Skip to main content

Introduction Strategies in drug discovery and evaluation1

  • Reference work entry
Drug Discovery and Evaluation

1 0.1 Historical approaches in drug discovery

Today's medicine is based on traditional medicine. Traditional medicines exist in every continent of the globe and in every cultural area of the world. The most famous ones are traditional Chinese medicine in East Asia, Ayurvedic medicine in India, and formerly Galenic medicine in Europe, having same resemblance to each other (Vogel 1991).

Each of these traditional medicines has its own origin and an individual basic philosophy. The art of practicing Chinese medicine stretches back over several thousand years. The legendary culture hero, Shen-nong, is said to have tested many herbs for their medical properties. Pen-ts'ao, the first compilation of herbal medicines, is connected with his name (Unschuld 1973, 1986). Since ancient times, the Chinese have divided the world into five symbolic elements: Wood, Fire, Earth, Metal and Water. Everything in the world is dominated by one of these elements, and their constant interplay, combined with...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

References

  • Dahanukar SH, Thatte UM (1989) Ayurveda Revisited. Popular Prakashan Pvt. Ltd., Bombay

    Google Scholar 

  • Dash VB, Junius AMM (1987) A Handbook of Ayurveda. Concept Publ Comp, New Delhi

    Google Scholar 

  • Gruner OC (1930) A Treatise on the Canon of Medicine of Avicenna. Luzac & Co., London

    Google Scholar 

  • Koecher F (1963) Die babylonisch-assyrische Medizin in Texten und Untersuchungen. Vol 1–6. Walter de Gruyter & Co., Berlin

    Google Scholar 

  • Müller J (1982) Die pflanzlichen Heilmittel bei Hildegard von Bingen. Otto Müller Verlag, Salzburg

    Google Scholar 

  • Porkert M (1973) Die theoretischen Grundlagen der Chinesischen Medizin. Franz Steiner Verlag GmbH, Wiesbaden

    Google Scholar 

  • Schöner E (1964) Das Viererschema in der antiken Humoralpathologie. Beiheft zu Sudhoffs Archiv für Geschichte der Medizin und Naturwissenschaften, Nr. 4, Franz Steiner Verlag GmbH, Wiesbaden

    Google Scholar 

  • Siegel RE (1968) Galen's System of Physiology and Medicine: His Doctrines and Observations on Blood Flow, Respiration, Humors, and Internal Diseases. S. Karger, Basel New York

    Google Scholar 

  • Temkin L (1941) Four Treatises of Theophrastus von Hohenheim, called Paracelsus. John Hopkins University Press, Baltimore

    Google Scholar 

  • Unschuld PU (1973) Pen-ts'ao-2000 Jahre traditionelle pharmazeutische Literatur Chinas. Heinz Moos Verlag, München

    Google Scholar 

  • Unschuld PU (1986) Medicine in China. A History of Pharmaceutics. Univ California Press, Berkeley

    Google Scholar 

  • Vogel HG (1991) Similarities between various systems of traditional medicine. Considerations for the future of ethno-pharmacology. J Ethnopharmacology 35:179–190

    CAS  Google Scholar 

References

  • Achelis JD, Hardebeck K (1955) Über eine neue blutzuckersenkende Substanz. Dtsch Med Wschr 80:1452–1455

    PubMed  CAS  Google Scholar 

  • Alexander S, Mathie A, Peteres J, MacKenzie G, Smith A (2001) 2001 Nomenclature Supplement. Trends Pharmacol Sci Toxicol Sci, Special Issue

    Google Scholar 

  • Amara SG, Arriza JL (1993) Neurotransmitter transporters: three distinct gene families. Curr Opin Neurobiol 3:337–344

    PubMed  CAS  Google Scholar 

  • Angeli P, Guilini U (1996) Perspectives in receptor research. Il Farmaco 51:97–106

    PubMed  CAS  Google Scholar 

  • Ariëns EJ, van Rossum JM (1957) pDx, pAx and pDx' values in the analysis of pharmacodynamics. Arch Int Pharmacodyn 110:275–299

    PubMed  Google Scholar 

  • Arunlakshana O, Schild HO (1959) Some quantitative uses of drug antagonists. Br J Pharmacol 14:48–58

    CAS  Google Scholar 

  • Bänder A, Pfaff W, Schmidt FH, Stork H, Schröder HG (1969) Zur Pharmakologie von HB 419, einem neuen, stark wirksamen oralen Antidiabeticum. Arzneim Forsch/Drug Res 19:1363–1372

    Google Scholar 

  • Bennett JP, Jr. (1978) Methods in binding studies. In: Yamamura et al. (eds) Neurotransmitter Receptor Binding. Raven Press, New York, pp 57–90

    Google Scholar 

  • Betz H (1992) Structure and function of inhibitory glycine receptors. Quart Rev Biophys 25:381–394

    CAS  Google Scholar 

  • Bormann J (2000) The ‘ABC’ of GABA receptors. Trends Pharmacol Sci 21:16–19

    PubMed  CAS  Google Scholar 

  • Bowery NG (1993) GABAB receptor pharmacology. Annu Rev Pharmacol Toxicol 33:109–147

    PubMed  CAS  Google Scholar 

  • Bruns RF, Daly JW, Snyder SH (1980) Adenosine receptors in brain membranes: Binding of N6-cyclohexyl [3H]adenosine and 1,3-diethyl-8-[3H]phenylxanthine. Proc Natl Acad Sci 77:5547–5551

    PubMed  CAS  Google Scholar 

  • Burch RM (1991) Mass ligand binding screening for receptor antagonists: prototype new drugs and blind alleys. J Receptor Res 11:1–4

    Google Scholar 

  • Bylund DB, Snyder SH (1976) Beta adrenergic receptor binding in membrane preparations from mammalian brain. Mol Pharmacol 12:568–580

    PubMed  CAS  Google Scholar 

  • Cheng YC, Prusoff WH (1973). Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    PubMed  CAS  Google Scholar 

  • Chittajallu R, Braithwaite SP, Clarke VJR, Henley JM (1999) Kainate receptors: subunits, synaptic localization and function. Trends Pharmacol Sci 20:26–35

    PubMed  CAS  Google Scholar 

  • Courvoisier S (1956) Pharmacodynamic basis for the use of chlorpromazine in psychiatry. J Clin Exp Psychopathol 17:25–37

    PubMed  CAS  Google Scholar 

  • Creese I (1978) Receptor binding as a primary drug screening device. In: Yamamura et al. (eds) Neurotransmitter Receptor Binding. Raven Press, New York, pp 141–170

    Google Scholar 

  • Delay J, Deniker P (1952) Trente-huit cas de psychoses traitées par le cure prolongée et continue de 4560 RP. Le Congrès de Al. et Neurol. de Langue Fr. In: Compte rendu du Congrès. Masson et Cie. Paris

    Google Scholar 

  • Dohlman HG, Thorner J, Caron MG, Lefkowitz RJ (1991) Model systems for the study of seven-transmembrane-segment receptors. Annu Rev Biochem 60:653–688

    PubMed  CAS  Google Scholar 

  • Ehrhart G, Ruschig H (eds) (1972) Arzneimittel. Entwicklung, Wirkung Darstellung. Verlag Chemie, Weinheim/Bergstraße. Vol 1–5

    Google Scholar 

  • Enna SJ (1978) Radioreceptor assay techniques for neurotransmitters and drugs. In: Yamamura et al. (eds) Neurotransmitter Receptor Binding. Raven Press, New York, pp 127–139

    Google Scholar 

  • Enna SJ (2000) Drug stories of origins and uses. In: Stone T, Darlington G (eds) Pills, potions and poisons. How Drugs Work. Oxford University Press, New York, pp 492–493

    Google Scholar 

  • Franke H, Fuchs J (1955) Über ein neues antidiabetisches Prinzip. Ergebnisse klinischer Untersuchungen. Dtsch Med Wschr 80:1449–1452

    PubMed  CAS  Google Scholar 

  • Furchgott RF (1966) The use of β-haloalkylamines in the differentiation of receptors and in the determination of dissociation constants of receptor-agonist complexes. Adv Drug Res 3:21–55

    Google Scholar 

  • Godfraind T, Vanhoutte PM (1998) The IUPHAR Compendium of Receptor Characterization and Classification. IUPHAR Media Ltd., London

    Google Scholar 

  • Goto A, Yamada K (1998) An approach to the development of novel antihypertensive drugs: potential role of sodium pump inhibitors. Trends Pharmacol Sci 19:201–204

    PubMed  CAS  Google Scholar 

  • Greenstein BD (1991) Some uses of Scatchard plot and other parameters of ligand binding. In: Greenstein B (ed) Neuroendocrine Research Methods. Vol 2, Harwood Academic Publ. GmbH, Chur, Switzerland, pp 617–629

    Google Scholar 

  • Isom LL; DeJongh KS, Catterall WA (1994) Auxiliary subunits of voltage-gated ion channels. Neuron 12:1183–1194

    PubMed  CAS  Google Scholar 

  • Kebabian JW, Neumeyer JL (1994) The RBI Handbook of Receptor Classification. Research Biochemicals L.P.

    Google Scholar 

  • Kline NS (1958) Clinical experience with iproniazid (MARSILID) J Clin Exp Psychopathol 19, Suppl: 72–78

    PubMed  CAS  Google Scholar 

  • Kochweser J, Schechter PJ (1978) Schmiedeberg in Strassburg 1872–1918: The making of modern pharmacology. Life Sci 22:13–15

    Google Scholar 

  • Köhr G, Eckhardt S, Luddens H, Monyer H, Seeburg PH (1994) NMDA receptor channels: subunit-specific potentiation by reducing agents. Neuron 12:1031–1040

    PubMed  Google Scholar 

  • Krosgaard-Larsen P, Ferkany JW, Nielsen E, Madsen U, Ebert B, Johansen JS, Diemer NH, Bruh T, Beattie DT, Curtis DR (1991) Novel class of amino acid antagonists at non-N-methyl-D-aspartic acid excitatory amino acid receptors. Synthesis, in vitro and in vivo pharmacology, and neuroprotection. J Med Chem 12–130

    Google Scholar 

  • Kuhn R (1958) The treatment of depressive states with G22355 (imipramine hydrochloride). Am J Psychiatry 115:459–464

    PubMed  CAS  Google Scholar 

  • Laborit H, Huguenard P, Allaume R (1952) Un noveau stabilisateur végétatif (LE 4560 RP). Press Méd 60:206–208

    PubMed  CAS  Google Scholar 

  • Lefkowitz RJ, Williams LT (1977) Catecholamine binding to the β-adrenergic receptor. Proc Nat Acad Sci 74:515–519

    PubMed  CAS  Google Scholar 

  • Loubatières A (1946) Étude physiologique et pharmaco-dynamique de certains dérivés sulfonamidés hypoglycémiants. Arch Intern Physiol 54:174–177

    Google Scholar 

  • Maren TH (1960) A simplified micromethod for the determination of carbonic anhydrase and its inhibitors. J Pharmacol Exp Ther 130:26–29

    PubMed  CAS  Google Scholar 

  • Maren TH (1967) Carbonic anhydrase: Chemistry, physiology, and inhibition. Physiol Rev 47:595–781

    PubMed  CAS  Google Scholar 

  • McPherson GA (1985a) Analysis of Radioligand binding experiments. A collection of computer programs for the IBM PC. J Pharmacol Meth 14:213–228

    CAS  Google Scholar 

  • McPherson GA (1985b) KINETIC, EBDA, LIGAND, LOWRY. A collection of radioligand binding analysis programs. Elsevier Science Publ., Amsterdam

    Google Scholar 

  • Munson PJ, Rodbard D (1980) LIGAND: A versatile computerized approach for characterization of ligand-binding system. Anal Biochem 107:220–239

    PubMed  CAS  Google Scholar 

  • Pagel J (1906) Rudolf Virchow. W. Weicher, Leipzig

    Google Scholar 

  • Rodbard D, Frazier GR (1975) Statistical analysis of radioligand assay data. Academic Press, Vol. 37:3–22

    Google Scholar 

  • Scatchard G (1949) The attractions of proteins for small molecules and ions. Ann NY Acad Sci 51:660–672

    CAS  Google Scholar 

  • Shaw I (1992) Receptor-based assays in screening of biologically active substances. Curr Opinion Biotech 3:55–58

    CAS  Google Scholar 

  • Schild HO (1947) pA, a new scale for the measurement of drug antagonism. Br J Pharmacol 2:189–206

    CAS  Google Scholar 

  • Schwartz WB (1949) New Engl J Med 240:173

    PubMed  CAS  Google Scholar 

  • Snider RM, Constantine JW, Lowe JA III, Longo KP, Lebel WS, Woody HA, Drozda SE, Desai MC, Vinick FJ, Spencer RW, Hess HJ (1991) A potent nonpeptide antagonist of the substance P (NK1) receptor. Science 215:435–437

    Google Scholar 

  • Snyder SH, Creese I, Burt DR (1975) The brain's dopamine receptor: labeling with [3H]dopamine. Psychopharmacol Commun 1:663–673

    PubMed  CAS  Google Scholar 

  • Starke K (1987) Presynaptic α-autoreceptors. Rev Physiol Biochem Pharmacol 107:73–146

    PubMed  CAS  Google Scholar 

  • Stephenson RP (1956) A modification of receptor theory. Br J Pharmacol 11:379–393

    CAS  Google Scholar 

  • Tallarida RJ, Murray RB (1987) Manual of Pharmacologic Calculations with Computer Programs. 2nd Ed. Springer-Verlag, New York Berlin Heidelberg

    Google Scholar 

  • Trist DG, Humphrey PPA, Leff P, Shankley NP (1997) Receptor Classification. The Integration of Operational, Structural, and Transductional Information. Ann NY Acad Sci Vol 812, The New York Academy of Science, New York

    Google Scholar 

  • U'Prichard DC, Bylund DB, Snyder SH (1978) (±)-3H-Epinephrine and (−)-3H-dihydroalprenolol binding to β1 and β2 noradrenergic receptors in brain, heart and lung membranes. J Biol Chem 253:5090–5102

    PubMed  Google Scholar 

  • U'Prichard DC, Bechtel WD, Rouot B, Snyder SH (1979) Multiple apparent alpha-noradrenergic receptor binding sites in rat brain: Effect of 6-hydroxydopamine. Mol Pharmacol 15:47–60

    Google Scholar 

  • Vanhoutte PM, Humphrey PPA, Spedding M (1996) International Union of Pharmacology. XI. Recommendations for nomenclature of new receptor subtypes. Pharmacol Rev 48:1–2

    PubMed  CAS  Google Scholar 

  • Watling KJ (1998) The RBI Handbook of Receptor Classification, 3rd Edition, RBI, Natick, MA

    Google Scholar 

  • Wess J (1993) Molecular basis of muscarinic acetylcholine receptor function. Trends Pharmacol Sci 14:308–313

    PubMed  CAS  Google Scholar 

  • William M (1991) Receptor binding in the drug discovery process. Med Res Rev 11:147–184

    Google Scholar 

  • Wilson S, Bergsma DJ, Chambers JK, Muir AI, Fantom KGM, Ellis C, Murdock PR, Herrity NC, Stadel JM (1998) Orphan G-protein-coupled receptors: the next generation of drug targets? Br J Pharmacol 125:1387–1392

    PubMed  CAS  Google Scholar 

  • Wisden W, Seeburg PH (1992) GABAA receptor channels: from subunits to functional entities. Cur Opin Neurobiol 2:263–269

    CAS  Google Scholar 

References

  • Appleton T (1999) Combinatorial chemistry and HTS — feeding a voracious process. Drug Disc Today 4:398–400

    Google Scholar 

  • Burkhard P, Hommel U, Sanner M, Walkinshaw MD (1999) The discovery of steroids and other FKBP inhibitors using a molecular docking program. J Mol Biol 287:853–858

    PubMed  CAS  Google Scholar 

  • Cancilla MT, Leavell MD, Chow J, Leary JA (2000) Mass spectrometry and immobilized enzymes for the screening of inhibitor libraries. Proc Natl Acad Sci USA 97:12008–12013

    PubMed  CAS  Google Scholar 

  • Dancík V, Addona TA, Clauser KR, Vath JE, Pevzner P (1999) De novo peptide sequencing via tandem mass spectroscopy. J Comput Biol 6:327–342

    PubMed  Google Scholar 

  • Dooley CT, Houghten RA (1999) New opioid peptides, peptidomimetics, and heterocyclic compounds from combinatorial libraries. Biopolymers (Peptide Science) 51:379–390

    CAS  Google Scholar 

  • Enjalbal C, Martinez J, Aubagnac JL (2000) Mass spectrometry in combinatorial chemistry. Mass Spectrometry Rev 19:139–161

    CAS  Google Scholar 

  • Fecik RA, Frank KE, Gentry EJ, Menin SR, Mitscher LA, Telikepalli H (1998) The search for orally active medications through combinatorial chemistry. Med Res Rev 18:149–185

    PubMed  CAS  Google Scholar 

  • Gallop MA, Barrett RW, Dower WJ, Fodor SPA, Gordon EM (1994) Application of combinatorial technologies to drug discovery. 1. Background and peptide combinatorial libraries. J Med Chem 37:1233–1251

    PubMed  CAS  Google Scholar 

  • Gordon EM, Barrett RW, Dower WJ, Fodor SPA, Gallop MA (1994) Application of combinatorial technologies to drug discovery. 2. Combinatorial organic synthesis, library screening strategies, and future directions. J Med Chem 37:1385–1401

    PubMed  CAS  Google Scholar 

  • Hajduk PJ, Gerfin T, Boehlen JM, Häberli M, Marek D, Fesik SE (1999) High-throughput nuclear magnetic resonance-based screening. J Med. Chem 42:2315–2317

    PubMed  CAS  Google Scholar 

  • Hogan JC Jr. (1996) Directed combinatorial chemistry. Nature 384: Suppl 17–19:6604

    Google Scholar 

  • Houghten RA (2000) Parallel array and mixture-based synthetic combinatorial chemistry: tools for the next millenium. Ann Rev Pharmacol Toxicol 40:273–282

    CAS  Google Scholar 

  • Kiyama R, Tamura Y, Watanabe F, Tsizuki H, Ohtani M, Yodo M (1999) Homology modelling of gelatinase catalytic domains and docking simulations of novel sulfonamide inhibitors. J Med Chem 42:1723–1738

    PubMed  CAS  Google Scholar 

  • Kyranos JN, Cai H, Wie D, Goetzinger WK (2001) High-throughput high-performance liquid chromatography / mass spectrometry for drug discovery. Curr Opin Biotechnol 12:105–111

    PubMed  CAS  Google Scholar 

  • Lazo JS, Wipf P (2000) Combinatorial chemistry and contemporary pharmacology. J Pharmacol Exp Ther 293:705–709

    PubMed  CAS  Google Scholar 

  • LeProust E, Pellois JP, Yu P, Zhang H, Gao X, Srivannavit O, Gulari E, Zhou X (2000) Digital light-directed synthesis. A microarray platform that permits rapid reaction optimization on a combinatorial basis. J Comb Chem 2:349–354

    PubMed  CAS  Google Scholar 

  • Lewandowski K, Murer P, Svec F, Frechet JMJ (1999) A combinatorial approach to recognition of chirality: Preparation of highly enantioselective aryl-dihydropyrimidine selectors for chiral HPLC. J Comb Chem 1:105–112

    PubMed  CAS  Google Scholar 

  • Loo JA, DeJohn DA, Du P, Stevenson TI, Loo RRO (1999) Application of mass spectrometry for target identification and characterization. Med Res Rev 19:307–319

    PubMed  CAS  Google Scholar 

  • Lukas TJ, Mirzoeva S, Slomczynska U, Watterson DM (1999) Identification of novel classes of protein kinase inhibitors using combinatorial peptide chemistry. J Med Chem 42:910–919

    PubMed  CAS  Google Scholar 

  • Maclean D, Schullek JR, Murphy MM, Ni Z-J, Gordon EM, Gallop MA (1997) Encoded combinatorial chemistry: Synthesis and screening of a library of highly functionalized pyrrolidines. Proc Natl Acad Sci USA 94:2805–2810

    PubMed  CAS  Google Scholar 

  • Rademann J, Jung G (2000) Integrating combinatorial synthesis and bioassays. Science 287:1947–1948

    PubMed  CAS  Google Scholar 

  • Schapira M, Raaka BM, Samuels HH, Abagyan R (2000) Rational discovery of nuclear hormone receptor antagonists. Proc Natl Acad Sci USA 97:1008–1013

    PubMed  CAS  Google Scholar 

  • Scherer JR, Kheterpal I, Radhakrishnan A, Ja WWW, Mathies RA (1999) Ultra-high throughput rotary capillary array electrophoresis scanner for fluorescent DNA sequencing and analysis. Electrophoresis 20:1508–1517

    PubMed  CAS  Google Scholar 

  • Schreiber SI (2000) Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287:1964–1969

    PubMed  CAS  Google Scholar 

  • Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovery of high affinity ligands for proteins. SAR by NMR. Science 274:1531–1534

    PubMed  CAS  Google Scholar 

  • Stigers KD, Soth MJ, Nowick JS (1999) Designed molecules that fold to mimic protein secondary structure. Curr Opin Chem Biol 3:714–723

    PubMed  CAS  Google Scholar 

References

  • Berg M, Undisz K, Thiericke R, Moore T, Posten C (2000) Miniaturization of a functional transcription assay in yeast (human progesterone receptor) in the 384-and 1536-well plate format. J Biomol Screen 5:71–76

    PubMed  CAS  Google Scholar 

  • Bolger R (1999) High-throughput screening: new frontiers for the 21st century. Drug Disc Today 4:251–253

    Google Scholar 

  • Broach JR, Thorner J (1996) High throughput screening for drug discovery. Nature 384, Suppl: 14–16:6604

    Google Scholar 

  • Brown RK, Proulx A (1997) Accelerating the discovery process with automation and robotics: a sure bet or a risky venture? In: Devlin JP (ed) High Throughput Screening. The Discovery of Bioactive Substances. Marcel Dekker Inc., New York, Basel, pp 509–523

    Google Scholar 

  • Clark DE, Pickett SD (2000) Computational methods for the prediction of ‘drug-likeness'. Drug Dev Today 5:49–58

    CAS  Google Scholar 

  • Cox B, Denyer JC, Binnie A, Donnelly MC, Evans B, Green DVS, Lewis JA, Mander TH, Merritt AT, Valler MJ, Watson SP (2000) Application of high-throughput screening techniques to drug discovery. Progr Medicin Chem 37:83–133

    CAS  Google Scholar 

  • Divers M (1999) What is the future of high throughput screening? J Biomol Screen 4:177–178

    PubMed  Google Scholar 

  • Drews J (2000) Drug discovery: a historical perspective. Science 287:1960–1964

    PubMed  CAS  Google Scholar 

  • Dunn D, Orlowski M, McCoy P, Gastgeb F, Appell K, Ozgur L Webb M, Burbaum J (2000) Ultra-high throughput screen of two-million-member combinatorial compound collection in a miniaturized 1536-well assay format. J Biomol Screen 5:177–187

    PubMed  CAS  Google Scholar 

  • Eglen RM (1999) High throughput screening: myths and future realities. J Biomol Screen 4:179–181

    PubMed  Google Scholar 

  • Fox S, Farr-Jones S, Yund MA (1999) High throughput screening for drug discovery: continually transitioning into new technology. J Biomol Screen 4:183–186

    PubMed  CAS  Google Scholar 

  • Fox S, Wang H, Sopchak L, Khoury R (2001) Increasing the changes of lead discovery. Drug Disc World 2:35–44

    Google Scholar 

  • Giuliano KA, DeBiasio RL, Dunlay RT, Gough A, Volosky JM, Zock J, Pavlakis GN, Taylor DL (1997) High-content screening: a new approach to easing key bottlenecks in the drug discovery process. J Biomol Screen 2:249–259

    CAS  Google Scholar 

  • Harding D, Banks M, Fogarty S, Binnie A (1997) Development of an automated high-throughput screening system: a case history. Drug Dev Today 2:385–390

    Google Scholar 

  • Harvey A (2000) Strategies for discovering drugs from previously unexplored natural products. Drug Dev Today 5:294–300

    Google Scholar 

  • Horrobin DF (2000) Innovation in the pharmaceutical industry. J Roy Soc Med 93:341–345

    PubMed  CAS  Google Scholar 

  • Lahana R (1999) How many leads from HTS? Drug Disc Today 4:447–448

    Google Scholar 

  • Lightbody B, Aldeman EM (2001) Robotics development simplified. New Drugs 1:30–32

    Google Scholar 

  • Major J (1999) What is the future of high throughput screening? J Biomol Screen 4:119

    PubMed  Google Scholar 

  • Mander T (2000) Beyond uHTS? Ridiculously HTS? Drug Dev Today 6:223–225

    Google Scholar 

  • Ohlstein EH, Ruffolo RR, Jr., Elliot JD (2000) Drug discovery in the next millennium. Ann Rev Pharmacol Toxicol 40:177–191

    CAS  Google Scholar 

  • Ruch E (2001) The flexible approach to high throughput screening. New Drugs 1:34–36

    Google Scholar 

  • Ryu DDY, Nam D-H (2000) Recent progress in biomolecular engineering. Biotechnol Progr 16:2–16

    CAS  Google Scholar 

  • Sills MA (1998) Future considerations in HTS: the acute effect of chronic dilemmas. Drug Disc Today 3:304–312

    Google Scholar 

  • Stahl W (1999) What is the future of high throughput screening? J Biomol Screen 4:117–118

    PubMed  Google Scholar 

  • Terstappen GC, Reggiani A (2001) In silico research in drug discovery. Trends Pharmacol Sci 22:23–26

    PubMed  CAS  Google Scholar 

  • Valler MJ, Green D (2000) Diversity screening versus focussed screening in drug discovery. Drug Dev Today 5:286–293

    Google Scholar 

  • Watt AP, Morrison D, Evans DC (2000) Approaches to higher-throughput pharmacokinetics (HTPK) in drug discovery. Drug Disc Today 5:17–24

    CAS  Google Scholar 

  • White RE (2000) High-throughput screening in drug metabolism and pharmacokinetic support of drug discovery. Annu Rev Pharmacol Toxicol 40:133–157

    PubMed  CAS  Google Scholar 

References

  • Akong M, Siegel R, Vasserman E, Row B, Karlton D, McNeil J, Varney M, Stauderman K, Velicelebi G (1995) High-throughput measurement of intracellular calcium by fluorescence imaging of a 96-well microtiter plate. Soc Neurosci Abstr 21:577

    Google Scholar 

  • Alajoki ML, Baxter GT, Bemiss WR, Blau D, Bousse LJ, Chan SDH, Dawes TD, Hahnenberger KM, Hamilton JM, Lam P, McReynolds RJ, Stevenson DN, Wada GH, Williams J (1997) High-performance microphysiometry in drug discovery. In: Devlin JP (ed) High Throughput Screening. The Discovery of Bioactive Substances. Marcel Dekker Inc., New York Basel, pp 427–442

    Google Scholar 

  • Auer M, Moore KJ, Meyer-Almes FJ, Guenther R, Pope AJ, Stoeckli KA (1999) Fluorescence correlation spectroscopy: Lead discovery by miniaturized HTS. Int J Immunopharmacol 2:457–465

    Google Scholar 

  • Banks P, Gosselin M, Prystay L (2000) Fluorescence polarization assays for high throughput screening of G protein-coupled receptors. J Biomol Screen 5:158–168

    Google Scholar 

  • Bosse R, Illy C, Elands J, Chelsky D (2000) Miniaturizing screening: how low can we go today? Drug Disc Today: HTS Suppl 1:42–47

    CAS  Google Scholar 

  • Bosworth N, Towers P (1989) Scintillation proximity assay. Nature 341:167–168

    PubMed  CAS  Google Scholar 

  • Brandt DW (1998) Core system model: understanding the impact of reliability on high-throughput screening systems. Drug Disc Today 3:61–68

    Google Scholar 

  • Broach JR, Thorner J (1996) High throughput screening for drug discovery. Nature 384:14–16

    PubMed  CAS  Google Scholar 

  • Bronstein I, Fortin J, Stanley E, Stewart GS, Kricka LJ (1994) Chemiluminescence and bioluminescence reporter gene assays. Anal Biochem 219:169–181

    PubMed  CAS  Google Scholar 

  • Bronstein I, Martin CS, Fortin JJ, Olesen CE, Voyta JC (1996) Chemiluminescence: sensitive detection technology for reporter gene assays. Clin Chem 42:1542–1546

    PubMed  CAS  Google Scholar 

  • Brown BA, Cain M, Broadbent J, Tomkins S, Henrich G, Joseph R, Casto S, Harney H, Greene R, Delmondo R, Ng S (1997) Flash Plate™ technology. In: Devlin JP (ed) High Throughput Screening. The Discovery of Bioactive Substances. Marcel Dekker Inc., New York Basel, pp 317–328

    Google Scholar 

  • Burbaum JJ, Sigal NH (1997) New technologies for high-throughput screening. Curr Opin Chem Biol 1:72–78

    PubMed  CAS  Google Scholar 

  • Chalfie M (1995) Green fluorescent protein. Photochem Photobiol 62:651–656

    PubMed  CAS  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher CD (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    PubMed  CAS  Google Scholar 

  • Conway BR, Minor LK, Xu JZ, Gunnet HW, DeBiasio R, D'Andrea MR, Rubin R, Giuliano K, Zhou LB, Demarest KT (1999) Quantification of G-protein coupled receptor internalization using G-protein coupled receptor-green fluorescent protein conjugates with the ArrayScan™ high-content screening system. J Biomol Screen 4:75–86

    PubMed  CAS  Google Scholar 

  • Coward P, Chan SD, Wada HG, Humphries GM, Conklin BR (1999) Chimeric G proteins allow a high-throughput signaling assay of Gi-coupled receptors. Anal Biochem 270:242–248

    PubMed  CAS  Google Scholar 

  • Devlin JP (ed) (1997) High Throughput Screening. The Discovery of Bioactive Substances. Marcel Dekker, Inc., New York

    Google Scholar 

  • Dunn DA, Feygin I (2000) Challenges and solutions to ultra-high-throughput screening assay miniaturization: submicroliter fluid handling. Drug Dev Today 5, HTS Suppl:S84–S91

    Google Scholar 

  • Feiglin MN, Skwish S, Laab M, Heppel A (2000) Implementing multilevel dynamic scheduling for a highly flexible 5-rail high throughput screening system. J Biomol Screen 5:39–48

    PubMed  CAS  Google Scholar 

  • Fernandes PB (1998) Technological advances in high-throughput screening. Curr Opin Chem Biol 2:597–603

    PubMed  CAS  Google Scholar 

  • Game SM, Rajapurohit PK, Clifford M, Bird MI, Priest R, Bovin NV, Nifant'ev NE, O'Beirne G, Cook ND (1998) Scintillation proximity assay for E-, P-, and L-selectin utilizing polyacrylamide-based neoglycoconjugates as ligands. Anal Biochem 258:127–135

    PubMed  CAS  Google Scholar 

  • Gauglitz G (2000) Optical detection methods for combinatorial libraries. Curr Opin Chem Biol 4:351–355

    PubMed  CAS  Google Scholar 

  • Gibbons I (2000) Microfluidic arrays for high-throughput submicroliter assays using capillary electrophoresis. Drug Disc Today: HTS Suppl 1:33–38

    CAS  Google Scholar 

  • González JE, Negulescu PA (1998) Intracellular detection assays for high-throughput screening. Curr Opin Biotechnol 9:624–631

    PubMed  Google Scholar 

  • Grépin C, Pernelle C (2000) High-throughput screening. Evolution of homogeneous time resolved fluorescence (HTRF) technology for HTS. Drug Dev Today 5:212–214

    Google Scholar 

  • Grépin C, Lionne B, Borie C, Palmer M, Pernelle C (2001) High throughput quantification of the endogenous cFos. New Drugs 1:38–41

    Google Scholar 

  • Harding D, Banks M, Fogarty S, Binnie A (1997) Development of an automated high-throughput screening system: A case history. Drug Discov Today 2:385–390

    Google Scholar 

  • Haupts U, Rüdiger M, Pope AJ (2000) Macroscopic versus microscopic fluorescence techniques in (ultra)-high-throughput screening. Drug Disc Today: HTS Suppl 1:3–9

    CAS  Google Scholar 

  • Hertzberg RP, Pope AJ (2000) High-throughput screening: new technology for the 21th century. Curr Opin Chem Biol 4:445–451

    PubMed  CAS  Google Scholar 

  • Houston JG, Banks M (1997) The chemical-biological interface: developments in automated and miniaturized screening technology. Curr Opin Biotechnol 8:734–740

    PubMed  CAS  Google Scholar 

  • Kain SR (1999) Green fluorescent protein (GRP): applications in cell-based assays for drug discovery. Drug Disc Today 4:304–312

    CAS  Google Scholar 

  • Kenny BA, Bushfield M, Parry-Smith DJ, Fogarty S, Treherne JM (1998) The application of high-throughput screening to novel lead discovery. Prog Drug Res 51:245–269

    PubMed  CAS  Google Scholar 

  • Kolb AJ, Burke JW, Mathis G (1997) Homogeneous, time-resolved fluorescence method for drug discovery. In: Devlin JP (ed) High Throughput Screening. The Discovery of Bioactive Substances. Marcel Dekker Inc., New York Basel, pp 345–360

    Google Scholar 

  • Koltermann A, Kettling U, Bieschke J, Winkler T, Eigen M (1998) Rapid assay processing by integration of dual-color fluorescence cross-correlation spectroscopy: high throughput screening for enzyme activity. Proc Natl Acad Sci 95:1421–1426

    PubMed  CAS  Google Scholar 

  • Kuntzweiler TA, Arneric SP, Donnelly-Roberts DL (1998) Rapid assessment of ligand actions with nicotinic acetylcholine receptors-using calcium dynamics and FLIPR. Drug Dev Res 44:14–20

    CAS  Google Scholar 

  • Labute P (1999) Binary QSAR: a new method for the determination of quantitative structure assay. Pacific Symp Biocomput pp 444–455

    Google Scholar 

  • Landro JA, Taylor ICA, Stirtan WG, Osterman DG, Kristie J, Hunnicutt EJ, Rae PMM, Sweetman PM (2000) HTS in the new millenium. The role of pharmacology and flexibility. J Pharmacol Toxicol Meth 44:273–289

    CAS  Google Scholar 

  • Lemmo AV, Rose DJ, Tisone TC (1998) Inkjet dispensing technology: applications for drug discovery. Curr Opin Biotechnol 9:615–617

    PubMed  CAS  Google Scholar 

  • Li Z, Mehdi S, Patel I, Kawooya J, Judkins M, Zhang W, Diener K, Lozada A, Dunnington D (2000) An ultra-high throughput screening approach for an adenine transferase using fluorescence polarization. J Biomol Screen 5:31–38

    PubMed  CAS  Google Scholar 

  • Liochev SI, Fridovich I (1997) Lucigenin luminescence as a measure of intracellular superoxide dismutase activity in Escherichia coli. Proc Natl Acad Sci 94:2891–2896

    PubMed  CAS  Google Scholar 

  • Major JS (1995) Challenges of high throughput screening against cell surface receptors. J Recept Signal Transduction Res 15:595–607

    CAS  Google Scholar 

  • Mathis G, Preaudat M, Trinquet E (1994) Homogeneous EGF receptor binding assay using rare earth cryptates, amplification by nonradiative energy transfer and time resolved fluorescence. CHI Proceedings of High Throughput Screening for Drug Development. Philadelphia, 1994

    Google Scholar 

  • Meng YG Liang J, Wong WL, Chisholm V (2000) Green fluorescent protein as a second selectable marker for selection of high producing clones from transfected CHO cells. Gene 242:201–207

    PubMed  CAS  Google Scholar 

  • Mere L, Bennett T, Casssin P, England P, Hamman B, Rink T, Zimmerman S, Negulescu P (1999) Miniaturized FRET assays and microfluidics: key components for ultra-high-throughput screening. Drug Dev Today 4:363–369

    CAS  Google Scholar 

  • Messier TL, Dorman CM, Brauner-Osborne H, Eubanks D, Brann RM (1995) High throughput assays of cloned adrenergic, muscarinic, neurokinin, and neurotropin receptors in living mammalian cells. Pharmacol Toxicol 76:308–311

    PubMed  CAS  Google Scholar 

  • Meza MB (2000) Bead-based HTS applications in drug discovery. Drug Disc Today: HTS Suppl 1:38–41

    CAS  Google Scholar 

  • Miller TR, Witte DG, Ireland LM, Kang CH, Roch JM, Masters JN, Esbenshade TA, Hancock AA (1999) Analysis of apparent noncompetitive responses to competitive H1-histamine receptor antagonists in fluorescent imaging plate reader-based calcium assays. J Biomol Screen 4:249–258

    PubMed  CAS  Google Scholar 

  • Milligan G, Rees S (1999) Chimeric Gα proteins: their potential use in drug discovery. Trends Pharmacol Sci 20:118–124

    PubMed  CAS  Google Scholar 

  • Parker GJ, Law TL, Lenoch FJ, Bolger RE (2000) Development of high throughput screening assays using fluorescence polarization: nuclear receptor-ligand-binding and kinase-phosphatase assays. J Biomol Screen 5:77–88

    PubMed  CAS  Google Scholar 

  • Pasini P, Musiani M, Russo C, Valenti P, Aicardi G, Crabtree JE, Baraldini M, Roda A (1998) Chemiluminescence imaging in bioanalysis. J Pharm Biomed Anal 18:555–564

    PubMed  CAS  Google Scholar 

  • Pathirna C, Stein RB, Berger TS, Fenical W, Ianiro T, Torres A, Goldman ME (1995) Nonsteroidal human progesterone receptor modulators from the marine algae Cymopolia barbata. Mol Pharmacol 476:630–635

    Google Scholar 

  • Pazhanisamy S, Stuver CM, Livingston DJ (1995) Automation of high-performance liquid chromatography-based enzyme assay: evaluation of inhibition constants for human immunodeficiency virus-1 protease inhibitors. Anal Biochem 229:48–53

    PubMed  CAS  Google Scholar 

  • Picardo M, Hughes KT (1997) Scintillation proximity assays. In: Devlin JP (ed) High Throughput Screening. The Discovery of Bioactive Substances. Marcel Dekker Inc., New York Basel, pp 307–316

    Google Scholar 

  • Pope AJ, Haupts UM, Moore KJ (1999) Homogeneous fluorescence readouts for miniaturized high-throughput screening. Drug Dev Today 4:350–362

    CAS  Google Scholar 

  • Ramm P (1999) Imaging systems in assay screening. Drug Dev Today 4:401–410

    CAS  Google Scholar 

  • Rose D (1999) Microdispensing technologies in drug discovery. Drug Dev Today 4:411–419

    CAS  Google Scholar 

  • Scheirer W (1997) Reporter gene assay applications. In: Devlin JP (ed) High Throughput Screening. The Discovery of Bioactive Substances. Marcel Dekker Inc., New York Basel, pp 401–412

    Google Scholar 

  • Schmid EL, Tairi AP, Hovius R, Vogel H (1998) Screening ligands for membrane protein receptors by total internal reflection fluorescence: the 5-HT3 serotonin receptor. Anal Chem 70:1331–1338

    PubMed  CAS  Google Scholar 

  • Schuster M, Wasserbauer E, Einhauer A, Ortner C, Jungbauer A, Hammerschmid F, Werner G (2000) Protein expression strategies for identification of novel target proteins. J Biomol Screen 5:89–97

    PubMed  CAS  Google Scholar 

  • Silverman L, Campbell R, Broach JR (1998) New assay techniques for high throughput screening. Curr Opin Chem Biol 2:397–403

    PubMed  CAS  Google Scholar 

  • Sittampalam GS, Kahl SD, Janzen WP (1997) High throughput screening: advances in assay technologies. Curr Opin Chem Biol 1:384–391

    PubMed  CAS  Google Scholar 

  • Sportsman JR, Leytes LJ (2000) Miniaturization of homogenous assays using fluorescence polarization. Drug Disc Today 1 (HTS Suppl): 27–32

    Google Scholar 

  • Su S, Vivier RG, Dickson MC, Kendrick MK, Williamson NM, Anson JG, Houston JG, Craig FF (1997) High throughput PT-PCR analysis of multiple transcripts using a microplate RNA isolation procedure. Biotechniques 22:1107–1113

    PubMed  CAS  Google Scholar 

  • Sullivan E, Tucker EM, Dale IL (1999) Measurement of Ca2+ using the Fluorometric Imaging Plate Reader (FLIPR). Methods Mol Biol 114:125–133

    PubMed  CAS  Google Scholar 

  • Sundberg SA (2000) High-throughput and ultra-high-throughput screening: solution-and cell-based approaches. Curr Opin Biotechnol 11:47–53

    PubMed  CAS  Google Scholar 

  • Swartzman EE, Miraglia SJ, Mellentin-Michelotti J, Evangelista L, Yuan PM (1999) A homogeneous and multiplexed immunoassay for high throughput screening using fluorometric microvolume assay technology. Anal Biochem 271:143–151

    PubMed  CAS  Google Scholar 

  • Vollert H (1998) Development of a robust Miniaturized Screening System. Proceeding, IBC, Practical Aspects for Assay Miniaturization and Design for Drug Discovery, Boston, MA, USA

    Google Scholar 

  • Vollert H, Jordan B, Winkler I (2000) Wandel in der Wirkstoffsuche — Ultra-High-Throughput-Screening-Systeme in der Pharmaindustrie. Transkript Laborwelt 1:5–10

    Google Scholar 

  • Wallace RW, Goldman ME (1997) Bioassay design and implementation. In: Devlin JP (ed) High Throughput Screening. The Discovery of Bioactive Substances. Marcel Dekker Inc., New York, Basel, pp 279–305

    Google Scholar 

  • Wingfield J (1998) Developing effective assays on HTS. Drug Disc Today 3:97–99

    Google Scholar 

  • Winkler T, Kettling U, Koltermann E, Eigen M (1999) Confocal fluorescence coincidence analysis: an approach to ultra high-throughput screening. Proc Natl Acad Sci USA 96:1375–1378

    PubMed  CAS  Google Scholar 

  • Zuck P, Lao ZG, Skwish S, Glickman JF, Yang K, Burbaum J, Inglese J (1999) Ligand-receptor binding measured by laser-scanning imaging. Proc Natl Acad Sci 96:11122–11127

    PubMed  CAS  Google Scholar 

  • Zysk JR, Baumbach WR (1998) Homogeneous pharmacologic and cell-based screens provide diverse strategies in drug discovery. Somatostatin antagonists as a case study. Comb Chem High Throughput Screen 1:171–183

    PubMed  CAS  Google Scholar 

References

  • Adam GI, Reneland R, Andersson M, Risinger C, Nilsson M, Lewander T (2000) Pharmacogenomics to predict drug response. Pharmacogenomics 1:5–14

    PubMed  CAS  Google Scholar 

  • Beeley LJ, Duckworth DM, Southan C (2000) The impact of genomics on drug discovery. Progr Med Chem 37:1–43

    CAS  Google Scholar 

  • Bentley DR (2000) Decoding the human genome sequence. Human Mol Genetics 9:2353–2358

    CAS  Google Scholar 

  • Bookchin RM, Nagel RI, Ranney HM (1970) The effect of beta 73 Asn on the interactions of sickling hemoglobin. Biochim Biophys Acta 221:373–375

    PubMed  CAS  Google Scholar 

  • Broder S, Venter JC (2000) Sequencing the entire genomes of free-living organisms: The foundation of pharmacology in the new millenium. Ann Rev Pharmacol Toxicol 40:97–132

    CAS  Google Scholar 

  • Bullingham R (2001) Pharmacogenomics: how gene variants can ruin good drugs. Curr Drug Disc 1:17–20

    Google Scholar 

  • Carulli JP, Artinger M, Swain PM, Root CD, Chee L, Tulig C, Guerin J, Osborne M, Stein G, Lian J, Lomedico PT (1998) High throughput analysis of differential gene expression. J Cell Biochem Suppl 30–31:286–296

    PubMed  Google Scholar 

  • Celis JE, Kruhøffer M, Gromova I, Frederiksen C, Østergaard M, Thykjaer T, Gromov P, Yu J, Pálsdóttir H, Magnusson N, Ørntoft TF (2000) Gene expression profiling: monitoring transcription and translation using DNA microarrays and proteomics. FEBS Letters 480:2–16

    PubMed  CAS  Google Scholar 

  • Danser AHJ, Schunkert H (2000) Renin-angiotensin system gene polymorphisms: potential mechanisms for their association with cardiovascular disease. Eur J Pharmacol 410:303–316

    PubMed  CAS  Google Scholar 

  • Debouck C, Goodfellow PN (1999) DNA microarrays in drug discovery and development. Nat Genet 21 (1 Suppl):48–50

    PubMed  CAS  Google Scholar 

  • Debouck C, Metcalf B (2000) The impact of genomics on drug discovery. Ann Rev Pharmacol Toxicol 40:193–208

    CAS  Google Scholar 

  • De Morais SM, Wilkinson GR, Blaisdell J, Nakamura K, Meyer UA, Goldstein JA (1994) The major genetic defect responsible for the polymorphism of S-mephentoin metabolism in humans. J Biol Chem 269:15419–15422

    PubMed  Google Scholar 

  • Drews J (2000) Quo vadis, biotech? (Part 1). Drug Dev Today 5:547–553

    Google Scholar 

  • Drews J (2001) Quo vadis, biotech? (Part 2). Drug Dev Today 6:21–26

    Google Scholar 

  • Evans WE, Relling MV (1999) Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286:487–491

    PubMed  CAS  Google Scholar 

  • Farber GK (1999) New approaches to rational drug design. Pharmacol Ther 84:327–332

    PubMed  CAS  Google Scholar 

  • Goedde HW, Argwal DP, Harada S (1983) Pharmacogenetics of alcohol sensitivity. Pharmacol Biochem Behav 18 (Suppl 1):161–166

    PubMed  CAS  Google Scholar 

  • Gonzales FJ (1990) Molecular genetics of the P-450 superfamily. Pharmacol Ther 45:1–38

    Google Scholar 

  • Grant SF (2001) Pharmacogenetics and pharmacogenomics: tailored drug therapy for the 21th century. Trends Pharmacol Sci 22:3–4

    PubMed  CAS  Google Scholar 

  • Guillausseau PJ, Tielmans D, Virally-Monod M, Assayag M (1997) Diabetes: from phenotypes to genotypes. Diabetes Metab Res 23 (Suppl 2):14–21

    Google Scholar 

  • Harris T (2000) Genetics, genomics and drug discovery. Med Res Rev 20:203–211

    PubMed  CAS  Google Scholar 

  • Inoue K, Fukunaga M, Kiriyama T, Komura S (1984) Accumulation of acetaldehyde in alcohol-sensitive Japanese: relation to ethanol and acetaldehyde oxidizing capacity. Alcohol: Clin Exp Res 8:319–322

    CAS  Google Scholar 

  • International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Google Scholar 

  • Jones DA, Fitzpatrick FA (1999) Genomics and the discovery of new drug targets. Curr Opin Chem Biol 3:71–76

    PubMed  CAS  Google Scholar 

  • Kleyn PW, Vesell ES (1998) Genetic variation as a guide to drug development. Science 281:1820–1821

    PubMed  CAS  Google Scholar 

  • Lennon GG (2000) High-throughput gene expression analysis for drug discovery. Drug Dev Today 5:59–66

    CAS  Google Scholar 

  • Liggett SB (1997) Polymorphisms of the β2-adrenergic receptor and asthma. Am J Resp Crit Care Med 156:S156–S162

    PubMed  CAS  Google Scholar 

  • Link EM, Hardiman G, Sluder AE, Johnson CD, Liu LX (2000) Therapeutic target discovery using Caenorhabditis elegans. Pharmacogenomics 1:203–207

    PubMed  CAS  Google Scholar 

  • Mager J, Glaser G, Razin A, Izak G, Bien S, Noam M (1965) Metabolic effects of pyrimidines derived from fava bean glyco-sides on human erythrocytes deficient in glucose-6-phosphate dehydrogenase. Biochem Biophys Res Commun 20:235–240

    PubMed  CAS  Google Scholar 

  • March R (2000) Pharmacogenomics: the genomics of drug response. Yeast 17:16–21

    PubMed  CAS  Google Scholar 

  • Marshall E (2000) Human genome: Rival genome sequencers celebrate a milestone together. Science 288:2294–2295

    PubMed  CAS  Google Scholar 

  • Meldrum D (2000a) Automation for genomics, part one: preparation for sequencing. Genome Res 10:1081–1092

    PubMed  CAS  Google Scholar 

  • Meldrum D (2000b) Automation for genomics, part two: sequencers, microarrays, and future trends. Genome Res 10:1288–1303

    PubMed  CAS  Google Scholar 

  • Meyer UA (2000) Pharmacogenomics and adverse drug reactions. Lancet 356:1667–1671

    PubMed  CAS  Google Scholar 

  • Murayama M (1966) Tertiary structure of sickle cell hemoglobin and its functional significance. J Cell Physiol 67 (Suppl. 1):21–32

    PubMed  Google Scholar 

  • Murphy MP (2000) Current pharmacogenomic approaches to clinical drug development. Pharmacogenomics 1:115–123

    PubMed  CAS  Google Scholar 

  • Nebert D (1999) Pharmacogenetics and pharmacogenomics: why is this relevant to the clinical geneticist? Clin Gent 56:247–258

    CAS  Google Scholar 

  • Peet NP, Bey P (2001) Pharmacogenomics: challenges and opportunities. Drug Disc Today 6:495–498

    Google Scholar 

  • Podda M, Fiorelli G, Ideo G, Spano G, Dioguardi N (1969) In vitro effect of a fava bean extract and its fractions on reduced glutathione in glucose-6-phosphate dehydrogenase deficient red cells. Folia Haematol Int Mag Klin Morphol Blutforsch 91:51–55

    PubMed  CAS  Google Scholar 

  • Rockett JC, Dix DJ (2000) DNA arrays: technology, options and toxicological applications. Xenobiotica 30:155–177

    PubMed  CAS  Google Scholar 

  • Rudolph U, Möhler H (1999) Genetically modified animals in pharmacological research: future trends. Eur J Pharmacol 375:327–337

    PubMed  CAS  Google Scholar 

  • Sadée W (1999) Pharmacogenomics. Br Med J 319:1286–1290

    Google Scholar 

  • Samani NJ, O'Toole L Channer K, Woods KL (1996) A meta-analysis of the association of the deletion allele of the angiotensin-converting enzyme gene with myocardial infarction. Circulation 94:708–712

    PubMed  CAS  Google Scholar 

  • Schuster M, Wasserbauer E, Einhauer A, Ortner C, Jungbauer A, Hammerschmid F, Werner G (2000) Protein expression strategies for identification of novel target proteins. J Biomol Sci 5:89–97

    CAS  Google Scholar 

  • Shimkets RA, Lifton RP (1996) Recent advances in the molecular genetics of hypertension. Curr Opin Nephrol Hypertens 2:162–165

    Google Scholar 

  • Snyder LH (1932) Studies in human inheritance: IX. The inheritance of taste deficiency in man. Ohio J Sci 32:436–468

    Google Scholar 

  • Spear BB, Heath-Chiozzi M, Huff J (2001) Clinical applications of pharmacogenetics. Trends Mol Med 7:201–204

    PubMed  CAS  Google Scholar 

  • Steiner S, Anderson NL (2000) Expression profiling in toxicology — potentials and limitations. Toxicol Lett 112–113:467–471

    PubMed  Google Scholar 

  • Van Oosterhout AJM (1998) Genomics and drug discovery. Trends Pharmacol Sci 19:157–160

    Google Scholar 

  • Venter JC et al. (2001) The sequence of the human genome. Science 291:1304–1351

    PubMed  CAS  Google Scholar 

  • Vesell ES (2000) Advances in pharmacogenetics and pharmacogenomics. J Clin Pharmacol 40:930–938

    PubMed  CAS  Google Scholar 

  • Vogel F (1959) Moderne Probleme der Humangenetik. Erg Inn Med Kinderheilkd 12:52–125

    Google Scholar 

  • Weaver TA (2001) High-throughput SNP discovery and typing for genome-wide genetic analysis. New technologies for life sciences: a trends guide 1:36–42

    Google Scholar 

  • Weber WW (1999) Populations and genetic polymorphisms. Mol Diagn 4:299–307

    PubMed  CAS  Google Scholar 

  • West DB, Iakougova O, Olsson C, Ross D, Ohmen J, Chatterjee A (2000) Mouse genetics/genomics: an effective approach for drug target discovery and validation. Med Res Rev 20:216–230

    PubMed  CAS  Google Scholar 

  • Wieczorek SJ, Tsongalis GJ (2001) Pharmacogenomics: will it change the field of medicine? Clin Chim Acta 308:1–8

    PubMed  CAS  Google Scholar 

  • Wilson S, Bergsma DJ, Chambers JK, Muir AI, Fantom KG, Ellis C, Murdock PR, Herrity NC, Stadel JM (1998) Orphan G-protein-couples receptors: the next generation of drug targets? Br J Pharmacol 125:1387–1392

    PubMed  CAS  Google Scholar 

  • Winkelmann BR (2001) Genomics and large scale phenotypic databases. Pharmacogenomics 2:3–5

    PubMed  CAS  Google Scholar 

  • Winkelmann BR, Marz W, Boehm BO, Zotz R, Hager J, Hellstern P, Senges J (2001) Rationale and design of the LURIC study — a resource for functional genomics, pharmacogenomics and long-term prognosis of cardiovascular disease. Pharmacogenomics 2 (Suppl 1):S1–S73

    PubMed  CAS  Google Scholar 

  • Wolf CR, Smith G (1999) Pharmacogenetics. Br Med Bull 55:366–386

    PubMed  CAS  Google Scholar 

  • Zweiger G (1999) Knowledge discovery in gene-expression-microarray data: mining the information output of the genome. Trends Biotechnol 17:429–436

    PubMed  CAS  Google Scholar 

References

  • Anderson NL, Anderson NG (1998) Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19:1853–1861

    PubMed  CAS  Google Scholar 

  • Binz PA, Müller M, Walther D, Bienvenut WV, Gras R, Hoogland C, Bouchet G, Gasteiger E, Fabbretti R, Gay S, Palagi P, Wilkins MR, Rouge V, Tonella L, Paesano S, Rossellat G, Karmime A, Bairoch A, Sanchez JC, Appel RD, Hochstrasser DF (1999) A molecular scanner to automate proteomic research and to display proteome images. Anal Chem 71:4981–4988

    PubMed  CAS  Google Scholar 

  • Blackstock WP, Weir MP (1999) Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol 17:121–127

    PubMed  CAS  Google Scholar 

  • Browne MJ (2000) Analysis of large gene databases for discovery of novel therapeutic agents. J Biotechnol 78:247–259

    PubMed  CAS  Google Scholar 

  • Burley SK, Almo SC, Bonanno JB, Capel M, Chance MR, Gaasterland T, Lin D, Sali A, Studier FW, Swaminathan S (1999) Structural genomics: beyond the human gene project. Nat Genet 23:151–157

    PubMed  CAS  Google Scholar 

  • Carr SA, Annan RS (1997) Overview of pepptide and protein analyis by mass spectrometry. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current Protocols in Molecular Biology. Wiley, New York, pp 10.21.1–10.21.27

    Google Scholar 

  • Dancik V, Addona TA, Clauser KR, Vath JE, Pevzner PA (1999) De novo peptide sequencing via tandem mass spectrometry. J Comput Biol 6:327–342

    PubMed  CAS  Google Scholar 

  • Debouck C, Metcalf B (2000) The impact of genomics on drug discovery. Annu Rev Pharmacol Toxicol 40:193–208

    PubMed  CAS  Google Scholar 

  • Dove A (1999) Proteomics: translating gene into products? Nat Biotechnol 17:233–236

    PubMed  CAS  Google Scholar 

  • Drews J (2000) Drug discovery: a historical perspective. Science 287:1960–1964

    PubMed  CAS  Google Scholar 

  • Dutt MJ, Lee KH (2000) Proteomic analysis. Curr Opin Biotechnol 11:176–179

    PubMed  CAS  Google Scholar 

  • Feng HP (2000) A protein microarray. Nature, Struct Biol 7:829–830

    CAS  Google Scholar 

  • Fields S (2001) Proteomics in genomeland. Science 291:1221–1224

    PubMed  CAS  Google Scholar 

  • Hatzimanikatis V, Choe LH, Lee KH (1999) Proteomics: theoretical and experimental considerations. Biotechnol Prog 15:312–318

    PubMed  CAS  Google Scholar 

  • Haystead TAJ (2001) Proteome mining: exploiting serendipity in drug discovery. Curr Drug Disc 1:22–24

    Google Scholar 

  • Jain KK (2001) Proteomics: new technologies and their applications. Drug Dev Today 6:457–459

    Google Scholar 

  • James P (2001) Proteome Research: Mass Spectrometry. Springer-Verlag Heidelberg New York

    Google Scholar 

  • Jungblut PR, Zimny-Arndt U, Zeindl-Eberhart E, Stulik J, Koupilova K, Pleissner KP, Otto A, Müller EC, Sokolowska-Kohler W, Grabner G, Stoffler G (1999) Proteomics in human disease: cancer, heart and infectious diseases. Electrophoresis 20:2100–2110

    PubMed  CAS  Google Scholar 

  • Kowalski P, Stoerker J (2000) Accelerating discoveries in the proteome and genome with MALDI TOF MS. Pharmacogenomics 1:359–366

    PubMed  CAS  Google Scholar 

  • Kreider BL (2000) PROfusion: genetically tagged proteins for functional proteomics and beyond. Med Res Rev 20:212–215

    PubMed  CAS  Google Scholar 

  • Loo JA, DeJohn DE, Du P, Stevenson TI, Ogorzalek-Loo RR (1999) Application of mass spectrometry for target identification and characterization. Med Res Rev 19:307–319

    PubMed  CAS  Google Scholar 

  • Maggio ET, Ramnarayan K (2001) Recent developments in computational proteomics. Trends Biotechnol 19:266–272

    PubMed  CAS  Google Scholar 

  • Mann M, Hendrickson RC, Pandey A (2001) Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 70:437–473

    PubMed  CAS  Google Scholar 

  • Morris HR, Paxton C, Langhorne J, Berg M, Bordoli RS, Hoyes J, Bateman RH (1996) High sensitivity collisionally-activated decomposition tandem mass flight mass spectrometer, the Q-TOF, for low fentomole/attomole-range biopolymer sequencing. J Protein Chem 16:469–479

    Google Scholar 

  • Müller S, Neumann T, Lottspeich F (1998) Proteomics — a new way for drug target discovery. Arzneim Forsch/Drug Disc 48:93–95

    Google Scholar 

  • Nielsen H, Brunak S, van Heijne G (1999) Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng 12:3–9

    PubMed  CAS  Google Scholar 

  • Patterson SD (1998) Protein identification and characterization by mass spectrometry. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current Protocols in Molecular Biology. Wiley, New York, pp 10.22.1–10.22.24

    Google Scholar 

  • Patterson SD (2000) Mass spectrometry and proteomics. Physiol Genomics 2:59–65

    PubMed  CAS  Google Scholar 

  • Patterson SD, Aebersold R (1995) Mass spectrometric approaches for the identification of gel-separated proteins. Electrophoresis 16:1791–11814

    PubMed  CAS  Google Scholar 

  • Patterson SD, Spahr CS, Daugas E, Susin SA, Irinopoulou T, Koehler C, Kroemer G (2000) Mass spectrometric identification of proteins released from mitochondria undergoing permeability transition. Cell Death Differ 7:137–144

    PubMed  CAS  Google Scholar 

  • Quadroni M, James P (1999) Proteomics and automation. Electrophoresis 20:664–677

    PubMed  CAS  Google Scholar 

  • Rabilloud T (2001) Proteome Research: Two-Dimensional Gel Electrophoresis and Identification Methods. Springer-Verlag Heidelberg, New York

    Google Scholar 

  • Ryu DD, Nam DH (2000) Recent progress in biomolecular engineering. Biotechnol Prog 16:2–16

    PubMed  CAS  Google Scholar 

  • Service RF (2000) Proteomics. Can Celera do it again? Science 287:2136–2138

    PubMed  CAS  Google Scholar 

  • Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL (1995) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13:19–50

    Google Scholar 

  • William KL (1999) Genomes and proteomes: Toward a multidimensional view of biology. Electrophoresis 20:678–688

    Google Scholar 

  • Wilm MS, Mann M (1994) Electrospray and Taylor-Cone theory, Dole's beam of macromolecules at last? Int J Mass Spectrom Ion Processes 136:167–180

    CAS  Google Scholar 

  • Yates JR 3rd (2000) Mass spectrometry. From genomics to proteomics. Trends Genet 16:5–8

    PubMed  CAS  Google Scholar 

References

  • Brown PO, Botstein D (1999) Exploring the new world of the genome with DNA microarrays. Nat Genet 21 (1 Suppl):33–37

    PubMed  CAS  Google Scholar 

  • Burke HB (2000) Discovering patterns in microarray data. Mol Diagn 5:349–357

    PubMed  CAS  Google Scholar 

  • Deyholos M, Wang H, Galbraith D (2001) Microarrays for gene discovery and metabolic pathway analysis in plants. Origins 2:6–8

    Google Scholar 

  • DeRisi JL, Iyer VR (1999) Genomics and array technology. Curr Opin Oncol 11:76–79

    PubMed  CAS  Google Scholar 

  • Diehn M, Eisen MB, Botstein D, Brown PQ (2000) Large-scale identification of secreted and membrane-associated gene products using DNA microarrays. Nat Genet 25:58–62

    PubMed  CAS  Google Scholar 

  • Epstein CB, Butow RA (2000) Microarray technology — enhanced versatility, persistent challenge. Curr Opin Biotechnol 11:36–41

    PubMed  CAS  Google Scholar 

  • Gaasterland D, Berikanow S (2000) Making the most of microarray data. Nature Genetics 24:204–206

    PubMed  CAS  Google Scholar 

  • Ge H (2000) UPA, a universal protein array system for quantitative detection of protein-protein, protein-DNA, protein-RNA, and protein-ligand interactions. Nucleic Acids Res 28:e3

    Google Scholar 

  • Jain KK (2000) Application of biochip and microarray systems in pharmacogenomics. Pharmacogenomics 1:289–307

    PubMed  CAS  Google Scholar 

  • Jordan B (2001) DNA Microarrays: Gene Expression Applications. Spring-Verlag Heidelberg, New York

    Google Scholar 

  • Nature Office (2000) Microarrays on the slide. Compiled by the Nature Office from information provided by the manufacturers. New gadgets, including some of the latest in microarray technology. Nature 406:659–600

    Google Scholar 

  • Rautenstrauß BW, Liehr T (2001) FISH technology. Springer-Verlag, Heidelberg New York

    Google Scholar 

  • Rockett JC, Dix DJ (2000) DNA arrays: technology, options and toxicological applications. Xenobiotica 30:155–177

    PubMed  CAS  Google Scholar 

  • Sherlock G, Hernandez-Boussard T, Kasarskis A, Binkley G, Matese JC, Dwight SS, Kaloper M, Weng S, Jin H, Ball CA, Eisen MB, Spellman PT, Brown PO, Botstein D, Cherry JM (2001) The Stanford microarray database. Nucleic Acids Res 29:152–155

    PubMed  CAS  Google Scholar 

  • Taniguchi M, Mura K, Iwao H, Yamanaka S (2001) Quantitative assessment of DNA microarrays — comparison with Western blot analyses. Genomics 71:34–39

    PubMed  CAS  Google Scholar 

  • Zhang MQ (1999) Large-scale gene expression data analysis: a new challenge to computational biologists. Genome Res 9:681–688

    PubMed  CAS  Google Scholar 

References

  • Barros HM, Tannhauser MA, Tannhauser SL, Tannhauser M (1991) Enhanced detection of hyperactivity after drug withdrawal with a simple modification of the open-field apparatus. J Pharmacol Meth 26:269–275

    CAS  Google Scholar 

  • Martorana PA, Göbel H, Kettenbach P, Nitz RE (1982) Comparison of various methods for assessing infarct-size in the dog. Basic Res Cardiol 77:301–308

    PubMed  CAS  Google Scholar 

  • Pollard GT, Howard JL (1986) The staircase test: some evidence of nonspecificity for anxiolytics. Psychopharmacology Berl 89:14–19

    PubMed  CAS  Google Scholar 

  • Sandkühler J, Willmann E, Fu QG (1991) Characteristics of midbrain control of spinal nociceptive neurons and nonsomatosensory parameters in the pentobarbital-anesthetized rat. J Neurophysiol 65:33–48

    PubMed  Google Scholar 

  • Vogel HG, Vanderbeeke O (1990) “In vitro / in vivo” pharmacology. Mathematical models for screening strategy. Internal Presentation Hoechst AG

    Google Scholar 

  • Waldeck B (1996) Some pharmacodynamic aspects on long-acting beta-adrenoceptor agonists. Gen Pharmacol 27:575–580

    PubMed  CAS  Google Scholar 

  • White RE (2000) High-throughput screening in drug metabolism and pharmacokinetic support of drug discovery. Annu Rev Pharmacol Toxicol 40:133–157

    PubMed  CAS  Google Scholar 

  • Williams JL, Hathaway CA, Kloster KL, Layne BH (1997) Low power, type-II errors, and other statistical problems in recent cardiovascular research. Am J Physiol 273 (Heart Circ Physiol 42): H487–H493

    PubMed  CAS  Google Scholar 

  • Zhang JH, Chung TDY, Oldenburg KR (2000) Confirmation of primary active substances from high throughput screening of chemical and biological populations: a statistical approach and practical considerations. J Comb Chem 2:285–265

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag

About this entry

Cite this entry

Vogel, H.G., Vogel, W.H., Schölkens, B.A., Sandow, J., Müller, G., Vogel, W.F. (2002). Introduction Strategies in drug discovery and evaluation1 . In: Vogel, H.G., Vogel, W.H., Schölkens, B.A., Sandow, J., Müller, G., Vogel, W.F. (eds) Drug Discovery and Evaluation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29837-1_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-29837-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42396-6

  • Online ISBN: 978-3-540-29837-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics