Encyclopedia of Geochemistry

1999 Edition
| Editors: Clare P. Marshall, Rhodes W. Fairbridge

F

  • Cynthia E. A. Palmer
  • Ronald S. Kaufmann
  • Charles W. Naeser
  • Nancy D. Naeser
  • William E. Glassley
  • B. De Vivo
  • David W. Mittlefehldt
  • Carl O. Moses
  • Uwe Brand
  • Ian T. Campbell
Reference work entry
DOI: https://doi.org/10.1007/1-4020-4496-8_6
  • 2.2k Downloads

Fermium

Fermium (Fm), atomic number (Z) 100, is the eleventh member of the actinide series. Eighteen isotopes (mass = 242–259) have been synthesized and observed. Fermium has no natural abundance; the half-lives range from 0.37 ms to 100.5 days. The electron configurations of the several ionic forms of this element have been determined from atomic beam experiments: M0(g) [Rn] 5f127s2; M+(g) [Rn] (5f127s1); M+2(g) [Rn] (5f12); M+3(g) [Rn] (5f11); M+4(g) [Rn] (5f10). Predicted configurations are shown in parentheses. The crystal structure ionic radius for the +3 ion with a coordination number of six is 0.0922 nm.

Fermium was discovered in 1953 by A. Ghiorso, S.G. Thompson, G.H. Higgins, G.T. Seaborg, M.H. Studier, P.R. Fields, S.M. Fried, H. Diamond, J.F. Mech, G.L. Pyle, J.R. Huizenga, A. Hirsch, W.M. Manning, C.I. Browne, H.L. Smith, and R.W. Spence. Twenty hour 255Fm activity emitting 7.1 MeV alpha particles was discovered in the debris from the test of a large thermonuclear device.

Th...

Keywords

Fluid Inclusion Rock Interaction Fission Track Aqueous Fluid Rock System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

  1. Firestone, R.B. (1996) Table of Isotopes, Volume II. A = 151–272. New York: Wiley-Interscience, 2877 pp.Google Scholar
  2. Ghiorso, A., Thompson, S. G., Higgins, G. H. et al. (1955) New elements einstenium and fermium, atomic numbers 99 and 100. Phys. Rev., 99, 1048.CrossRefGoogle Scholar
  3. Seaborg, G.T. and Loveland, W.D. (1990) The Elements Beyond Uranium. New York: Wiley-Interscience, 359 pp.Google Scholar
  1. Crank, J. (1956) The Mathematics of Diffusion. New York: Oxford University Press, 346 pp.Google Scholar
  2. Fick, R. (1856) Medizinische Physik.Google Scholar
  3. Fourier, J.B. (1822) Theory Analytique de la Chaluer. Envres de Fourier.Google Scholar
  4. Senftle, B.B. and Bracken, J. Y. (1955) Theoretical effect of diffusion on isotopic abundance ration in rocks and associated fluids. Geochim. Cosmochim. Acta, 7, 61–76.CrossRefGoogle Scholar
  1. Benjamin, M.T., Johnson N.M. and Naeser C.W. (1987) Recent rapid uplift in the Bolivian Andes: evidence from fission-track dating. Geology, 15, 680–83.CrossRefGoogle Scholar
  2. Corrigan, J.D. (1993) Apatite fission-track analysis of Oligocene strata in South Texas, USA: testing annealing models. Chemical Geology (Isotope Geoscience Section), 104, 227–249.Google Scholar
  3. Fitzgerald, P.G. (1992) The Transantarctic Mountains of southern Victoria Land: the application of apatite fission track analysis to a rift shoulder uplift. Tectonics, 11, 634–62.CrossRefGoogle Scholar
  4. Fitzgerald, P.G. and Gleadow A.J.W. (1990) New approaches in fission track geochronology as tectonic tool: examples from the Transantarctic Mountains. Nucl. Track Radiat. Measurements, 17, 351–57.CrossRefGoogle Scholar
  5. Fleischer, R.L., Price, P.B. and Walker, R.M. (1975) Nuclear Tracks in Solids–Principles and Applications. Berkeley, California: University of California Press, 605 pp.Google Scholar
  6. Gleadow, A.J.W., Duddy, I.R. and Lovering, J.F. (1983) Fission track analysis: a new too for the evaluation of thermal histories and hydrocarbon potential. Aust. Petrol. Explor. Assoc. J., 23, 93–102.Google Scholar
  7. Gleadow, A.J.W., Duddy, I.R., Green, P.F. et al. (1986) Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis. Cont. Mineral. Petrol., 94, 405–15.CrossRefGoogle Scholar
  8. Green, P.F., Duddy, I.R., Gleadow, A.J.W. et al. (1989) Apatite fission-track analysis as a paleotemperature indicator for hydrocarbon exploration, in Thermal History of Sedimentary Basins–Methods and Case Histories (eds N.D. Naeser and T.I. McCulloh). New York: Springer-Verlag, pp. 181–95.CrossRefGoogle Scholar
  9. Hurford, A.J. (1986) Cooling and uplift patterns in the Lepontine Alps, South Central Switzerland and an age of vertical movement on the Insubric fault line. Cont. Mineral. Petrol., 92, 413–27.CrossRefGoogle Scholar
  10. Hurford, A.J., Hunziker, J.C. and Stöckhert, B. (1991) Constraints on the late thermotectonic evolution of the Western Alps: evidence for episodic rapid uplift. Tectonics, 10, 758–69.CrossRefGoogle Scholar
  11. Naeser, C.W. (1971) Geochronology of the Navajo–Hopi diatremes, Four Corners area. J. Geophys. Res., 76, 4978–85.CrossRefGoogle Scholar
  12. Naeser, C.W. (1979a) Fission-track dating and geologic annealing of fission tracks, in Lectures in Isotope Geology (eds E. Jäger and J. C. Hunziker). New York: Springer-Verlag, pp. 154–69.CrossRefGoogle Scholar
  13. Naeser, C.W. (1979b) Thermal history of sedimentary basins: fission-track dating of subsurface rocks, in Aspects of Diagenesis (eds P.A. Scholle and P.R. Schluger). Society of Economic Paleontologists and Mineralogists Special Publication 26, pp. 109–12.Google Scholar
  14. Naeser, C.W. and Naeser, N.D. (1988) Fission-track dating of Quaternary events, in Dating Quaternary Sediments (ed. D.J. Easterbrook). Geological Society of America Special Paper 227, pp. 1–11.Google Scholar
  15. Naeser, C.W., Bryant, B., Crittenden, M.D., Jr. et al. (1980) Pliocene intrusive rocks and mineralization near Rico, Colorado. Econom. Geol., 75, 122–27.CrossRefGoogle Scholar
  16. Naeser, C.W., Cunningham, C.G., Marvin, R.F. et al. (1983) Fission-track ages of apatite in the Wasatch Mountains, Utah. Geol. Soc. Am. Mem., 157, 29–36.CrossRefGoogle Scholar
  17. Naeser, N.D., Naeser, C.W. and McCulloh, T.H. (1989) The application of fission-track dating to the depositional and thermal history of rocks in sedimentary basins, in Thermal History of Sedimentary Basins–Methods and Case Histories (eds N.D. Naeser and T.H. McCulloh). New York: Springer-Verlag, pp. 157–80.CrossRefGoogle Scholar
  18. Seward, D. (1979) Comparison of zircon and glass fission-track ages from tephra horizons. Geology, 7, 479–82.CrossRefGoogle Scholar
  19. Seward, D. and Mancktelow, N.S. (1994) Neogene kinematics of the central and western Alps: evidence from fission-track dating. Geology, 22, 803–6.CrossRefGoogle Scholar
  20. Wagner, G.A., Reimer, G.M. and Jäger, E. (1977) Cooling ages derived by apatite fission-track, mica Rb-Sr and K-Ar dating: the uplift and cooling history of the central Alps. Memorie degli Istituti di Geologia e Mineralogia dell' Universita di Padova, 30, 28.Google Scholar
  21. Westgate, J.A. (1989) Isothermal plateau fission-track ages of hydrated glass shards from silicic tephra beds. Earth Planet. Sci. Lett., 95, 226–34.CrossRefGoogle Scholar
  22. Zeitler, P.K. (1985) Cooling history of the NW Himalaya, Pakistan. Tectonics, 4, 127–51.CrossRefGoogle Scholar
  1. Duan, Z., Moller, N. and Weare, J.H. (1995) Equation of state for the NaCl–H2O–CO2 system: prediction of phase equilibria and volumetric properties. Geochim. Cosmochim. Acta, 59, 2869–82.CrossRefGoogle Scholar
  2. Holland, H.D. (1984) Chemical Evolution of the Atmosphere and Oceans. Princeton: Princeton University Press, 582 pp.Google Scholar
  3. Ilton, E.S. and Eugster, H.P. (1990) Partitioning of base metals between silicate, oxides and a chloride-rich hydrothermal fluid. Part I. Evaluation of data derived from experimental and natural assemblages. Geochem. Soc. Spec. Publ., 2, 157–69.Google Scholar
  4. Ivanovich, M. and Harmon, R.S. (1992) Uranium-Series Disequilibrium: Application to Earth, Marine, and Environmental Sciences. New York: Oxford University Press, 914 pp.Google Scholar
  5. Lichtner, P.C., Steefel, C.I. and Oelkers, E.H. (1996) Reactive Transport in Porous Media, Reviews in Mineralogy V. 34, Mineralogical Society of America, 438 pp.Google Scholar
  6. Manahan, S.E. (1994) Environmental Chemistry, 6th edn. Boca Raton: Lewis Publishers, 811 pp.Google Scholar
  7. Melchior, D.C. and Bassett, R.L. (1990) Chemical Modeling of Aqueous Systems II. American Chemical Society, Symposium Series 416, 556 pp.Google Scholar
  8. Roedder, E. (1984) Fluid inclusions. Rev. Mineral., 12, 644.Google Scholar
  1. Aines, R. D., Lowenstern, J.B. and Mahood, G.A. (1990) Evidence for CO2-rich vapor in Pantellerite magma chamber. EOS, 71, 1699.Google Scholar
  2. Bodnar, R.J. (1992) Can we recognize magmatic fluid inclusions in fossil systems based on room-temperature phase relations and microthermometric behavior? Rept. Geol. Surv. Jpn., 279, 26–30.Google Scholar
  3. Burnham, C.W. (1979) Magmas and hydrothermal fluids, in Geochemistry of Hydrothermal Ore Deposits, 2nd edn (ed. H.L. Barnes). New York: Wiley & Sons, pp. 71–136.Google Scholar
  4. Chou, I.M. (1987) Phase relations in the system NaCl–KCl–H2O. III: Solubilities of halite in vapor-saturated liquids above 445°C and redeterminations of phase equilibrium properties in the system NaCl–H2O to 1000°C and 1500 bar. Geochim. Cosmochim. Acta, 51, 1965–75.CrossRefGoogle Scholar
  5. De Vivo, B., Frezzotti, M.L. and Mahood, G. (1992) Fluid inclusions in xenoliths yield evidence for fluid evolution in peralkaline granitic bodies at Pantelleria (Italy). J. Volcanol. Geotherm. Res., 52, 295–301.CrossRefGoogle Scholar
  6. De Vivo, B., Frezzotti, M.L. and Lima, R. (1993) Immiscibility in magmatic differentiation and fluid evolution in granitoid xenoliths at Pantelleria: Fluid inclusions evidence. Acta Vulcanol., 3, 195–202.Google Scholar
  7. De Vivo, B., Torok, K., Ayuso, R.A., Lima, R. and Lirer, L. (1995). Fluid inclusion evidence for magmatic silicate/saline immiscibility and geochemistry of alkaline xenoliths from Ventotene island (Italy). Geochim. Cosmochim. Acta, 59, 2941–53.CrossRefGoogle Scholar
  8. Frezzotti, M.L. (1992) Magmatic immiscibility and fluid phase evolution in the Mount Genis granite (southeastern Sardinia, Italy). Geochim. Cosmochim. Acta, 56, 21–33.CrossRefGoogle Scholar
  9. Frost, B.R. and Touret, J.L.R. (1989) Magmatic CO2 and saline melts from the Sybille Monzosyenite, Laramie Anorthosite complex, Wyoming. Contrib. Mineral. Petrol., 103, 178–86.CrossRefGoogle Scholar
  10. Henley, R.W. and Ellis, R.A. (1983) Geothermal systems ancient and modern: a geothermal review. Earth Sci. Rev., 19, 1–50.CrossRefGoogle Scholar
  11. Kilinc, I.A., and Burnham, C.W. (1972) Partitioning of chloride between a silicate melt and coexisting aqueous phase from 2 to 8 kilobars. Econ. Geol., 67, 231–5.CrossRefGoogle Scholar
  12. Lowenstern, J.B. (1993) Immiscibility between silicate melt, vapor and hydrosaline melt (≈ 70–80 wt% NaCl) in peralkaline rhyolites from Pantelleria, Italy. EOS, 74, 670.Google Scholar
  13. Lowenstern, J.B. (1994) Chlorine, fluid immiscibility, and degassing in peralkaline magmas from Pantelleria, Italy. Am. Mineral., 79, 353–69.Google Scholar
  14. Lowenstern, J.B. and Mahood, G.A. (1991) New data on magmatic H2O contents of pantellerites, with implications for petrogenesis and eruptive dynamics at Pantelleria. Bull. Volcanol., 54, 78–83.CrossRefGoogle Scholar
  15. Roedder, E. (1972) Fluid inclusions, in The Encyclopedia of Geochemistry. New York, Van Nostrand Reinhold, 373–7.Google Scholar
  16. Roedder, E. (1984) Fluid inclusions. Rev. Mineral., 12, 643 pp.Google Scholar
  17. Roedder, E. (1992) Fluid inclusion evidence for immiscibility in magmatic differentiation. Geochim. Cosmochim. Acta. 56, 5–20.CrossRefGoogle Scholar
  18. Roedder, E. and Coombs, D.S. (1967) Immiscibility in granitic melts, indicated by fluid inclusions in ejected granitic blocks of Ascension Island, J. Petrol., 8, 417–51.CrossRefGoogle Scholar
  19. Solovova, I.P., Naumov, V.B., Kovalenko, V.I., Guzhova, A.V. and Kononkova, N.N. (1990) Investigation of magmatic inclusions in minerals of Pantelleria volcanic rocks (Italy). PACROFI III, Program and Abstracts, P. 82.Google Scholar
  20. Touret, J.L.R. and Frezzotti, M.L. (1993) Magmatic remnants in granites. Bull. Soc. Geol. Franc., II, 229–42.Google Scholar
  21. Webster, J.D. and Holloway, J.R. (1988) Experimental constraints on the partitioning of Cl between topaz rhyolite melt and H2O and H2O + CO2 fluids: New implications for granitic differentiation and ore deposition. Geochim. Cosmochim. Acta, 52, 2091–105.CrossRefGoogle Scholar
  22. Weisbrod, A. (1981) Fluid inclusions in shallow intrusives, in Short Course in Fluid Inclusions: Applications to Petrology (eds L.S. Hollister and M.L. Crawford). Canada: Mineral Assoc., pp. 241–77.Google Scholar
  1. Allen, R.D. (1952) Variations in chemical and physical properties of fluorite. Am. Mineral., 37, 910–30.Google Scholar
  2. Jahnke, R.A., Emerson, S.P., Roe, K.K. and Burnell, W.C. (1983) The present day formation of apatite in Mexican Margin sediment. Geochim. Cosmochim. Acta, 47, 259–66.CrossRefGoogle Scholar
  3. Williams-Jones, A.E. and Wood, S.A. (1992) A preliminary petrogenetic grid for REE fluorocarbonates and associated minerals. Geochim. Cosmochim. Acta, 56, 725–38.CrossRefGoogle Scholar
  1. Anderson, G.M. and Crerar, D.A. (1993) Thermodynamics in Geochemistry. The Equilibrium Model. New York: Oxford University Press, 588 pp.Google Scholar
  2. Atkins, P.W. (1986) Physical Chemistry, 3rd edn. New York: W.I. Freeman, 857 pp.Google Scholar
  3. Nordstrom, D.K. and Munoz, J.L. (1994) Geochemical Thermodynamics, 2nd edn. Cambridge, MA: Blackwell Scientific Publications, 493 pp.Google Scholar
  4. Robie, R.A., Hemingway, B.S. and Fisher, J.R. (1978) Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures. US Geological Survey Bulletin, 1452, 456 pp.Google Scholar
  1. Krauskopf, K.B. and Bird, D.K. (1995) Introduction to Geochemistry, 3rd edn. New York: McGraw-Hill, 647 pp.Google Scholar
  2. Mackay, D. (1979) Finding fugacity feasible. Environ. Sci. Technol., 13, 1218–23.CrossRefGoogle Scholar
  3. Mackay, D. and Paterson, S. (1981) Calculating fugacity. Environ. Sci. Technol., 15, 106–14.CrossRefGoogle Scholar
  4. Smith, B.S. (1990) Basic Chemical Thermodynamics, 4th edn. New York: Oxford University Press, 166 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Cynthia E. A. Palmer
  • Ronald S. Kaufmann
  • Charles W. Naeser
  • Nancy D. Naeser
  • William E. Glassley
  • B. De Vivo
  • David W. Mittlefehldt
  • Carl O. Moses
  • Uwe Brand
  • Ian T. Campbell

There are no affiliations available