Encyclopedia of Geochemistry

1999 Edition
| Editors: Clare P. Marshall, Rhodes W. Fairbridge

I

  • Erich Schroll
  • Fernando Bea
  • Edward C. V. Butler
  • Peter van Calsteren
  • Nobumichi Shimizu
  • Dana T. Griffen
  • R. R. Barefoot
  • Mark A. Williamson
  • Carla W. Montgomery
  • Ian D. Clark
Reference work entry
DOI: https://doi.org/10.1007/1-4020-4496-8_9
  • 2.2k Downloads

Indium: Element and geochemistry

Indium was discovered 1863 by Reich and Richter in residues of sphalerite from Freiberg (Germany), by means of optical spectroscopy. It was named after its distinctive blue spectral lines. The chemical symbol is in. The physical properties are described in Table I1. Indium has two isotopes, 113, and 115. 115In is radioactive, decaying to 115Sn with a half-life of 5 × 1014 years. In nature, indium is monovalent and trivalent. It is chemically similar to Sn, more so than with Fe, Cd, Ga and Tl. Its electrochemical potential permits the reduction to native indium. In aqueous solution, In1+ ion is unstable. Indium III forms a number of inorganic and organic complex anions. Insoluble compounds are formed in neutral aqueous solutions, such as hydroxides, sulfides, carbonates, phosphates or arsenates. In (OH)3, precipitates at pH4.
Table I1

Physical constants of indium

Atomic number

49

Atomic weight

114.82

Isotopes and abundances (%)

 Mass No. 113

4.8

115

95.72

Keywords

Ferrous Iron Isotope Fractionation Ferric Oxide Platinum Group Element Isotopic Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

  1. Eskenazy, G.M. (1980) On the geochemistry of indium in coal-forming processes, Geochim. Cosmochim. Acta, 44, 1023–7CrossRefGoogle Scholar
  2. Johan, Z. (1988) Indium and germanium in the structure of sphalerite: an example of coupled substitution with copper. Mineral. Petrol., 38, 221–44.Google Scholar
  3. Linn, T.A.. And Schmitt, R.A. (1974) Indium, in Handbook of Geochemistry (ed. K.H. Wedepohl). Singer Verlag.Google Scholar
  4. Matthes, A.D. and Riley, J.P.(1970) Occurrences of indium in sea water and marine sediments. Nature, 225, 1242.CrossRefGoogle Scholar

Cross-references

  1. Bea, F., Pereira, M.D. and Stroh, A. (1994) Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICPMS study). Chem. Geol., 117, 291–312.CrossRefGoogle Scholar
  2. Dunn, T. and Sen, C. (1994) Mineral/matrix partition coefficients for orthopiroxene, plagioclase, and olivine in basaltic to andesitic systems: A combined analytical and experimental study. Geochim. Cosmochim. Acta., 58, 717–34.CrossRefGoogle Scholar
  3. Feng, R., Machado, N. and Ludden, J. (1993) Lead geochronology of zircon by laser-probe-inductively coupled plasma mass spectrometry (LP–ICPMS). Geochim. Cosmochim. Acta, 57, 3479–86.CrossRefGoogle Scholar
  1. Chameides, W.L. and Davis, D.D. (1980) Iodine: its possible role in tropospheric photochemistry. J. Geophys. Res., 85, 7383–98.CrossRefGoogle Scholar
  2. Fuge, R. and Johnson, C.C. (1986) The geochemistry of iodine–a review. Environ. Geochem. Health, 8, 31–54.CrossRefGoogle Scholar
  3. Kocher, D.C. (1981) A dynamic model of the global iodine cycle and estimation of dose to the world population from releases of iodine-129 to the environment. Environ. Int., 15, 15–31.CrossRefGoogle Scholar
  4. Whitehead, D.C. (1984) The distributions and transformations of iodine in the environment. Environ. Int., 10, 321–39.CrossRefGoogle Scholar
  5. Wong, G.T.F. (1991) The marine geochemistry of iodine. Rev. Aquatic Sci., 4, 45–73.Google Scholar
  1. Helferich F.(1962) Ion Exchange. New York: McGraw-Hill.Google Scholar
  1. Bowring, S.A., Williams, I.S. and Compston, W. (1989) 3.96 Gagneisses from the Slave Province, N.W.T., Canada. Geology, 17, 971–5.CrossRefGoogle Scholar
  2. Fahey, A.J., Goswami, J.N., McKeegan, K.D. and Zinner, E.(1985) Evidence for extreme 50Ti enrichments in primitive meteorites. Astrophys. J. Lett., 296, L17–20.CrossRefGoogle Scholar
  3. Froude, D.O., Ireland, T.R., Kinny, P.D. et al. (1983) Ion microprobe identification of 4100–4200 Myr-old terrestrial zircons. Nature, 304, 616–18.CrossRefGoogle Scholar
  4. Ireland, T.R., Compston, W. and Heydegger, H.R. (1985) Titanium isotopic anomalies in hibonites from the Murchison carbonaceous chondrite. Geochim. Cosmochim, Acta, 49, 1989–93.CrossRefGoogle Scholar
  5. Johnson, K.T.M., Dick, H.J.B. and Shimizu, N. (1990) Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. J. Geophys. Res., 95, 2661–78.CrossRefGoogle Scholar
  6. Sobolev, A.V. and Shimizu, N. (1993) Ultra-depleted primary melt included in an olivine from the Mid-Atlantic Ridge. Nature, 363, 151–4.CrossRefGoogle Scholar
  7. Zinner, E., Fathey, A.J., Goswami, J.N., Ireland, T.R. and McKeegan. K.D. (1986) Large 48Ca anomalies are associated with 50Ti anomalies in Murchison and Murray hibonites. Astrophys. J. Lett., 311, L103–7.CrossRefGoogle Scholar
  1. Burdett, J.K. (1995) Chemical Bonding in Solids. New York: Oxford University Press, 319 pp.Google Scholar
  2. Evans, R.C. (1964) An Introduction to Crystal Chemistry. Cambridge: Cambridge University Press, 411 pp.Google Scholar
  3. Griffen, D.T. and Ribbe, P.H. (1979) Distortions in the tetrahedral oxyanions of crystalline substances. News Jahrbuch Mineral. Abh., 137, 54–73.Google Scholar
  4. Pauling, L. (1970) Crystallography and chemical bonding of sulfide minerals. Mineral. Soc. Am. Sp. Paper, 3, 125–31.Google Scholar
  5. Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., A32, 751–67.CrossRefGoogle Scholar
  6. Shannon, R.D. (1981) Bond distances in sulfides, in Structure and Bonding in Crystals, Volume 2 (eds M. O'Keefe and A. Navrotsky). New York: Academic Press, pp. 53–70.CrossRefGoogle Scholar
  7. Shannon, R.D. and Prewitt, C.T. (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr., B25, 925–46.CrossRefGoogle Scholar
  8. Tossell, J.A. and Vaughan, D.J. (1992) Theoretical Geochemistry: Applications of Quantum Mechanics in the Earth and Mineral Sciences. New York: Oxford University Press, 524 pp.Google Scholar
  9. Vaughan, D.J. and Craig, J.R. (1978) Mineral Chemistry of Metal Sulfides. Cambridge: Cambridge University Press, 493 pp.Google Scholar
  1. Benner, L.S., Suzuki, T., Meguro, K. and Tanaka, S.(1991) Precious Metals, Science and Technology. Austin, TX: International Precious Metals Institute, 799 pp.Google Scholar
  2. Cabri, L.J. (1981) Platinum-Group Elements: Mineralogy, Geology, Recovery. CIM Special Volume 23. Toronto: Canadian Institute of Mining and Metallurgy, 267 pp.Google Scholar
  3. Minerals Yearbook, Volume I. (1992) Washington: US Government Printing Office, 1495 pp.Google Scholar
  4. Naldrett, A.J. (1981) Platinum-group element deposits, in Platinum Group Elements: Mineralogy, Geology, Recovery. CIM Special Volume 23 (ed. L.J. Cabri). Toronto: Canadian Institute of Mining and Metalurgy, pp. 199–231.Google Scholar
  5. Van Loon, J.C. and Barefoot, R.R. (1991) Determination of the Precious Metals. New York: John Wiley and Sons, 276 pp.Google Scholar
  1. Baes, C.F. Jr. and Mesmer, R.E. (1976) The Hydrolysis of Cations. New York: Wiley-Interscience, 325 pp.Google Scholar
  2. Ball, J.W. and Nordstrom, D.K. (1991) User's manual for WATEQ4F with revised thermodynamic data base and test cases for calculating speciation of major, trace and redox elements in natural waters. US Geol. Sur. Open-File Rep., 91–183.Google Scholar
  3. Blowes, D.W. and Jambor, J.L. (1994) The Environmental Geochemistry of Sulfide Mine-wastes. Short Course Handbook. Toronto: Mineralogic Association of Canada.Google Scholar
  4. Bodek, I. et al. (1989) Environmental Inorganic Chemistry. New York: Pergamon Press, 835 pp.Google Scholar
  5. Carignan, R. and Nriagu, J.O. (1985) Trace metal deposition and mobility in sediments of two lakes near Sudbury, Ontario. Geochim. Cosmochin. Acta, 49, 1753–64.CrossRefGoogle Scholar
  6. Faure, G. (1991) Principles and Application of Inorganic Geochemistry. New York: Macmillan.Google Scholar
  7. Garrels, R.M. and Christ, C.L. (1965) Solutions, Minerals and Equilibria. Boston: Jones and Bartlett Publishers.Google Scholar
  8. Goldrich, S.S. (1938) A study in rock weathering. J. Geol., 46, 17–58.CrossRefGoogle Scholar
  9. Goldschmidt, V.M. (1958) Geochemistry. Oxford University Press.Google Scholar
  10. Hem, J.D. (1992) Study and interpretation of the chemical characteristics of natural water. US Geol. Sur. Water Supply Paper 2254.Google Scholar
  11. Krauskopf, K.B. and Bird, D.K. (1995) Introduction to Geochemistry. New York: McGraw-Hill.Google Scholar
  12. Langmuir, D. (1997) Aqueous Environmental Geochemistry. New York: Prentice-Hall.Google Scholar
  13. Lepp, H. and Goldich, S.S. (1950) Origin of Precambrian iron formations. Econ. Geol., 59, 1025–60.CrossRefGoogle Scholar
  14. Park, C.F. and MacDiarmid, R.A. (1975) Ore Deposits. San Francisco: W.H. Freeman.Google Scholar
  15. Schoonen, M.A.A. and Barnes, H.L. (1991) Reactions forming pyrite and marcasite from solution: II. Via FeS precursors below 100°C. Geochim. Cosmochim. Acta, 55, 1505–14.Google Scholar
  16. Taylor, S.R. and McLennan, S.M. (1985) The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publishers.Google Scholar
  17. Williamson, M.A. and Parnell, R.A. Jr. (1994) Partitioning of copper and zinc in the sediments of a high-elevation alkaline lake, east-central Arizona, USA. Appl. Geochem., 9, 597–608.Google Scholar
  18. Williamson, M.A. and Rimstidt, J.D. (1994) The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation. Geochim. Cosmochim. Acta, 58, 5443–54.CrossRefGoogle Scholar
  1. Ehmann, W.D. and Vance, D.E. (1991) Radiochemistry and Nuclear Methods of Analysis. New York: John Wiley & Sons, 531 pp.Google Scholar
  2. Faure, G. (1986) Principles of Isotope Geology, 2nd edn. New York: John Wiley & Sons, 589 pp.Google Scholar
  3. Friedlander, G., Kennedy, J.W., Maciasa, E.S. and Miller, J.M. (1981) Nuclear and Radiochemistry, 3rd edn. New York: John Wiley & Sons. 684 pp.Google Scholar

Cross-references

  1.  Analytical techniques;  Geochemical reference material; Inductively coupled plasma–mass spectrometry (ICP–MS);  Sampling;  Thermal ionization–mass spectrometry (TIMS)
  1. Bigeleisen, J. (1949) The relative reaction velocities of isotopic molecules. J. Chem. Phys., 17, 675–8.CrossRefGoogle Scholar
  2. Bottinga Y. (1968) Calculation of fractionation factors for carbon and oxygen in the system calcite–carbon dioxide–water. J. Phys. Chem., 72, 800–8.CrossRefGoogle Scholar
  3. Bottinga Y. (1969) Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite–carbon dioxide–graphite–methane–hydrogen–water vapor. Geochim. Cosmochim. Acta, 33, 49–64.CrossRefGoogle Scholar
  4. Fontes, J.C. and Gonfiantini, R. (1967) Fractionnement isotopique de I'hydrogène dans I'eau de cristallisation du gypse. C.R. Acad. Sci. Paris, Sèr. D, 265, 4–6.Google Scholar
  5. Galley, M.R., Miller, A.L., Atherley, J.F. and Mohn, M.(1972) GS process–physical properties Chalk River, Ontario: Atomic Energy of Canada Limited, AECL–4225.Google Scholar
  6. Kita, I., Taguchi, S. and Matsubaya, O. (1985) Oxygen isotope fractionation between amorphous silica and water at 34–93° C. Nature, 314, 83–4.CrossRefGoogle Scholar
  7. Lloyd, R.M. (1968) Oxygen isotope behaviour in the sulphate–water system. J. Geophys. Res., 73, 6099–110.CrossRefGoogle Scholar
  8. Majoube, M. (1971) Fractionnement en oxygèene-18 et en deutérium enter I'eau et sa vapeur. J. Chem. Phys., 197, 1423–36.Google Scholar
  9. Mook, W.G., Bommerson, J.C. and Staverman, W.H. (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet. Sci. Lett., 22, 169–76.CrossRefGoogle Scholar
  10. O'Neil, J.R. and Taylor, H. P. (1967) The oxygen isotope and cation exchange chemistry of feldspars. Am. Mineral., 52, 1414–37.Google Scholar
  11. O'Neil, J.R. Clayton R.N. and Mayeda T.K. (1969) Oxygen isotope fractionation in divalent metal carbonates. J. Chem. Phys., 51, 5547–58.CrossRefGoogle Scholar
  12. Salomons, W. and Mook, W.G. (1986) Isotope geochemistry of carbonates in the weathering zone. Handbook of Environmental Isotope Geochemistry, Volume 2, The Terrestrial Environment B (eds P. Fritz and J.-Ch. Fontes). Elsevier, Amsterdam, 557 pp.Google Scholar
  13. Sheppard, S.M.F. and Schwarcz, H.P. (1970) Fractionation of carob and oxygen isotopes and magnesium between metamorphic calcite and dolaomite. Contrib. Mineral, Petrol., 26, 161–98.CrossRefGoogle Scholar
  14. Shiro, Y. and Sakai, H. (1972) Calculation of the reduced partition function ratios of alpha–beta quartz and calcite. Jpn Chem. Soc. Bull., 45, 2355–9.CrossRefGoogle Scholar
  15. Suzuoki, T. and Epstein, S. (1976) Hydrogen isotope fractionation between OH-Bearing minerals and water. Geochim. Cosmochim. Acta, 40, 1229–40.CrossRefGoogle Scholar
  16. Suzuoki, T. and Kumura, T. (1973) D/H and 18O/16O fractionation in ice-water systems. Mass Spectrosoc., 21, 229–33.CrossRefGoogle Scholar
  17. Vogel, J.C., Grootes, P.M. and Mook, W.G. (1970) Isotope fractionation between gaseous and dissolved carbon dioxide. Z. Phys., 230, 255–8.CrossRefGoogle Scholar
  18. Urey, H.C. (1947) The thermodynamic properties of isotopic substances. J. Chem. Soc., 1947, 562–81.CrossRefGoogle Scholar
  19. Urey, H.C. and Greiff, L.J. (1935) Isotopic exchange equilibria. J. Am. Chem. Soc., 57, 321–7.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Erich Schroll
  • Fernando Bea
  • Edward C. V. Butler
  • Peter van Calsteren
  • Nobumichi Shimizu
  • Dana T. Griffen
  • R. R. Barefoot
  • Mark A. Williamson
  • Carla W. Montgomery
  • Ian D. Clark

There are no affiliations available