  Google Scholar 

  • Salamon EA, Luo J, Murphy LJ (1989) The effect of acute and chronic insulin administration on insulin-like growth factor expression in the pituitary-intact and hypophysectomized rat. Diabetologia 32:348–353

    PubMed  CAS  Google Scholar 

  • Salmon WD, Daughaday WH (1957) A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vivo. J Lab Clin Med 49:825–836

    PubMed  CAS  Google Scholar 

  • Sara VR, Hall K (1990) Insulin-like growth factors and their binding proteins. Physiol Rev 70:591–614

    PubMed  CAS  Google Scholar 

  • Schäffer L, Kjeldsen T, Andersen AS, Wiberg FC, Larsen UD, Cara JF, Mirmira RG, Nakagawa SH, Tager HS (1993) Interaction of a hybrid insulin/insulin-like growth factor-I analog with chimeric insulin/type I insulin-like growth factor receptors. J Biol Chem 268:3044–3047

    PubMed  Google Scholar 

  • Shizume K, Marumoto Y, Sakano KI (1996) Hypoglycemic effect of insulin-like growth factor II (IGF-II) is mediated mainly through insulin and/or IGF-I receptor bot not IGF-II receptor. Clin Pediatric Endocrinol 5, Suppl 8:77–83

    Google Scholar 

  • Schlessinger J, Ullrich A (1992) Growth factor signaling by receptor tyrosine kinases. Neuron 9:383–391

    PubMed  CAS  Google Scholar 

  • Schmitz F, Hartmann H, Stümpel F, Creutzfeldt W (1991) In vivo metabolic action of insulin-like growth factor I in adult rats. Diabetologie 34:144–149

    CAS  Google Scholar 

  • Schoenle E, Zapf J, Humbel RE, Froesch ER (1982) Insulin-like growth factor I stimulates growth in hypophysectomized rats. Nature 296:252–253

    PubMed  CAS  Google Scholar 

  • Schwander J, Hauri C, Zapf J, Froesch ER (1983) Synthesis and secretion of insulin-like growth factor and its binding protein by the perfused rat liver: Dependence on growth hormone status. Endocrinol 113:297–305

    CAS  Google Scholar 

  • Simpson HL, Umpleby AM, Russell-Jones DL (1998) Insulinlike growth factor-1 and diabetes. A review. Growth Horm IGF Res 8:83–95

    PubMed  CAS  Google Scholar 

  • Steinke J, Sirek A, Lauris V, Lukens FDW, Renold AE (1962) Measurement of small quantities of insulin-like activity with rat adipose tissue. III. Persistence of serum insulin-like activity after pancreatectomy. J Clin Invest 41:1699–1707

    PubMed  CAS  Google Scholar 

  • Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61:203–212

    PubMed  CAS  Google Scholar 

  • Verspohl EJ, Maddux BA, Goldfine ID (1988) Insulin and insulin-like growth factor I regulate the same biological functions in HEP-G2 cells via their own specific receptors. J Clin Endocr Metab 67:169–174

    PubMed  CAS  Google Scholar 

  • Vikman K, Isgaard J, Edén S (1991) Growth hormone regulation of insulin-like growth factor-I mRNA in rat adipose tissue and isolated rat adipocytes. J Endocrinol 131:139–145

    PubMed  CAS  Google Scholar 

  • Zapf J, Waldvogel M, Froesch ER (1975) Binding of non-suppressible insulin-like activity to human serum: Evidence for a carrier protein. Arch Biochem Biophys 168:638–645

    PubMed  CAS  Google Scholar 

  • Zapf J, Hauri C, Waldvogel M, Froesch ER (1986) Acute metabolic effects and half-lives of intravenously administered insulinlike growth factors I and II in normal and hypophysectomized rats. J Clin Invest 77:1768–1775

    PubMed  CAS  Google Scholar 

References

  • Bell D, McDermont BJ (1995) Activity of amylin at CGRP1-preferring receptors coupled to positive contractile response in rat ventricular cardiomyocytes. Regul Pept 60:125–133

    PubMed  CAS  Google Scholar 

  • Bell D, Schluter KD, Zhou X-J, McDermont BJ, Piper HM (1995) Hypertrophic effect of calcitonin gene-related peptide (CGRP) and amylin on adult mammalian ventricular cardiomyocytes. J Mol Cell Cardiol 27:2433–2443

    PubMed  CAS  Google Scholar 

  • Bhasvar S, Watkins J, Young A (1998) Synergy between amylin and cholecystokinin for inhibition of food intake in mice. Physiol Behav 64:557–561

    Google Scholar 

  • Bryer-Ash M, Follett L, Hodges N, Wimalawansa SJ (1995) Amylin-mediated reduction in insulin sensitivity corresponds to reduced insulin receptor kinase activity in the rat in vivo. Metab Clin Exp 44:705–711

    PubMed  CAS  Google Scholar 

  • Castle AL, Kou CH, Han DH, Ivy JL (1998) Amylin-mediated inhibition of insulin-stimulated glucose transport in skeletal muscle. Am J Physiol 275; Endocrinol Metab 38:E531–536

    PubMed  CAS  Google Scholar 

  • Clementi G, Caruso A, Cutulli VCM, Prato A, de Bemardis E, Fiore CE, Amico-Roxas M (1995) Anti-inflammatory activity of amylin and CGRP in different experimental models of inflammation. Life Sci 57:PL193–PL197

    PubMed  CAS  Google Scholar 

  • Clementi G, Valerio C, Emmi I, Prato A, Drago F (1996) Behavioral effects of amylin injected intracerebroventricularly in the rat. Peptides 17:589–591

    PubMed  CAS  Google Scholar 

  • Clementi G, Caruso A, Cutuli VMC, Prato A, de Bernardis A, Amico-Roxas M (1997) Effect of amylin in various experimental models of gastric ulcer. Eur J Pharmacol 332:209–213

    PubMed  CAS  Google Scholar 

  • Cornish J, Callon KE, King AR, Cooper GJS, Reid IR (1998) Systemic administration of amylin increases bone mass, linear growth, and adiposity in male mice. Am J Physiol 275; Endocrinol Metab 38:E694–E699

    PubMed  CAS  Google Scholar 

  • Göke R, McGregor GP, Göke B (1993) Amylin alters biological effects of GLP-1 in the beta-cell. Digestion 54:355–356

    Google Scholar 

  • Guidobono F, Pagani F, Ticozzi C, Sibilia V, Pecile A, Netti C (1997) Protection by amylin of gastric erosions induced by indomethacin or ethanol in rats. Br J Pharmacol 120:581–596

    PubMed  CAS  Google Scholar 

  • Guidobono F (1998) Amylin and gastrointestinal activity. Gen Pharmacol 31:173–177

    PubMed  CAS  Google Scholar 

  • Janson J, Soeller WC, Roche PC, Nelson RT, Torchia AJ, Kreutter DK, Butler PC (1996) Spontaneous diabetes mellitus in transgenic mice expressing human islet amyloid polypeptide. Proc Natl Acad Sci USA 93:7283–7288

    PubMed  CAS  Google Scholar 

  • Leckstrom A, Ziv E, Shafrir E, Westermark P (1997) Islet amyloid polypeptide in Psammomys obesus (sand rat): Effects of nutritionally induced diabetes and recovery on low-energy diet or vanadyl sulfate treatment. Pancreas 15:358–366

    PubMed  CAS  Google Scholar 

  • Lutz TA, Rossi R, Althaus J, Del Prete E, Scharrer E (1998) Amylin reduces food intake more potently than calcitonin gene-related peptide (CGRP) when injected into the lateral brain ventricle in rats. Peptides 19:1533–1540

    PubMed  CAS  Google Scholar 

  • Macdonald IA (1997) Amylin and the gastrointestinal tract. Diabetes Med 14/Suppl 2:S24–S28

    Google Scholar 

  • Morley JE, Suarez MD, Mattamal M, Flood JF (1997) Amylin and food intake in mice: Effect on motivation to eat and mechanism of action. Pharmacol Biochem Behav 56:123–129

    PubMed  CAS  Google Scholar 

  • Mulder H, Gebre-Medhin S, Betsholtz C, Sundler F, Ahrén B (2000) Islet amyloid polypeptide (amylin)-deficient mice develop a more severe form of alloxan-induced diabetes. Am J Physiol Endocrinol Metab 278:E684–E691

    PubMed  CAS  Google Scholar 

  • Pittner RA, Albrandt K, Beaumont K, Gaeta LSL, Koda JE, Moore CX, Ritterhouse J, Rink TJ (1994) Molecular physiology of amylin. J Cell Biochem 555:19–28

    Google Scholar 

  • Rossowski WJ, Jiang NY, Coy DH (1997) Adrenomedullin, amylin, calcitonin gene-related peptide and their fragments are potent inhibitors of gastric acid secretion in rats. Eur J Pharmacol 336:51–63

    PubMed  CAS  Google Scholar 

  • Rink TJ, Beaumont K, Koda J, Young A (1993) Structure and biology of amylin. Trends Pharmacol Sci 14:113–118

    PubMed  CAS  Google Scholar 

  • Van Hulst KL, Born W, Muff R, Oosterwijk C, Blankenstein MA, Lips CJM, Fischer JA, Höppener JWM (1997) Biologically active human islet amyloid polypeptide/Amylin in transgenic mice. Eur J Endocrinol 136:107–113

    PubMed  Google Scholar 

  • Van Rossum D, Hanisch UK, Quirion R (1997) Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors. Neurosci Biobehav Rev 21:649–678

    PubMed  Google Scholar 

  • Villa I, Rubanacci A, Ravasi F, Ferrara AF, Guidobono F (1997) Effects of amylin on human osteoblast-like cells. Peptides 18:537–540

    PubMed  CAS  Google Scholar 

  • Vine W, Smith P, LaChappell R, Blase E, Young A (1998) Effects of amylin on renal function in the rat. Horm Metab Res 30:518–522

    PubMed  CAS  Google Scholar 

  • Wagoner PK, Chen C, Worley JF, Dukes ID, Oxford GS (1993) Amylin modulates β-cell glucose sensing via effects on stimulus-secretion coupling. Proc Natl Acad Sci, USA 90:9145–9149

    PubMed  CAS  Google Scholar 

  • Wimalawansa SJ (1996) Calcitonin gene-related peptide and its receptors: molecular genetics, physiology, pathophysiology, and therapeutic potentials. Endocrine Rev 17:533–585

    CAS  Google Scholar 

  • Wimalawansa SJ (1997) Amylin, calcitonin gene-related peptide, calcitonin, and adrenomedullin: a peptide superfamily. Crit Rev Neurobiol 11:167–239

    PubMed  CAS  Google Scholar 

  • Young AA, Gedulin B, Wolfe-Lopez D, Greene HE, Rink TJ, Cooper GJS (1992) Amylin and insulin in rat soleus muscle: dose response for cosecreted noncompetitive antagonists. Am J Physiol 263, Endocrinol Metab 26:E274–E281

    Google Scholar 

  • Young AA, Vine W, Gedulin BR, Pittner R, Janes S, Gaeta LSL, Percy A, Moore CX, Koda JE, Rink TJ, Beaumont K (1996) Preclinical pharmacology of pramlintide in the rat: comparison with human and rat amylin. Drug Dev Res 37:231–248

    CAS  Google Scholar 

References

  • Beaumont K, Kenney MA, Young AA, Rink TJ (1993) High affinity amylin binding sites in rat brain. Mol Pharmacol 44:493–497

    PubMed  CAS  Google Scholar 

  • Muff R, Born W, Fischer JA (1995) Receptors for calcitonin, calcitonin gene related peptide, amylin, and adrenomedullin. Can J Physiol Pharmacol 73:963–967

    PubMed  CAS  Google Scholar 

  • Perry KJ, Quiza M, Myers DE, Morfis M, Christopoulos G, Sexton PM (1997) Characterization of amylin and calcitonin receptor binding in the mouse α-thyroid-stimulating hormone thyrotroph cell line. Endocrinol 138:3486–4396

    CAS  Google Scholar 

  • Poyner DR (1997) Molecular pharmacology of receptors for calcitonin-gene-related peptide, amylin and adrenomedullin. Biochem Soc Transact 25:1032–1036

    CAS  Google Scholar 

  • Sheriff S, Fischer JE, Balasubramaniam A (1992) Characterization of amylin binding sites in a human hepatoblastoma cell line. Peptides 13:1193–1199

    PubMed  CAS  Google Scholar 

References

  • Bänder A, Pfaff W, Schmidt FH, Stork H, Schröder HG (1969) Zur Pharmakologie von HB419, einem neuen, stark wirksamen oralen Antidiabeticum. Arzneim Forsch/Drug Res 19:1363–1372

    Google Scholar 

  • Fieller EC (1944) A fundamental formula in the statistics of biological assay, and some applications. Quart J Pharm Pharmacol 17:117–123

    CAS  Google Scholar 

  • Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130

    CAS  Google Scholar 

  • Levene H (1960) Robust tests for equality of variances. In Olkin I, Ghury SG, Hoeffding W, Madow WG, Mann HB (eds) Contributions to probability and statistics. Essays in honor of Harold Hotteling. Stanford University Press, Stanford, CA., pp 278–292

    Google Scholar 

  • Miller RG (1966) Simultaneous statistical inference. McGraw-Hill Book Company, New York

    Google Scholar 

  • Scheffé H (1959) The analysis of variance. J Wiley & Sons, Inc., New York

    Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (Complete samples) Biometrika 52:591–611

    Google Scholar 

  • Sidak Z (1967) Rectangular confidence regions for the means of multivariate normal distributions. J Am Statist Assoc 62:626–631

    Google Scholar 

References

  • Bänder A, Pfaff W, Schmidt FH, Stork H, Schröder HG (1969) Zur Pharmakologie von HB 419, einem neuen, stark wirksamen oralen Antidiabeticum. Arzneim Forsch/Drug Res 19:1363–1372

    Google Scholar 

  • Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130

    CAS  Google Scholar 

  • Gill AM, Yen TT (1991) Effects of ciglitazone on endogenous plasma islet amyloid polypeptide and insulin sensitivity in obese-diabetic viable yellow mice. Life Sci 48:703–710

    PubMed  CAS  Google Scholar 

  • Root MA, Sigal MV, Anderson RC (1959) Pharmacology of 1-(p-chlorobenzenesulfonyl)-3-n-propylurea (Chlorpropamide). Diabetes 8:7–13

    PubMed  CAS  Google Scholar 

  • Sohda T, Momose Y, Meguro K, Kawamatsu Y, Sugiyama Y, Ikeda H (1990) Studies on antidiabetic agents. Synthesis and hypoglycemic activity of 5-[4-(pyridylalkoxy)benzyl]-2,4-thiazolidinediones. Arzneim Forsch/Drug Res 40:37–42

    CAS  Google Scholar 

References

  • Bänder A, Pfaff W, Schmidt FH, Stork H, Schröder HG (1969) Zur Pharmakologie von HB 419, einem neuen, stark wirksamen oralen Antidiabeticum. Arzneim Forsch/Drug Res 19:1363–1372

    Google Scholar 

  • Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130

    CAS  Google Scholar 

  • Geisen K, Reisig E, Härtel D (1981) Kontinuierliche Blutglucosemessung und Infusion bei wachen, frei beweglichen Hunden. Continuous blood glucose monitoring and infusion in freely mobile dogs. Res Exp Med (Berl) 179:103–111

    CAS  Google Scholar 

References

  • Bryer-Ash M, Follett L, Hodges N, Wimalawansa S (1995) Amylin-mediated reduction in insulin sensitivity corresponds to reduced insulin receptor kinase activity in the rat in vivo. Metabolism 44:705–711

    PubMed  CAS  Google Scholar 

  • Burnol A, Leturque A, Ferre P (1983) A method for quantifying insulin sensitivity in the anesthetized rat: The euglycemic insulin clamp technique coupled with isotopic measurement of glucose turnover. Reprod Nutr Dev 23:429–435

    PubMed  CAS  Google Scholar 

  • Burvin R, Armoni M, Karnieli E (1994) In vivo insulin action in normal and streptozotocin-induced diabetic rats. Physiol Behav 56:1–6

    PubMed  CAS  Google Scholar 

  • DeFronzo RA, Tobin JD, Andres R (1979) Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 237:E214–223

    PubMed  CAS  Google Scholar 

  • Cheung A, Bryer-Ash M (1994) Modified method for the performance of glucose insulin clamp studies in conscious rats. J Pharmacol Toxicol Meth 31:215–220

    CAS  Google Scholar 

  • Finegood DT, Bergman RN, Vranic A (1987) Estimation of endogenous glucose production during hyperinsulinemic-euglycemic glucose clamps. Comparison of unlabeled and labeled glucose infusates. Diabetes 36:914–924

    PubMed  CAS  Google Scholar 

  • Gelardi NL, Cha CM, Oh W (1991) Evaluation of insulin sensitivity in obese offspring of diabetic rats by hyperinsulinemic-euglycemic clamp technique. Pediatric Res 30:40–44

    CAS  Google Scholar 

  • Hirshman MF, Horton ES (1990) Glyburide increases insulin sensitivity and responsiveness in peripheral tissues of the rat as determined by the glucose clamp technique. Endocrinol 126:2407–2412

    CAS  Google Scholar 

  • Hulman S, Falkner B, Freyvogel N (1993) Insulin resistance in the conscious spontaneously hypertensive rat: euglycemic hyperinsulinemic clamp study. Metabolism 42:14–18

    PubMed  CAS  Google Scholar 

  • Kraegen EW, James DE, Bennett SP, Chishol DJ (1983) In vivo insulin sensitivity in the rat determined by euglycemic clamp. Am J Physiol 245 (Endocrinol Metab 8):E1–E7

    PubMed  CAS  Google Scholar 

  • Kraegen EW, James DE, Jenkins AB, Chisholm DJ (1985) Dose-response curves for in vivo sensitivity in individual tissues in rats. Am J Physiol; Endocrin Metab 11:E353–E362

    Google Scholar 

  • Lang CH (1992) Rates and tissue sites of noninsulin-and insulin-mediated glucose uptake in diabetic rats. Proc Soc Exp Biol Med 199:81–87

    PubMed  CAS  Google Scholar 

  • Lee MK, Miles PDG, Khoursheed M, Gao KM, Moossa AR, Olefsky JM (1994) Metabolic effects of troglitazone on fructose-induced insulin resistance in rats. Diabetes 43:1435–1439

    PubMed  CAS  Google Scholar 

  • Marfaing P, Ktorza A, Berthault MF, Predine J, Picon L, Penicaud L (1991) Effects of counterregulatory hormones on insulin-induced glucose utilization by individual tissues in rats. Diabete and Metabolisme (Paris) 17:55–60

    CAS  Google Scholar 

  • Ohsawa I; Sato J, Oshida Y, Sato Y, Sakamoto N (1991) Effect of glimepiride on insulin action in peripheral tissues of the rat determined by the euglycemic clamp technique. J Japan Diab Soc 34:873–874

    CAS  Google Scholar 

  • Smith D, Rossetti L, Ferrannini E, Johnson CM, Cobelli C, Toffolo G, Katz LD, DeFronzo RA (1987) In vivo glucose metabolism in the awake rat: Tracer and insulin clamp studies. Metabolism 36:1167–1174

    PubMed  CAS  Google Scholar 

  • Tominaga M, Matsumoto M, Igarashi M, Eguchi H, Sekikawa A, Sasaki H (1992) Insulin antibody does not cause insulin resistance during glucose clamping in rats. Diabet Res Clin Pract 18:143–151

    CAS  Google Scholar 

  • Tominaga M, Igarashi M, Daimon M, Eguchi H, Matsumoto M, Sekikawa A, Yamatani K, Sasaki H (1993) Thiazolidinediones (AD-4833 and CS-045) improve hepatic insulin resistance in streptozotocin-induced diabetic rats. Endocr J 40:343–349

    PubMed  CAS  Google Scholar 

  • Xie H, Zhu L, Zhang YL, Legare DJ, Lautt WW (1996) Insulin sensitivity test with a modified euglycemic technique in cats and rats. J Pharmacol Toxicol Meth 35:77–82

    CAS  Google Scholar 

References

  • Apweiler R, Kühnle HF, Ritter G, Schell R, Freund P (1995) Effect of the nee antidiabetic agent (−)-BM 13.0913.Na on insulin resistance in lean and obese Zucker rats. Metabolism 44:577–583

    PubMed  CAS  Google Scholar 

  • Bader S, Kiehn R, Häring HU (1993) Effekt von CS 045 auf die Kinaseaktivität des Insulinrezeptors im Skelettmuskel insulin-resistenter Zucker-Ratten. Diab Stoffw 2:56–61

    Google Scholar 

  • Chang AY, Wyse BM, Gilchrist BJ, Peterson T, Diani AR (1983) Ciglitazone, a new hypoglycemic agent. I: Studies in ob/ob and db/db mice, diabetic Chinese hamsters, and normal and streptozotocin-diabetic rats. Diabetes 32:830–838

    PubMed  CAS  Google Scholar 

  • Ciaraldi TP, Gilmore A, Olefsky JM, Goldberg M, Heidenreich KA (1990) In vitro studies on the action of CS-045, a new antidiabetic agent. Metabolism 39:1056–1062

    PubMed  CAS  Google Scholar 

  • Colca JR (1995) Insulin sensitiser drugs in development for the treatment in diabetes. Expert Opin Invest Drugs 4:27–29

    Google Scholar 

  • Diani AR, Peterson T, Samada GA, Wyse BM, Gilchrist BJ, Chang AY (1984) Ciglitazone, a new hypoglycemic agent. 4. Effects on pancreatic islets of C5BL/6J-ob/ob and C57BL/KsJ-db/db mice. Diabetologia 27:225–234

    PubMed  CAS  Google Scholar 

  • Fujita T, Sugiyama Y, Taketomi S, Sohda T, Kawamatsu Y, Iwatsuka H, Suzuki Z (1983) Reduction of insulin resistance in obese and/or diabetic animals by 5-[4-(1-methylcyclohexylmethoxy)benzyl]-thizolidine-2,4-dione (ADD-3878, U-63,287, ciglitazone), a new antidiabetic agent. Diabetes 32:804–810

    PubMed  CAS  Google Scholar 

  • Fujiwara T, Yoshioka S, Yoshioka T, Ushiyama I, Horikoshi H (1988) Characterization of new oral antidiabetic agent CS-045. Studies in KK and ob/ob mice and Zucker fatty rats. Diabetes 37:1549–1558

    PubMed  CAS  Google Scholar 

  • Fujiwara T, Wada M, Fukuda K, Fukami M, Yoshioka S, Yoshioka T, Horikoshi H (1991) Characterization of CS-045, a new oral antidiabetic agent, II. Effects on glycemic control and pancreatic islet structure at a late stage of the diabetes syndrome in C57BL/KsJ-db/db mice. Metabolism 40:1213–1218

    PubMed  CAS  Google Scholar 

  • Fujiwara T, Akuno A, Yoshioka S, Horikoshi H (1995) Suppression of hepatic gluconeogenesis in long-term troglitazone treated diabetic KK and C57BL/ksJ-db/db mice. Metabolism 44:486–490

    PubMed  CAS  Google Scholar 

  • Gill AM, Yen TT (1991) Effects of ciglitazone on endogenous plasma islet amyloid polypeptide and insulin sensitivity in obese-diabetic viable yellow mice. Life Sci 48:703–710

    PubMed  CAS  Google Scholar 

  • Hofmann C, Lorenz K, Colca JR (1991) Glucose transport deficiency in diabetic animals is corrected by treatment with the oral antihyperglycemic agent pioglitazone. Endocrinol 129:1915–1925

    CAS  Google Scholar 

  • Hofmann CA, Edwards CW, Hillman RM, Colca JR (1992) Treatment of insulin-resistant mice with the oral antidiabetic agent pioglitazone: evaluation of liver GLUT2 and phosphoenol-pyruvate carboxykinase expression. Endocrinol 130:735–740

    CAS  Google Scholar 

  • Ikeda H, Taketomi S, Sugiyama Y, Shimura Y, Sohda T Meguro K, Fujita T (1990) Effects of pioglitazone on glucose and lipid metabolism in normal and insulin resistant animals. Arzneim Forsch/Drug Res 40:156–162

    CAS  Google Scholar 

  • Kellerer M, Kroder G, Tippmer S, Berti L, Kiehn R, Mosthaf L, Häring H (1994) Troglitazone prevents glucose-induced insulin resistance of insulin receptor in rat-1 fibroblasts. Diabetes 43:447–453

    PubMed  CAS  Google Scholar 

  • Kirsch DM, Bachmann W, Häring HU (1984) Ciglitazone reverses cAMP-induced post-insulin receptor resistance in rat adipocytes in vitro. FEBS Lett 176:49–54

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Iwanshi M, Egawa K, Shigeta Y (1992) Pioglitazone increases insulin sensitivity by activating insulin receptor kinase. Diabetes 41:476–483

    PubMed  CAS  Google Scholar 

  • Kreutter DK, Andrews KM, Gibbs EM, Hutson NJ, Stevenson RW (1990) Insulinlike activity of new antidiabetic agent CP 68722 in 3T3-L1 adipocytes. Diabetes 39:1414–1419

    PubMed  CAS  Google Scholar 

  • Kuehnle HF (1996) New therapeutic agents for the treatment of NIDDM. Exp Clin Endocrinol Diabetes 104:93–101

    PubMed  CAS  Google Scholar 

  • Lee MK, Olefsky JM (1995) Acute effects of troglitazone on in vivo insulin action in normal rats. Metabolism 44:1166–1169

    PubMed  CAS  Google Scholar 

  • Lee MK, Miles PDG, Khoursheed M, Gao KM, Moossa AR, Olefsky JM (1994) Metabolic effects of troglitazone on fructose-induced insulin resistance in rats. Diabetes 43:1435–1439

    PubMed  CAS  Google Scholar 

  • Masuda K, Okamoto Y, Tuura Y, Kato S, Miura T, Tsuda K, Horikoshi H, Ishida H, Seino Y (1995) Effects of troglitazone (CS-045) on insulin secretion in isolated rat pancreatic islets and HIT cells: an insulinotropic mechanism distinct from glibenclamide. Diabetologia 38:24–30

    PubMed  CAS  Google Scholar 

  • Murano K, Inoue Y, Emoto M, Kaku K, Kaneko T (1994) CS-045, a new oral antidiabetic agent, stimulates fructose-2,6-bisphosphate production in rat hepatocytes. Eur J Pharmacol 254:257–262

    PubMed  CAS  Google Scholar 

  • Sohda T, Momose Y, Meguro K, Kawamatsu Y, Sugiyama Y, Ikeda H (1990) Studies on antidiabetic agents. Synthesis and hypoglycemic activity of 5-[4-(pyridylalkoxy)benzyl]-2,4-thiazolidinediones. Arzneim Forsch/Drug Res 40:37–42

    CAS  Google Scholar 

  • Stevenson RW, Hutson NJ, Krupp MN, Volkmann RA, Holland GF, Eggler JF, Clark DA, McPherson RK, Hall KL, Danbury BH, Gibbs EM, Kreutter DK (1990) Actions of novel antidiabetic agent englitazone in hyperglycemic hyperinsulinemic ob/ob mice. Diabetes 39:1218–1227

    PubMed  CAS  Google Scholar 

  • Stevenson RW, McPherson RK, Genereux PE, Danbury BH, Kreutter DK (1991) Antidiabetic agent englitazone enhances insulin action in nondiabetic rats without producing hypoglycemia. Metabolism 40:1268–1274

    PubMed  CAS  Google Scholar 

  • Sugiyama Y, Taketomi S, Shimura Y, Ikeda H, Fujita T (1990) Effects of pioglitazone on glucose and lipid metabolism in Wistar fatty rats. Arzneim Forsch/Drug Res 40:263–267

    CAS  Google Scholar 

  • Tafuri SR (1996) Troglitazone enhances differentiation, glucose uptake, and Glutl protein levels in 3T3-Ll adipocytes. Endocrinology 137:4706–4712

    PubMed  CAS  Google Scholar 

  • Teboul L, Gaillard D, Staccini L, Inadera H, Amri EZ, Grimaldi PA (1995) Thiazolidinediones and fatty acids convert myogenic cells into adipose-like cells. J Biol Chem 270:28183–28187

    PubMed  CAS  Google Scholar 

  • Tominaga M, Igarashi M, Daimon M, Eguchi H, Matsumoto M, Sekikawa A, Yamatani K, Sasaki H (1993) Thiazolidinediones (AD-4833 and CS-045) improve hepatic insulin resistance in streptozotocin-induced diabetic rats. Endocr J 40:343–349

    PubMed  CAS  Google Scholar 

  • Yoshioka S, Nishino H, Shiraki T, Ikeda K, Koike H, Okuno A, Wada M, Fujiwara T, Horikoshi H (1993) Antihypertensive effects of CS-045 treatment in obese Zucker rats. Metabolism 42:75–80

    PubMed  CAS  Google Scholar 

References

  • Allan GF, Xiaohua L, Tsai SY, Weigel NL, Edwards DP, Tsai MJ, O'Malley BW (1992) Hormone and antihormone induce distinct conformational changes which are central to steroid receptor activation. J Biol Chem 267:19513–19520

    PubMed  CAS  Google Scholar 

  • Berger A (2001) Resistin, a new hormone that links obesity with type 2 diabetes. Br Med J 322:193

    Google Scholar 

  • Berger J, Bailey P, Biswas C, Cullinan CA, Dobber TW, Hayes NS, Saperstein R, Smith RG, Leibowitz MD (1996) Thiazolidinediones produce a conformational change in peroxisomal proliferator-activated receptor-γ. Binding and activation correlate with antidiabetic actions in db/db mice. Endocrinology 137:4189–4195

    PubMed  CAS  Google Scholar 

  • Brun RP, Kim JB, Hu E, Altiok S, Spiegelman BM (1996) Adipocyte differentiation: a transcriptional regulatory cascade. Curr Opin Cell Biol 8:826–832

    PubMed  CAS  Google Scholar 

  • De Vos P, Lefebre AM, Miller SG, Guerre-Millo M, Wong K, Saladin R, Hamann LG, Briggs MR, Auwerx J (1996) Thiazolidinediones repress ob gene expression in rodents via activation of peroxisome proliferator-activated receptor-γ. J Clin Invest 98:1004–1009

    PubMed  Google Scholar 

  • Devchand PR, Keller H, Peters JM, Vazquez M, Gonzalez FJ, Wahli E (1996) The PPARα-leucotriene B4 pathway to inflammation control. Nature 384:39–43

    PubMed  CAS  Google Scholar 

  • Forman BM, Totonoz P, Chen J, Brun RP, Spiegelman PE, Evans RM (1995) 15-Deoxy-Δ12,14-prostagandin j2 is a ligand for the adipocyte determination factor PPARγ. Cell 83:803–812

    PubMed  CAS  Google Scholar 

  • Green S (1995) PPAR: A mediator of peroxisome proliferator action. Mutation Res 333:101–109

    PubMed  CAS  Google Scholar 

  • Hollons T, Yoshimura FK (189) Variation in enzymatic transient gene expression assays. Anal Biochem 182:411–418

    Google Scholar 

  • Keller H, Wahli W (1993) Peroxisome proliferator-activated receptors. A link between endocrinology and nutrition? Trends Endocrinol Metab 4:291–296

    PubMed  CAS  Google Scholar 

  • Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor-γ (PPAR-γ). J Biol Chem 270:121953–12956

    Google Scholar 

  • Lemberger T, Desvergne B, Wahli W (1996) Peroxisome proliferator-activated receptors: A nuclear receptor signaling pathway in lipid physiology. Annu Rev Cell Dev Biol 12:335–363

    PubMed  CAS  Google Scholar 

  • Murakami K, Tobe K, Die T, Mochizuki T, Ohashi M, Akanuma Y, Yazaki Y, Kadowaki T (1998) A novel insulin sensitizer acts a coligand for peroxisome proliferator-activated receptor-α (PPAR-α) and PPAR-γ. Effect of PPAR-α activation on abnormal lipid metabolisms in liver of Zucker fatty rats. Diabetes 47:1841–1847

    PubMed  CAS  Google Scholar 

  • Murphy GJ, Holder JC (2000) PPAR-γ agonists: therapeutic role in diabetes, inflammation and cancer. Trends Pharmacol Sci 21:469–474

    PubMed  CAS  Google Scholar 

  • Reginato MJ, Bailey ST, Krakow SL, Minami C, Ishii S, Tanaka H, Lazar MA (1998) A potent antidiabetic thiazolidinedione with unique peroxisome proliferator-activated receptor γ-activating properties. J Biol Chem 273:32679–32684

    PubMed  CAS  Google Scholar 

  • Ribon V, Johnson JH, Camp HS, Saltiel AR (1998) Thiazolidinediones and insulin resistance: Peroxisome proliferator-activated receptor γ activation stimulates expression of the CAP gene. Proc Natl Acad Sci USA 95:14751–14756

    PubMed  CAS  Google Scholar 

  • Schoonjans K, Staels B, Auwerx J (1996a) The peroxisome proliferator activated receptors (PPARs) and their effects on lipid metabolism and adipocyte differentiation. Biochem Biophys Acta 1302:93–109

    PubMed  CAS  Google Scholar 

  • Schoonjans K, Staels B, Auwerx J (1996b) Role of the peroxisome proliferator activated receptor (PPAR) in mediating effects of fibrates and fatty acids on gene expression. J Lipid Res 37:907–925

    PubMed  CAS  Google Scholar 

  • Schoonjans K, Martin G, Staels B, Auwerx J (1997) Peroxisome proliferator-activated receptors, orphans with ligands and functions. Curr Opin Lipidol 8:159–166

    PubMed  CAS  Google Scholar 

  • Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA (2001) The hormone resistin links obesity to diabetes. Nature 409:307–312

    PubMed  CAS  Google Scholar 

  • Stumvoll M (1998) Troglitazone. Diab Stoffw 7:136–143

    Google Scholar 

  • Tilley WD, Marcelli M, Wilson JD, McPhaul MJ (1989) Characterization and expression of a cDNA encoding the human androgen receptor. Proc Natl Acad Sci USA 86:327–331

    PubMed  CAS  Google Scholar 

  • Tortonoz P, Hu E, Spiegelman BM (1995) Regulation of adipocyte gene expression and differentiation by peroxisome proliferator activated receptor γ. Curr Opin Genet Devel 5:571–576

    Google Scholar 

  • Wu Z, Xie Y, Morrison RF, Bucher NLR, Farmer SR (1998) PPAR-γ induces the insulin-dependent glucose transporter GLUT4 in the absence of C/EBPα during the conversion of 3T3 fibroblasts into adipocytes. J Clin Invest 101:22–32

    PubMed  CAS  Google Scholar 

  • Young PW, Buckle DR, Cantello BCC, Chapman H, Clapham JC, Coyle PJ, Haigh D, Hindley RM, Holder JC, Kallender H, Latter AJ, Lawrie KWM, Mossakowska D, Murphy GJ, Cox LR, Smith SA (1998) Identification of high-affinity binding sites for the insulin sensitizer Rosiglitazone (BRL-49653) in rodent and human adipocytes using a radioiodinated ligand for peroxisomal proliferator-activated receptor γ. J Pharmacol Exp Ther 284:751–759

    PubMed  CAS  Google Scholar 

References

  • Anderson E, Long JA (1947) The effect of hyperglycemia on insulin secretion as determined with the isolated rat pancreas in a perfusion apparatus. Endocrinology 40:92–97

    PubMed  CAS  Google Scholar 

  • Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130

    CAS  Google Scholar 

  • Grodsky GM, Batts AA, Bennett LL, Vicella C, McWilliams NB, Smith DF (1963) Effects of carbohydrates on secretion of insulin from isolated rat pancreas. Am J Physiol 205:638–644

    PubMed  CAS  Google Scholar 

  • Grodsky GM, Heldt A (1984) Method for the in vitro perfusion of the pancreas. In: Larner J, Pohl SL (eds) Methods in Diabetes Research. Vol. I.: Laboratory Methods, Part B, John Wiley & Sons, New York, pp 137–146

    Google Scholar 

  • Muñoz M, Sweiry JH, Mann GE (1995) Insulin stimulates cationic amino acid transport in the isolated perfused rat pancreas. Exper Physiol 80:745–753

    Google Scholar 

  • Penhos JC, Wu C-H, Basabe JC, Lopez N, Wolff FW (1969) A rat pancreas-small gut preparation for the study of intestinal factor(s) and insulin release. Diabetes 18:733–738

    PubMed  CAS  Google Scholar 

  • Ross BD (1972) Endocrine organs: Pancreas. In Ross BD: Perfusion Techniques in Biochemistry. A Laboratory Manual in the Use of Isolated Perfused Organs in Biochemical Experimentation. Clarendon Press, Oxford, pp 321–355

    Google Scholar 

  • Silvestre RA, Salas M, Rodriguez-Gallardo J, Garcia-Hermida O, Fontella T, Marco J (1996) Effect of 8–32salmon calcitonin, an amylin antagonist, on insulin, glucagon and somatostatin release: Study in the perfused pancreas of the rat. Br J Pharmacol 117:347–350

    PubMed  CAS  Google Scholar 

  • Stagner JI, Samols E (1986) Retrograde perfusion as a model for testing the relative effects of glucose versus insulin on the A cell. J Clin Invest 77:1034–1037

    PubMed  CAS  Google Scholar 

  • Weir GC, Samols E, Loo S, Patel YC (1979) Somatostatin and pancreatic polypeptide secretion. Effects of glucagon, insulin, and arginine. Diabetes 28:35–40

    PubMed  CAS  Google Scholar 

References

  • Fletcher DJ, Weir G (1984) Tissue culture of dispersed islet cells. In: Larner J, Pohl StL (eds) Methods in Diabetes Research. Vol I: Laboratory Methods. Part A, John Wiley & Sons, New York, pp 167–173

    Google Scholar 

  • Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130

    CAS  Google Scholar 

  • Horaguchi A, Merrell RC (1981) Preparation of viable islet cells from dogs by a new method. Diabetes 30:455–458

    PubMed  CAS  Google Scholar 

  • Idahl LÅ (1972) A microperifusion device for pancreatic islets allowing concomitant recordings of intermediate metabolites and insulin release. Analyt Biochem 50:386–398

    PubMed  CAS  Google Scholar 

  • Kaiser N, Cerasi E (1991) Long term monolayer culture of adult rat islet of Langerhans. An experimental model for studying chronic modulation of β-cell function. In: Greenstein B (ed) Neuroendocrine Research Methods. Vol 1, Chapter 6, Harwood Academic Publ, pp 131–147.

    Google Scholar 

  • Lernmark Å (1974) The preparation of, and studies on, free cell suspensions from mouse pancreatic islets. Diabetologia 10:431–438

    PubMed  CAS  Google Scholar 

  • Malaisse-Lagae F, Malaisse WJ (1984) Insulin release by pancreatic islets. In: Larner J, Pohl StL (eds) Methods in Diabetes Research. Vol. I.: Laboratory Methods, Part B, John Wiley & Sons, New York, pp 147–152

    Google Scholar 

  • Marchetti P, Giannarelli R, di Carlo A, Zappella A, Masoni A, Masiello P, Marchetti A, Picaro L, Navalesi R (1989) In vitro function of porcine islets of Langerhans. Diabetes Nutr Metab Clin Exper 2:105–109

    Google Scholar 

  • Marincola F, Frank W, Clark W, Douglas M, Merrell R (1983) The independence of insulin release and ambient insulin in vitro. Diabetes 32:1162–1167

    PubMed  CAS  Google Scholar 

  • McDaniel ML, Colca JR, Kotagal N (1984) Islet cell membrane isolation and characterization. In: Larner J, Pohl StL (eds) Methods in Diabetes Research. Vol I: Laboratory Methods. Part A, John Wiley & Sons, New York, pp 153–166

    Google Scholar 

  • Panten U, Ishida H, Schauder P, Frerichs H, Hasselblatt A (1977) A versatile microperifusion system. Anal Biochem 82:317–326

    PubMed  CAS  Google Scholar 

  • Pipeleers DG (1984) Islet cell purification. In: Larner J, Pohl StL (eds) Methods in Diabetes Research. Vol. I.: Laboratory Methods, Part B, John Wiley & Sons, New York, pp 185–211

    Google Scholar 

  • Schatz H, Maier V, Hinz M, Nierle C, Pfeiffer EF (1972) The effect of tolbutamide and glibenclamide on the incorporation of [3H] leucine and on the conversion of proinsulin to insulin in isolated pancreatic islets. FEBS Lett 26:237–240

    PubMed  CAS  Google Scholar 

  • Yoon JW, Bachurski CJ, Shin SY, Srinivasappa J, Rayfield EJ (1984) Simple method for human pancreatic β cell cultures. In: Larner J, Pohl StL (eds) Methods in Diabetes Research. Vol. I.: Laboratory Methods, Part B, John Wiley & Sons, New York, pp 167–171

    Google Scholar 

References

  • Asfari M, Janjic D, Meda P, Li G, Halban PA, Wollheim CN (1992) Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. Endocrinology 130:167–178

    PubMed  CAS  Google Scholar 

  • Bhatena SJ, Oie HK, Gazdar AF, Voyles NR, Wilkins SD, Recant L (1982) Insulin, glucagon, and somatostatin receptors on cultured cells and clones from rat islet cell tumor. Diabetes 31:521–531

    Google Scholar 

  • Boyd III AE, Aguilar-Bryan L, Bryan J, Kunze DL, Moss L, Nelson DA, Rajan AS, Raef H, Xiang H, Yaney GC (1991) Sulfonylurea signal transduction. In. Bardin CW (ed) Proceedings of the 1990 Laurentian Hormone Conference. Rec Progr Horm Res 47:299–317

    PubMed  CAS  Google Scholar 

  • Chick WL, Warren S, Chute RN, Like AA, Lauris V, Kitchen KC (1977) A transplantable insulinoma in the rat. Proc Natl Acad Sci, USA 74:628–632

    PubMed  CAS  Google Scholar 

  • Erfrat S, Linde S, Kofod H, Spector D, Delannoy M, Grant S, Hanahan D, Baekkekov S (1988) Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene. Proc Natl Acad Sci USA 85:9037–9041

    Google Scholar 

  • Gazdar AF, Chick WL, Oie HK, Sims HL, King DL, Weir GC, Lauris V (1980) Continuous, clonal, insulin-, and somatostatin-secreting cell lines established from a transplantable rat islet cell tumor. Proc. Natl Acad Sci, USA 77:3519–3523

    PubMed  CAS  Google Scholar 

  • Geisen K, Hitzel V, Ökonomopoulos R, Pünter J, Weyer R, Summ HD (1985) Inhibition of 3H-glibenclamide binding to sulfonylurea receptors by oral antidiabetics. Arzneim Forsch/Drug Res 35:707–712

    CAS  Google Scholar 

  • Gögelein H, Hartung J, Englert HC, Schölkens BA (1998) HMR 1883, a novel cardioselective inhibitor of the ATP-sensitive potassium channel. Part I. Effects on cardiomyocytes, coronary flow and pancreatic β-cells. J Pharmacol Exp Ther 286:1453–1464

    PubMed  Google Scholar 

  • Hamaguchi K, Gaskins HR, Leiter EH (1991) NIT-1, a pancreatic β-cell line established from a transgenic NOD/Lt mouse. Diabetes 40:842–849

    PubMed  CAS  Google Scholar 

  • Hanahan D (1985) Heritable formation of pancreatic β-cell tumors in transgenic mice expressing recombinant insulin/SV40 oncogenes. Nature 315:115–122

    PubMed  CAS  Google Scholar 

  • Masuda K, Okamoto Y, Tuura Y, Kato S, Miura T, Tsuda K, Horikoshi H, Ishida H, Seino Y (1995) Effects of troglitazone (CS-045) on insulin secretion in isolated rat pancreatic islets and HIT cells: an insulinotropic mechanism distinct from glibenclamide. Diabetologia 38:24–30

    PubMed  CAS  Google Scholar 

  • Miyazaki J, Araki K, Yamato E, Ikegami H, Asano T, Oka Y, Yamagura K (1990) Establishment of a pancreatic β-cell line that retains glucose-inducible insulin secretion: Special reference to expression of glucose transporter isoforms. Endocrinology 127:126–132

    PubMed  CAS  Google Scholar 

  • Müller G, Hartz D, Pünter J, Ökonomopoulos R, Kramer W (1994) Differential interaction of glimepiride and glibenclamide with the b-cell sulfonylurea receptor. I. Binding characteristics. Biochim Biophys Acta 1191:267–277

    PubMed  Google Scholar 

  • Poitout V, Olson LK, Robertson RP (1996) Insulin-secreting cell lines: Classification, characteristics and potential applications. Diabet Metabol (Paris) 22:7–14

    CAS  Google Scholar 

  • Praz GA, Halban PA, Wollheim CB, Blondel B, Strauss AJ, Renold AE (1983) Regulation of immunoreactive-insulin release from a rat cell line (RINm5F). Biochem J 210:345–352

    PubMed  CAS  Google Scholar 

  • Santerre RF, Cook RA, Crisek RMD, Sharp JD, Schmidt RJ, William DC, Wilson CP (1981) Insulin synthesis in a clonal cell line of simian virus 40-transformed hamster pancreatic beta cells. Proc Natl Acad Sci USA 78:4339–4343

    PubMed  CAS  Google Scholar 

  • Simpson AM, Tuch BE, Swan MA, Tu J, Marshall GM (1995) Functional expression of the human insulin gene in human hepatoma cell line (HEP G2). Gene Therapy 2:223–231

    PubMed  CAS  Google Scholar 

  • Simpson AM, Beynon S, Maxwell L, Tuch BE, Marshall GM (1996) Dynamic insulin secretion and storage in a human hepatoma cell line-HEP G2ins/g. Diabetes 45, Suppl 2:27A

    Google Scholar 

  • Tuch BE, Beynon S, Tabiin MT, Sassoon R, Goodman RJ, Simpson AM (1997) Effect of β-cell toxins on genetically engineered insulin-secreting cells. J Autoimmun 10:239–244

    PubMed  CAS  Google Scholar 

References

  • Geisen K, Hitzel V, Ökonomopoulos R, Pünter J, Weyer R, Summ HD (1985) Inhibition of 3H-glibenclamide binding to sulfonylurea receptors by oral antidiabetics. Arzneim Forsch/Drug Res 35:707–712

    CAS  Google Scholar 

  • Kaubisch N, Hammer R, Wollheim C, Renold AE, Offord R (1982) Specific receptors for sulfonylureas in brain and in a β-cell tumor of the rat. Biochem Pharmacol 31:1171–1174

    PubMed  CAS  Google Scholar 

  • Müller G, Hartz D, Pünter J, Ökonomopoulos R, Kramer W (1994) Differential interaction of glimepiride and glibenclamide with the β-cell sulfonylurea receptor. I. Binding characteristics. Biochim Biophys Acta 1191:267–277

    PubMed  Google Scholar 

References

  • Aguilar-Bryan L, Nichols CG, Rajan AS, Parker Ch, Bryan J (1992) Co-expression of sulfonylurea receptors and KATP channels in hamster insulinoma tumor (HIT) cells. J Biol Chem 267:14934–14940

    PubMed  CAS  Google Scholar 

  • Angel I, Bidet S (1991) The binding site for [3H]glibenclamide in the rat cerebral cortex does nor recognize K-channel agonists or antagonists other than sulfonylureas. Fundam Clin Pharmacol 5:107–115

    PubMed  CAS  Google Scholar 

  • Ashcroft SJH, Ashcroft FM (1992) The sulfonylurea receptor. Biochem Biophys Acta 1175:45–59

    PubMed  CAS  Google Scholar 

  • Boyd III AE (1992) The role of ion channels in insulin secretion. J Cell Biochem 48:234–241

    CAS  Google Scholar 

  • Gaines KL, Hamilton S, Boyd III AE (1988) Characterization of the sulfonylurea receptor on beta cell membranes. J Biol Chem 263:2589–2592

    PubMed  CAS  Google Scholar 

  • Geisen K, Hitzel V, Ökonomopulos R, Pünter J, Weyer R, Summ HD (1985) Inhibition of 3H-glibenclamide binding to sulfonylurea receptors by oral antidiabetics. Arzneim Forsch/Drug Res 35:707–712

    CAS  Google Scholar 

  • Masuda K, Okamoto Y, Tuura Y, Kato S, Miura T, Tsuda K, Horikoshi H, Ishida H, Seino Y (1995) Effects of troglitazone (CS-045) on insulin secretion in isolated rat pancreatic islets and HIT cells: an insulinotropic mechanism distinct from glibenclamide. Diabetologia 38:24–30

    PubMed  CAS  Google Scholar 

  • Müller G, Hartz D, Pünter J, Ökonomopulos R, Kramer W (1994) Differential interaction of glimepiride and glibenclamide with the β-cell sulfonylurea receptor. I. Binding characteristics. Biochim Biophys Acta 1191:267–277

    PubMed  Google Scholar 

  • Panten U, Burgfeld J, Goerke F, Rennicke M, Schwanstecher M, Wallasch A, Zünkler BJ, Lenzen S (1989) Control of insulin secretion by sulfonylureas, meglitinide and diazoxide in relation to their binding to the sulfonylurea receptor in pancreatic islets. Biochem Pharmacol 8:1217–1229

    Google Scholar 

  • Panten U, Schwanstecher M, Schwanstecher C (1992) Pancreatic and extrapancreatic sulfonylurea receptors. Horm Metab Res 24:549–554

    PubMed  CAS  Google Scholar 

  • Panten U, Schwanstecher C, Schwanstecher M (1993) ATP-sensitive K+ channel: properties, occurrence, role in regulation of insulin secretion. In: Dickey BF, Birnbaumer L (eds) GTPases in Biology II, Handbook of Experimental Pharmacology Vol 108/II, Springer-Verlag Berlin, Heidelberg New York, pp 547–559

    Google Scholar 

  • Schmid-Antomarchi H, DeWeille J, Fosset M, Lazdunski M (1987a) The receptor for the antidiabetic sulfonylureas controls the activity of the ATP-modulated K+ channel in insulin-secreting cells. J Biol Chem 262:15840–15844

    PubMed  CAS  Google Scholar 

  • Schmid-Antomarchi H, deWeille J, Fosset M, Lazdunski M (1987b) The antidiabetic sulfonylurea glibenclamide is a potent blocker of the ATP-modulated K+ channel in insulin secreting cells. Biochem Biophys Res Commun 146:21–25

    PubMed  CAS  Google Scholar 

  • Sugiura M, Sawada Y, Yamada Y, Nakamura K, Iga T (1992) Prediction of therapeutic doses of sulfonylureas based on receptor occupancy theory. Xenobiot Metab Dispos 7:233–241

    CAS  Google Scholar 

References

  • Aguilar-Bryan L, Clement JP, Gonzalez G, Kunjilwar K, Babenko A, Bryan J (1998) Toward understanding the assembly and structure of KATP channels. Physiol Rev 78:227–245

    PubMed  CAS  Google Scholar 

  • Aguilar-Bryan L, Bryan J (1999) Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr Rev 20:101–135

    PubMed  CAS  Google Scholar 

  • Ashcroft SJH, Ashcroft FM (1992) The sulfonylurea receptor. Biochim Biophys Acta 1175:45–59

    PubMed  CAS  Google Scholar 

  • Ashfield R, Gribble FM, Ashcroft SJ, Ashcroft FM (1999) Identification of the high-affinity tolbutamide site on the SUR1 subunit of the K(ATP) channel. Diabetes 48:1341–1347

    PubMed  CAS  Google Scholar 

  • Babenko AP, Aguilar-Bryan L, Bryan J (1998) A view of SUR/KIR6.X, KATP channels. Annu Rev Physiol 60:667–687

    PubMed  CAS  Google Scholar 

  • Babenko AP, Gonzalez G, Bryan J (1999) The tolbutamide site of SUR1 and a mechanism for its functional coupling to KATP channel closure. FEBS Lett 459:367–376

    PubMed  CAS  Google Scholar 

  • Bryan J, Aguilar-Bryan L (1999) Sulfonylurea receptors: ABC transporters that regulate ATP-sensitive K+ channels. Biochim Biophys Acta 1461:285–303

    PubMed  CAS  Google Scholar 

  • Bryan LA, Nichols CG, Wechsler SW, Clement JP, Boyd AE, Gonzales G, Sosa HH, Nguy K, Bryan J, Nelson DA (1995) Cloning of the β cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 268:423–426

    PubMed  Google Scholar 

  • Clement IV JP, Kunjilwar K, Gonzalez G, Schwanstecher M, Panten U, Aguilar-Bryan L, Bryan J (1997) Association and stoichiometry of KATP channel subunits. Neuron 18:827–838

    PubMed  CAS  Google Scholar 

  • Grynkiewicz G, Pocnic M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescent properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  • Inagaki N, Gonoi T, Clement JP, Namba N, Inazawa J, Gonzalez G, Bryan LA, Seino S, Bryan J (1996) Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270:1167–1170

    Google Scholar 

  • Kane C, Shepherd RM, Squires PE, Johnson PR, James RF, Milla PJ, Aynsley-Green A, Lindley KJ, Dunne MJ (1996) Loss of functional KATP channels in pancreatic beta-cells causes persistent hyperinsulinemic hypoglycemia of infancy. Nature Med 2:1344–1347

    PubMed  CAS  Google Scholar 

  • Philipson LH (1995) ATP-sensitive K+ channels: paradigm lost, paradigm regained. Science 270:1159

    PubMed  CAS  Google Scholar 

  • Shi H, Moustaid-Moussa N, Wilkison WO, Zemel MB (1999) role of the sulfonylurea receptor in regulating human adipocyte metabolism. FASEB J 13:1833–1838

    PubMed  CAS  Google Scholar 

  • Skeer JM, Degano P, Coles B, Potier M, Ashcroft FM, Ashcroft SJH (1994) Determination of the molecular mass of the native beta-cell sulfonylurea receptor. FEBS Lett 338:98–102

    PubMed  CAS  Google Scholar 

  • Thomas PM, Cote GJ, Wohlik N, Haddad B, Mathew PM, Rabl W, Aquilar-Bryan L, Gagel RF, Bryan J (1995) Mutations in the sulfonylurea receptor gene in familial hyperinsulinemic hypoglycemia of infancy. Science 268:426–429

    PubMed  CAS  Google Scholar 

  • Thomas P, Ye Y, Lightner E (1996) Mutations of the pancreatic islet inward rectifier also lead to familial persistent hyperinsulinemic hypoglycemia of infancy. Hum Mol Gen 5:1809–1812

    PubMed  CAS  Google Scholar 

  • Ueda K, Komine J, Matsuo M, Seino S, Amachi T (1999) Cooperative binding of ATP and MgADP in the sulfonylurea receptor is modulated by glibenclamide. Proc Natl Acad Sci USA 96:1268–1272

    PubMed  CAS  Google Scholar 

  • Uhde I, Toman A, Gross I, Schwanstecher C, Schwanstecher M (1999) Identification of the potassium channel opener site on sulfonylurea receptors. J Biol Chem 274:28079–28082

    PubMed  CAS  Google Scholar 

References

  • Aguilar-Bryan L, Nelson DA, Vu QA, Humphrey MB (1990) Photoaffinity labeling and partial purification of the b cell sulfonylurea receptor using a novel, biologically active glyburide analog. J Biol Chem 265:8218–8224

    PubMed  CAS  Google Scholar 

  • Bernardi H, Fosset M, Lazdunski M (1988) Characterization, purification, and affinity labeling of the brain [3H]glibenclamide-binding protein, a putative neuronal ATP-regulated K+ channel. Proc Natl Acad Sci USA 85:9816–9820

    PubMed  CAS  Google Scholar 

  • Boyd AE III, Aguilar-Bryan L, Bryan J, Kunze DL, Moss L, Nelson DA, Rajan AS, Raef H, Xiang H, Yaney GC (1991) Sulfonylurea signal transduction. Rec Progr Horm Res 47:299–317

    PubMed  CAS  Google Scholar 

  • Kramer W, Oekonomopulos R, Pünter J, Summ HD (1988) Direct photolabeling of the putative sulfonylurea receptor in rat b-cell tumor membranes by [3H]glibenclamide. FEBS Lett 229:355–359

    PubMed  CAS  Google Scholar 

  • Kramer W, Müller G, Girbig F, Gutjahr U, Kowalewski S, Hertz D, Summ HD (1994) Differential interaction of glimepiride and glibenclamide with the β-cell sulfonylurea receptor. II. Photoaffinity labeling. Biochem Biophys Acta 119:278–290

    Google Scholar 

  • Wessel D, Flügge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143

    PubMed  CAS  Google Scholar 

  • Yip CC (1984) Photoaffinity probes for hormone receptor characterization. In: Larner J, Pohl SL (eds) Methods in Diabetes Research Vol I: Laboratory Methods, Part A, pp 3–14, John Wiley & Sons, New York

    Google Scholar 

References

  • Boyd III AE, Aguilar-Bryan L, Bryan J, Kunze DL, Moss L, Nelson DA, Rajan AS, Raef H, Xiang H, Yaney GC (1991) Sulfonylurea signal transduction. Rec Progr Horm Res 47:299–317

    PubMed  CAS  Google Scholar 

  • Daniel S, Malkowitz L, Wang HC, Beer B, Blume AJ, Ziai MR (1991) Screening for potassium channel modulators by a high through-put 86-Rubidium efflux assay in a 96-well microtiter plate. J Pharmacol Meth 25:185–193

    CAS  Google Scholar 

  • Hu W, Toral J, Cernovi P, Ziai R, Sokol PT (1995) Depolarization-induced 86Rb+ efflux in CHO cells expressing a recombinant potassium channel. J Pharmacol Toxicol Meth 34:1–7

    CAS  Google Scholar 

  • Niki I, Kelly RP, Ashcroft SJH, Ashcroft FM (1989) ATP-sensitive K-channels in HIT T15 β-cells studied by patch-clamp methods, 86Rb efflux and glibenclamide binding. Pflügers Arch 415:47–55

    PubMed  CAS  Google Scholar 

  • Niki I, Nicks JL, Aschroft SJH (1990) The β-cell glibenclamide receptor is an ADP-binding protein. Biochem J 268:713–718

    PubMed  CAS  Google Scholar 

  • Schmid-Antomarchi H, De Weille J, Fosset M, Lazdunski M (1987) The receptor for antidiabetic sulfonylureas controls the activity of the ATP-modulated K+ channel in insulin secreting cells. J Biol Chem 262:15840–15844

    PubMed  CAS  Google Scholar 

References

  • Boyd III AE (1992) The role of ion channels in insulin secretion. J Cell Biochem 48:234–241

    CAS  Google Scholar 

  • Boyd III AE Aguilar-Bryan L, Bryan J, Kunze DL, Moss L, Nelson DA, Rajan AS, Raef H, Xiang H, Yaney GC (1991) Sulfonylurea signal transduction. Rec Progr Horm Res 47:299–317

    PubMed  CAS  Google Scholar 

  • Bryan J, Aguilar-Bryan (1997) The ABCs of ATP-sensitive potassium channels. Curr Opin Cell Biol 9:553–559

    PubMed  CAS  Google Scholar 

  • de Weille J, Schmid-Antomarchi H, Fosset, M, Lazdunski M (1988) ATP-sensitive K+ channels that are blocked by hypoglycemia-inducing sulfonylureas in insulin-secreting cells are activated by galanin, a hyperglycemia-inducing hormone. Proc Natl Acad Sci, USA, 85:1312–1316

    PubMed  Google Scholar 

  • de Weille JR, Fossel M, Mourre C, Schmid-Antomarchi H, Bernardi H, Lazdunski M (1989) Pharmacology and regulation of ATP-sensitive K+ channels. Pflüger's Arch 441 (Suppl 1):S80–S87

    Google Scholar 

  • Dunne MJ, Illot MC, Petersen OH (1987) Interaction of diazoxide, tolbutamide and ATP on nucleotide-dependent K+ channels in an insulin-secreting cell line. J Membrane Biol 99:215–224

    CAS  Google Scholar 

  • Gögelein H, Hartung J, Englert HC, Schölkens BA (1998) HMR 1883, a novel cardioselective inhibitor of the ATP-sensitive potassium channel. Part I. Effects on cardiomyocytes, coronary flow and pancreatic β-cells. J Pharmacol Exp Ther 286:1453–1464

    PubMed  Google Scholar 

  • Gomora JC, Enyeart JJ (1999) Dual pharmacological properties of a cyclic AMP-sensitive potassium channel. J Pharmacol Exp Ther 290:266–275

    PubMed  CAS  Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current re-cordings from cells and cell-free membrane patches. Pflüger's Arch 391:85–100

    CAS  Google Scholar 

  • Henquin JC, Meissner HP (1984) Effects of theophylline and dibutyryl cyclic adenosine monophosphate on the membrane potential of mouse pancreatic β-cells. J Physiol 351:595–612

    PubMed  CAS  Google Scholar 

  • Henquin JC, Schmeer W, Henquin M, Meissner HP (1984) Forskolin suppresses the slow cyclic variations of glucose-induced electrical activity in pancreatic β cells. Biochem Biophys Res Commun 120:797–803

    PubMed  CAS  Google Scholar 

  • Henquin JC, Schmeer W, Henquin M, Meissner HP (1985) Effects of a calcium channel agonist on the electrical, ionic and secretory events in mouse pancreatic β-cells. Biochem Biophys Res Commun 131:980–986

    PubMed  CAS  Google Scholar 

  • Hu S, Wang S, Fanelli B, Bell PA, Dunning BE, Geisse S, Schmitz R, Boettcher BR (2000) Pancreatic β-cell KATP channel activity and membrane binding studies with netaglinide: a comparison with sulfonylureas and repaglinide. J Pharmacol Exp Ther 293:444–452

    PubMed  CAS  Google Scholar 

  • Kozlowski RZ, Sturgess NC, Hales CN, Ashford MLJ (1988) Inhibition of the ATP-K+ channel by glibenclamide in a rat insulinoma cell line. Br J Pharmacol 93:296P

    Google Scholar 

  • Lindau M, Neher E (1988) Patch-clamp techniques for time-resolved capacitance measurements in single cells. Pflüger's Arch 411:137–146

    CAS  Google Scholar 

  • Meissner HP (1990) Membrane potential measurements in pancreatic β cells with intracellular microelectrodes. Meth Enzymol 192:235–246

    PubMed  CAS  Google Scholar 

  • Nelson TY, Gaines KL, Rajan AS, Berg M, Boyd III AE (1987) Increased cytosolic calcium. A signal for sulfonylurea-stimulated insulin release from beta cells. J Biol Chem 262:2606–2612

    Google Scholar 

  • Niki I, Kelly RP, Ashcroft SJH, Ashroft FM (1989) ATP-sensitive K-channels in HIT T15 β-cells studied by patch-clamp methods, 86Rb efflux and glibenclamide binding. Pflügers Arch 415:47–55

    PubMed  CAS  Google Scholar 

  • Rajan AS, Aguilar-Bryan L, Nelson DA, Nichols CG, Wechsler SW, Lechago J, Bryan J (1993) Sulfonylurea receptors and ATP-sensitive K+ channels in clonal pancreatic β cells. Evidence for two high affinity sulfonylurea receptors. J Biol Chem 268:15221–15228

    PubMed  CAS  Google Scholar 

  • Rorsman P, Trube G (1985) Glucose dependent K+ channels in pancreatic B-cells are regulated by intracellular ATP. Pflüger's Arch 405:305–309

    CAS  Google Scholar 

  • Rorsman P, Trube G (1986) Calcium and delayed potassium currents in mouse pancreatic β-cells under voltage-clamp conditions. J Physiol 374:531–550

    PubMed  CAS  Google Scholar 

  • Rorsman P, Bokvist K, Ämmälä C, Eliasson L, Renström E, Gäbel J (1994) Ion channels, electrical activity and insulin secretion. Diabete and Metabolisme (Paris) 20:138–145

    CAS  Google Scholar 

  • Schwanstecher C, Dickel C, Panten U (1992) Cytosolic nucleotides enhance the tolbutamide sensitivity of the ATP-dependent K+ channel in mouse pancreatic B cells by their combined actions at inhibitory and stimulatory receptors. Mol Pharmacol 41:480–486

    PubMed  CAS  Google Scholar 

  • Shieh C-C, Feng J, Buckner SA, Brioni JD, Coghlan MJ, Sullivan JP, Gopalakrishnan M (2000) Functional implication of spare ATP-sensitive K+ channels in bladder smooth muscle cells. J Pharmacol Exp Ther 296:669–675

    Google Scholar 

  • Shindo T, Katayama Y, Horio Y, Kurachi Y (2000) MCC-134, a novel vascular relaxing agent, is an inverse agonist for the pancreatic-type ATP-sensitive K+ channel. J Pharmacol Exp Ther 292:131–135

    PubMed  CAS  Google Scholar 

  • Sturgess NC, Kozlowski RZ, Carrington CA, Hales CN, Ashford MLJ (1988) Effects of sulphonylureas and diazoxide on insulin secretion and nucleotide-sensitive channels in an insulinsecreting cell line. Br J Pharmacol 95:83–94

    PubMed  CAS  Google Scholar 

  • Trube G, Rorsman P, Ohno-Shosaku T (1986) Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic β-cells. Pflügers Arch 407:493–499

    PubMed  CAS  Google Scholar 

  • Wahl MA, Straub SG, Ammon HPT (1993) Vasoactive intestinal polypeptide-augmented insulin release: action on ionic fluxes and electrical activity of mouse islets. Diabetologia 36:920–925

    PubMed  CAS  Google Scholar 

  • Wang W, Giebisch G (1991) Dual modulation of renal ATP-sensitive K+ channel by protein kinases A and C. Proc Natl Acad Sci USA 88:9722–9725

    PubMed  CAS  Google Scholar 

  • Zünkler BJ, Lenzen S, Männer K, Panten U, Trube G (1988) Concentration-dependent effects of tolbutamide, meglitinide, glipizide, glibenclamide and diazoxide on ATP-regulated K+ currents in pancreatic B-cells. Naunyn-Schmiedeberg's Arch Pharmacol 337:225–230

    Google Scholar 

References

  • Alexander B, Mathie RT, Ralevic V, Burnstock G (1992) An isolated dual-perfused rabbit liver preparation for the study of hepatic blood flow regulation. J Pharm Meth 27:17–22

    CAS  Google Scholar 

  • Alexander B, Aslam M, Benjamin IS (1995) Hepatic function during prolonged isolated rat liver perfusion using a new miniaturized perfusion circuit. J Pharmacol Toxicol Meth 34:203–210

    CAS  Google Scholar 

  • Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130

    CAS  Google Scholar 

  • Miller TB (1984) Use of liver perfusion for metabolic studies. In: Larner J, Pohl SL (eds) Methods in Diabetes Research. Vol I: Laboratory Methods. Part A, John Wiley & Sons, New York, pp 143–151

    Google Scholar 

  • Ross BD (1972) Perfusion techniques in biochemistry. A laboratory manual in the use of isolated perfused organs in biochemical experimentation. Clarendon Press, Oxford. pp 135–220

    Google Scholar 

  • Sugano T, Suda K, Shimada M, Oshino N (1978) Biochemical and ultrastructural evaluation of isolated rat liver systems perfused with a haemoglobin-free medium. J Biochem 83:995–1007

    PubMed  CAS  Google Scholar 

References

  • Agius L, Chowdhury MH, Davis SN, Alberti KGMM (1986) Regulation of ketogenesis, gluconeogenesis, and glycogen synthesis by insulin and proinsulin in rat hepatocyte monolayer cultures. Diabetes 35:1286–1293

    PubMed  CAS  Google Scholar 

  • Alvarez JF, Cabello MA, Felíu JE, Mato JM (19897) A phosphooligosaccharide mimics insulin action on glycogen phosphorylase and pyruvate kinase activities in isolated rat hepatocytes. Biochem Biophys Res Commun 147:765–771

    Google Scholar 

  • Benelli C, Caron M, de Gallé B, Fouque F, Cherqui G, Clot JP (1994) Evidence for a role of protein kinase C in the activation of the pyruvate dehydrogenase complex by insulin in Zajdela hepatoma cells. Metabolism 43:1030–1034

    PubMed  CAS  Google Scholar 

  • Berry MN, Friend DS (1969) High-yield preparation of isolated rat liver parenchymal cells. A biochemical and fine structural study. J Cell Biol 43:506–520

    PubMed  CAS  Google Scholar 

  • Caro JF, Poulos J, Ittoop O, Pories WJ, Flickinger EG, Sinha MK (1988) Insulin-like growth factor I binding in hepatocytes from human liver, human hepatoma, and normal, regenerating and fetal rat liver. J Clin Invest 81:976–981

    PubMed  CAS  Google Scholar 

  • Chowdhury MH, Agius L (1987) Epidermal growth factor counteracts the glycogenic effect of insulin in parenchymal hepatocyte cultures. Biochem J 247:307–314

    PubMed  CAS  Google Scholar 

  • Ciaraldi TP, Gilmore A, Olefsky JM, Goldberg M, Heidenreich KA (1990) In vitro studies on the action of CS-045, a new antidiabetic agent. Metabolism 39:1056–1062

    PubMed  CAS  Google Scholar 

  • Czok R, Lamprecht W (1974) Pyruvate, phosphoenol-pyruvate and D-glycerate-2-phosphate. In: Bergmeyer HJ (ed) Methods of Enzymatic Analysis, Vol 3, Verlag Chemie Weinheim, Academic Press New York, London. pp 1446–1451

    Google Scholar 

  • Forsayeth JR, Maddux BA, Goldfine IA (1986) Biosynthesis and processing of the human insulin receptor. Diabetes 35:837–846

    PubMed  CAS  Google Scholar 

  • Forsayeth JR, Montemurro A, Maddux BA, DePirro R, Goldfine ID (1988) Effect of monoclonal antibodies on human insulin receptor autophosphorylation, negative cooperativity, and downregulation. J Biol Chem 262:4134–4140

    Google Scholar 

  • Fukuda H, Katsurada A, Iritani N (1992) Nutritional and hormonal regulation of mRNA levels of lipogenic enzymes in primary cultures of rat hepatocytes. J Biochem 111:25–30

    PubMed  CAS  Google Scholar 

  • Gliemann J (1965) Insulin-like activity of dilute human serum assayed by an isolated adipose cell method. Diabetes 14:643–649

    PubMed  CAS  Google Scholar 

  • Gutmann I, Wahlefeld AM (1974) L-(+)-lactate determination with lactate dehydrogenase and NAD. In: Bergmeyer HJ (ed) Methods of Enzymatic Analysis, Vol 3, Verlag Chemie Weinheim, Academic Press New York, London. pp 1464–1468

    Google Scholar 

  • Kobayashi M, Hotta N, Komori T, Haga T, Koh N, Sakakibara F, Sakamoto N (1991) Antigluconeo-genetic effect of a new potent sulfonylurea drug, Hoe 490, in isolated hepatocytes from normal, fasted rats. J Japan Diab Soc 34:767–774

    CAS  Google Scholar 

  • Mellanby J, Williamson DH (1974) Acetoactetate. In: Bergmeyer HJ (ed) Methods of Enzymatic Analysis, Vol4, Verlag Chemie Weinheim, Academic Press New York, London. pp 1840–1843

    Google Scholar 

  • Podskalny JM, Takeda S, Silverman RE, Tran D, Carpentier JL, Orci L, Gorden P (1985) Insulin receptors and bioresponses in a human liver cell line (Hep G-2). Eur J Biochem 150:401–407

    PubMed  CAS  Google Scholar 

  • Seglen PO (1976) Preparation of isolated rat liver cells. In: Prescott DM (ed) Methods in Cell Biology, Vol XIII, Academic Press, New York, pp 29–83

    Google Scholar 

  • Verspohl EJ, Maddux BA, Goldfine IA (1988) Insulin and insulin-like growth factor regulate the same biological functions in Hep G2 cells via their own specific receptors. J Clin Endocrin Metab 67:169–174

    CAS  Google Scholar 

  • Wade DP, Knight BL, Soutar AK (1988) Hormonal regulation of low-density lipoprotein (LDL) receptor activity in human hepatoma Hep G2 cells. Insulin increases LDL receptor activity and diminishes its suppression by exogenous LDL. Eur J Biochem 174:213–218

    PubMed  CAS  Google Scholar 

  • Williamson DH, Mellanby J (1974) D-(−)-3-hydroxybutyrate. In: Bergmeyer HJ (ed) Methods of Enzymatic Analysis, Vol 4, Verlag Chemie Weinheim, Academic Press New York, London. pp 1836–1839

    Google Scholar 

References

  • Aoki M, Kaku K, Inoue H, Matsutani A, Kaneko T (1992) Tolbutamide inhibits cAMP-dependent phosphorylation of liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Diabetes 41:334–338

    PubMed  CAS  Google Scholar 

  • Furuya E, Uyeda K (1980) An activation factor of liver phosphofructokinase. Proc Natl Acad Sci USA 77:5861–5864

    PubMed  CAS  Google Scholar 

  • Gabbay RA, Lardy HA (1987) Insulin inhibition of hepatic cAMP-dependent protein kinase: Decreased affinity of protein kinase for cAMP and possible differential regulation of interchain sites 1 and 2. Proc Natl Acad Sci USA 84:2218–2222

    PubMed  CAS  Google Scholar 

  • Hatao K, Kaku K, Matsuda M, Tsuchiya M, Kaneko T (1985) Sulfonylurea stimulates liver fructose-2,6-bisphosphate formation in proportion to its hypoglycemic action. Diab Res Clin Pract 1:49–53

    CAS  Google Scholar 

  • Kaku K, Matsuda M, Matsutani A, Kaneko T (1986) Effect of tolbutamide on fructose-6-phosphate-2-kinase and fructose-2,6-bisphosphatase in rat liver. Biochem Biophys Res Commun 139:687–692

    PubMed  CAS  Google Scholar 

  • Mori K, Kaku K, Inoue H, Aoki M, Marsutani A, Kaneko T (1992) Effects of tolbutamide on fructose-2,6-bisphosphate formation and ketogenesis in hepatocytes from diabetic rats. Metabolism 41:706–710

    PubMed  CAS  Google Scholar 

  • Murano K, Inoue Y, Emoto M, Kaku K, Kaneko T (1994) CS045, a new oral antidiabetic agent, stimulates fructose-2,6-bisphosphate production in rat hepatocytes. Eur J Pharmacol 254:257–262

    PubMed  CAS  Google Scholar 

  • Pilkis SJ, El-Maghrabi MR (1988) Hormonal regulation of hepatic gluconeogenesis and glycolysis. Ann Rev Biochem 57:755–783

    PubMed  CAS  Google Scholar 

  • Richards CS, Uyeda K (1982) The effect of insulin and glucose on fructose-2,6-P2 in hepatocytes. Biochem Biophys Res Commun 109:394–401

    PubMed  CAS  Google Scholar 

  • Van Schaftingen E (1993) Glycolysis revisited. Diabetologia 36:581–588

    PubMed  Google Scholar 

  • Vaulont S, Kahn A (1994) Transcriptional control of metabolic regulation genes by carbohydrates. FASEB J 8:28–35

    PubMed  CAS  Google Scholar 

References

  • Daniels EL, Lewis SB (1982) Acute tolbutamide administration alone and combined with insulin enhances glucose uptake in the perfused rat hindlimb. Endocrinology 110:1840–1842

    PubMed  CAS  Google Scholar 

  • Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130

    CAS  Google Scholar 

  • Ruderman NB, Houghton CRS, Hems R (1971) Evaluation of the isolated perfused rat hindquarter for the study of muscle metabolism. Biochem J 124:639–651

    PubMed  CAS  Google Scholar 

References

  • Bähr M, von Holtey M, Müller G, Eckel J (1995) Direct stimulation of myocardial glucose transport and glucose transporter-1 (GLUT1) and GLUT4 protein expression by the sulfonylurea glimepiride. Endocrinology 136:2547–2553

    PubMed  Google Scholar 

  • Calderhead DM, Kitagawa K, Lienhard GE, Gould GW (1990) Translocation of the brain-type glucose transporter largely accounts for insulin stimulation of glucose transport in BC3H1 myocytes. Biochem J 269:597–601

    PubMed  CAS  Google Scholar 

  • Cooper DR, Vila MC, Watson JE, Nair G, Pollet RJ, Standaert M, Farese RV (1990) Sulfonylurea-stimulated glucose transport association with diacylglycerol-like activation of protein kinase C in BC3H1 myocytes. Diabetes 39:1399–1407

    PubMed  CAS  Google Scholar 

  • Davidson MB, Molnar IG, Furman A, Yamaguchi D (1991) Glyburide-stimulated glucose transport in cultured muscle cells via protein kinase C-mediated pathway requiring new protein synthesis Diabetes 40:1531–1538

    PubMed  CAS  Google Scholar 

  • Eckel J, Pandalis G, Reinauer H (1983) Insulin action on the glucose transport system in isolated cardiocytes from adult rat. Biochem J 212:385–392

    PubMed  CAS  Google Scholar 

  • Eckel J, Asskamp B, Reinauer H (1991) Induction of insulin resistance in primary cultured adult cardiac myocytes. Endocrinology 129:345–352

    PubMed  CAS  Google Scholar 

  • Ernst CW, White ME (1996) Hormonal regulation of IGF-binding protein-2 expression in proliferating C2C12 myoblasts. J Endocrinol 149:417–329

    PubMed  CAS  Google Scholar 

  • Gorray KC, Maimon J, Schneider BS (1990) Studies of antiproteolytic effects of glyburide on rat L6 myoblasts: comparisons with insulin. Metabolism 39:109–116

    PubMed  CAS  Google Scholar 

  • Kayalar C, Wong WT, Hendrickson L (1990) Differentiation of BC3Hl and primary skeletal muscle cells and the activity of their endogenous insulin-degrading enzyme are inhibited by the same metalloendoprotease inhibitors. J Cell Biochem 44:137–151

    PubMed  CAS  Google Scholar 

  • Klip A, Marette A (1992) Acute and chronic signals controlling glucose transport in skeletal muscle. J Cell Biochem 48:51–60

    PubMed  CAS  Google Scholar 

  • Klip A, Ramlal RJ (1987) T, Douen AG, Burdett E, Young D, Cartee GD, Holloszy JO (1988) Insulin-induced decrease in 5'-nucleotidase activity in skeletal muscle membranes. FEBS Lett 238:419–423

    PubMed  CAS  Google Scholar 

  • McCusker RH, Clemmons DR (1994) Effects of cytokines on insulin-like growth factor-binding protein secretion by muscle cells in vitro. Endocrinology 134:2095–2102

    PubMed  CAS  Google Scholar 

  • McMahon DK, Anderson PAW, Nassar R, Bunting JB, Saba Z, Oakeley AE, Malouf NN (1994) C2C12 cells: biophysical, biochemical, and immunocytochemical properties. Am J Physiol Cell Physiol 266:C1795–C1802

    CAS  Google Scholar 

  • Mitsumoto Y, Burdett E, Grant A, Klip A (1991) Differential expression of the GLUT1 and GLUT4 glucose transporters during differentiation of L6 muscle cells. Biochem Biophys Res Commun 175:652–659

    PubMed  CAS  Google Scholar 

  • Munson R, Calswell KL, Glaser L (1982) Multiple control for the synthesis of muscle-specific proteins in BC3Hl cells. J Cell Biol 92:350–356

    PubMed  CAS  Google Scholar 

  • Pardridge WM, Davidson MB, Casanello-Ertl D (1978) Glucose and amino acid metabolism in an established cell line of skeletal muscle cells. J Cell Physiol 96:309–317

    PubMed  CAS  Google Scholar 

  • Rogers BJ, Standaert ML, Pollet (1987) Direct effects of sulfonylurea agents on glucose transport in the BC3Hl myocyte. Diabetes 39:1292–1296

    Google Scholar 

  • Rosen KM, Wentworth BM, Rosenthal N, Villa-Komaroff L (1993) Specific, temporally regulated expression of the insulin-like growth factor II gene during muscle cell differentiation. Endocrinology 133:474–481

    PubMed  CAS  Google Scholar 

  • Saltiel AR, Fox JA, Sherline P, Cuatrecasas P (1986) Insulinstimulated hydrolysis of a novel glycolipid generates modulators of cAMP phosphodiesterase. Science 233:967–972

    PubMed  CAS  Google Scholar 

  • Sarabia V, Lam L, Burdett E, Leiter LA, Klip A (1992) Glucose transport in human skeletal muscle cells in culture. Stimulation by insulin and metformin. J Clin Invest 90:1386–1395

    PubMed  CAS  Google Scholar 

  • Schubert D, Harris AJ, Devine CE, Heinemann S (1974) Characterization of a unique muscle cell line. J Cell Biol 61:398–413

    PubMed  CAS  Google Scholar 

  • Standaert ML, Shimmel SD, Pollet RJ (1984) The development of insulin receptors and responses in the differentiating non-fusing muscle cell line BC3Hl. J Biol Chem 259:2337–2345

    PubMed  CAS  Google Scholar 

  • Wang PH, Beguinot F, Smith RJ (1987) Augmentation of the effects of insulin and insulin-like growth factors I and II on glucose uptake in cultured rat skeletal muscle cells by sulfonylureas. Diabetologia 30:797–803

    PubMed  CAS  Google Scholar 

  • Wang PH, Moller D, Flier JS, Nayak RC, Smith RJ (1989) Coordinate regulation of glucose transporter function, number, and gene expression by insulin and sulfonylureas in L6 skeletal muscle cells. J Clin Invest 84:62–67

    PubMed  CAS  Google Scholar 

  • Yaffe D (1986) Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc Natl Acad Sci USA 61:477–483

    Google Scholar 

  • Yaffe D, Saxel O (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature, Lond. 270:725–727

    CAS  Google Scholar 

References

  • Bischoff H (1991) Wirkung von Acarbose auf diabetische Spätkomplikationen und Risikofaktoren-Neue tierexperimentelle Ergebnisse. Akt Endokrin Stoffw 12:25–32

    Google Scholar 

  • Bischoff H (1994) Pharmacology of α-glucosidase inhibition Eur J Clin Invest 24, Suppl 3:3–10

    CAS  Google Scholar 

  • Bischoff H, Puls W, Krause HP, Schutt H, Thomas G (1985) Pharmacological properties of the novel glucosidase inhibitors BAY M1099 (Miglitol) and BAY O 1248. Diab Res Clin Pract Suppl 1:S53

    Google Scholar 

  • Lembcke B, Lamberts R, Creutzfeldt W (1991) Lysosomal storage of glycogen as a sequel of α-glucosidase inhibition by the absorbed deoxynojirimycin derivative emiglitate (BAYo1248). A drug-induced pattern of hepatic glycogen storage mimicking Pompe's disease (glycogenosis type II). Res Exp Med 191:389–404

    CAS  Google Scholar 

  • Shainkin R, Birk Y (1970) α-Amylase inhibitors from wheat. Isolation and characterization. Biochim Biophys Acta 221:502–513

    PubMed  CAS  Google Scholar 

References

  • Rick W, Stegbauer HP (1970) α-Amylase. Messung der reduzierenden Gruppen. In: Bergmeyer H (ed) Methoden der enzymatischen Analyse, Vol II, 2nd ed., pp 848–853

    Google Scholar 

References

  • Dahlqvist A (1964) Method for assay of intestinal disaccharidases. Anal Biochem 7:18–25

    PubMed  CAS  Google Scholar 

  • Matsuo T, Odaka H, Ikeda H (1992) Effect of an intestinal disaccharidase inhibitor (AO-128) on obesity and diabetes. Am J Clin Nutr 55, Suppl 1:314S–317S

    Google Scholar 

References

  • Madar Z (1983) Demonstration of amino acid and glucose transport in chicken small intestine everted sac as a student laboratory exercise. Biochem Educ 11:9–11

    CAS  Google Scholar 

  • Madar Z, Omusky Z (1991) Inhibition of intestinal α-glucosidase activity and postprandial hyperglycemia by α-glucosidase inhibitors in fa/fa rats. Nutr Res 11:1035–1046

    CAS  Google Scholar 

  • Lembcke B, Fölsch UR, Creutzfeldt W (1985) Effect of 1-desoxy-nojirimycin derivatives on small intestinal disaccharidase activities and on active transport in vitro. Digestion 31:120–127

    PubMed  CAS  Google Scholar 

References

  • Glick Z, Bray GA (1983) Effects of acarbose on food intake, body weight and fat depots in lean and obese rats. Pharmacol Biochem Behav 19:71–78

    PubMed  CAS  Google Scholar 

  • Ho RS, Aranda CG (1979) The influence of 2,2-dimethyl-1-(4-methylphenyl)-1-propanone (SaH 50-283) on food efficiency in rats. Arch Int Pharmacodyn 237:98–109

    PubMed  CAS  Google Scholar 

  • Ikeda H, Odaka H, Matsuo T (1991) Effect of a disaccharidase inhibitor,AO-128, on a high sucrose-diet-induced hyperglycemia in female Wistar fatty rats. Jpn Pharmacol Ther 19:155–150

    Google Scholar 

  • Le Marchand-Brustel Y, Rochet N, Grémeaux T, Marot I, Van Obberghen E (1990) Effect of an a-glycosidase inhibitor on experimentally induced obesity in mice. Diabetologia 33:24–30

    PubMed  Google Scholar 

  • Madar Z, Omusky Z (1991) Inhibition of intestinal α-glucosidase activity and postprandial hyperglycemia by α-glucosidase inhibitors in fa/fa rats. Nutr Res 11:1035–1046

    CAS  Google Scholar 

  • Matsuo T, Odaka H, Ikeda H (1992) Effect of an intestinal disaccharidase inhibitor (AO-128) on obesity and diabetes. Am J Clin Nutr 55, Suppl 1:314S–317S

    Google Scholar 

  • Okada H, Shino A, Ikeda H, Matsuo T (1992) Anti-obesity and antidiabetic actions of a new potent disaccharidase inhibitor in genetically obese-diabetic mice, KKAy. J Nut Sci Vitaminol 38:27–37

    Google Scholar 

  • Puls W, Keup U (1973) Influence of an α-amylase inhibitor (BAY d 7791) on blood glucose, serum insulin and NEFA in starch loading tests in rats, dogs and man. Diabetologia 9:97–101

    PubMed  CAS  Google Scholar 

  • Puls W, Keup U, Krause HP, Thomas G, Hoffmeister F (1977) Glucosidase inhibition. A new approach to the treatment of diabetes, obesity, and hyperlipoproteinaemia. Naturwiss 64:536–537

    PubMed  CAS  Google Scholar 

  • Takami K, Okada H, Tsukuda R, Matsuo T (1991) Antidiabetic actions of a disaccharidase inhibitor, AO-128, in spontaneously diabetic (GK) rats. Jpn J Pharmacol Ther 19:161–171

    Google Scholar 

References

  • Cameron NE, Cotter MA, Robertson S (1989) Contractile properties of cardiac papillary muscle in streptozotocin-diabetic rats and the effects of aldose reductase inhibition. Diabetologia 32:365–370

    PubMed  CAS  Google Scholar 

  • Clements RS (1979) Diabetic neuropathy — new concepts in its etiology. Diabetes 28:604–611

    PubMed  CAS  Google Scholar 

  • Geisen K, Utz R, Grötsch H, Lang HJ, Nimmesgern H (1994) Sorbitol-accumulating pyrimidine derivatives. Arzneim Forsch/Drug Res 44:1032–1043

    CAS  Google Scholar 

  • Kador PF, Robison WG, Kinoshita JH (1985) The pharmacology of aldose reductase inhibitors. Ann Rev Pharmacol Toxicol 25:691–714

    CAS  Google Scholar 

  • Pugliese G, Tilton RG, Speedy A, Chang K, Province MA, Kilo C, Williamson JR (1990) Vascular filtration function in galactose-fed versus diabetic rats: the role of polyol pathway activity. Metabolism 39:690–697

    PubMed  CAS  Google Scholar 

  • Rathbun WB (1980) Biochemistry of the lens and cataractogen-e-sis: Current concepts. Symposium on Ophthalmology. Veterinary Clinics of North America: Small Animal Practice 10:377–398

    PubMed  CAS  Google Scholar 

  • Sarges R, Oates PJ (1993) Aldose reductase inhibitors: Recent developments. Progr Drug Res 40:99–161

    CAS  Google Scholar 

  • Tilton RG, Chang K, Weigel C, Eades D, Sherman WR, Kilo C, Williamson JR (1988) Increased ocular blood flow and 125I-albumin permeation in galactose-fed rats: Inhibition by sorbinil. Invest Ophthalm Vis Sci 29:861–868

    CAS  Google Scholar 

  • Tilton RG, Chang K, Pugliese G, Eades DM, Province MA, Sherman WR, Kilo C, Williamson JR (1989) Prevention of hemodynamic and vascular filtration changes in diabetic rats by aldose reductase inhibitors. Diabetes 38:1258–1270

    PubMed  CAS  Google Scholar 

  • van Heyningen R (1959) Formation of polyols by the lens of the rat with “sugar” cataract. Nature 184:194–195

    Google Scholar 

  • Williamson JR, Chang K, Tilton RG, Prater C, Jeffrey JR, Weigel C, Sherman WR, Eades DM, Kilo C (1987) Increased vascular permeability in spontaneously diabetic BB/W rats and rats with mild versus severe streptozotocin-induced diabetes. Diabetes 36:813–821

    PubMed  CAS  Google Scholar 

  • Yue DK, Hanwell MA, Satchell PM, Tuftle JR (1982) The effect of aldose reductase inhibition on motor nerve conduction velocity in diabetic rats. Diabetes 31:789–794

    PubMed  CAS  Google Scholar 

References

  • Billon F, Delchambre Ch, Cloarec A, Sartori E, Teulon JM (1990) Aldose reductase inhibition by 2,4-oxo and thioxo derivates of 1,2,3,4-tetrahydroquinazoline. Eur J Med Chem 25:121–126

    CAS  Google Scholar 

  • Hayman S, Kinoshita JH (1965) Isolation and properties of lens aldose reductase. J Biol Chem 240:877–882

    PubMed  CAS  Google Scholar 

  • Jacobson M, Sharma YR, Cotlier E, Hollander JD (1983) Diabetic complications in lens and nerve and their prevention by Sulindac or Sorbinil: Two novel aldose reductase inhibitors. Invest Ophthalmol Vis Sci 24:1426–1429

    PubMed  CAS  Google Scholar 

  • Peterson MJ, Sarges R, Aldinger CE, MacDonald DP (1979) CP 45,634: A novel aldose reductase inhibitor that inhibits polyol pathway activity in diabetic and galactosemic rats. Metabolism 28:456–461

    PubMed  CAS  Google Scholar 

  • Terashima H, Hama K, Yamamoto R, Tsuboshima M, Kikkawa R, Hatanaka I, Shigeta Y (1984) Effects of a new aldose reductase inhibitor on various tissues in vitro. J Pharmacol Exp Ther 229:226–230

    PubMed  CAS  Google Scholar 

  • Terashima H, Tanaka M, Motoishi M, Yamamoto R, Hama K, Okegawa T, Kawasaki A (1988) Biochemical studies of a new aldose reductase inhibitor, ONO-2235. In: Sakamoto N, Kinoshita JH, Kador PF, Hotta N (eds) Polyol pathway and its role in diabetic complications. Excerpta Medica, Amsterdam, pp 82–87

    Google Scholar 

  • Varma S, Kinoshita JH (1976) Inhibition of lens aldose reductase by flavonoids — their possible role in the prevention of diabetic cataracts. Biochem Pharmacol 25:2505–2513

    PubMed  CAS  Google Scholar 

References

  • Calcutt NA, Mizisin AP, Kalichman MW (1994) Aldose reductase inhibition, Doppler flux and conduction in diabetic rat nerve. Eur J Pharmacol 251:27–33

    PubMed  CAS  Google Scholar 

  • Cameron NE, Leonard MB, Ross IS, Withing PH (1986) The effects of Sorbinil on peripheral nerve conduction velocity, polyol concentrations and morphology in the streptozotocin-diabetic rat. Diabetologia 29:168–174

    PubMed  CAS  Google Scholar 

  • Cameron NE, Cotter MA, Robertson S (1989) The effect of aldose reductase inhibition on the pattern of nerve conduction deficits in diabetic rats. Quart J Exp Physiol 74:917–926

    CAS  Google Scholar 

  • Cameron NE, Cotter MA, Low AP (1991) Nerve blood flow in early experimental diabetes in rats: relation to conduction deficits. Am J Physiol 261 E1–E8

    PubMed  CAS  Google Scholar 

  • Carrington AL, Ettlinger CB, Calcutt NA, Tomlinson DR (1991) Aldose reductase inhibition with imirestat-effects on impulse conduction and insulin-stimulation of Na+/K+-adenosine triphosphatase activity in sciatic nerves of streptozotocin-diabetic rats. Diabetologia 34:397–401

    PubMed  CAS  Google Scholar 

  • Gillon KRW, Hawthorne JN, Tomlinson DR (1983) Myo-inositol and sorbitol metabolism in relation to peripheral nerve function in experimental diabetes in the rat: The effect of aldose reductase inhibition. Diabetologia 25:365–371

    PubMed  CAS  Google Scholar 

  • Greene DA, DeJesus PV, Winegrad AI (1975) Effects of insulin and dietary myoinositol on impaired peripheral motor nerve conduction velocity in acute streptozotocin diabetes. J Clin Invest 55:1326–1336

    PubMed  CAS  Google Scholar 

  • Greene DA, Chakrabarti S, Lattimer SA, Sima AAF (1987) Role of sorbitol accumulation and myo-inositol depletion in paranodal swelling of large myelinated nerve fibres in the insulin-deficient spontaneously diabetic Bio-breeding rat. J Clin Invest 79:1479–1485

    PubMed  CAS  Google Scholar 

  • Hirata Y, Fujimori S, Okada K (1988) Effect of a new aldose reductase inhibitor, 8′-chloro-2′,3′-dihydrospiro[pyrrolidine-3,6′(5′H)-pyrrolo[1,2,3-de] [1,4]benzoxazine]-2,5,5′-trione (ADN-138), on delayed motor conduction velocity in streptozotocin-diabetic rats. Metabolism 37:159–163

    PubMed  CAS  Google Scholar 

  • Hotta N, Sigimura K, Kakuta H, Fukasawa H, Kimura M, Koh N, Matsumae H, Kitoh R, Sakamoto N (1988) Effects of a fructose-rich diet and an aldose reductase inhibitor on the development of diabetic neuropathy in streptozotocin-treated rats. In: Sakamoto N, Kinoshita JH, Kador PF, Hotta N (eds) Polyol pathway and its role in diabetic complications. Excerpta Medica, Amsterdam, pp 505–511

    Google Scholar 

  • Kikkawa R, Hatanaka I, Yasuda H, Kobayashi N, Shigeta Y, Terashima H, Morimura T, Tsuboshima M (1983) Effect of a new aldose reductase inhibitor, (E)-3-carboxymethyl-5-[(2E)-methyl-3-phenylpropylidene]rhodanine (ONO-2235) on peripheral nerve disorders in streptozotocin-diabetic rats. Diabetologia 24:290–292

    PubMed  CAS  Google Scholar 

  • Mayer JH, Tomlinson DR (1983) Prevention of defects of axonal transport and nerve conduction velocity by oral administration of myo-inositol or an aldose reductase inhibitor in streptozotocin-diabetic rats. Diabetologia 25:433–438

    PubMed  CAS  Google Scholar 

  • Miyoshi T, Goto I (1973) Serial in vivo determinations of nerve conduction velocity in rat tails. Physiological and pathological changes. Electroencephalogr Clin Neurophysiol 35:125–131

    PubMed  CAS  Google Scholar 

  • Price DE, Airey CM, Alani SM, Wales JK (1988) Effect of aldose reductase inhibition on nerve conduction velocity and resistance to ischemic conduction block in experimental diabetes. Diabetes 37:969–973

    PubMed  CAS  Google Scholar 

  • Schmidt RE, Plurad SB, Coleman BD, Williamson JR, Tilton RG (1991) Effects of sorbinil, dietary myo-inositol supplementation, and insulin on resolution of neuroaxonal dystrophy in mesenteric nerves of streptozotocin-induced diabetic rats. Diabetes 40:573–582

    Google Scholar 

  • Sharma AK, Thomas PK (1974) Peripheral nerve structure and function in experimental diabetes. J Neurol Sci 23:1–15

    PubMed  CAS  Google Scholar 

  • Sima AAF, Prashar A, Zhang WX, Chakrabarti S, Greene DA (1990) Preventive effect of long-term aldose reductase inhibition (Ponalrestat) on nerve conduction and sural nerve structure in the spontaneously diabetic Bio-Breeding rat. J Clin Invest 85:1410–1420

    PubMed  CAS  Google Scholar 

  • Stribling D, Mirrlees DJ, Harrison HE, Earl DCN, (1985) Properties of ICI 128,436, a novel aldose reductase inhibitor and its effects on diabetic complications in the rat. Metabolism 34:336–344

    PubMed  CAS  Google Scholar 

  • Tomlinson DR, Holmes PR, Mayer JH (1982) Reversal, by treatment with an aldose reductase inhibitor, of impaired axonal transport and motor nerve conduction velocity in experimental diabetes mellitus. Neurosci Lett 31:189–193

    PubMed  CAS  Google Scholar 

  • Tomlinson DR, Moriarty RJ, Mayer JH (1984) Prevention and reversal of defective axonal transport and motor nerve conduction velocity in rats with experimental diabetes by treatment with the aldose reductase inhibitor sorbinil. Diabetes 33:470–476

    PubMed  CAS  Google Scholar 

  • Yue DK, Hanwell MA, Satchell PM, Turtle JR (1982) The effect of aldose inhibition on motor nerve conduction velocity in diabetic rats. Diabetes 31:789–794

    PubMed  CAS  Google Scholar 

References

  • Calcutt NA, Mizisin AP, Kalichman MW (1994) Aldose reductase inhibition, Doppler flux and conduction in diabetic rat nerve. Eur J Pharmacol 251:27–33

    PubMed  CAS  Google Scholar 

References

  • Engerman RL (1989) Pathogenesis of diabetic retinopathy. Diabetes 38:1203–1206

    PubMed  CAS  Google Scholar 

  • Funada M, Okamoto I, Fujinaga Y, Yamana T (1987) Effects of aldose reductase inhibitor (M79175) on ERG oscillatory potential abnormalities in streptozotocin fructose-induced diabetes in rats. Jpn J Ophthalm 31:305–314

    CAS  Google Scholar 

  • Hotta N, Kakuta H, Fukasawa H, Koh N, Matsumae H, Kimura M, Sakamoto N (1988) Prevention of diabetic neuropathy by an aldose reductase inhibitor in fructose-fed streptomycindiabetic rats. In: Sakamoto N, Kinoshita JH, Kador PF, Hotta N (eds) Polyol pathway and its role in diabetic complications. Excerpta Medica, Amsterdam, pp 311–318

    Google Scholar 

  • Kozak WM, Marker NA, Elmer KK (1986) Effects of aldose reductase inhibition on the retina and health indices of streptozotocin-diabetic rats. Docum Ophthalm 64:355–377

    CAS  Google Scholar 

  • Kuwabara T, Cogan DG (1960) Studies on retinal vascular patterns. Arch Ophthalm 64:904–911

    CAS  Google Scholar 

  • Lightman S, Rechthand E, Terubayashi H, Palestine A, Rapoport A, Kador P (1987) Permeability changes in blood-retinal barrier of galactosemic rats are prevented by aldose reductase inhibitors. Diabetes 36:1271–1275

    PubMed  CAS  Google Scholar 

  • Nagata M, Robison WG (1988) Basement membrane thickening in retina and muscle of animal models of diabetes. In: Sakamoto N, Kinoshita JH, Kador PF, Hotta N (eds) Polyol pathway and its role in diabetic complications. Excerpta Medica, Amsterdam, pp 276–285

    Google Scholar 

  • Segawa M, Hirata Y, Fujimori S, Okada K (1988a) The development of electroretinogram abnormalities and the possible role of polyol pathway activity in diabetic hyperglycemia and galactosemia. Metabolism 37:454–460

    PubMed  CAS  Google Scholar 

  • Segawa M, Takahashi N, Namiki H, Masuzawa K (1988b) Electro-physiological abnormalities and polyol accumulation in retinas of diabetic and galactosemic rats. In: Sakamoto N, Kinoshita JH, Kador PF, Hotta N (eds) Polyol pathway and its role in dia-betic complications. Excerpta Medica, Amsterdam, pp 306–310

    Google Scholar 

References

  • Akagi Y, Tasaka H, Terubayashi H, Kador PF, Kinoshita JH (1988) Aldose reductase localization in rat sugar cataract. In: Sakamoto N, Kinoshita JH, Kador PF, Hotta N (eds) Polyol pathway and its role in diabetic complications. Excerpta Medica, Amsterdam, pp 170–181

    Google Scholar 

  • Ao S, Shingu Y, Kikuchi C, Takano Y, Nomura K, Fujiwara T, Oh-kubo Y, Notsu Y, Yamaguchi I (1991) Characterization of a novel aldose reductase inhibitor, FR74366, and its effects on diabetic cataract and neuropathy in the rat. Metabolism 40:77–87

    PubMed  CAS  Google Scholar 

  • Dvornik D, Simard-Duquesne, Krami M, Sestanj K, Gabbay KH, Kinoshita JH, Varma SD, Merola LO (1973) Polyol accumulation in galactosemic and diabetic rats: Control by an aldose reductase inhibitor. Science 182:1146–1148

    PubMed  CAS  Google Scholar 

  • Griffin BW, Chandler ML, DeSantis L (1984) Prevention of diabetic cataract and neuropathy in rats by two new aldose reductase inhibitors. Invest Ophthalm Vis Sci 25:136

    Google Scholar 

  • Hockwin O, Wegener A, Sisk DR, Dohrmann B, Kruse M (1985) Efficacy of AL-1576 in preventing naphthalene cataract in three rat strains. Slit lamp and Scheimpflug photographic study. Lens Res 2:321–335

    Google Scholar 

  • Kinoshita JH (1965) Cataracts in galactosemia. Invest Ophthalm 4:786–799

    CAS  Google Scholar 

  • Kinoshita JH (1974) Mechanisms initiating cataract formation. Invest Ophthalm 13:713–724

    CAS  Google Scholar 

  • Kinoshita JH, Fukushi S, Kador P, Merola LO (1979) Aldose reductase in diabetic complications of the eye. Metabolism 28 (Suppl 1):462–469

    PubMed  CAS  Google Scholar 

  • Müller P, Hockwin O, Ohrloff C (1985) Comparison of aldose reductase inhibitors by determination of IC 50 with bovine and rat lens extracts. Ophthalm Res 17:115–119

    Google Scholar 

  • Nishimura C, Akagi Y, Robison WG, Kador PF, Kinoshita JH (1988) Increased aldose reductase in galactosemic lens. In: Sakamoto N, Kinoshita JH, Kador PF, Hotta N (eds) Polyol pathway and its role in diabetic complications. Excerpta Medica, Amsterdam, pp 182–188

    Google Scholar 

  • Pirie A, van Heyningen R (1964) Effect of diabetes on the content of sorbitol, glucose, fructose and inositol in the human lens. Exp Eye Res 3:124–131

    PubMed  CAS  Google Scholar 

  • van Heyningen R (1959) Formation of polyols by the lens of the rat with “sugar” cataract. Nature 184:194–195

    Google Scholar 

  • Varma SD, Kinoshita JH (1976) Inhibition of lens aldose reductase by flavonoids — their possible role in the prevention of diabetic cataracts. Biochem Pharmacol 25:2505–2513

    PubMed  CAS  Google Scholar 

  • Wegener A, Hockwin O (1991) Benefit/risk assessment of ophthalmic anti-infectives. Chibret Intern J Ophthalmol 8:43–45

    Google Scholar 

References

  • Billon F, Delchambre Ch, Cloarec A, Sartori E, Teulon JM (1990) Aldose reductase inhibition by 2,4-oxo and thioxo derivates of 1,2,3,4-tetrahydroquinazoline. Eur J Med Chem 25:121–126

    CAS  Google Scholar 

  • Gonzales AM, Sochor M, Hothersall JS, McLean P (1986) Effect of aldose reductase inhibitor (sorbinil) on integration of polyol pathway, pentose phosphate pathway and glycolytic route in diabetic rat lens. Diabetes 35:1200–1205

    Google Scholar 

  • Griffin BW, McNatt LG, Chandler ML, York BM (1987) Effects of two new aldose reductase inhibitors, AL-1567 and AL-1576, in diabetic rats. Metabolism 36:486–490

    PubMed  CAS  Google Scholar 

  • Hockwin O (1989) Die Scheimpflug-Photographie der Linse. Fortschr Ophthalmol 86:304–311

    PubMed  CAS  Google Scholar 

  • Hu TS, Datiles M, Kinoshita JH (1983) Reversal of galactose cataract with sorbinil in rats. Invest Ophthalmol Vis Sci 24:640–644

    PubMed  CAS  Google Scholar 

  • Keller HW, Koch HR (1978) Experimental arabinose cataracts. Interdiscipl Topics Gerontol 12:141–146

    CAS  Google Scholar 

  • Lee SM; Schade SZ, Doughty CC (1985) Aldose reductase, NADPH, and NADP+ in normal, galactose-fed and diabetic rat lens. Biochem Biophys Acta 841:247–253

    PubMed  CAS  Google Scholar 

  • Mackic JB, Ross-Cisneros FN, McComb JG, Bekhor I, Weiss MH, Kannan R, Zlokovic BV (1994) Galactose-induced cataract formation in guinea pigs: Morphologic changes and accumulation of galactitol. Invest Ophthalm Vis Sci 35:804–810

    CAS  Google Scholar 

  • Meydani M, Martin A, Sastre J, Smith D, Dallal G, Taylor A, Blumberg J (1994) Dose-response characteristics of galactose-induced cataract in the rat. Ophthalm Res 26:368–374

    CAS  Google Scholar 

  • Müller P, Hockwin O, Ohrloff C (1985) Comparison of aldose reductase inhibitors by determination of IC 50 with bovine and rat lens extracts. Ophthalm Res 17:115–119

    Google Scholar 

  • Naeser et al. (1988) Sorbitol metabolism in the retina, optic nerve, and sural nerve of diabetic rats treated with an aldose reductase inhibitor

    Google Scholar 

  • Ohta Y, Yamasaki T Niwa T, Goto H, Majima Y, Ishiguro I (1999) Cataract development in 12-months-old rats fed a 25% galactose diet and its relation to osmotic stress and oxidative damage. Ophthalm Res 31:321–331

    CAS  Google Scholar 

  • Sakagami K, Igarashi H, Tanaka K, Yoshida A (1999) Organophosphate metabolic changes in the rat lens during the development of galactose-induced cataract. Hokkaido J Med Sci 74:457–466

    PubMed  CAS  Google Scholar 

  • Sato S, Mori K, Wyman M, Kador FP (1998) Dose-dependent prevention of sugar cataracts in galactose-fed dogs by the aldose reductase inhibitor M79175. Exp Eye Res 66:217–222

    PubMed  CAS  Google Scholar 

  • Sekiguchi M, Watanabe K, Eto M, Iwashima Y, Morikawa A, Oshima E, Chonan N, Takebe R, Ishii K (1988) The effect of the aldose reductase inhibitor ONO-2235 on the polyol pathway in diabetic Chinese hamsters. In: Sakamoto N, Kinoshita JH, Kador PF, Hotta N (eds) Polyol pathway and its role in diabetic complications. Excerpta Medica, Amsterdam, pp 88–92

    Google Scholar 

  • Varma S, Kinoshita JH (1976) Inhibition of lens aldose reductase by flavonoids — their possible role in the prevention of diabetic cataracts. Biochem Pharmacol 25:2505–2513

    PubMed  CAS  Google Scholar 

References

  • Hockwin O (1989) Die Scheimpflug-Photographie der Linse. Fortschr Ophthalmol 86:304–311

    PubMed  CAS  Google Scholar 

  • Hockwin O, Wegener A, Sisk DR, Dohrmann B, Kruse M (1985) Efficacy of AL-1576 in preventing naphthalene cataract in three rat strains. Slit lamp and Scheimpflug photographic study. Lens Res 2:321–335

    Google Scholar 

  • Holmen JB, Ekesten B, Lundgren B (1999) Naphthalen-induced cataract model in rats: A comparative study between slit and retroillumination images, biochemical changes and naphthalene dose and duration. Curr Eye Res 19:418–425

    PubMed  CAS  Google Scholar 

  • Rathbun WB, Nagasawa HT, Killen CE (1996a) Prevention of naphthalene-induced cataract and hepatic glutathione loss by the L-cysteine prodrugs, MTCA and PTCA. Exp Eye Res 62:433–441

    PubMed  CAS  Google Scholar 

  • Rathbun WB, Holleschau AM, Cohen JF, Nagasawa HT (1996b) Prevention of acetaminophen-and naphthalene-induced cataract and glutathione loss by CySSME. Invest Ophthalmol Vis Sci 37:923–929

    PubMed  CAS  Google Scholar 

  • Wegener A, Hockwin O (1991) Benefit/risk assessment of ophthalmic anti-infectives. Chibret Intern J Ophthalmol 8:43–45

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag

About this entry

Cite this entry

Vogel, H.G., Vogel, W.H., Schölkens, B.A., Sandow, J., Müller, G., Vogel, W.F. (2002). Antidiabetic activity1 . In: Vogel, H.G., Vogel, W.H., Schölkens, B.A., Sandow, J., Müller, G., Vogel, W.F. (eds) Drug Discovery and Evaluation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29837-1_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-29837-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42396-6

  • Online ISBN: 978-3-540-29837-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics