Encyclopedia of Geochemistry

1999 Edition
| Editors: Clare P. Marshall, Rhodes W. Fairbridge


  • P. Jonathan Patchett
  • Thomas Staudacher
  • David W. Graham
  • Ian T. Campbell
  • Uwe Brand
  • Rhodes W. Fairbridge
  • Scott M. McLennan
  • John K. Volkman
  • Ronald S. Kaufman
  • R. V. Krishnamurthy
  • Ray Kenny
  • Byron R. Berger
  • Robert J. Bodnar
  • Vidojko Jović
Reference work entry
DOI: https://doi.org/10.1007/1-4020-4496-8_8


Element 72, with an atomic weight of 178.485, is chemically a very close analog of zirconium, and is almost always enriched or depleted to the same degree. Erlank et al. (1978) have summarized all aspects of Hf geochemistry. The most important mineral host by far in the Earth's crust is zircon (Zr,Hf)SiO4, where Hf averages 1%, corresponding to the terrestrial Zr/Hf ratio of ca. 37. Hf has acquired a new importance in recent years due to the development of Hf isotope geochemistry (see Lutetium-hafnium decay system). Although dating applications are possible (Patchett, 1983; Faure, 1986), the utility of variations in radiogenic 176Hf lies mainly in petrogenesis and crust-mantle evolution. 176Hf/177Hf ratios vary from 0.28005 for 4.2 Ga zircon from Australia (Kinny et al., 1991) to a maximum of 0.2835 for Mid ocean ridge basalts of today (Patchett, 1983; Salters and Hart, 1991). In the petrogenetic and crustal evolutionary context, zircons are important because they are also...


Fluid Inclusion Meteoric Water Hydrogen Isotope Hydrothermal Solution Magmatic Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Corfu, F. and Noble, S.R. (1992) Genesis of the southern Abitibi greenstone belt, Superior Province, Canada: evidence from zircon Hf isotope analyses using a single filament technique. Geochim. Cosmochim. Acta, 56, 2081–97.Google Scholar
  2. Erlank, A.J. et al. (1978) Section 72–Hafnium, in Handbook of Geochemistry (ed. K.H. Wedepohl). Berlin: Springer.Google Scholar
  3. Faure, G. (1986) Principles of Isotope Geology, 2nd edn. New York: Wiley, 589 pp.Google Scholar
  4. Kinny, P.D., Compston, W. and Williams, I.S. (1991) A reconnaissance ion-probe study of hafnium isotopes in zircons. Geochim. Cosmochim. Acta, 55, 849–59.Google Scholar
  5. Patchett, P.J. (1983) Importance of the Lu-Hf isotopic system in studies of planetary chronology and chemical evolution. Geochim. Cosmochim. Acta, 47, 81–91.Google Scholar
  6. Salters, V.J.M. and Hart, S.R. (1991) The mantle sources of ocean ridges, islands and arcs: the Hf-isotope connection. Earth Planet. Sci. Lett., 104, 364–80.Google Scholar
  1. Allègre, C.J., Staudacher, Th. and Sarda, Ph. (1986/87) Rare gas systematics: formation of the atmosphere, evolution and structure of the Earth's mantle. Earth Planet. Sci. Lett., 81, 127–150.Google Scholar
  2. Clarke, W.B., Beg, M.A. and Craig, H. (1969) Excess 3He in the sea: evidence for terrestrial primordial helium. Earth Planet. Sci. Lett., 6, 231–45.Google Scholar
  3. Cook, G.A. (1961) Argon, helium and the rare gases, in The Elements of the Helium Group, Vol. 1. New York, London: Interscience Publishers.Google Scholar
  4. Craig, H. and Lupton, J. (1976) Primordial neon and helium, and hydrogen in oceanic basalts. Earth Planet. Sci. Lett., 31, 369–85.Google Scholar
  5. Jenkins, W.J., Edmond, J.M. and Corliss, J. (1978) Excess 3He and 4He in Galapagos submarine hydrothermal waters. Nature, 272, 156–8.Google Scholar
  6. Kurz, M.D., Jenkins, W.J. and Hart, S.R. (1982) Helium isotopic systematics of oceanic islands and mantle heterogeneity. Nature, 297, 43–7.Google Scholar
  7. Mamyrin, B.A. and Tolstikin, I.N. (1985) Helium Isotopes in Nature. Amsterdam: Elsevier Science Publishers, 266 pp.Google Scholar
  8. Polak, B.G., Kononov, V.I., Tolstikhin, I.N., Mamyrin, B.A. and Khabarin, L. (1976) The helium isotopes in thermal fluids. In Thermal and Chemical Problems of Thermal Waters (ed. A.I. Johnson). International Association of Hydrological Science, pp. 15–29.Google Scholar
  9. Sarda, Ph., Staudacher, Th., Allégre, C.J. and Lecomte, A. (1993) Cosmogenic neon and helium at Réunion: measurement of reosion rate. Earth Planet. Sci. Lett., 119, 405–17.Google Scholar
  10. Staudacher, Th. and Allégre, C.J. (1993) Ages of the second caldera of Piton de la Fournaise volcano (Réunion) determined by cosmic ray produced 3He and 21Ne. Earth Planet. Sci. Lett., 119, 395–404.Google Scholar
  1. Craig, H. and Lupton, J.E. (1981) Helium-3 and mantle volatiles in the ocean and the oceanic crust, in The Sea, Vol. 7, The Oceanic Lithosphere (ed. C. Emiliani). New York: John Wiley & Sons, pp. 391–428.Google Scholar
  2. Farley, K.A., Natland, J.H. and Craig, H. (1992) Binary mixing of enriched and undegassed (primitive?) mantle components (He, Sr, Nd, Pb) in Samoan lavas. Earth Planet. Sci. Lett., 111, 183–99.Google Scholar
  3. Jenkins, W.J. (1980) Tritium and 3He in the Sargasso Sea. J. Marine Res., 38, 533–69.Google Scholar
  4. Kellogg, L.H. and Wasserburg, G.J. (1990) The role of plumes in mantle helium fluxes. Earth Planet. Sci. Lett., 99, 276–89.Google Scholar
  5. Kurz, M.D. (1986) In situ production of terrestrial cosmogenic helium and some applications to geochronology. Geochim. Cosmochim. Acta, 50, 2855–62.Google Scholar
  6. Kurz, M.D., Jenkins, W.J. and Hart, S.R. (1982) Helium isotopic systematics of oceanic islands and mantle heterogeneity. Nature, 297, 43–6.Google Scholar
  7. Lupton, J.E. (1983) Terrestrial inert gases: isotope tracer studies and clues to primordial components in the mantle. Annu. Rev. Earth Planet. Sci., 11, 371–414.Google Scholar
  8. O'Nions, R.K. and Oxburgh, E.R. (1983) Heat and helium in the Earth. Nature, 306, 429–31.Google Scholar
  9. Ozima, M. and Podosek, F.A. (1983) Noble Gas Geochemistry. Cambridge: Cambridge University Press, 367 pp.Google Scholar
  10. Poreda, R. and Craig, H. (1989) Helium isotope ratios in circum-Pacific volcanic arcs. Nature, 338, 473–8.Google Scholar
  1. Krauskopf, K.B. and Bird, D.K. (1995) Introduction to Geochemistry, 3rd edn. New York: McGraw-Hill, Inc., 647 pp.Google Scholar
  2. Smith, B.S. (1990) Basic Chemical Thermodynamics, 4th edn. New York: Oxford University Press, 166 pp.Google Scholar
  1. Adams, F.D. (1938) The Birth and Development of the Geological Sciences. Baltimore: Williams & Wilkins Co.Google Scholar
  2. Barnes, V.E. and Barnes, M.A. (eds) (1973) Tektites. Benchmarks in Geology, Vol. 4. Stroudsburg, PA: Dowden, Hutchinson and Ross, 445 pp.Google Scholar
  3. Bowes, D.R. (ed.) (1989) The Encyclopedia of Igneous and Metamorphic Petrology. New York: Van Nostrand Reinhold, 666 pp.Google Scholar
  4. Burchfield, J.D. (1975) Lord Kelvin and the Age of the Earth. London: Macmillan.Google Scholar
  5. Clarke, F.W. (1924) The Data of Geochemistry. Washington, DC: US Geol. Surv. Bull. 770, 5th edn., 841 pp.Google Scholar
  6. Correns, C.W. (1969) Chapter 1. In: Handbook of Geochemistry. Berlin: Springer-Verlag, pp. 1–11.Google Scholar
  7. Crawford, E. (1996) Arrhenius: From Ionic Theory to the Greenhouse Effect. Canton, MA: Watson, 320 pp.Google Scholar
  8. Daly, R.A. (1914) Igneous Rocks and Their Origins. New York: McGraw-Hill.Google Scholar
  9. De Beaumont, E. (1847) Note sur les émanations volcanique et métal-liferas. Bull. Soc. Géol. France, 2, 1249–333.Google Scholar
  10. Dermott, S.F. (ed.) (1978) The Origin of the Solar System. New York: Wiley Interscience, 668 pp.Google Scholar
  11. Drake, E.T. and Jordan, W.N. (1985) Geologists and Ideas. Boulder, CO: Geological Society of America (Contennial, Sp. V.I), 525 pp.Google Scholar
  12. Drever, J.I. (1997) The Geochemistry of Natural Waters, 3rd edn. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  13. Emiliani, C. (1992) Planet Earth. Cambridge: Cambridge University Press, 718 pp.Google Scholar
  14. Fairbridge, R.W. (1967) Carbonate rocks and paleoclimatology in the biogeochemical history of the Earth, in Carbonate Rocks (Chilingar, G.V. et al. eds). Amsterdam: Elsevier, pp. 399–432.Google Scholar
  15. Fairbridge, R.W. (1972) The Encyclopedia of Geochemistry and Environmental Sciences. New York: Van Nostrand Reinhold Co., 1321 pp.Google Scholar
  16. Fairbridge, R.W. (1980) Prediction of long-term geologic and climatic changes that might affect the isolation of radioactive waste. Underground Disposal of Radioactive Wastes, 2, 285–405.Google Scholar
  17. Fairbridge, R.W. (1983) Syndiagenesis-anadiagenesis-epidiagenesis: phases in lithogenesis, in Diagenesis in Sediments and Sedimentary Rocks (G. Larsen and G.V. Chilingar eds), Vol. 2. Amsterdam: Elsevier, pp. 17–113.Google Scholar
  18. Faure, G. (1986) Principles of Isotope Geology, 2nd edn. New York: J. Wiley and Sons, 589 pp.Google Scholar
  19. Fleischer, M. (ed.) (1962) (et seq.). The Data of Geochemistry, 6th edn. Washington, DC: US Geol. Surv., Prof. Paper 440 (in parts).Google Scholar
  20. Fouqué, F. and Lévy, M. (1882) Synthèse des Minéraux et des Roches. Paris: Masson and Cie.Google Scholar
  21. Friedman, G.M., Sanders, J.E. and Kopaska-Merkel, D.C. (1992) Principles of Sedimentary Deposits: Stratigraphy and Sedimentology. New York: Macmillan. 717 pp.Google Scholar
  22. Goldschmidt, V.M. (1954) Geochemistry. Oxford: Clarendon Press, 730 pp.Google Scholar
  23. Gould, S.J. and Eldredge, N. (1977) Punctuated equilibria: the tempo and mode of evolution considered. Paleobiology, 3, 115–51.Google Scholar
  24. Hawkes, H.E. and Webb, J.S. (1962) Geochemistry in Mineral Exploration. New York: Harper & Row, 415 pp.Google Scholar
  25. Herschy, R.W. (1998) The Encyclopedia of Hydrology and Water Supply. London: Chapman and Hall.Google Scholar
  26. Hunt, T. (1875) Chemical and Geological Essays. Boston: J.R. Osgood. London: Trübner, 489 pp.Google Scholar
  27. Hurford, A.J., Jäger, E. and Ten Cate, J.A.M. (eds) (1986) Dating Young Sediments. Bangkok: CCOP Technical Secretariat, 393 pp.Google Scholar
  28. Jackson, J. (1997) Glossary of Geology, 4th edn. Alexandria, VA: American Geological Institute, 769 pp.Google Scholar
  29. Joly, J. (1925) The Surface History of the Earth. Oxford: Clarendon Press, 192 pp.Google Scholar
  30. Krauskof, K.B. and Bird, D.K. (1995) Introduction to Geochemistry, 3rd edn. New York: McGraw-Hill.Google Scholar
  31. Kvenvolden, K.A. (ed.) (1974) Geochemistry and the Origin of Life. Stroudsburg, PA: Dowden, Hutchinson & Ross (Benchmark papers), 422 pp.Google Scholar
  32. Libby, W.F. (1955) Radiocarbon Dating, 2nd edn. Chicago: Chicago University Press.Google Scholar
  33. Lovelock, J.E. (1979) Gaia: A New Look at Life on Earth. Oxford: Oxford University Press, 157 pp.Google Scholar
  34. Lunn, F., Brooke, H.J. Philips, J. and Daubeny, C.G.B. (1835) Encyclopaedia of Chemistry, Mineralogy, and Geology. London: R. Griffin & Co.Google Scholar
  35. Mason, B. (1958/66) Principles of Geochemistry, 3rd edn. New York: J. Wiley & Sons, 329 pp.Google Scholar
  36. Oliver, J.E. and Fairbridge, R.W. (eds) (1987) The Encyclopedia of Climatology. New York: Van Nostrand Reinhold.Google Scholar
  37. Park, C.F. and MacDiarmid, R.A. (1970) Ore Deposits, 2nd edn. San Francisco: W.H. Freeman, 522 pp.Google Scholar
  38. Rampino, M.R. and Caldeira, K. (1992) Episodes of terrestrial geologic activity during the past 26 million years: a quantitative approach. Celestial Mech. Dyn. Astron., 54, 143–59.Google Scholar
  39. Rampino, M.R., Haggerty, B.M. and Pagano, T.C. (1998) A unified theory of impact crises and mass extinctions: quantitative tests. New York Acad. Sci. Ann., 822, 403–30.Google Scholar
  40. Rankama, K. and Sahama, T.G. (1950) Geochemistry. Chicago: University of Chicago Press. 912 pp.Google Scholar
  41. Raup, D.M. and Sepkowski, J.J. Jr. (1986) Periodic extinctions of families and genera. Science, 231, 833–6.Google Scholar
  42. Reade, T.M. (1886) The Origin of Mountain Ranges, Considered Experimentally, Structurally, Dynamically. London: Taylor & Francis.Google Scholar
  43. Revelle, R.R. and Fairbridge, R.W.F. (1957) Carbonates and carbon dioxide. Geol. Scc. Am. Mem., 67, 239–96.Google Scholar
  44. Sabine, P.A. (1969) Geochemistry of Sedimentary Rocks. London: HM Stationary Office.Google Scholar
  45. Sarjeant, W.A.S. (1980) Geologists and the History of Geology (5 vols). New York: Arno Press.Google Scholar
  46. Shirley, J.H. and Fairbridge, R.W. (eds) (1997) The Encyclopedia of Planetary Sciences. London: Chapman & Hall, 1040 pp.Google Scholar
  47. Sollas, W.J. (1905) The Age of the Earth. London: T. Fisher Unwin, 328 pp.Google Scholar
  48. Speidel, D.H. and Agnew, A.F. (1982) The Natural Geochemistry of Our Environment. Boulder, CO: Westview, 214 pp.Google Scholar
  49. Stommel, H. (1965) The Gulf Stream, 2nd edn. Berkeley: University of California Press, 202 pp.Google Scholar
  50. Tilley, C.E. (1948) Victor Moritz Goldschmidt. Obituary Notices of Fellows of the Royal Society, 6.Google Scholar
  51. Vail, P.R., Mitchum, R.M. and Thompson, S. (1977) Global cycles of relative change of sea level. Am. Assoc. Petrol. Geol. Mem., 26, 83–97.Google Scholar
  52. Vinogradov, A.P. (1956) Regularity of distribution of elements in the Earth's crust. Geochemistry (USSR). 1, 1–43.Google Scholar
  53. Vinogradov, A.P. (1959) The Geochemistry of Rare and Dispersed Chemical Elements in Soils. New York: Consultants Bureau, 191 pp.Google Scholar
  54. Von Zittel, K.A. (1901) History of Geology and Palaeontology. London: W. Scott, 562 pp.Google Scholar
  55. Wedepohl, K.H. (1971) Geochemistry. New York: Holt, Rinehart & Winston, 231 pp.Google Scholar
  56. Weeks, M.E. (1956) Discovery of the Elements, 6th edn. Easton, PA: Journal of Chemical Education, 910 pp.Google Scholar
  57. Windelius, G. and Carlborg, N. (1995) Solar orbital angular momentum and some cyclic effects on Earth systems. J. Coastal Res., 17, 383–95.Google Scholar
  58. Wood, K.M. (1985) The Dark Side of the Earth. London: Allen and Unwin, 246 pp.Google Scholar
  59. Wyllie, P.J. (1971) The Dynamic Earth. New York: J. Wiley & Sons, 416 pp.Google Scholar
  60. Zenger, D.H. and Mazzullo, S.J. (eds) (1982) Dolomitization. Stroudsburg, PA. (Benchmark Vol. 65), 426 pp.Google Scholar
  61. Alexander, R., Larcher, A.V., Kagi, R.I. and Price, P.L. (1989) An oil–source correlation study using age-specific plant-derived aromatic biomarkers, in Biological Markers in Sediments and Petroleum (Moldowan, J.M., Albrecht, P. and Philip R.P. eds). Englewood Cliffs, NJ: Prentice Hall, 411 pp.Google Scholar
  62. Bray, E.E. and Evans, E.D. (1961) Distributions of n-paraffins as a clue to the recognition of source beds. Geochim. Cosmochim. Acta, 22, 2–15.Google Scholar
  63. Durand, B. (ed.) (1980) Kerogen–Insoluble Organic Matter from Sedimentary Rocks. Paris: Éditions Technip, 519 pp.Google Scholar
  64. Freeman, K.H., Hayes, J.M., Trendel, J.M. and Albrecht, P. (1990) Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons. Nature, 343, 254–6.Google Scholar
  65. Goth, K., de Leeuw, J.W., Puttmann, W. and Tegelaar, E.W. (1988) Origin of Messel Oil Shale Kerogen. Nature, 336, 759–61.Google Scholar
  66. Largeau, C., Casadevall, E., Kadouri, A. and Metzger, P. (1984) Formation of Botryococcus-derived kerogens–comparative study of immature torbanites and of the extant alga Botryococcus brounii, in Advances in Organic Geochemistry 1983 (P.A. Schenck, J.W. de Leeuw and G.W.M. Lijmbach eds.). Nord: Pergamon Press, pp. 327–32.Google Scholar
  67. Radke, M., Willsch, H. and Teichmuller, M. (1990) Generation and distribution of aromatic hydrocarbons in coals of low rank. Org. Geochem., 15, 539–63.Google Scholar
  68. Tegelaar, E.W., de Lecuw, J.W. and Saiz-Jimenez, C. (1989) Possible origin of aliphatic moieties in Lumic substances. Sci. Total Environ., 81/82, 1–17.Google Scholar
  69. van Aarssen, B.G.K., Cox, H.C., Hoogendoorn, P. and de Leeuw, J.W. (1990) A cadinene biopolymer in fossil and extant dammar resins as a source for cadinanes and bicadinanes in crude oils from South East Asia. Geochim. Cosmochim. Acta, 54, 3021–31.Google Scholar
  70. Volkman, J.K., and Maxwell, J.R. (1986) Acyclic isoprenoids as biological markers, in Biological Markers in the Sedimentary Record (R.B. Johns ed.). Amsterdam: Elsevier, pp. 1–46.Google Scholar
  71. Volkman, J.K., Revill, A.T. and Murray, A.P. (1997) Applications of biomarkers for identifying sources of natural and pollutant hydrocarbons in aquatic environments, in Molecular Markers in Environmental Geochemistry (R.P. Eganhouse ed.). ACS Symposium Series 671, pp. 110–32.Google Scholar
  72. Volkman, J.K., Holdsworth, D.G., Neill, G.P. and Bavor, H. J. Jr. (1992) Identification of natural, anthropogenic and petroleum hydrocarbons in aquatic sediments. Sci. Total Environ., 112, 203–19.Google Scholar
  73. Volkman, J.K., Barrett, S.M. and Dunstan, G.A. (1994) C25 and C30 highly branched isoprenoid alkenes in laboratory cultures of two marine diatoms. Org. Geochem., 21, 407–13.Google Scholar
  74. Wakeham, S.G., Schaffner, C. and Giger, W. (1980) Polycyclic aromatic hydrocarbons in Recent lake sediments–II. Compounds derived from biogenic precursors during early diagenesis. Geochim. Cosmochim. Acta, 44, 415–29.Google Scholar
  1. Andrews, A.C. and Truran, J.W. (1980) Hydrogen: element and geochemistry, in Handbook of Environmental Isotope Geochemistry, 1 (P. Fritz and J.Ch. Fontes eds.). New York: Elsevier, pp. 503–8.Google Scholar
  2. Burbridge, E.M., Burbridge, G.R., Fowler, W.A., and Hoyle, F. (1957) Synthesis of the elements in stars. Rev. Mod. Phys., 29, 547–51.Google Scholar
  3. Craig, H. (1961) Isotopic variations in meteoric waters. Science, 133, 1702–3.Google Scholar
  4. O'Neil, J.R. and Kharaka, Y.K. (1976) Hydrogen and oxygen isotope exchange reactions between clay minerals and water. Geochim. Cosmochim. Acta, 69, 241–6.Google Scholar
  5. Onuma, N., Clayton, R.N. and Mayeda, T.K. (1972) Oxygen isotope temperature of equilibrated ordinary chondrites. Geochim. Cosmochim. Acta, 36, 157–68.Google Scholar
  1. Coleman, D.D., Liu, C., Hackley, K.C. and Pelphrey, S.R. (1995) Isotopic identification of landfill methane. Environ. Geosci., 2, 95–103.Google Scholar
  2. Craig, H. (1961) Isotopic variations in meteoric waters. Science, 133, 1702–3.Google Scholar
  3. Cronin, J.R., Pizzarello, S., Epstein, S. and Krishnamurthy, R.V. (1993) Molecular and isotopic analysis of the hydroxy acids, dicarboxylic acids and hydroxydicarboxylic acids of the Murchison meteorite. Geochim. Cosmochim. Acta, 57, 4745–52.Google Scholar
  4. Dansgaard, W. (1964) Stable isotopes in precipitation. Tellus, 16, 436–68.Google Scholar
  5. Edwards, T.W.D. (1993) Interpreting past climate from stable isotopes in continental organic matter. Geophys. Monogr., 78, 333–41.Google Scholar
  6. Epstein, S. and Krishnamurthy, R.V. (1991) Environmental information from the isotopic record in trees. Phil. Trans. Roy. Soc. Lond. A, 330, 427–39.Google Scholar
  7. Epstein, S., Krishnamurthy, R.V., Cronin, J.R., Pizzarello, S. and Yuen, G.V. (1987) Unusual isotopic compositions of H, N and C of amino acids and carboxylic acids from the Murchison meteorite. Nature, 326, 477–9.Google Scholar
  8. Estep, F.M. and Hoering, C.T. (1981) Stable hydrogen isotope fractionations during autotrophic and mixotrophic growth of microalgae. Plant Physiol., 67, 474–7.Google Scholar
  9. Gehre, M., Hoefling, R., Kowski, P. and Strauch, G. (1996) Sample preparation device for quantitative hydrogen isotope analysis using chromium metal. Anal. Chem., 68, 4414–17.Google Scholar
  10. Jouzel, J., Merlivat, L. and Lorius, C. (1982) Deuterium excess in an East Antarctic ice core suggests higher relative humidity at the oceanic surface during the last glacial maximum. Nature, 299, 688–91.Google Scholar
  11. Jouzel, J., Lorius, C., Petit, J.R. et al. (1987) Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160 000 years). Nature, 329, 403–8.Google Scholar
  12. Klass, D.L. (1984) Methane from anaerobic fermentation. Science, 223, 1021–8.Google Scholar
  13. Krishnamurthy, R.V. and Bhattacharya, S.K. (1991) Stable oxygen and hydrogen isotope ratio in shallow ground waters from Northern India and a study of the role of evapotranspiration in the Indian monsoon. Geochem. Soc. Spec. Publ., 3, 187–93.Google Scholar
  14. Krishnamurthy, R.V., Epstein, S., Pizzarello, S. and Cronin, J.R. (1992) Isotopic and molecular analyses of hydrocarbons and monocarboxylic acids of the Murchison meteorite. Geochim. Cosmochim. Acta, 56, 4045–58.Google Scholar
  15. Krishnamurthy, R.V., Syrup, K., Baskaran, M. and Long, A. (1995) Late glacial climate record of midwestern United States from the hydrogen isotope ratio of lake organic matter. Science, 269, 1565–7.Google Scholar
  16. Machavaram, M. and Krishnamurthy, R.V. (1995) Earth surface evaporative processes: a cause study from the Great Lakes region of the United States based on deuterium excess in precipitation. Geochim. Cosmochim. Acta, 59, 4279–83.Google Scholar
  17. Merlivat, L. and Jouzel, J. (1979) Global climatic interpretation of deuterium–oxygen relationship for precipitation. J. Geophys. Res., 84, 5029–33.Google Scholar
  18. Nier, A.O. (1940) A mass spectrometer for routine isotope abundance measurements. Rev. Sci. Instr., 11, 212–16.Google Scholar
  19. Peters, K.E., Rohrback, B.G. and Kaplan, I.R. (1981) Carbon and hydrogen stable isotope variations in kerogen during laboratory-simulated thermal maturation. Am. Assoc. Petrol. Geol. Bull., 65, 501–8.Google Scholar
  20. Pizzarello, S., Krishnamurthy, R.V., Epstein, S. and Cronin, J.R. (1991) Isotopic analysis of amino acids from the Murchison meteorite. Geochim. Cosmochim. Acta, 55, 905–10.Google Scholar
  21. Remenda, V.H., Cherry, J.A. and Edwards, T.W.D. (1994) Isotopic composition of old ground water from Lake Agassiz: implications for Late Pleistocene climate. Science, 266, 1975–8.Google Scholar
  22. Rozanski, K. (1985) Deuterium and oxygen-18 in European ground-waters–links to atmospheric circulation in the past. Chem. Geol. (Isotope Geosci. Sect.), 52, 349–63.Google Scholar
  23. Savin, S.M. and Epstein, S. (1970) The oxygen and hydrogen isotope geochemistry of clay minerals. Geochim. Cosmochim. Acta, 34, 4745–52.Google Scholar
  24. Schildowski, M., Hayes, J.M. and Kaplan, I.R. (1983) Isotopic inferences of ancient biochemistries: carbon, sulfur, hydrogen and nitrogen, in Earth's Earliest Biosphere: Its Origin and Evolution (J.W. Schopf ed.). New Jersey: Princeton University Press, pp. 149–186.Google Scholar
  25. Schoell, M. (1988) Multiple origins of methane in the earth. Chem. Geol., 71, 1–10.Google Scholar
  26. Smith, J.W., Rigby, D., Schmidt, P.W. and Clark, D.A. (1983) D/H ratios of coals and the palaeolatitude of their deposition. Nature, 302, 322–3.Google Scholar
  27. Songaila, A., Wampler, E.J. and Cowie, L.L. (1997) A high deuterium abundance in the early universe. Nature, 385, 137–9.Google Scholar
  28. Way, K., Fano, L., Scott, M.R. and Thew, K. (1950) Nuclear data. A collection of experimental values of halflifes, radiation energies, relative isotopic abundances, nuclear moments and cross-sections. Circular No 499, National Bureau of Standards, USA.Google Scholar
  29. Whiticar, M.J., Faber, E. and Schoell, M. (1986) Biogenic methane formation in marine and fresh water environments: CO2 reduction vs. acetate fermentation–isotopic evidence. Geochim. Cosmochim. Acta, 50, 696–709.Google Scholar
  30. Yang, J. and Epstein, S. (1983) Interstellar organic matter in meteorites. Geochim. Cosmochim. Acta, 57, 2199–215.Google Scholar
  31. Yapp, C.J. and Epstein, S. (1982) A reexamination of cellulose carbon bound hydrogen δD measurements and some factors affecting plant-water D/H relationships. Geochim. Cosmochim. Acta, 46, 955–65.Google Scholar
  32. Yurtsever, Y. and Gat, J.R. (1981) Atmospheric waters, stable isotope hydrology, deuterium and oxygen in the water cycle. Vienna: IAEA. Technical Report Series. No 210, 103–42.Google Scholar
  1. Bouwer, H. (1978) Groundwater Hydrology. New York: McGraw-Hill, 480 pp.Google Scholar
  2. Drever, J.I. (1988) The Geochemistry of Natural Waters. New Jersey: Prentice Hall, 437 pp.Google Scholar
  3. Driscoll, F.G. (1986) Groundwater and Wells. Minnesota: Johnson Filtration Systems, 1089 pp.Google Scholar
  4. Freeze, R.A. and Cherry, J.A. (1979) Groundwater. New Jersey: Prentice Hall, 604 pp.Google Scholar
  5. Manning, J.C. (1992) Applied Principles of Hydrology. New York: MacMillan, 294 pp.Google Scholar
  1. Beane, R.E. (1994) A graphic view of hydrothermal mineral stability relations. Geol. Assoc. Canada, Short Course Notes, 11, 1–30.Google Scholar
  2. Creasey, S.C. (1966) Hydrothermal alteration, in Geology of the Porphyry Copper Deposits, Southwestern North America (eds S.R. Titley and C.L. Hicks). Tucson: University of Arizona Press, pp. 51–74.Google Scholar
  3. Einaudi, M.T., Meinert, L.D. and Newberry, R.J. (1981) Skarn deposits. Econ. Geol., 75, 317–91.Google Scholar
  4. Franklin, J.M., Sangster, D.M. and Lydon, J.W. (1981) Volcanic-associated massive sulfide deposits. Econ. Geol., 75, 485–627.Google Scholar
  5. Giggenbach, W.F. (1981) Geothermal mineral equilibria. Geochim. Cosmochim. Acta, 45, 393–410.Google Scholar
  6. Guilbert, J.M. and Park, C.F. Jr. (1986) The Geology of Ore Deposits. New York: W.H. Freeman and Company, 985 pp.Google Scholar
  7. Gustafson, L.B. and Hunt, J.P. (1975) The porphyry copper deposit at El Salvador, Chile. Econ. Geol., 70, 857–912.Google Scholar
  8. Hemley, J.J., Montoya, J.W., Marinenko, J.W. and Luce, R.W. (1980) General equilibria in the system Al2O3-SiO2-H2O and some implications for alteration/mineralization processes. Econ. Geol., 75, 210–28.Google Scholar
  9. Lentz, D.R. (ed.) (1994) Alteration and alteration processes associated with ore-forming systems. Geol. Assoc. Canada, Short Course Notes 11, 467 pp.Google Scholar
  10. Meyer, C. and Hemley, J.J. (1967) Wall rock alteration, in Geochemistry of Hydrothermal Ore Deposits (ed. H.L. Barnes). New York: Holt, Rinehart, and Winston, pp. 166–235.Google Scholar
  11. Reed, M.H. (1992) Origin of diverse hydrothermal fluids by reaction of magmatic volatiles with wall rock. Geol. Surv. Jpn. Rep., 279, 135–40.Google Scholar
  12. Reed, M.H. (1997) Hydrothermal alteration and its relationship to ore fluid composition, in Geochemistry of Hydrothermal Ore Deposits, 3rd edn (ed. H.L. Barnes). New York: John Wiley & Sons, pp. 303–65.Google Scholar
  13. Rose, A.W. and Burt, D.M. (1979) Hydrothermal alteration, in Geochemistry of Hydrothermal Ore Deposits, 3rd edn (ed. H.L. Barnes). New York: John Wiley & Sons, pp. 173–235.Google Scholar
  14. Rye, R.O., Bethke, P.M. and Wasserman, M.D. (1992) The stable isotope geochemistry of acid sulfate alteration. Econ. Geol., 87, 225–62.Google Scholar
  15. Sales, R.H. and Meyer, C. (1948) Wall rock alteration at Butte, Montana. Am. Inst. Mining Metall. Eng. Trans., 178, 9–35.Google Scholar
  16. Schwartz, G.M. (1950) Problems in the relation of ore deposits to hydrothermal alteration. Q. J. Colorado Sch. Mines, 45, 196–208.Google Scholar
  1. Anderson, A.J., Clark, A.H., Ma, X.P., Palmer, G.R., MacArthur, J.D. and Roedder, E. (1989) Proton-induced X-ray and gamma-ray emission analysis of unopened fluid inclusions. Econ. Geol., 84, 924–39.Google Scholar
  2. Barnes, H.L. (1979) Solubilities of ore minerals, in Geochemistry of Hydrothermal Ore Deposits, 2nd edn (ed. H.L. Barnes). New York: Wiley-Interscience, pp. 405–6.Google Scholar
  3. Beane, R.E. (1983) The magmatic-meteoric transition. Geothermal Resources Council, Special Report no. 13, pp. 245–53.Google Scholar
  4. Beane, R.E. and Bodnar, R.J. (1995) Hydrothermal fluides and hydrothermal alternation in porphyry copper deposits, in Porphyry Copper Deposits of the American Cordillera (eds F.W. Pirce and J.G. Bolm) Tucson: Arizona Geological Society, pp. 83–93.Google Scholar
  5. Bodnar, R.J. (1982) Fluid inclusions in porphyry-type deposits, in Mineral Deposits Research Review for Industry Course Notes, PA: Pennsylvania State University, pp. RBI–25.Google Scholar
  6. Bodnar, R.J. (1992) Can we recognize magmatic fluid inclusions in fossil systems based on room-temperature phase relations and microthermometric behavior? Geol. Surv. Jpn Rep. 279, 26–30.Google Scholar
  7. Bodnar, R.J. (1995) Fluid inclusion evidence for a magmatic source for copper in porphyry copper deposits. Mineral. Assoc. Canada Short Course Series, 23, 139–52.Google Scholar
  8. Bodnar, R.J. (1996) Fluid inclusion evidence for the source of metals in prophyry deposits and epithermal precious metals systems. Geol. Soc. Amer. Abstr. Prog., 28, A–402.Google Scholar
  9. Browne, P.R.L. (1986) Broadlands Geothermal Field. Monogr. Ser. Mineral Deposits, 26, 57–64.Google Scholar
  10. Carpenter, A.B., Trout, M.L. and Picket, E.E. (1974) Preliminary report on the origin and chemical evolution of lead-and zinc-rich oil field brines in central Mississippi. Econ. Geol., 69, 1191–206.Google Scholar
  11. Cathles, L.M. and Smith, A.T. (1983) Thermal constraints on the formation of Mississippi Valley-type lead-zinc deposits and their implications for episodic basin dewatering and deposit genesis. Econ. Geol., 78, 983–1002.Google Scholar
  12. Cline, J.S. and Vanko, D.A. (1995) Magmatically generated saline brines related to molybdenum at Questa, New Mexico, USA. Mineral. Assoc. Canada Short Course Series, 23, 153–74.Google Scholar
  13. Czamanske, G.K., Roedder, E. and Burns, F.C. (1963) Neutron activation analysis of fluid inclusions for copper, manganese and zinc. Science, 140, 401–3.Google Scholar
  14. Drever, J.I. (1988) The Geochemistry of Natural Waters, 2nd edn. Englewood Cliffs. NJ: Prentice Hall, 437 pp.Google Scholar
  15. Eastoe, C.J. (1978) A fluid inclusion study of the Panguna porphyry copper deposit, Bougainville, Papua New Guinea. Econ. Geol., 73, 721–48.Google Scholar
  16. Giggenbach, W.F. (1987) Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl. Geochem., 2, 143–61.Google Scholar
  17. Giggenbach, W.F. (1995) Compositions of magmatic components in hydrothermal fluids. Mineral. Assoc. Canada Short Course Series, 23, 247–61.Google Scholar
  18. Goff, F., Stimac, J.A., Larocque, A.C.L, et al.. (1994) Gold degassing and deposition at Galeras Volcano, Colombia. GSA Today, 4, 241–7.Google Scholar
  19. Graney, J.R. and Kesler, S.E. (1995) Gas composition of inclusion fluid in ore deposits: is there a relation to magmas? Mineral. Assoc. Canada Short Course Series, 23, 221–45.Google Scholar
  20. Hedenquist, J.W. (1995) The ascent of magmatic fluid: discharge versus mineralization. Mineral. Assoc. Canada Short Course Series, 23, 263–89.Google Scholar
  21. Heinrich, C.A., Ryan, C.G., Mernagh, T.P. and Eadington, P.J. (1992) Segreation of ore metals between magmatic brine and vapor: a fluid inclusion study using PIXE microanalysis. Econ. Geol., 87, 1566–83.Google Scholar
  22. Helgeson, H.C. (1969) Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am. J. Sci., 267, 729–804.Google Scholar
  23. Lowenstern, J.B. (1993) Evidence for a copper-bearing fluid in magma erupted at the Valley of Ten Thousand Smokes, Alaska. Contrib. Mineral. Petrol., 114, 409–21.Google Scholar
  24. Mavrogenes, J.A. and Bodnar, R.J. (1994) Experimental evidance and geologic implications of hydrogen movement into and out of fluid inclusions in quartz. Geochim. Cosmochim. Acta, 58, 141–8.Google Scholar
  25. McKibben, M.A. and Elders, W.A. (1985) Fe-Zn-Cu-Pb mineralization in the Salton Sea Geothermal System, Imperical Valley, California. Econ. Geol. 80, 539–59.Google Scholar
  26. Philippot, P. (1993) Fluid-melt-rock interaction in mafic eclogites and coestite-bearing metasediments: Constraints on voliatile recycling during subduction. Chem. Geol., 108, 93–112.Google Scholar
  27. Pinckney, D.M. and Haffty, J. (1970) Content of zinc and copper in some fluid inclusions from the Cave-in-Rock District, Southern Illinois. Econ. Geol., 65, 451–8.Google Scholar
  28. Plumlee, G.S., Goldhaber, M.B. and Rowan, E.L. (1995) The potential role of magmatic gases in the genesis of Illinois-Kentucky fluorspar deposits: implications from chemical reaction path modeling. Econ. Geol., 90, 999–1011.Google Scholar
  29. Poreda, R.J., Craig, H., Arnorsson, S. and Welhan, J.A. (1992) Helium isotopes in icelandic geothermal systems: I. 3He, gas chemistry, and 13 Crelations, Geochim. Cosmochim. Acta, 56, 4221–8.Google Scholar
  30. Ramboz, C. (1979) A fluid inclusion study of the copper mineralization in southwest Tintic District (Utah). Bull. Soc. Fr. Mineral. Cristallog., 102, 622–32.Google Scholar
  31. Rankin, A.H., Ramsey, M.H., Coles, B., Van Langevelde, F. and Thomas, C.R. (1992) The composition of hypersaline, iron-rich grantic fluids based on laser-ICP and synchroton-XRF microprobe analysis of individual fluid inclusions in topaz, Mole granite, eastern Australia, Geochim. Cosmochim. Acta, 56, 67–79.Google Scholar
  32. Rich, R.A. (1979) Fluid inclusion evidence of Silurian evaporites in southeastern Vermont, Geol. Soc. Am. Bull., 90, 901–2.Google Scholar
  33. Robert, F. and Kelly, W.C. (1987) Ore-forming fluids in Archean gold bearing quartz veins at the Sigma Mine, Abitibi Greenstone Belt, Quebec, Canada. Econ. Geol., 82, 1464–82.Google Scholar
  34. Roedder, E. (1984) Fluid inclusions. Rev. Mineral., 12, 644 pp.Google Scholar
  35. Ryan, C.G., Cousens, D.R., Heinrich, C.A., Griffin, W.L., Sie, S.H. and Mernagh, T.P. (1991) Quantitative PIXE microanalysis of fluid inclusions based on a layered yield model. Nucl. Instrum. Methods Phys. Res., B52, 292–7.Google Scholar
  36. Sawkins, F.J. and Scherkenbach, D.A. (1981) High copper content of fluid inclusions in quartz from northern Sonora: implications for ore-genesis theory. Geology, 9, 37–40.Google Scholar
  37. Symonds, R.B. (1992) Getting the gold from the gas: How recent advances in volcanic-gas research have provided new insight on metal transport in magmatic fluids. Geol. Surv. Jpn Rep., 279, 170–5.Google Scholar
  38. Touret, J.R.L. (1977) The significance of fluid inclusions in metamorphic rocks, in Thermodynamics in Geology (ed. D.G. Fraser). NATO ASI Series, D. Reidel Publ., pp. 203–27.Google Scholar
  39. von Damm, K.L. (1990) Seafloor hydrothermal activity. Black smoker chemistry and chimneys. Annu. Rev. Earth Planet. Sci., 18, 173–204.Google Scholar
  40. White, D.E. (1957a) Thermal waters of volcanic origin. Bull. Geol. Soc. Am., 68, 1637–58.Google Scholar
  41. White, D.E. (1957b) Magmatic, connate, and metamorphic waters. Bull. Geol. Soc. Am., 68, 1659–82.Google Scholar
  42. Wood, B.J., Bryndzia, L.T. and Johnson, K.E. (1990) Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science, 248, 337–45.Google Scholar
  43. Yardley, B.W.D., Banks, D.A., Bottrell, S.H. and Diamond, L.W. (1993) Post-metamorphic gold-quartz veins from N.W. Italy: the composition and origin of the ore fluid. Mineral. Mag., 57, 407–22.Google Scholar
  1. Lindgren, W. (1933) Mineral Deposits, 4th edn. New York: McGraw-Hill, 930 pp.Google Scholar
  2. Tomkeieff, S.I. (1983) Dictionary of Petrology, Chichester: John Wiley & Sons, 680 pp.Google Scholar


  1.  Epigenesis;  Geochemical exploration;  Geothermal systems; Hydrothermal alteration; Hydrothermal solutions;  Natural resources;  Ore deposits;  Paragenesis;  Supergene

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • P. Jonathan Patchett
  • Thomas Staudacher
  • David W. Graham
  • Ian T. Campbell
  • Uwe Brand
  • Rhodes W. Fairbridge
  • Scott M. McLennan
  • John K. Volkman
  • Ronald S. Kaufman
  • R. V. Krishnamurthy
  • Ray Kenny
  • Byron R. Berger
  • Robert J. Bodnar
  • Vidojko Jović

There are no affiliations available