Encyclopedia of Geochemistry

1999 Edition
| Editors: Clare P. Marshall, Rhodes W. Fairbridge


  • Scott M. McLennan
  • Erich Schroll
  • Andrew T. Revill
  • I. P. Wright
  • Kathleen S. Smith
  • Arthur W. Rose
  • K. Govindaraju
  • Joaquin Ruiz
  • Peter A. Rock
  • William H. Casey
  • William S. Fyfe
  • Elizabeth A. Burton
  • Scott M. McLennan
  • Richard W. Murray
  • Carla W. Montgomery
  • R. Michael Easton
  • Steven W. Lonker
  • Maurice Pagel
  • Pierre Barbey
  • Richard F. Wendlandt
  • Jenny G. Webster
Reference work entry
DOI: https://doi.org/10.1007/1-4020-4496-8_7


Gadolinium (Gd) is a silvery-white metal with an atomic number (Z) of 64, electronic configuration of [Xe]4f75d16s2, atomic weight of 157.25 and melting point of 1586 K. It is a Group IIIB inner transition element and one of the lanthanide and rare earth elements. Gadolinium has seven natural isotopes, 152Gd (0.20%), 154Gd (2.15%), 155Gd (14.73%), 156Gd (20.47%), 157Gd (15.68%), 158Gd (24.87%) and 160Gd (21.90%). The isotope 152Gd is radioactive with a half life (T1/2) of 1.1 × 1014 years. Discovered in 1880, Gd is named after the mineral gadolinite, which in turn is named after the Finnish chemist J. Gadolin.

Gadolinium is typically a trace element in most rocks and minerals. It is refractory and under most conditions is lithophile and found in the trivalent state. The major importance of Gd in geochemistry is that it is one of the middle trivalent rare earth elements (or lanthanides), among the most useful trace elements in all areas of geochemistry and cosmochemistry due...


Fluid Inclusion Continental Crust Mineral Assemblage Vitrinite Reflectance Geothermal System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Bernstein, L.R. (1985) Germanium geochemistry and mineralogy. Geochim. Cosmochim. Acta, 49, 2409–22.Google Scholar
  2. Burton, K.J. and Culkin, F. (1972) Gallium, in Handbook of Geochemistry (ed. K.H. Wedepohl). Berlin. Springer-Verlag.Google Scholar
  3. Cerny, P., Meitzner, R.E. and Anderson, A.J. (1985) Extreme fractionation in rare-element granitic pegmatities: selected example of data and mechanism. Can. Mineral., 23, 381–421.Google Scholar
  4. Orians, K.J. and Bruland (1988) Marine geochemistry of gallium. Geochim. Cosmochim. Acta, 52, 2955–62.Google Scholar
  5. Shiller, Yu.P. (1968) Enrichment of dissolved gallium relative to aluminum in natural waters. Geochim. Cosmochim. Acta, 52, 1879–82.Google Scholar


  1. Jennings, W. (1987) Analytical Gas Chromatography. San Diego: Academic Press, 259 pp.Google Scholar
  2. Korth, J., Ellis, J., Crisp, P.T. and Hutton, A.C. (1988) Chemical characterisation shale oil from Duaringa, Australia, Fuel, 67, 1331–5.Google Scholar
  3. Lauer, J.C., Valles Hernandez, D.H. and Cagniant, D. (1988) Improved characterisation of coal tar distillation cuts (200–500°C) 2. Capillary GC–MS determination of neutral and basic nitrogen aromatic compounds and hydroxylated aromatic compounds. Fuel, 67, 1446–55.Google Scholar
  4. Rowland, S.J. and Revill, A.T. (1995) Chromatography in petroleum geochemistry, in Chromatography in the Petroleum Industry (ed. E.R. Adlard). Amsterdam: Elsevier, pp. 127–41.Google Scholar
  1. Nier, A.O. (1947) A mass spectrometer for isotope and gas analysis. Rev. Sci. Instrum., 18, 398–411.Google Scholar
  2. Pillinger, C. T. (1992) New technologies for small sample stable isotope measurement: static vacuum gas source mass spectrometry, laser probes, ion probes and gas chromatography-isotope ratio mass spectrometry. Int. J. Mass Spectrometry Ion Processes, 118/119, 477–501.Google Scholar
  1. Plumlee, G. (1994) Environmental geology models of mineral deposits. Soc. Econ. Geol. News, 16, 5–6.Google Scholar
  2. Smith, K.S. and Huyck, H.L.O. in press. An overview of the abundance, relative mobility, bioavailability, and human toxicity of metals. Rev. Econ. Geol.,6A.Google Scholar


  1.  Diagenesis;  Elements: distribution; Geochemistry: low temperature;  Soil;  Weathering: chemical
  1. Ahrens, L.H. (1964) The significance of the chemical bond for controlling the geochemical distribution of the elements–Part I. Phys. Chem. Earth, 5, 1–54.Google Scholar
  2. Fegley, B. Jr. (1997) Cosmochemistry, in Encyclopedia of Planetary Sciences (eds J.H. Shirley and R.W. Fairbridge). London: Chapman and Hall, pp. 169–76.Google Scholar
  3. Goldschmidt, V.M. (1923) Geochemische verteilungsgesetze der elemente (I). 17 + upg. s. Vindensk. skrifter. I. Mat.-naturv. klasse, No. 3.Google Scholar
  4. Goldschmidt, V.M. (1954) Geochemistry. Oxford: Clarendon Press.Google Scholar
  5. Hanson, G.N. (1989) An approach to trace element modeling using a simple igneous system as an example. Rev. Mineral, 21, 79–97.Google Scholar
  6. Hanson, G.N. and Langmuir, C.H. (1978) Modeling of major elements in mantle–melt systems using trace element approaches. Geochim. Cosmochim. Acta, 42, 725–41.Google Scholar
  7. Hillgren, V.J., Drake, M.J. and Rubie, D.C. (1994) High-pressure and high-temperature experiments on core–mantle segregation in the accreting earth. Science, 264, 1442–5.Google Scholar
  8. Jørgensen, C.K. (1988) Influence of rare earths on chemical understanding and classification, in Handbook on the Physics and Chemistry of Rare Earths, Vol. II (eds K.A. Gschneidner and L. Eyring). Amsterdam: Elsevier, pp. 197–292.Google Scholar
  9. Larimer, J.W. (1988) The cosmochemical classification of the elements, in Meteorites and the Early Solar System (eds J.F. Kerridge and M.S. Matthews). Tucson: University of Arizona Press, pp. 375–89.Google Scholar
  10. Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., A32, 751–67.Google Scholar
  1. Burnham, C.W. and Ohmoto H. (1980) Late-stage processes of felsic magmatism. Mining Geol. (Jpn) Spec. Iss., 8, 1–11.Google Scholar
  2. Govett, G.J.S. (chief ed). (1981–1994) Handbook of Exploration Geochemistry. Amsterdam: Elsevier.Google Scholar
  3. Vol. 1. Fletcher, W.K. (1981) Analytical Methods in Geochemical Prospecting, 255 pp.Google Scholar
  4. Vol. 2. Howarth, R.J. (ed.). 1983. Statistics and Data Analysis in Geochemical Prospecting, 437 pp.Google Scholar
  5. Vol. 3. Govett, G.J.S. (1983) Rock Geochemistry in Mineral Exploration, 461 pp.Google Scholar
  6. Vol. 4. Butt, C.R.M. and Zeegers, H. (eds) (1992) Regolith Exploration Geochemistry in Tropical and Subtropical Terrains, 607 pp.Google Scholar
  7. Vol. 5. Kauranne, K. (ed.) (1992) Regolith Exploration Geochemistry in Arctic and Temperature Terrains, 443 pp.Google Scholar
  8. Vol. 6. Hale, M. and Plant, J. (eds) (1994) Drainage Geochemistry, 766 pp.Google Scholar
  9. Klusman, R.W. (1993) Soil Gas and Related Natural Resource Exploration. New York: John Wiley, 483 pp.Google Scholar
  10. Levinson, A.A. (1980) Introduction to Exploration Geochemistry, 2nd edn. Wilmette, IL: Applied Publishing, 923 pp.Google Scholar
  11. Rose, A.W., Hawkes H.E. and Webb, J.S. (1979) Geochemistry in Mineral Exploration, 2nd edn. London: Academic Press, 657 pp.Google Scholar
  12. Sinclair, A.J. (1974) Selection of thresholds in geochemical data using probability graphs. J. Geochem. Expl., 3. 129–49.Google Scholar
  13. Watterson, J.R., Nagy, L.A. and Updegraff, D.M. (1986) Penicillin resistance in soil bacteria as an index of soil metal content near a porphyry copper deposit and near a concealed massive sulfide deposit, in Mineral Exploration–Biological Systems and Organic Matter (eds D. Carlisle, W.L. Berry, I.R. Kaplan and J.R. Watterson). Englewood Cliffs: Prentice-Hall, pp. 328–50.Google Scholar
  1. Arndt, N.T. and Goldstein, S.L. (1987) Use and abuse of crust formation ages. Geology, 15, 893–5.Google Scholar
  2. DePaolo, D.J. (1988) Neodymium Isotope Geochemistry. Berlin-Heidelberg: Springer-Verlag.Google Scholar
  3. Doe, B.E. and Zartman, R.E. (1979) Plumbotectonics, the Phanerozoic, in Geochemistry of Hydrothermal Ore Deposits, 2nd edn (ed. H.L. Barnes). Chichester: John Wiley & Sons, pp. 22–70.Google Scholar
  4. Ganguly, J., Chakraborty, S., Sharp., T. and Rumble, D. (1996) Constraints on the time scale of biotite grade regional metamorphism during Acadian orogeny from natural garnet–garnet diffusion couple: Am. Mineral., 81, 1208–16.Google Scholar
  5. Gleason, J.D., Patchett, P.J., Dickinson, W.R. and Ruiz, J. (1995) Nd isotopic constraints on sediment sources of the Oucahita–Marathon fold bolt. Geol. Soc. Am. Bull., 17, 1191–210.Google Scholar
  6. Keppie, J.D. and Ortega-Gutierrez, F. (1995) Provenance of Mexican terrane: isotopic constraints. Int. Geol., 37, 813–24.Google Scholar
  7. Kistler, R. and Peterman, Z.E. (1978) Reconstruction of crustal blocks of California on the basis of initial strontium isotopic compositions of Mesozoic granitic igneous rocks. US Geol. Surv. Prof. Paper, 1071, 17 pp.Google Scholar
  8. McLennan, S.M. (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes, in Geochemistry and Mineralogy of Rare Earth Elements (eds B.R. Lipin and G.R. McKay). Mineralogical Society of America, pp. 169–96.Google Scholar
  9. Metzger, K., van der Pluijm, B.A., Essene, E.J. and Halliday, A.N. (1991) Synorogenic collapse: a perspective from the middle crust, the Proterozoic Grenville orogen. Science, 254, 695–8.Google Scholar
  10. Nockolds, S.R. (1954) Average chemical compositions of some igneous rocks. Bull. Geol. Soc. Am., 65, 1007–32.Google Scholar
  11. Pearce, J.R. and Cann, J.R. (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet. Sci. Lett., 19, 290–300.Google Scholar
  12. Quade, J., Roe, L., DeCelles, P.G. and Ojha, T.P. (1997) The Late Neogene 87Sr/86Sr record of the lowland Himalayan rivers. Science, 276, 1828–31.Google Scholar
  13. Rollinson, H.R. (1993) Using Geochemical Data: Evaluation, Presentation, Interpretation. Essex: Longman Press, 352 pp.Google Scholar
  14. Spear, F.S. (1993) Metamorphic phase equilibria and temperature–pressure–time paths. Mineral. Soc. Am. Monogr., 799 pp.Google Scholar
  15. Wooden, J.L. and Miller, D.M. (1990) Chronologic and isotopic framework for Early Proterozoic crustal evolution in the eastern Mojave desert region, SE California: J. Geophys. Res., 95, 20133–146.Google Scholar
  1. Anderson, G.M. and Crerar, D.R. (1993) Thermodynamics in Geochemistry. New York: Oxford University Press, 588 pp.Google Scholar
  2. Laidler, K.J. (1993) The World of Physical Chemistry. New York: Oxford University Press, 476 pp.Google Scholar
  3. Lewis, G.L. and Randall, M. (1961) Thermodynamics (revised by K.S. Pitzer and L. Brewer). New York: McGraw Hill, 724 pp.Google Scholar
  4. Nordstrom, D.K. and Munoz, J.L. (1994) Geochemical Thermodynamics, 2nd edn. Cambridge, MA: Blackwell Scientific Publications, 494 pp.Google Scholar
  5. Robie, R.A., Hemingway, B.S. and Fisher, J.R. (1978) Thermodynamics properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. US Geol. Surv. Bull., 1452, 456 pp.Google Scholar
  6. Rock, P.A. (1983) Chemical Thermodynamics. Mill Valley, CA: University Science Books, 548 pp.Google Scholar
  1. Clarke, F.W. (1924) The data of geochemistry. US Geol. Surv. Bull., 770, 841 pp.Google Scholar
  2. Darnley, A.G. (ed.) (1995) A Global Geochemical Database for Environmental and Resource Management. Paris: UNESCO Publishing, 122 pp.Google Scholar
  3. Drever, J.I. (1988) The Geochemistry of Natural Waters. Inglewood Cliffs, NJ: Prentice-Hall, 437 pp.Google Scholar
  4. Fyfe, W.S. (1992) Geosphere interactions on a convecting planet: mixing and separation, in The Handbook of Environmental Chemistry, Vol. 1 (ed. O. Hutzinger), pp. 1–26.Google Scholar
  5. Fyfe, W.S. (1994) The water inventory of the Earth: fluids and tectonics. Geofluids. Geological Society of London. Special publication 28, pp. 1–7.Google Scholar
  6. Goldschmidt, V.M. (1954) Geochemistry. Oxford: Oxford University Press, 730 pp.Google Scholar
  7. Iltekkot, V., Kempe, S., Michaelis, W. and Spitzy, W. (1988) Facets of Modern Biogeochemistry. Berlin: Springer Verlag, 433 pp.Google Scholar
  8. Mason, B. (1966) Principles of Geology. New York: John Wiley & Sons, 329 pp.Google Scholar
  9. Mason, B. (1992) Victor Moritz Goldschmidt: Father of Modern Geochemistry. The Geochemical Society, Lancaster Press, 184 pp.Google Scholar
  10. Rankama, K. and Sahama, Th.G. (1950). Geochemistry. Chicago: University of Chicago Press, 912 pp.Google Scholar
  11. Stumm, W. and Morgan, J.J. (1981) Aquatic Geochemistry. New York: John Wiley & Sons, 780 pp.Google Scholar
  12. Wedepohl, K.H. (1978) Handbook of Geochemistry (in 5 volumes). Berlin: Springer-Verlag.Google Scholar
  1. Baas Becking, L.G.M., Kaplan, I.R. and Moore, D. (1960) Limits of the natural environments in terms of pH and oxidation-reduction potentials. J. Geol., 68, 243–84.Google Scholar
  2. Berner, R.R., Lasaga, W.C. and Garrels, R.M. (1984) The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci., 284, 1125–92.Google Scholar
  3. Boggs, S. Jr. (1992) Petrology of Sedimentary Rocks. New York: Macmillan, 707 pp.Google Scholar
  4. Faure, G. (1986) Principles of Isotope Geology, 2nd edn. New York: John Wiley and Sons, 589 pp.Google Scholar
  5. Garrels, R.M. and Christ, C.L. (1965) Solutions, Minerals and Equilibria. New York: Harper and Row, 450 pp.Google Scholar
  6. Holland, H.D. (1984) The Chemical Evolution of the Atmosphere and Oceans. New Jersey: Princeton University Press, 582 pp.Google Scholar
  7. Krauskopf, K.B. and Bird, D.K. (1995) Introduction to Geochemistry, 3rd edn. New York: McGraw-Hill, 647 pp.Google Scholar
  8. Lasaga, A.C. and Kirkpatrick, R.J. (eds) (1981) Kinetics of geochemical processes, Rev. Mineral., 8, 398 pp.Google Scholar
  9. Wollast, R. and Chou, L. (1985) Kinetic study of dissolution of albite with a continuous flow-through fluidized bed reactor, in The Chemistry of Weathering (ed. J.I. Drever). NATO ASI ser. C149, pp. 75–96.Google Scholar
  1. Archer, D., Lyle, M., Rodgers, K. and Froelich, P. (1993) What controls opal preservation in tropical deep-sea sediments? Paleoceanography, 8, 7–21.Google Scholar
  2. Ayora, C., Garcia-Veigas, J. and Pueyo, J.-J. (1994) The chemical and hydrological evolution of an ancient potash-forming evaporite basin as constrained by mineral sequence, fluid inclusion composition, and numerical simulation. Geochim. Cosmochim. Acta, 58, 3379–94.Google Scholar
  3. Banner, J.L. and Hanson, G.N. (1990) Calculation of simultaneous isotopic and trace element variations during water–rock interaction with applications to carbonate diagenesis. Geochim. Cosmochim. Acta, 564, 3123–37.Google Scholar
  4. Bohrmann, G., Abelmann, A., Gersonde, R., Hubberten, H. and Kuhn, G. (1994) Pure siliceous ooze, a diagenetic environment for early chert formation. Geology, 22, 207–10.Google Scholar
  5. Bostrom, K., Kraemer, T. and Gartner, S. (1973) Provenance and accumulation rates of opaline silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific pelagic sediments. Chem. Geol., 11, 123–48.Google Scholar
  6. Brimhall, G.H., Chadwick, O.R., Lewis, C.J. et al. (1991) Deformational mass transport and invasive processes in soil evolution. Science, 255, 695–702.Google Scholar
  7. Brueckner, H.K. and Snyder, W.S. (1985) Chemical and Sr-isotopic variations during diagenesis of Miocene siliceous sediments of the Montery Formation, California. J. Sed. Petrol., 55, 553–68.Google Scholar
  8. Curtis, C.D. (1976) Stability of minerals in surface weathering reactions: a general thermochemical approach. Earth Surf. Proc., 1, 63–70.Google Scholar
  9. Dickson, J.R.D. (1990) Carbonate mineralogy and chemistry, in Carbonate Sedimentology (eds M.E. Tucker and V.P. Wright). Oxford: Blackwell, pp. 284–313.Google Scholar
  10. Duce, R.R., Liss, P.S., Merrill, J.T. et al. (1991) The atmospheric input of trace species to the world ocean. Global Biogeochem. Cycles, 5, 193–259.Google Scholar
  11. Dymond, J. (1981) Geochemistry of Nazca plate surface sediments: an evaluation of hydrothermal, biogenic, detrital, and hydrogenous sources. Geol. Soc. Am. Mem., 154, 133–73.Google Scholar
  12. Eugster, H.P. and Hardie, L.R. (1978) Saline lakes, in Lakes–Chemistry, Geology, and Physics (ed. A. Lerman). New York: Springer-Verlag, pp. 237–93.Google Scholar
  13. Filippelli, G.M. and Delaney, M.L. (1994) The oceanic phosphorous cycle and continental weathering during the Neogene. Paleoceanography, 9, 643–52.Google Scholar
  14. Filippelli, G.M. and Delaney, M.L. (1996) Phosphorous geochemistry of equatorial Pacific sediments. Geochim. Cosmochim. Acta, 60, 1479–95.Google Scholar
  15. Francois, R., Honjo, S., Manganini, S.J. and Ravizza, G.E. (1995) Biogenic barium fluxes to the deep sea: implications for paleoproductivity reconstruction. Global Biogeochem. Cycles, 9, 289–303.Google Scholar
  16. Garrels, R.M. and Mackenzie, F.T. (1971) Evolution of Sedimentary Rocks. New York: Norton, 397 pp.Google Scholar
  17. Garrison, R.E., Douglas, R.G., Pisciotto, K.E., Isaacs, C.M. and Ingle, J.C. (1981) The Monterey Formation and related siliceous rocks of California. Pacific Sect., Soc. Econ. Paleontol. Mineral., 15, 327.Google Scholar
  18. Goldberg, E.D. and Arrhenius, G.O.S. (1958) Chemistry of Pacific pelagic sediments. Geochim. Cosmochim. Acta, 13, 153–212.Google Scholar
  19. Goldich, S.S. (1938) A study of rock-weathering. J. Geol., 46, 17–58.Google Scholar
  20. Greegor, R.B., Pingitore, N.E. Jr. and Lytle, F.W. (1997) Strontianite in coral skeletal aragonite. Science, 275, 1452–4.Google Scholar
  21. Harvie, C.H., Greenberg, J.P. and Weare, H. (1984) The prediction of mineral solubilities in natural waters: The Na–K–Mg–Ca–H–Cl–SO4–OH–HCO3–CO3CO–CO2–H2O system to high ionic strengths at 25°C. Geochim. Cosmochim. Acta, 48, 723–51.Google Scholar
  22. Hay, W.W., Sloan, J.L. III and Wold, C.N. (1988) Mass/age distribution and composition of sediments on the ocean floor and the global rate of sediment subduction. J. Geophys. Res., 93, 14933–40.Google Scholar
  23. Hein, J. R. (ed.) (1987) Siliceous Sedimentary Rock-Hosted Ores and Petroleum. New York: Van Nostrand Reinhold, 304 pp.Google Scholar
  24. Hinman, N. (1990) Chemical factors influencing the rates and sequences of silica phases transitions: effects of organic constituents. Geochim. Cosmochim. Acta, 54, 1563–74.Google Scholar
  25. Hovan, S.R., Rea, D.K. and Pisias, N.G. (1991) Late Pleistocene continental climate and oceanic variability recorded in northwest Pacific sediments. Paleocenography, 6, 349–70.Google Scholar
  26. Hover, V.C., Peacor, D.R. and Walter, L.M. (1996) STEM/AEM evidence for preservation of burial diagenetic fabrics in Devonian shales: implications for fluid/rock interaction in cratonic basins (USA). J. Sed. Res., 66, 519–30.Google Scholar
  27. Hower, J., Eslinger, E.V., Hower, M.E., and Perry, E.R. (1976) Mechanisms of burial metamorphism of argillaceous sediment: I. Mineralogical and chemical evidence. Geol. Soc. Am. Bull., 87, 725–37.Google Scholar
  28. Isaacs, C.M. (1982) Influence of rock composition on kinetics of silica phase changes in the Monterey Formation, Santa Barbara area, California. Geology, 10, 304–8.Google Scholar
  29. Jenkyns, H.C. and Winterer, E.L. (1982) Palacoceanography of Mesozoic ribbon radiolarites. Earth Planet. Sci. Lett., 60, 351–75.Google Scholar
  30. Johnsson, M. J. and Basu, A. (eds) (1993) Processes controlling the composition of clastic sediments. Geol. Soc. Am. Spec. Paper, 284, 342 pp.Google Scholar
  31. Kastner, M., Keene, J.B. and Geiskes, J.M. (1977) Diagenesis of siliceous oozes–1. Chemical controls on the rate of opal-A to opal-CT transformations–an experimental study. Geochim. Cosmochim. Acta, 41, 1041–59.Google Scholar
  32. Kyte, F.T., Leinen, M., Heath, G.R. and Zhou, L. (1993) Cenozoic sedimentation history of the central North Pacific: inferences from the elemental geochemistry of core LL44–GPC3. Geochim. Cosmochim. Acta, 57, 1719–40.Google Scholar
  33. Leinen, M. (1989) The pelagic clay province of the North Pacific Ocean, in The Eastern Pacific Ocean and Hawaii, Volume N, The Geology of North America (eds E.L. Winterer, D. M. Hussong and R. W. Decker). Boulder, CO: Geological Society of America, pp. 323–35.Google Scholar
  34. Leinen, M., Cwienk, D., Health, G.R., et al. (1986) Distribution of biogenic silica and quartz in recent deep-sea sediments. Geology, 14, 199–203.Google Scholar
  35. Li, Y.-H. (1972) Geochemical mass balance among lithosphere, hydrosphere, and atmosphere, Am. J. Sci., 272, 119–37.Google Scholar
  36. Lisitzin, A.P. (1996) Oceanic Sedimentation: Lithology and Geochemistry. Washington, DC: American Geophysical Union, 400 pp.Google Scholar
  37. Maynard, J.B. (1992) Chemistry of modern soils as a guide to interpreting Precambrian paleosols. J. Geol., 100, 279–89.Google Scholar
  38. McLennan, S.M. (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Rev. Mineral., 21, 169–200.Google Scholar
  39. McLennan, S.M. (1993) Weathering and global denudation. J. Geol., 101, 295–303.Google Scholar
  40. McLennan, S.M. (1995) Sediments and soils: chemistry and abundances, in: Rock Physics and Phase Relations: A Handbook of Physical Constants (ed. T. J. Ahrens). American Geophysical Union Reference Shelf 3, 8–19.Google Scholar
  41. McLennan, S.M. and Hemming, S. (1992) Samarium/neodymium elemental and isotopic systematics in sedimentary rocks. Geochim. Cosmochim. Acta, 56, 887–98.Google Scholar
  42. McLennan, S.M., Taylor, S.R., McCulloch, M.T. and Maynard, J.B. (1990) Geochemical and Nd–Sr isotopic composition of deep sea turbidites: Crustal evolution and plate tectonic association. Geochim. Cosmochim. Acta, 54, 2015–50.Google Scholar
  43. McManus, J., Hammond, D.E., Berelson, W.M. et al., (1995) Early diagenesis of biogenic opal: dissolution rates, kinetics, and paleoceanographic implications. Deep-Sea Res., 42, 871–903.Google Scholar
  44. Michalopoulos, P. and Aller, R.C. (1995) Rapid clay mineral formation in Amazon delta sediments: reverse weathering and oceanic elemental cycles. Science, 270, 614–17.Google Scholar
  45. Milliman, J.D. and Syvitski, P.M. (1992) Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol., 100, 525–44.Google Scholar
  46. Morse, J.W. and Mackenzie, F.T. (1990) Geochemistry of Sedimentary Carbonates. Amsterdam: Elsevier, 707 pp.Google Scholar
  47. Murray, R.W. (1994) Chemical criteria to identify the depositional environment of chert: general principles and applications. Sed. Geol., 90, 213–32.Google Scholar
  48. Murray R.W. and Leinen, M. (1993) Chemical transport to the seafloor of the equatorial Pacific across a latitudinal transect at 135°W; tracking sedimentary major, trace, and rare earth element fluxes at the Equator and the ITCZ. Geochim. Cosmochim. Acta, 57, 4141–63.Google Scholar
  49. Murray, R.W. and Leinen, M. (1996) Scavenged excess Al and its relationship to bulk Ti in biogenic sediment from the Central Equatorial Pacific Ocean. Geochim. Cosmochim. Acta, 60, 3869–78.Google Scholar
  50. Murray, R.W., Jones, D.L. and Buchholtz ten Brink, M.R. (1992) Diagenetic formation of bedded chert: Evidence from chemistry of the chert-shale couplet. Geology, 20, 271–4.Google Scholar
  51. Nesbitt, H.W. and Young, G.M. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of luties. Nature, 299, 715–17.Google Scholar
  52. Nesbitt, H.W. and Young, G.M. (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Acta, 48, 1523–34.Google Scholar
  53. Nesbitt, H.W., Markovics, G. and Price, R.C. (1980) Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochim. Cosmochim. Acta, 44, 1659–66. Google Scholar
  54. Nesbitt, H.W., Young, G.M., McLennan, S.M. and Keays, R.R. (1996) Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. J. Geol., 104, 525–42.Google Scholar
  55. Paytan, W., Kastner, M. and Chavez, F.P. (1996) Glacial to interglacial fluctuations in productivity in the equatorial Pacific as indicated by marine barite. Science, 274, 1355–7.Google Scholar
  56. Pisciotto, K.R. (1981) Distribution, thermal histories, isotopic compositions, and reflection characteristics of siliceous rocks recovered by the Deep Sea Drilling Project, Soc. Econ. Paleontol. Mineral. Spec. Pub., 32, 129–47.Google Scholar
  57. Rea, D.K., Leinen, M. et al. (1986) Initial Reports of the Deep Sea Drilling Project, Volume 92, Washington, DC: US Government Printing Office.Google Scholar
  58. Reeder, R.J. (ed.) (1983) Rev. Mineral., 11, 394 pp.Google Scholar
  59. Robertson, A.H.F. and Varnavas, S.P. (1993) The origin of hydrothermal metalliferous sediments associated with the Early Mesozoic Othris and Pindos ophiolites, mainland Greece. Sed. Geol., 83, 87–113.Google Scholar
  60. Ronov, A.B. (1983) The Earth's Sedimentary Shell: Quantitative Patterns of its Structure, Compositions, and Evolution. American Geological Institute Reprint Series V, 80 pp.Google Scholar
  61. Schroeder, J.O., Murray, R.W., Leinen, M., Pflaum, R.C. and Janecek, T.R. (1997) Ba in equatorial Pacific carbonate sediment: terrigenous, oxide, and biogenic associations. Paleoceanography, 12, 125–46.Google Scholar
  62. Siever, R. (1992) The silica cycle in the Precambrian. Geochim. Cosmochim. Acta, 56, 3265–72.Google Scholar
  63. Sutton, S.J. and Land, L.S. (1996) Postdepositional chemical alteration of Ouachita shales. Geol. Soc. Am. Bull., 108, 978–91.Google Scholar
  64. Tada, R. (1991) Compaction and cementation in siliceous rocks and their possible effect on bedding enhancement, in Cycles and Events in Stratigraphy (eds G. Einsele, W. Ricken and A. Selacher). New York: Springer-Verlag.Google Scholar
  65. Taylor, S.R. and McLennan, S.M. (1985) The Continental Crust: Its Composition and Evolution. Oxford: Blackwell, 312 pp.Google Scholar
  66. Taylor, S.R., McLennan, S.M. and McCulloch, M.T. (1983) Geochemistry of loess, continental crustal composition and crustal model ages. Geochim. Cosmochim. Acta, 47, 1897–905.Google Scholar
  67. Trendall, W. F. and Morris, R. C. (eds) (1983) Iron Formations: Facts and Problems. Amsterdam: Elsevier, 558 pp.Google Scholar
  68. Tucker, M.E. and Wright, V.P. (1990) Carbonate Sedimentology. Oxford: Blackwell, 482 pp.Google Scholar
  69. Turekian, K.K. and Wedepohl, K.H. (1961) Distribution of the elements in some major units of the earth's crust. Geol. Soc. Am. Bull., 72, 175–82.Google Scholar
  70. Veizer, J. (1983) Chemical diagenesis of carbonates: Theory and application of trace element technique. Soc. Econ. Paleontol. Mineral. Short Course, 10, 3.1–3.100.Google Scholar
  71. Veizer, J. and Jansen, S.L. (1983) basement and sedimentary recycling–2: Time dimension to global tectonics. J. Geol., 93, 625–43.Google Scholar
  72. Warren, J.K. (1989) Evaporite Sedimentology. Englewood Cliffs, NJ: Prentice Hall, 285 pp.Google Scholar
  73. Wheat, C.G., Feely, R.A. and Mottl, M.J. (1996) Phosphate removal by oceanic hydrothermal processes: An update of the phosphorous budget in the oceans. Geochim. Cosmochim. Acta, 60, 3593–608.Google Scholar
  74. Williams, L.R. and Crerar, D.R. (1985) Silica diagenesis, II. General mechanisms. J. Sed. Petrol., 55, 312–21.Google Scholar
  1. DePaolo, D.J. (1981) Nd isotopic studies: some new perspectives on Earth structure and evolution. EOS, 62, 137–40.Google Scholar
  2. DePaolo, D.J. (1988) Neodymium Isotope Geochemistry. New York: Springer-Verlag, 156 pp.Google Scholar
  3. Dickin, W.P. (1995) Radiogenic Isotope Geology. Cambridge: Cambridge University Press, 490 pp.Google Scholar
  4. Doe, B.R. (1970) Lead Isotopes. New York: Springer-Verlag, 137 pp.Google Scholar
  5. Faure, G. (1986) Principles of Isotope Geology, 2nd edn. New York: John Wiley & Sons, 589 pp.Google Scholar
  6. Friedlander, G., Kennedy, J.W., Macias, E.S., and Miller, J.M. (1981) Nuclear and Radiochemistry, 3rd edn. New York: John Wiley & Sons, 684 pp.Google Scholar
  7. Faure, G. and Powell, J.L. (1972) Strontium Isotope Geology. New York: Springer-Verlag, 188 pp.Google Scholar
  8. Geyh, M.R. and Schelicher, H. (1990) Absolute Age Determination: Physical and Chemical Methods of Dating and Their Application. New York: Springer-Verlag, 503 pp.Google Scholar
  9. Hamilton, E.I. and Farquhar, R.M. (eds) (1983) Radiometric Dating for Geologists. New York: John Wiley & Sons.Google Scholar
  10. Ivanovich, M. and Harmon, R.S. (eds) (1992) Uranium-Series Disequilibrium, 2nd edn. New York: Oxford University Press, 944 pp.Google Scholar
  11. Jager, E. and Hunziker, J.C. (1979) Lectures in Isotope Geology. New York: Springer-Verlag, 329 pp.Google Scholar
  12. Taylor, R.E., Long, A. and Kra, R.S. (eds) (1992) Radiocarbon After Four Decades. New York: Springer-Verlag, 616 pp.Google Scholar


  1. Bowring, S.R., Grotzinger, J.P., Isachsen, C.E., Knoll, A.H., Pelechaty, S.M. and Kolosov, P. (1993) Caliberating rates of Early Cambrian evolution. Science, 261, 1293–8.Google Scholar
  2. Harland, W.B. (1978) Geochronologic Scales, in Contributions to The Geologic Time Scale. American Association of Petroleum Geologists, Studies in Geology, pp. 9–32.Google Scholar
  3. Harland, W.B., Armstrong, R.L., Cox, A.V., Craig, L.E., Smith, A.G. and Smith, D.G. (1990) A Geologic Time Scale 1989. New York: Cambridge University Press, 263 pp.Google Scholar
  4. Hofmann, H.J. (1990) Precambrian time units and nomenclature–The geon concept. Geology, 18, 340–1.Google Scholar
  5. Hofmann, H.J. (1991) Precambrian time units and nomenclature–Geon or geologic unit. Geology, 19, 958–9.Google Scholar
  6. ISSC (International Subcommission on Stratigraphic Classification) (1994) International Stratigraphic Guide. Boulder, CO: Geological Society of American, 214 pp.Google Scholar
  7. James, H.L. (1978) Subdivision of the Precambrian–brief review and report on recent decisions by the Subcommission on Precambrian Stratigraphy. Precambrian Res., 7, 193–204.Google Scholar
  8. NACSN (North American Commission on Stratigraphic Nomenclature) (1983) North American Stratigraphic Code. Am. Assoc. Petroleum Geol. Bull., 67, 841–75.Google Scholar
  9. Okulitch, A.V. (1988) Proposals for time classification and correlation of Precambrian rocks and events in Canada and adjacent areas of the Canadian Shield. Part 3: A Precambrian time chart for the geological atlas of Canada. Geol. Surv. Canada Paper 87–23, 20 pp.Google Scholar
  10. Ontario Geological Survey (1992) Tectonic Assemblages of Ontario, explanatory notes and legend. Ontario Geol. Surv. Map, 2583.Google Scholar
  11. Palmer, A.R. (1983) The decade of North American geology 1983 geologic time scale; Geology, 11, 503–4.Google Scholar
  12. Plumb, K.A. (1991) New Precambrian time scale. Episodes, 14, 139–40.Google Scholar
  13. Stockwell, C.H. (1982) Proposals for time classification and correlation of Precambrian rocks and events in Canada and adjacent areas of the Canadian Shield. Part 1: A time classification of Precambrian rocks and events. Geol. Surv. Canada Paper 80–19, 135 pp.Google Scholar
  14. Trendall, A.F. (1966) Towards rationalism in Precambrian stratigraphy. Geol. Soc. Australia J., 13, 517–26.Google Scholar
  15. Trendall, A.F. (1991) The ‘geological unit’ (g.u.)–a suggested new measure of geologic time. Geology, 19, 195.Google Scholar


  1. Dating method; Geochronology and radioisotopes Google Scholar
  1. Alt, J.C. (1995) Subseafloor processes in mid-ocean ridge hydrothermal systems, in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions (eds S.E. Humphris, R.A. Zierenberg, L.S. Mullineaux, and R.E. Thomson). Washington, DC: American Geophysical Union Monograph 91, pp. 85–114.Google Scholar
  2. Blattner, P. (1993) ‘Andesitic water’: a phantom of the isotopic evolution of water–silicate systems. Comment on ‘Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin’ by W.F. Giggenbach. Earth Planet. Sci. Lett., 120, 511–18.Google Scholar
  3. Browne, P.R.L. (1978) Hydrothermal alteration in active geothermal fields. Annu. Rev. Earth Planet. Sci., 6, 229–50.Google Scholar
  4. Converse, D.R., Holland, H.D. and Edmond, J.M. (1984) Flow rates in the axial hot springs of the East Pacific Rise (21°N): implications for the heat budget and the formation of massive sulfide deposits. Earth Planet. Sci. Lett., 69, 159–75.Google Scholar
  5. Criss, R.E. and Taylor H.P. Jr. (1986) Meteoric–hydrothermal systems. Rev. Mineral., 16, 373–424.Google Scholar
  6. Ellis, A.J. and Mahon W.A.J. (1977) Chemistry and Geothermal Systems. New York: Academic Press, 392 pp.Google Scholar
  7. Fournier, R.O. (1987) Conceptual models of bring evolution in magmatic-hydrothermal systems, in Volcanism in Hawaii (eds R.W. Decker, T.L. Wright and P.H. Stauffer). Washington, DC: US Geological Survey Professional Paper 1350, 1487–1506.Google Scholar
  8. Giggenbach, W.F. (1992) Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth Planet. Sci. Lett., 113, 495–510.Google Scholar
  9. Giggenbach, W.F. (1993) Reply to comment by P. Blattner: ‘Andesitic water’: a phantom of isotopic evolution of water–silicate systems. Earth Planet. Sci. Lett., 120, 519–22.Google Scholar
  10. Giggenbach, W.F. (1995) Variations in the chemical and isotopic composition of fluids discharged from the Taupo Volcanic Zone, New Zealand. J. Volcanol. Geotherm. Res., 68, 89–116.Google Scholar
  11. Hannington, M.D., Jonasson, I.R., Herzig, P.M. and Petersen, S. (1995) Physical and chemical processes of seafloor mineralization at mid-ocean ridges, in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions (eds S.E. Humphris, R.A. Zierenberg, L.S. Mullineaux, and R.E. Thomson). Washington, DC: American Geophysical Union Monograph 91, 115–57.Google Scholar
  12. Hedenquist, J.W., Goff, F., Phillips, F.M., Elmore, D. and Stewart, M.K. (1990) Groundwater dilution and residence times and constraints on chloride source in the Mokai geothermal system, New Zealand from chemical, stable isotope, tritium and 36Cl data. J. Geophys. Res., 95, 19365–75.Google Scholar
  13. Hedenquist, J.W., Reyes, W.G., Simmons, S.F. and Taguchi, S. (1992) The thermal and geochemical structure of geothermal and epithermal systems: a framework for interpreting fluid inclusion data. Eur. J. Mineral., 4, 989–1015.Google Scholar
  14. Henley, R. (1985) The geothermal framework for epithermal deposits. Rev. Econ. Geol., 2, 1–24.Google Scholar
  15. Henley, R.W. and Ellis A.J. (1983) Geothermal systems ancient and modern: a geochemical review. Earth-Sci. Rev., 19, 1–50.Google Scholar
  16. Henley, R.W., Truesdell, W.H. and Barton P.B. Jr. (1984) Fluid-mineral equilibria hydrothermal systems. Rev. Econ. Geol., 1, 267 pp.Google Scholar
  17. Lowell, R.P. and Germanovich, L.N. (1994) On the temporal evolution of high-temperature systems at ocean ridge crests. J. Geophys. Res., 99, 565–75.Google Scholar
  18. Nicholson, K. (1993) Geothermal Fluids: Chemistry and Exploration Techniques. Berlin: Springer-Verlag, 268 pp.Google Scholar
  19. Nicholson, K. (1994) Fluid chemistry and hydrological regimes in geothermal systems: a possible link between gold-depositing and hydrocarbon–bearing a aqueous systems. Geol. Soc. Special Pub., 78, 221–32.Google Scholar
  20. Pearson, F.J. and Truesdell, A.H. (1978) Tritium in the waters of Yellowstone National Park. US Geol. Surv. Open-File Report, 78–701, 3.Google Scholar
  21. Reyes A.G. (1990) Petrology of Philippine geothermal systems and the application of alteration mineralogy in their assessment. J. Volcanol. Geotherm. Res., 43, 279–309.Google Scholar
  22. Rona, P.A. (1984) Hydrothermal mineralization at seafloor spreading centers. Earth-Sci. Rev., 20, 1–104.Google Scholar
  23. Seyfried, W.E. Jr. (1987) Experimental and theoretical constraints on hydrothermal alteration processes at mid-ocean ridges. Annu. Rev. Earth Planet. Sci., 15, 317–35.Google Scholar
  24. Shevenell, L. and Goff, F. (1995) The use of tritium in groundwater to determine fluid mean residence times at Valles caldera hydrothermal fluids, New Mexico, USA. J. Volcanol. Geotherm. Res., 67, 187–205.Google Scholar
  25. Torgerson, T., Lupton, T.J.E., Sheppard, D.S. and Giggenbach, W.F. (1982) Helium isotope variations in the thermal areas of New Zealand. J. Volcanol. Geotherm. Res., 12, 283–98.Google Scholar
  26. Truesdell, A.H. and Hulston J.R. (1980) Isotopic evidence on environments of geothermal systems, in Handbook of Environmental Isotope Geochemistry, Vol. 1, The Terrestrial Environment (ed. P. Fritz and J.Ch. Fontes). Amsterdam: Elsevier, pp. 179–226.Google Scholar
  27. White, N.C. and Hedenquist, J.W. (1990) Epithermal environments and styles of mineralization: variations and their causes, and guidelines for exploration. J. Geochem. Expl., 36, 445–74.Google Scholar
  1. Essene, E.J. (1982) Geologic thermometry and barometry. Rev. Mineral., 10, 153–93.Google Scholar
  2. Essene, E.J. and Peacor, D.R. (1995) Clay mineral thermometry–a critical perspective. Clays Clay Min., 43, 540–53.Google Scholar
  3. Harrison, M.T. and Be, K. (1983) 39Ar/40Ar age spectrum analysis of deterital microclines from the San Joaquin Basin, California: an approach to determining the thermal evolution of sedimentary basins. Earth Planet. Sci. Lett., 64, 2242–56.Google Scholar
  4. Naeser, N.D. and McCulloh, T.H. (1989) Thermal History of Sedimentary Basins. Methods and Case Histories. Berlin: Springer-Verlag, 319 pp.Google Scholar
  5. O'Neil, J.R. (1986) Theoretical and experimental aspects of isotopic fractionation. Rev. Mineral., 16, 1–40.Google Scholar
  6. Pagel, M., Braun, J.J., Disnar, J.R., Martinez, L., Renac, C. and Vasseur, G. (1997) Thermal history constraints from studies of organic matter, clay minerals, fluid inclusions and apatite fission tracks at the ArOpen image in new windowche paleo-margin (BA1 drill hole, GPF program), France. J. Sed. Res., 67, 235–45.Google Scholar
  7. Roedder, E. (1984) Fluid inclusions. Rev. Mineral., 12, 644 pp.Google Scholar
  8. Tissot, B.P., Pelet, R. and Ungerer, Ph. (1987) Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation. Am. Assoc. Petrol. Geol. Bull., 71, 1445–66.Google Scholar
  9. Wagner, G. and Van Den Haute, P. (1992) Fission-Track Dating. Dordrecht: Kluwer Academic Publishers, 285 pp.Google Scholar


  1.  Analytical techniques;  Calorimetry;  Fluids in volcanic and plutonic environments; Geochemical reference materials; Geochemical thermodynamics; Geochemistry: low temperature; Geothermal systems; Geothermometry and geobarometry;  Magmatic processes;  Metamorphic environments;  Paragenesis;  Sampling;  Thermochemistry;  Volcanic gases;  Volcanism
  1. Bohlen, S.R. and Lindsley, D.H. (1987) Thermometry and barometry of igneous and metamorphic rocks. Annu. Rev. Earth Planet. Sci., 15, 397–420.Google Scholar
  2. Spear, F.S. (1993) Metamorphic Phase Equilibria and Pressure–Temperature–Time Paths. Washington, DC: Mineralogical Society of America, 799 pp.Google Scholar
  3. Spear, F.S. and Peacock, S.M. (1989) Metamorphic Pressure–Temperature–Time Paths. Short Course in Geology, Vol. 7. Washington, DC: American Geophysical Union, 102 pp.Google Scholar
  4. Wood, B.J. and Fraser, D.G. (1976) Elementary Thermodynamics for Geologists. Oxford: Oxford University Press, 303 pp.Google Scholar


  1.  Analytical techniques;  Calorimetry;  Fluids in volcanic and plutonic environments; Geochemical reference materials; Geochemical thermodynamics; Geochemistry: low temperature; Geothermal systems; Geothermometers;  Magmatic processes;  Metamorphic environments;  Paragenesis;  Thermochemistry;  Volcanic gases;  Volcanism
  1. Bernstein, L.R. (1963) Geology and mineralogy of the Apex germanium–gallium mine, Washington County, Utah. US Geolog. Surv. Bull., 1577, 9 pp.Google Scholar
  2. Bernstein, L.R. (1985) Germanium geochemistry and mineralogy. Geochim. Cosmochim. Acta, 49, 2409–22.Google Scholar
  3. Johan, Z. (1988) Indium and germanium in the structure of sphalerite: an example of coupled substitution with copper. Mineral. Petrol., 38, 211–44.Google Scholar
  4. Johan, Z., Oudin, E. and Picot, P. (1983) Germanium and gallium analogues of silicates and oxides from zinc deposits in the French Pyrenees. Tschermaks Mineral. Petroger. Mitt., 31, 97–119.Google Scholar
  5. Kolodny, Y. and Halicz, L. (1988) The geochemistry of germanium in deep sea cherts. Geochim. Cosmochim. Acta, 52, 233–6.Google Scholar
  6. Möller, P., Schley, F., Luck, J. and Szaki, W. (1980) A new way of interpreting trace element concentrations with respect to mode of mineral formation. J. Geochem. Expl., 15, 271–86.Google Scholar
  7. Morlock, W., Froelich, P.N., Feely, R.R., Massoth, G.J., Butterfield, D.R. and Luption, J.F. (1993) Silica and germanium in Pacific Ocean hydrothermal vents and plumes. Earth Planet. Sci. Lett., 119, 365–78.Google Scholar
  8. Pimminger, M., Grasserbauer, M., Schroll, E. and Cerny, I. (1985) Trace element distribution in sphalerites from Pb–Zn–ore occurences of the Eastern-Alps. Tschermaks Mineral. Petrogr. Mitt., 34, 131–42.Google Scholar


  1. Rock, P.A. (1983) Chemical Thermodynamics. Mill Valley, CA: University Science Books.Google Scholar
  2. Rock, P.A., Casey, W.H., McBeath, M.M. and Walling, E.M. (1994) A new method for determining Gibbs energies of formation of metal–carbonate solid solutions: the CaxCd1−xCO3(s) system at 298 K and 1 bar. Geochim. Cosmochim. Acta., 58, 4281–91.Google Scholar
  1. Guilbert, J.M. and Park, C.F. Jr. (1986) The Geology of Ore Deposits. New York: W.H. Freeman and Co., 985 pp.Google Scholar
  2. Lakin, H.W., Curtin, G.C. and Hubert, W.E. (1974) Geochemistry of gold in the weathering cycle. US Geol. Surv. Bull., 1330, 80 pp.Google Scholar
  3. Mann, W. W. and Webster, J.G. (1990) Gold in the exogenic environment Geol. Min. Deposits Australia Papua New Guinea, Monogr., 14, 119–26.Google Scholar
  4. Seward, T.M. (1973) Thio complexes of gold and the transport of gold in hydrothermal ore solutions. Geochim. Cosmochim. Acta, 37, 379–99.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Scott M. McLennan
  • Erich Schroll
  • Andrew T. Revill
  • I. P. Wright
  • Kathleen S. Smith
  • Arthur W. Rose
  • K. Govindaraju
  • Joaquin Ruiz
  • Peter A. Rock
  • William H. Casey
  • William S. Fyfe
  • Elizabeth A. Burton
  • Scott M. McLennan
  • Richard W. Murray
  • Carla W. Montgomery
  • R. Michael Easton
  • Steven W. Lonker
  • Maurice Pagel
  • Pierre Barbey
  • Richard F. Wendlandt
  • Jenny G. Webster

There are no affiliations available