Encyclopedia of Geochemistry

1999 Edition
| Editors: Clare P. Marshall, Rhodes W. Fairbridge

E

  • M. A. K. Khalil
  • Stuart Ross Taylor
  • Scott M. McLennan
  • William F. McDonough
  • H. Palme
  • W. Ian Ridley
  • Joris M. Gieskes
  • Michael Perfit
  • Richard B. Wanty
  • Cynthia E. A. Palmer
  • Thomas J. Wolery
  • Carla W. Montgomery
  • C. Wagner
  • Jae Young Yu
  • R. K. Varma
  • Benoit Villemant
  • David W. Mittlefehldt
  • Frederick A. Frey
  • Ronald S. Kaufmann
  • Fernando Bea
  • V. J. M. Salters
  • Roberta L. Rudnick
  • H. G. Stosch
  • Graeme E. Batley
  • Thomas Staudacher
  • Sarah Jane Barnes
  • Paul R. Dixon
  • M. Elaine Kennedy
  • L. Galoisy
  • C. Marshall
  • Carl O. Moses
  • Vidojko Jovi°C
  • Heinz Gamsjäger
  • Erich Königsberger
  • Charles A. Geiger
Reference work entry
DOI: https://doi.org/10.1007/1-4020-4496-8_5

Earth’s Atmosphere

Introduction

The Earth’s atmosphere is a thin layer of gases that surrounds the planet. Dry air consists almost entirely of nitrogen and oxygen (99%). We feel the air as it blows around us, and we depend on it as we breathe. The warmth that we feel in the air is controlled by the greenhouse gases that make up a small fraction of the remaining 1% of the atmosphere.

The Earth’s atmosphere can be characterized by its density, temperature and composition. We will consider these three characteristics and briefly discuss how human activities are changing atmospheric composition. The characteristics of the atmosphere change most significantly in the vertical dimension, less so in latitude, and even less in longitude. The changes of atmospheric temperature and other characteristics are small enough in longitude that in many cases the climate is similar for similar latitudes and varies considerably as we move from one latitude to another.

Density

The density of the...

Keywords

Mid-ocean Ridge Basalts (MORB) Lower Mantle Standard Equilibrium Constant Bulk Earth Restricted Primitive Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Barry, R. G. and Chorley, R. J. (1992) Atmosphere, Weather and Climate. 6th edn. New York: Routledge.Google Scholar
  2. Charlson, R. J. (1992) The Atmosphere, in Global Biogeochemical Cycles (eds Butcher et al.). New York: Academic Press.Google Scholar
  3. Intergovernmental Panel on Climate Change. 1990. Climate Change. New York: Cambridge University Press.Google Scholar
  4. Khalil, M. A. K. (1995) Greenhouse gases in the Earth’s atmosphere, in Encyclopedia of Environmental Biology, Vol. 2 (ed. W. A. Nirenberg). New York: Academic Press.Google Scholar
  5. Wuebbles, D. J. and Edmonds, J. (1991) Primer on Greenhouse Gases. Chelsea, MI: Lewis Publishers.Google Scholar
  1. Abbott, D. and Mooney, W. (1995) The structural and geochemical evolution of the continental crust: Support for the oceanic plateau model of continental growth. National Report to I.U.G.G. Rev. Geophys. Supp., 231–42.Google Scholar
  2. Armstrong, R. L. (1991) The persistent myth of crustal growth. Aust. J. Earth Sci., 38, 613–30.Google Scholar
  3. Christensen, N. I. and Mooney, W. D. (1995) Seismic velocity structure and composition of the continental crust: a global view. J. Geophys. Res., 100, 9761–88.Google Scholar
  4. Cogley, J. G. (1984) Continental margins and the extent and number of continents. Rev. Geophys., 22, 101–22.Google Scholar
  5. Condie, K. C. (1992) Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem. Geol., 104, 1–37.Google Scholar
  6. Goldstein, S. J. and Jacobsen, S. B. (1988) Rare earth elements in river waters. Earth Planet. Sci. Lett., 89, 35–47.Google Scholar
  7. Gromet, I. P., Dymek, R. F., Haskin, L. A. and Korotev, R. L. (1984) The ‘North American shale composite’: its compilation, major and trace element characteristics. Geochim. Cosmochim. Acta, 48, 2469–82.Google Scholar
  8. McLennan, S. M. (1988) Recycling of the continental crust. Pure Appl. Geophys., 128, 683–724.Google Scholar
  9. McLennan, S. M. (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Rev. Mineral., 21, 169–200.Google Scholar
  10. McLennan, S. M. and Taylor, S. R. (1996) Heat flow and the chemical composition of continental crust. J. Geol., 104, 369–77.Google Scholar
  11. Nesbitt, H. W. and Young, G. M. (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Acta, 48, 1523–34.Google Scholar
  12. Nyblade, A. A. and Pollack, H. N. (1993) A global analysis of heat flow from Precambrian terrains: implications for the thermal structure of Archean and Proterozoic lithosphere. J. Geophys. Rev., 98, 12207–18.Google Scholar
  13. Pollack, H. N., Hurter, S. J. and Johnson, J. R. (1993) Heat flow from the earth’s interior: analysis of the global data set. Rev. Geophys., 31, 267–80.Google Scholar
  14. Rudnick, R. L. and Fountain, D. M. (1995) The lower crust. Rev. Geophys., 33, 267–309.Google Scholar
  15. Shaw, D. M., Cramer, J. J., Higgins, M. D. and Truscott, M. G. (1986) Composition of the Canadian Precambrian shield and the continental crust of the earth. Geol. Soc. Lond. Special Publ., 24, 275–82.Google Scholar
  16. Taylor, S. R. and McLennan, S. M. (1985) The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publishers., 312 pp.Google Scholar
  17. Taylor, S. R. and McLennan, S. M. (1995) The geochemical evolution of the continental crust. Rev. Geophys., 33, 241–65.Google Scholar
  18. Taylor, S. R. and McLennan, S. M. (1996) The evolution of continental crust. Sci. Am., 274, 60–5.Google Scholar
  19. Taylor, S. R., McLennan, S. M. and McCulloch, M. T. (1983) Geochemistry of loess, continental crustal composition and crustal model ages. Geochim. Cosmochim. Acta., 47, 1897–905.Google Scholar
  20. Weaver, B. L. and Tarney, J. (1984) Empirical approach to estimating the composition of the continental crust. Nature, 310, 575–7.Google Scholar
  21. Wedepohl, K. H. (1995) The composition of the continental crust. Geochim. Cosmochim. Acta., 59, 1217–32.Google Scholar
  22. Zandt, G. and Ammon, C. J. (1995) Continental crust composition constrained by measurements of crustal Poisson’s ratio. Nature, 374, 152–4.Google Scholar

Cross-references

  1.  Carbonate sediments; Earth’s formation and geochemical evolution; Earth’s mantle geochemistry; Earth’s oceanic crust; Elements: alkali and alkaline earth; Elements: distribution; Elements: halogens; Elements: trace;  Fluid—rock interactions;  Geochemical tectonis;  Geochemistry of sediments;  Magmatic processes;  Metamorphic environments;  Precambrian geochemistry
  1. Agee, C. B. (1993) Petrology of the mantle transition zone. Annu. Rev. Earth Planet. Sci., 21, 19–41.Google Scholar
  2. Allegre, C. J., Poirier, J. P., Humler, E. and Hofmann, A. W. (1995) The chemical composition of the Earth. Earth Planet. Sci. Lett., 134, 515–26.Google Scholar
  3. Anders, E. and Grevesse, N. (1989) Abundances of the elements: meteoritic and solar. Geochim. Cosmochim. Acta., 53, 197–214.Google Scholar
  4. Anderson, D. L. (1983) Chemical composition of the mantle. J. Geophys. Res., 88, (Suppl.), B41–52.Google Scholar
  5. Birch, F. (1952) Elasticity and constitution of the earth’s interior. J. Geophys. Res., 57, 227–88.Google Scholar
  6. Brown, J. M. and McQueen, R. G. (1986) Phase transitions, Güneisen parameter and elasticity for shocked iron between 77 GPa and 400 GPa. J. Geophys. Res., 91, 7485–4.Google Scholar
  7. Brown, J. M., Ahrens, T. J. and Shampine, D. L. (1984) Hugoniot data for pyrrhotite and the Earth’s core. J. Geophys. Res., 89, 6041–8.Google Scholar
  8. Davies, G. and Richards, M. (1992) Mantle convection. J. Geol., 100, 151–206.Google Scholar
  9. Ganapathy, R. and Anders, E. (1974) Bulk composition of the moon and earth, estimated from meteorites. Proc. Fifth Lunar Sci. Conf., 2, 1181–1206.Google Scholar
  10. Grand, S. P. (1994) Mantle shear structure beneath the Americas and surrounding oceans. J. Geophys. Res., 99, 11591–621.Google Scholar
  11. Hager, B. and Richards, M. (1989) Long-wavelength variations in the Earth’s geoid: physical models and dynamical implications. Phil. Trans. R. Soc. Lond., A328, 309–27.Google Scholar
  12. Halliday, A. N., Rehkämper, M., Lee, D.-C. and Yi, W. (1996) Early evolution of the Earth and Moon: new constraints from Hf—W isotope geochemistry. Earth Planet. Sci. Lett., 142, 75–89.Google Scholar
  13. Harper, C. L. and Jacobsen, S. B. (1996) Evidence for 182Hf in the early Solar system and constraints on the time scale of terrestrial accretion and core formation. Geochim. Cosmochim. Acta, 60, 1131–53.Google Scholar
  14. Hart, S. R. and Zindler, G. A. (1986) In search of a bulk-earth composition. Chem. Geol., 57, 247–67.Google Scholar
  15. Jackson, I. (1983) Some geophysical constraints on the chemical composition of the Earth’s lower mantle. Earth Planet. Sci. Lett., 62, 91–103.Google Scholar
  16. Jagoutz, E., Palme, H., Baddenhausen, H. et al., (1979) The abundances of major, minor and trace elements in the earth’s mantle as derived from primitive ultramafic nodules. Proc. Lunar Planet. Sci. Conf., 10, 2031–50.Google Scholar
  17. Lee, D.-C. and HaIIiday, A. N. (1995) Hafnium-tungsten chronometry and the timing of terrestrial core formation. Nature, 378, 771–4.Google Scholar
  18. Li, J. and Agee, C. B. (1996) Geochemistry of mantle-core differentiation at high pressure. Nature, 381, 686–9.Google Scholar
  19. Lugmair, G. W., Maclsaac, C. and Shukolyukov, A. (1994) Small time differences recorded in differentiated meteorites. Meteoritics, 29, 493–4.Google Scholar
  20. Mao, H. K., Wu, Y., Chen, L. C. and Shu, J. F. (1990) Static compression of iron to 300 GPa and Fe0.8Ni0.2 to 260 GPa: implications for composition of the core. J. Geophys. Res., 95, 21737–42.Google Scholar
  21. McDonough, W. F. and Sun, S.-S. (1995) The composition of the Earth. Chem. Geol., 120, 223–53.Google Scholar
  22. O’Neill, H. S. C. (1991) The origin of the Moon and the early history of the Earth–A chemical model. Part 2: The Earth. Geochim. Cosmochim. Acta, 55, 1159–72.Google Scholar
  23. O’Neill, H. S. C. and Palme, H. (1998) Composition of the silicate Earth: implications for accretion and core formation, in The Earth’s Mantle: Composition, Structure and Evolution (ed. I. Jackson). New York: Cambridge University Press, pp. 3–126.Google Scholar
  24. Poinier, J. P. (1994) Light elements in the Earth’s outer core: A critical review. Phys. Earth Planet. Interiors., 85, 319–37.Google Scholar
  25. Ringwood, A. E. (1966) The chemical composition and origin of the Earth, in Advances in Earth Sciences (ed. P. M. Hurley). Cambridge: MIT Press, pp. 287–356.Google Scholar
  26. Ringwood, A. E. (1984) The Earth’s core: its composition, formation and bearing upon the origin of the Earth. Proc. R. Soc. Lond. A, 395, 1–46.Google Scholar
  27. Ringwood, A. E. (1989) Significance of the terrestrial Mg/Si ratio. Earth Planet. Sci. Lett., 95, 1–7.Google Scholar
  28. Shearer, P. and Masters, G. (1990) The density and shear velocity contrast at the inner core boundary. Geophys. J. Int., 102, 491–8.Google Scholar
  29. Stevenson, D. J. (1981) Models of the Earth’s core. Science, 214, 611–19.Google Scholar
  30. Van der Hilst, R., Widiyantoro, S. and Engdhal, E. R. (1997) Evidence for deep mantle circulation from global tomography. Nature, 386, 578–84.Google Scholar
  31. Wasson, J. T. (1985) Meteorites. Their Record of Early Solar-System History. New York: W. H. Freeman, 267 pp.Google Scholar
  32. Wasson, J. T. and Kallemeyn, G. W. (1988) Composition of chondrites. Phil. Trans. R. Soc. Lond., A325, 535–44.Google Scholar
  33. Weidner, D. J. (1986) Mantle model based on measured physical properties of minerals, in Chemistry and Physics of Terrestrial Planets (ed. S. K. Saxena). New York: Springer-Verlag, pp. 251–74.Google Scholar

Cross-references

  1. Earth’s continental crust; Earth’s formation and geochemical evolution; Earth’s mantle geochemistry; Earth’s oceanic crust; Elements: distribution; Elements: transitional;  Geochemical tectonics;  Sulfides;  Sulfides in mafic and ultramafic rocks
  1. Allegre, C. J., Hofmann, A. W. and O’Nions, R. K. (1996) The argon constraints on mantle structure. J. Geophys. Res., 23, 3555–7.Google Scholar
  2. Anders, E. and Grevesse, N. (1989) Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta, 53, 197–214.Google Scholar
  3. Anderson, D. L. (1989) Theory of the Earth. MA: Black well Brookline Village, 388 pp.Google Scholar
  4. Borisov, A., Palme, H. and Spettel, B. (1994) Solubility of palladium in silicate melts: Implications for core formation in the Earth. Geochim. Cosmochim. Acta, 58, 705–16.Google Scholar
  5. Boehler, R. (1996) Melting temperature of the Earth’s mantle and core: Earth’s thermal structure. Annu. Rev. Earth Planet. Sci., 24, 15–40.Google Scholar
  6. Christensen, U. (1995) Effects of phase transitions on mantle convection. Annu. Rev. Earth Planet. Sci., 23, 65–87.Google Scholar
  7. Dreibus, G. and Palme, H. (1996) Cosmochemical constraints on the sulfur content in the earth’s core. Geochim. Cosmochim. Acta, 60, 1125–30.Google Scholar
  8. Galer, S. J. G. and Goldstein, S. L. (1996) Influence of accretion on lead in the Earth, in Earth Processes, Reading the Isotope Code (eds A. Basu and S. Hart), Geophysical Monograph, American Geophysical Union, pp. 75–89.Google Scholar
  9. Hofman, A. W. (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett., 90, 297–314.Google Scholar
  10. Hofmann, A. W. (1997) Mantle geochemistry: the message from oceanic volcanism. Nature, 385, 219–29.Google Scholar
  11. Holzheid A. and Palme H. (1996) The influence of FeO on the solubility of Co and Ni in silicate melts. Geochim. Cosmochim. Acta, 60, 1181–93.Google Scholar
  12. Holzheid A., Sylvester P., Palme H., O’Neill, H. St. C. and Rubie D. C. (1997) High pressure Pd-metal/silicate partition coefficients: confirmation of the late veneer hypothesis. Lunar Planet. Sci., XXVIII, 587–8.Google Scholar
  13. Jagoutz, E., Palme, H., Baddenhausen, H. et al. (1979) The abundances of major, minor and trace elements in the Earth’s mantle as derived from primitive ultramafic nodules. Proc. Lunar Planet. Sci. Conf., 10, 2031–50.Google Scholar
  14. Kato, T., Ringwood., A. E. and Irifune, T. (1988) Experimental determination of element partitioning between silicate perovskites, garnets and liquids: constraints on early differentiation of the mantle. Earth Planet. Sci. Lett., 89, 123–45.Google Scholar
  15. Li, J. and Agee, C. B. (1996) Geochemistry of mantle—core formation at high pressure. Nature, 381, 686–9.Google Scholar
  16. Lee, D.-C. and Halliday, A. N. (1995) Hafnium-tungsten chronometry and the timing of terrestrial core formation. Nature, 378, 771–4.Google Scholar
  17. Manhès, G. C., Goepel, C. J. and Allegr`, E. (1988) Systematique U–Pb dans les inclusions refractaires d’Allende: le plue vieux materiau solaire. C. R. ATP Planètol., 323–7.Google Scholar
  18. McDonough W. F. and Sun S.-S. (1995) The composition of the Earth. Chem. Goel., 120, 223–53.Google Scholar
  19. Meisel, T., Walker, R. J. and Morgan, J. W. (1996) The osmium isotopic composition of the Earth’s primitive upper mantle. Nature, 383, 517–20.Google Scholar
  20. Ohtani, E., Yurimoto, H. and Seto, S. (1997) The element partitioning between molten iron, silicate melt, and lower-mantle minerals: implications for core formation of the Earth. Phys. Earth Planet. Interiors, 100, 97–114.Google Scholar
  21. O’Neill, H.St.C. (1991) The origin of the Moon and the early history of the Earth–a chemical model. Part 2: the Earth. Geochim. Cosmochim. Acta, 55, 1159–72.Google Scholar
  22. O’Neill, H. St. C. and Palme, H. (1997) Composition of the silicate Earth: implications for accretion and core formation, in: The Earth’s Mantle: Structure, Composition and Evolution–the Ringwood Volume (ed. I. Jackson). Cambridge: Camberidge University Press (in press).Google Scholar
  23. Palme, H. (1990) Back to the Earth’s beginning. Nature, 343, 23–4.Google Scholar
  24. Palme, H. and Nickel, K. G. (1985) Ca/Al ratio and composition of the Earth’s upper mantle. Geochim. Cosmochim. Acta, 49, 2123–32.Google Scholar
  25. Palme, H., Larimer J. W. and Lipschutz, M. E. (1988) Moderately volatile elements, in Meteorites and the Early Solar System (eds. J. F. Kerridge and M. S. Matthews). Tucson, University of Arizona Press, pp. 436–61.Google Scholar
  26. Poirier, J.-P. (1994) Light elements in the earth’s outer core: A critical review. Phys. Earth Planet. Interiors, 85, 319–37.Google Scholar
  27. Righter, K. and Drake, M. J. (1997) Metal—silicate equilibrium in a homogeneously accreting earth: new results for Re. Earth Planet. Sci. Lett., 146, 541–54.Google Scholar
  28. Ringwood A. E. (1979) Origin of the Earth and Moon. Berlin: Springer-Verlag.Google Scholar
  29. Rogers, J. J. W. (1993) A History of the Earth. Cambridge: Cambridge University Press, 295 pp.Google Scholar
  30. Stevenson, D. J. (1990) Fluid dynamics of core formation, in Origin of the Earth (eds H. E. Newsom and J. H. Jones). New York: Oxford University Press, pp. 231–49.Google Scholar
  31. Taylor, S. R. and McLennan, S. M. (1985) The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications, 312 pp.Google Scholar
  32. van der Hilst, R. D., Widiyanatoro, S. and Engdahl, E. R. (1997) Evidence for deep mantle circulation from global tomography. Nature, 386, 578–84.Google Scholar
  33. Waenke, H., Dreibus, G. and Jagoutz, E. (1984) Mantle chemistry and accretion history of the Earth, in Archean Geochemistry (ed. A. Kroener). Berlin: Springer-Verlag, pp. 1–24.Google Scholar
  34. Wetherill, G. W. (1994) Provenance of the terrestrial planets. Geochim. Cosmochim. Acta, 58, 4513–20.Google Scholar

Cross-references

  1. Earth’s atmosphere; Earth’s continental crust; Earth’s core geochemistry; Earth’s mantle geochemistry; Earth’s ocean geochemistry; Earth’s oceanic crust; Elements: actinide series; Elements: alkali and alkaline earth; Elements: distribution; Elements: halogens; Elements: heat producing; Elements: lanthanide series, rare earths; Elements: radioactive; Elements: trace;  Geochemical classification of the elements;  Geochemical tectonics;  Precambrian atmosphere;  Precambrian geochemistry;  Precambrian organic matter
  1. Allegre, C. J. and Turcotte, D. L. (1985) Geodynamic mixing in the mesosphere boundary layer and the origin of oceanic islands. Geophys. Res. Lett., 12, 207–10.Google Scholar
  2. Allegre, C. J., Pourier, J.-P., Humler, E. and Hofmann, A. W. (1995) The chemical composition of the Earth. Earth Planet. Sci. Lett., 134, 515–26.Google Scholar
  3. Carswell, D.A (1980) Mantle derived lherzolite nodules associated with kimberlite, carbonatite and basaltic magmatism. Lithos, 13, 121–38.Google Scholar
  4. Dawson, J. B. (1984) Contrasting types of upper mantle metasomatism, in Kimberlites-II. The mantle and Crust/Mantle Relationships (ed. J. Kornprobst). Amsterdam: Elsevier, pp. 289–94.Google Scholar
  5. DePaolo, D. J. (1988) Neodymium Isotope Geochemistry. Berlin: Springer-Verlag. 187 pp.Google Scholar
  6. Eggler, D. H. (1987) Solubility of major and trace elements in mantle metasomatic fluids: experimental constraints, in Mantle Metasomatism (ed. M. A. Menzies and C. J. Hawkesworth). London: Academic Press, pp. 21–41.Google Scholar
  7. Frey, F. A. and Prinz. M. (1978) Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis. Earth Planet. Sci. Lett., 38, 129–76.Google Scholar
  8. Green D. H. and Ringwood, A. E. (1967) The genesis of basaltic magmas. Contrib. Mineral. Petrol., 15, 103–90.Google Scholar
  9. Hanan, B. B. and Graham, D. W. (1996) Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science, 272, 991–5.Google Scholar
  10. Hart, S. R. and Zindler. A. (1986) In search of a bulk-earth composition. Chem. Geol., 57, 247–67.Google Scholar
  11. Kempton, P. D. (1987) Mineralogic and geochemical evidence for differing styles of metasomatism in spinel lherzolite xenoliths: enriched mantle source regions of basalts? in Mantle Metasomatism (ed. M. A. Menzies and C. J. Hawkesworth). London: Academic Press, pp. 45–89.Google Scholar
  12. Kinzler, R. J. and Grove, T. L. (1992) Primary magmas of mid-ocean ridge basalts 2. Applications. J. Geophys. Res., 97, 6907–26.Google Scholar
  13. Le Roux, A. P. (1987) Source regions of mid-ocean ridge basalts: evidence for enrichment processes, in Mantle Metasomatism (ed. M. A. Menzies and C. J. Hawkesworth). London: Academic Press, pp. 389–422.Google Scholar
  14. Maaloe, S. and Aoki, K. (1977) The major element composition of the upper mantle estimated from the composition of lherzolites. Contrib. Mineral. Petrol., 63, 161–73.Google Scholar
  15. McDonough, W. F. and Sun. S.-S. (1995) The composition of the Earth. Chem. Geol., 120, 223–53.Google Scholar
  16. McFarlane, E. A. and Drake, M. J. (1990) Element partitioning and the early thermal history of the Earth, in Origin of the Earth (ed. H. E. Newsom and J. H. Jones). New York: Oxford University Press, pp. 135–50.Google Scholar
  17. Navon, O. et al. (1988) Mantle-derived fluids in diamond micro-inclusions. Nature, 335, 784–9.Google Scholar
  18. Palme, H. and Nickel, K. G. (1985) Ca/Al ration and composition of the earth’s upper mantle. Geochim. Cosmochim. Acta, 49, 2123–32.Google Scholar
  19. Ringwood, A. E. (1979) Origin of the Earth and Moon. New York: Springer-Verlag, 295 pp.Google Scholar
  20. Sun, S.-S. (1987) Geochemical characteristics of Archean komatiites: implications for the Earth and mantle evolution. J. Volcanol. Geotherm. Res., 32, 67–82.Google Scholar
  21. Takahashi, E. (1986) Melting of a dry peridotite KLB-1 up to 14 Gpa: implications on the origin of the peridotitic upper mantle. J. Geophys. Res., 91, 9367–82.Google Scholar
  22. Taylor, S. R. and McLennan, S. M. (1985) The Continental Crust: its Composition and Evolution. Oxford. Blackwell Scientific Publications, 312 pp.Google Scholar
  23. Weaver, B. L. (1991) The origin of oceanic island basalt end-member compositions: trace element and isotopic constraints. Earth Planet. Sci. Lett., 104, 381–97.Google Scholar
  24. Wyllie, P. J. (1971) The Dynamic Earth. New York: John Wiley and Sons. 416 pp.Google Scholar
  25. Zindler, A and Hart, S. (1986) Chemical Geodynamics. Annu. Rev. Earth Planet. Sci., 14, 493–571.Google Scholar

Cross-references

  1. Earth’s continental crust; Earth’s core geochemistry; Earth’s formation and geochemical evolution; Earth’s oceanic crust; Elements: alkali and alkaline earth; Elements: distribution; Elements: halogens;  Fluid—rock interactions;  Geochemical tectonics;  Helium isotopes;  Mid-ocean ridge basalts (MORB);  Precambrian geochemistry;  Volcanic gases;  Volcanism
  1. Berner, R. A., Lasaga, A. C. and Garrels, R. M. (1983) The carbonate-silicate cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci., 283, 641–83.Google Scholar
  2. Broecker, W. S. and Peng, T. H. (1982) Tracers in the Sea. Eldigio Press Lamont-Doherty Geological Observatory, 690 pp.Google Scholar
  3. Broecker, W. S., Takahashi, T. and Takahashi, T. (1985) Sources and flow patterns of deep-ocean waters as deduced from potential temperature, salinity, and initial phosphate concentrations. J. Geophys. Res., 6925–39.Google Scholar
  4. Bruland, K. W. (1983) Trace elements in sea-water. Chem. Oceanogr., 8, 157–220.Google Scholar
  5. Chan, L. H., Edmond, J. M., Stallard, R. F. et al. (1976) Radium and Barium at Geosecs stations in the Atlantic and Pacific oceans. Earth Planet. Sci. Lett., 32, 258–67.Google Scholar
  6. Chen, J. H., Edwards, R. L. and Wasserburg, G. J. (1986) 238U, 234U, and 232Th in seawater. Earth Planet. Sci. Lett., 80, 214–51.Google Scholar
  7. Chung, Y. (1974) Radium-226 and Ra–Ba relationships in Antarctic and Pacific waters. Earth Planet. Sci. Lett., 23, 125–35.Google Scholar
  8. Chung, Y.-C. (1976) A deep226Ra maximum in the Northeast Pacific. Earth Planet. Sci. Lett., 32, 249–57.Google Scholar
  9. Coale, K. H. and Bruland, K. W. (1985) 234Th:238U disequilibria within the California Current. Limnol. Oceanogr., 32, 22–33.Google Scholar
  10. Conway, E. J. (1942) Mean geochemical data in relation to oceanic evolution. R. Irish Acad. Proc., 48B, 119–59.Google Scholar
  11. Craig, H., Clarke, W. B. and Beg, M. A. (1975) Excess 3He in deep water on the East Pacific Rise. Earth Planet. Sci. Lett., 26, 125–32.Google Scholar
  12. Donat, J. R. and Bruland, K. (1995) Trace elements in the oceans, in Trace Elements in Natural Waters. Boca Raton, FL: CRC Press.Google Scholar
  13. Drever, J. I. (1974) The magnesium problem, in The Sea, Vol. 5 (ed. E. D. Goldberg), pp. 337–50.Google Scholar
  14. Edmond, J. M. and Gieskes, J. M. (1970) On the calculation of the degree of saturation of seawater with respect to calcium carbonate under in situ conditions. Geochim. Cosmochim. Acta, 34, 1261–91.Google Scholar
  15. Edmond, J. M., Measures, C., McDuff, R. E. et al. (1979) Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean. Earth Planet. Sci. Lett., 46, 1–18.Google Scholar
  16. Emerson, S., Cranston, R. E. and Liss, P. S. (1979) Redox species in a reducing fjord: equilibrium and kinetic considerations. Deep Sea Res., 26A, 859–78.Google Scholar
  17. Feely, R. A., Tefry, J. H., Massoth, G. J. and Metz, S. (1991) A comparison of the scavenging of phosphorus and arsenic from sea water by hydrothermal iron oxyhydroxides in the Atlantic and Pacific oceans. Deep Sea Res., 38, 617–23.Google Scholar
  18. Fofonoff, N. P. (1985) Physical properties of seawater: a new salinity scale and equation of state of seawater. J. Geophys. Res., 90, 3332–42.Google Scholar
  19. Froelich, P. N. and Andreae, M. O. (1981) The marine geochemistry of germanium: ekasilicon. Science, 213, 205–7.Google Scholar
  20. Garrels, R. M. and Perry, E. A. (1974) Cycling of carbon, sulfur, and oxygen through geologic time, in The Sea, Vol. 5 (ed. E. D. Goldberg), pp. 303–35.Google Scholar
  21. Gieskes, J. M. (1974) The alkalinity–total carbon dioxide system in seawater, in The Sea, Vol. 5 (ed. E. D. Goldberg), pp. 123–51.Google Scholar
  22. Goldberg, E. D. and Arrhenius, G. O. S. (1958) Chemistry of Pacific pelagic sediments. Geochim. Cosmochim. Acta, 13, 153–212.Google Scholar
  23. Hester, K. and Boyle, E. (1982) Water chemistry control of cadmium content in recent benthic foraminifera. Nature, 298, 260–2.Google Scholar
  24. Holser, W. T. and Kaplan, I. R. (1966) Isotope geochemistry of sedimentary sulfates. Chem. Geol., 1, 93–135.Google Scholar
  25. Levitus, S., Conkright, M. E., Reid, J. L., Najjar, R. G. and Mantyla, A. (1993) Prog. Oceanogr., 31, 245–73.Google Scholar
  26. Lewis, B. L., Froelich, P. N. and Andreae, M. O. (1985) Methylgermanium in natural waters. Nature, 313, 303–5.Google Scholar
  27. Lupton, J. E., Baker, E. T. and Massoth, G. J. (1989) Variable 3He/heat ratios in submarine hydrothermal systems: evidence from two plumes over the Juan de Fuca Ridge. Nature, 337, 161–4.Google Scholar
  28. Martin, J. M. and Meybeck, M. (1979) Elemental mass-balance of material carried by major world rivers. Mar. Chem., 7, 173–206.Google Scholar
  29. Measures, C. I. and Burton, J. D. (1980) Selenium redox chemistry at Geosecs I re-occupation. Earth Planet. Sci. Lett., 49, 102–8.Google Scholar
  30. Meybeck, M. (1979) Concentrations des eaux fluviales en éléments majeurs et apports en solution aux océans. Rév. Géol. Dynam. Géogr. Phys., 21, 215–46.Google Scholar
  31. Millero, F. J. (1995) Thermodynamics of the carbon dioxide system in the oceans. Geochim. Cosmochim. Acta, 59, 661–77.Google Scholar
  32. Millero, F. J., Forsht, D., Means, D., Gieskes, J. and Kenyon, K. (1978) The density of North Pacific Ocean waters. J. Geophys. Res., 83, 2359–64.Google Scholar
  33. Nozaki, Y. and Tsunogai, S. (1976) 226Ra, 210Pb, and 210Po disequilibria in the Western North Pacific. Earth Planet. Sci. Lett., 32, 313–21.Google Scholar
  34. Nozaki, Y., Thompson, J. and Turekian, K. K. (1976) The distribution of 210Pb and 210Po in the surface waters of the Pacific Ocean. Earth Planet. Sci. Lett., 32, 304–12.Google Scholar
  35. Olson, R. J. (1981) 15N studies of the primary nitrite maximum. J. Mar. Res., 39, 203–26.Google Scholar
  36. Palmer, M. R. and Edmond, J. M. (1998). The strontium isotope budget of the modern ocean. Earth Planet. Sci. Lett., 92, 11–26.Google Scholar
  37. Redfield, A. C. (1958) The biological control of chemical factors in the environment. Am. Sci., 46, 205–21.Google Scholar
  38. Redfield, A. C., Ketchum, B. H. and Richards, F. (1996) The influence of organisms on the composition of sea-water, in The Sea, Vol. 2. New York: Wiley, pp. 26–77.Google Scholar
  39. Sarmiento, J. L., Feely, H. W., Moore, W. S., Bainbridge, A. E. and Broecker, W. S. (1976) The relationship between vertical eddy diffusion and buoyancy gradient in the deep sea. Earth Planet. Sci. Lett., 32, 357–70.Google Scholar
  40. Shiller, A. M. and Gieskes, J. M. (1980) Processes affecting the oceanic distributions of dissolved calcium and alkalinity. J. Geophys. Res., 85, 2719–27.Google Scholar
  41. Sillén, L. G. (1961) The physical chemistry of sea water. Am. Assoc. Adv. Sci., 67, 549–81.Google Scholar
  42. Sverdrup, H. U., Johnson, M. W. and Fleming, R. H. (1942) The Oceans. Englewood Cliffs, NJ: Prentice-Hall, P. 1087.Google Scholar
  43. Takahashi, T., Broecker, W. S., Langer, S. (1985) Redfield ratio based on chemical data from isopycnal surfaces. J. Geophys. Res., 90, 6907–24.Google Scholar
  44. Thompson, G. (1983) Hydrothermal fluxes in the ocean, in Chemical Oceanography, Vol. 8. London: Academic Press, pp. 271–337.Google Scholar
  45. Trocine, R. P. and Trefry, J. H. (1988) Distribution and chemistry of suspended particles from an active hydrothermal vent site on the Mid-Atlantic Ridge at 26°N. Earth Planet. Sci. Lett., 88, 11–15.Google Scholar
  46. Tsunogai, S. (1971) Iodine in the deep water of the ocean. Deep Sea Res., 18, 913–19.Google Scholar
  47. UNESCO (1981) The Practical Salinity Scale 1978 and the International Equation of State of seawater 1980. UNESCO Techn. Papers Mar. Sci., 36, p. 25Google Scholar

Cross-references

  1.  Aqueous solutions;  Calcium carbonate and the carbonic acid systems;  Carbonate compensation depth;  Dolomite and dolomitization; Earth’s formation and geochemical evolution; Earth’s oceanic crust; Elements: alkali and alkaline earth; Elements: distribution; Elements: halogens;  Helium isotopes;  Geochemical tectonics;  Fluid–rock interactions;  Hydrologic cycle;  Nutrients;  Precambrian geochemistry;  Sedimentary fluids;  Sulfate reduction;  Sulfides in mafic and ultramafic rocks;  Tritium;  Water
  1. Allan, J. F., Batiza, R., Perfit, M. R., Fornari, D. J. and Sack, R. O. (1989) Petrology of lavas from the Lamont seamount chain and adjacent East Pacific Rise, 10°N. J. Petrol., 30, 1245–98.Google Scholar
  2. Alt. J. C. (1995) Subseafloor processes in mid-ocean ridge hydrothermal system, in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions (eds. S. E. Humphris, R. A. Zierenberg, L. S. Mullineaux and R. E. Thomopson). Washington DC: American Geophysical Union, pp. 85–114.Google Scholar
  3. Alt, J. C., Laverne, C. and Muelenbachs, K. (1985) Alteration of the upper oceanic crust: mineralogy and processes in deep sea drilling project hole 504B, leg 83. Init. Rep. Deep Sea Drilling Project, LXXXIII, 217–47.Google Scholar
  4. Bergantz, G. W. (1995) Changing techniques and paradigms for the evaluation of magmatic processes. J. Geophys. Res., 100, 17603–13.Google Scholar
  5. Bonatti, E. and Honnorez, J. (1976) Sections of the Earth’s crust in the equatorial Atlantic. J. Geophys. Res., 81, 4104–16.Google Scholar
  6. Bryan, W. B. (1979) Regional variations and petrogeneis of basalt glasses from the FAMOUS area, mid-Atlantic ridge. J. Petrol., 20, 293–325.Google Scholar
  7. Bryan, W. B. and Thompson, G. (1977) Basalts from DSDP Leg 37 and the FAMOUS area: compositional and petrogenetic comparisons. Can. J. Earth Sci., 14, 875–85.Google Scholar
  8. Clague, D. A., Weber, W. S. and Dixon J. E. (1991) Picritic glasses from Hawaii. Nature, 353, 553–6.Google Scholar
  9. Elthon, D. (1979) High magnesia liquids as the parental magma for ocean floor basalts, Nature, 278, 514–18.Google Scholar
  10. Elthon, D. (1990) The petrogenesis of primary mid-ocean ridge basalts. Rev. Aquatic Sci., 2, 27–53.Google Scholar
  11. Fox, P. J. and Stroup, J. B. (1981) The plutonic foundation of the oceanic crust, in The Sea, Vol. 7. New York: Plenum.Google Scholar
  12. Hansteen, T. H. (1991) Multi-stage evolution of the picritic Mælifell rocks, SW Iceland: constraints from mineralogy and inclusions of glass and fluid in olivine. Contrib. Mineral. Petrol., 109, 225–39.Google Scholar
  13. Hofmann, A. W. (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust and oceanic crust. Earth Planet. Sci. Lett., 90, 297–314.Google Scholar
  14. Kay, R., Hubbard, N. and Gast, P. (1970) Chemical characteristics of oceanic ridge volcanic rocks. J. Geophys. Res., 75, 1585–97.Google Scholar
  15. Malpas, J. (1993) Deep drilling of the oceanic crust and upper mantle. Geol. Today, 3, 53–7.Google Scholar
  16. Melson, W. G., Vallier, T. L., Wright T. L., Byerley, G. and Nelen, J. (1976) Chemical diversity of abyssal volcanic glass erupted along Pacific, Atlantic and Indian Ocean sea-floor spreading centers, in The Geophysics of the Pacific Ocean Basin and its Margins (ed. G. H. Sutton, M. H. Manghnani and R. Moberly). Washington DC: American Geophysical Union, pp. 351–67.Google Scholar
  17. Myer, P. S. and Gillis, K. M. (1994) Oceanic crust: composition and structure. Oceanus, 36, 70–4.Google Scholar
  18. Natland, J. H. (1989) Partial melting of lithologically heterogeneous mantle: inferences from crystallization histories of magnesian abyssal tholeiites from the Siqueiros Fracture Zone. Geol. Soc. Lond. Spec. Publ., 42, 41–70.Google Scholar
  19. Pallister, J. S. (1984) Parent magmas of the Semail ophiolite, Oman. Geol. Soc. Spec. Publ., 13, 63–70.Google Scholar
  20. Perfit, M. R. and Chadwick, W. W. Jr. (1998) Magmatism at mid-ocean ridges: Constraints from volcanological and geochemical investigations, in Faulting and Magmatism at Mid-Ocean Ridges (eds. W. R. Buck, P. T. Delaney, J. A. Karson and Y. Lagabrielle) Geophys Monograph 106. Washington, DC: American Geophysical Union, pp. 59–115.Google Scholar
  21. Perfit, M. R. and Fornari, D. J. (1983) Geochemical studies of abyssal lavas recovered by DSRV ALVIN from the eastern Galapagos Rift–Inca Transform–Ecuador Rift: II. Phase chemistry and crystallization history. J. Geophys. Res., 88, 10530–50.Google Scholar
  22. Perfit, M. R., Fornari, D. J., Ridley, W. I. et al. (1996) Recent volcanism in the Siqueiros transform fault: picritic basalts and implications for MORB magma genesis. Earth Planet. Sci. Lett., 141, 91–108.Google Scholar
  23. Rhodes, M. (1995) The 1852 and 1868 Mauna Loa picrite eruptions: clues to parental magma compositions and the magmatic plumbing system, in Mauna Loa Revealed: Structure, Composition, History and Hazards (eds. J. M. Rhodes and J. P. Lockwood). Washington DC: American Geophysical Union, pp. 241–62.Google Scholar
  24. Ridley, W. I., Perfit, M. R., Jonasson, I. R. and Smith, M. F. (1994) Chemical pathways of alteration in oceanic volcanics: A detailed study at the Galapagos fossil hydrothermal field. Geochim. Cosmochim. Acta, 58, 2477–94.Google Scholar
  25. Schilling, J. G. (1985) Upper mantle heterogeneities and dynamics. nature, 314, 62–7.Google Scholar
  26. Sinton, J. M. and Detrick, R. S. (1992) Mid-ocean ridge magma chambers. J. Geophys. Res., 97, 197–216.Google Scholar
  27. Sinton, J. M., Wilson, D. S., Christie, D. M., Hey, R. N. and Delaney, J. R. (1983) Petrologic consequences of rift propagation on oceanic spreading ridges. Earth Planet. Sci. Lett., 62, 193–207.Google Scholar
  28. Sun, S.-s. and McDonough, W. F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ., 42, 313–45.Google Scholar
  29. Taylor, S. R. and McLennan, S. M. (1985) The Continental Crust: Its Composition and Evolution. Oxford: Blackwell, 312 pp.Google Scholar
  30. van Heerden, L. A. V. and le Roex, A. P. (1988) Petrogenesis of picrite and associated basalts from the southern Mid-Atlantic Ridge. Contrib. Mineral. Petrol., 100, 47–60.Google Scholar
  31. Wilkinson, J. F. G. (1986) Classification and average chemical compositions of common basalts and andesites. J. Petrol., 27, 31–62.Google Scholar
  32. Zindler, A. and Hart, S. (1986) Chemical geodynamics. Annu. Rev. Earth Planet. Sci., 14, 493–571.Google Scholar

Cross-references

  1. Earth’s continental crust; Earth’s formation and geochemical evolution; Earth’s mantle geochemistry; Earth’s ocean geochemistry; Elements: alkali and alkaline earth; Elements: distribution; Elements: halogens;  Fluid–rock interactions;  Geochemical tectonics;  Mid-ocean ridge basalts (MORB);  Precambrian geochemistry;  Volcanic gases;  Volcanism
  1. Anderson, G. M. and Crerar, D. A. (1993) Thermodynamics in Geochemistry, The Equilibrium Model. New York: Oxford University Press.Google Scholar
  2. Baas-Becking, L. G. M., Kaplan, I. R. and Moore, D. (1960) Limits of the natural environment in terms of pH and oxidation-reduction potentials. J. Geol., 68, 243–84.Google Scholar
  3. Barton, P. B. Jr., and Skinner, B. J. (1979) Sulfide mineral stabilities, in Geochemistry of Hydrothermal Ore Deposits, 2nd edn (ed. H. L. Barnes). New York: John Wiley and Sons, pp. 279–403.Google Scholar
  4. Berner, R. A. (1963) Electrode studies of hydrogen sulfide in marine sediments. Geochim. Cosmochim. Acta, 27, 563–75.Google Scholar
  5. Champ, D. R., Gulens, J. and Jackson, R. E. (1979) Oxidation–reduction sequences in ground water flow systems. Can. J. Earth Sci., 16, 12–23.Google Scholar
  6. Chapelle, F. H., Haack, S. K., Adriaens, P., Henry, M. A. and Bradley, P. M. (1996) Comparison of Eh and H2 measurements for delineating redox processes in a contaminated aquifer. Environ. Sci. Technol., 30, 3565–9.Google Scholar
  7. Garrels, R. M. and Christ, C. L. (1965) Solutions, Minerals, and Equilibria. San Francisco: Freeman, Cooper, and Co.Google Scholar
  8. Goldhaber, M. B. and Kaplan, I. R. (1975) The sulfur cycle, in The Sea, Volume 5, Marine Chemistry (ed. E. D. Goldberg). New York: John Wiley and Sons, pp. 569–655.Google Scholar
  9. Grenthe, I., Stumm, W., Laaksuharju, M., Nilsson, A. C., Wikberg, P. (1992) Redox potentials and redox reactions in deep groundwater systems. Chem. Geol., 98, 131–50.Google Scholar
  10. Langmuir, D. (1971) Eh—pH determination, in Procedures in Sedimentary Petrology (ed. R. E. Carver). New York: Harper and Row, pp. 597–634.Google Scholar
  11. Langmuir, D. (1997) Aqueous Environmental Geochemistry. Englewood Cliffs, NJ: Prentice Hall, 600 pp.Google Scholar
  12. Letowski, F., Serkies, J. and Niemiec, J. (1966) Application of potential-pH diagrams for determination of the occurrence forms of trace elements in some economic mineral deposits. Econ. Geol., 61, 1272–9.Google Scholar
  13. Light, T. S. (1972) Standard solution for redox potential measurements. Anal. Chem., 44, 1038–9.Google Scholar
  14. Lindberg, R. D. and Runnels, D. D. (1984) Ground water redox reactions: an analysis of equilibrium state applied to Eh measurements and geochemical modeling. Science, 225, 925–7.Google Scholar
  15. Lovley, D. R. and Goodwin, S. (1988) Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments. Geochim. Cosmochim. Acta, 52, 2993–3003.Google Scholar
  16. Lovley, D. R., Chapelle, F. H. and Woodward, J. C. (1994) Use of dissolved H2 concentrations to determine distribution of microbially catalyzed redox reactions in anoxic groundwater. Environ. Sci. Technol., 28, 1205–10.Google Scholar
  17. Nightingale, E. R. Jr (1958) Poised oxidation-reduction systems: A quantitative evaluation of redox posing capacity and its relation to the feasibility of redox titrations. Anal. Chem., 30, 267–72.Google Scholar
  18. Nordstrom, D. K. (1977) Thermochemical redox equilibria of ZoBell’s solution. Geochim. Cosmochim. Acta, 41, 1835–41.Google Scholar
  19. Nordstrom, D. K., Jenne, E. A. and Ball, J. W. (1979) Redox equilibria of iron in acid mine waters, in Chemical Modeling in Aqueous Systems (ed. E. A. Jenne). American Chemical Society Symposium Series v. 93, Washington, DC: American Chemical Society, pp. 57–79.Google Scholar
  20. Nordstrom, D. K., Alpers, C. N. and Ball, J. W. (1991) Measurement of negative pH values and high metal concentrations in extremely acidic mine waters from Iron Mountain, California. Geol. Soc. Am. Abstr. Prog., 23, A383.Google Scholar
  21. Nordstrom, D. K. and Munoz, J. L. (1994) Geochemical Thermodynamics, 2nd edn. Cambridge, MA: Blackwell Science.Google Scholar
  22. Postma, D. and Jakobsen, R. (1996) Redox zonation: Equilibrium constraints on the Fe(III)-SO4 reduction interface. Geochim. Cosmochim. Acta, 60, 3169–75.Google Scholar
  23. Skougstad, M. W., Fishman, M. J., Friedman, L. C., Erdmann, D. E. and Duncan, S. S. (1979) Methods For Determination of Inorganic Substances in Water and Fluvial Sediments. Techniques of Water-Resources Investigations of the U.S. Geological Survey, Book 5, Ch. A5.Google Scholar
  24. Stumm, W. (1966) Redox potential as an environmental parameter: conceptual significance and operational limitation. Third International Conference on Water Pollution Research München: Water Pollution Control Federation, pp. 1–16.Google Scholar
  25. Walton-Day, K., Macalady, D. L., Brooks, M. H. and Tate, V. T. (1990) Field methods for measurement of ground water redox chemical parameters. Ground Water Monitoring Rev., fall, pp. 81–9.Google Scholar
  26. White, A. F. and Peterson, M. L. (1996) Reduction of aqueous transition metal species on the surface of Fe(II)-containing oxides. Geochim. Cosmochim. Acta, 60, 3799–814.Google Scholar
  27. Whitfield, M. (1974) Thermodynamic limitations on the use of the platinum electrode in Eh measurements. Limnol. Oceanogr., 19, 857–65.Google Scholar
  1. Firestone, R.B. (1996) Table of Isotopes, Volume II: A =151–272. New York: Wiley-Interscience. 2877 pp.Google Scholar
  2. Ghiorso, A., Thompson, S.G., Higgins, G.H. et al. (1955) New Elements Einsteinium and Fermium, Atomic Numbers 99 and 100. Phys. Rev., 99, 1048.Google Scholar
  3. Seaborg, G.T. and Loveland, W.D. (1990) The Elements Beyond Uranium. New York: Wiley-Interscience, 359 pp.Google Scholar

Cross-references

  1. Elements: actinide series;  Radioactivity
  1. Barker, J.A. and Henderson, D. (1976) What is ‘liquid’? Understanding the states of matter. Rev. Mod. Phys., 48, 587–671.Google Scholar
  2. Mazo, R.M. and Mou, C.Y. (1979) Introduction to the statistical mechanics of solutions, in Activity Coefficients in Aqueous Electrolyte Solutions, 1st edn, Vol. 1 (ed. R. M. Pytkowicz). Boca Raton, FL: CRC Press, pp. 65–79.Google Scholar
  3. Nordstrom, D. K. and Munoz, J. L. (1985) Geochemical Thermodynamics. Menlo Park, CA: The Benjamin/Cummings Publishing Co., Inc., 477 pp.Google Scholar
  4. Pitzer, K.S. (1973). Thermodynamics of electrolytes–I. Theoretical basis and general equations. J. Phys. Chem., 77, 268–77.Google Scholar
  5. Pitzer, K S. (1991) Ion interaction approach: theory and data correlation, in Activity Coefficients in Electrolyte Solutions, 2nd edn (ed. K. S. Pitzer). Boca Raton, FL: CRC Press, pp. 75–153.Google Scholar
  6. Robinson, R. A. and Stokes, R. H. (1965). Electrolyte Solutions, 2nd edn, revised. London: Butterworths, 571 pp.Google Scholar
  7. Triolo, R., Grigera, J. R. and Blum, L. (1976). Simple electrolytes in the mean spherical approximation. J. Phys. Chem., 80, 1856–61.Google Scholar
  1. Adloff, J. P. and Guillaumont, R. (1993) Fundamentals of Radiochemistry. Boca Raton, FL: CRC Press, 414 pp.Google Scholar
  2. Faure, G. (1986) Principles of Isotope Geology. 2nd edn. New York: John Wiley & Sons. 589 pp.Google Scholar
  3. Friedlander, G., Kennedy, J.W., Macias, E. S. and Miller. J. M. (1981) Nuclear and Radiochemistry. 3rd edn. New York: John Wiley & Sons. 684 pp.Google Scholar

Cross-references

  1. Bastin, G. F. and Heijligers, H. J.M. (1991) Quantitative electron probe microanalysis of nitrogen. Scanning, 13, 325–42.Google Scholar
  2. Bodinier, J.-L., Dupuy, C., Dostal, J. and Merlet, C. (1987) Distribution of trace transition elements in olivine and pyroxenes from ultramafic xenoliths: Application of microprobe analysis. Am. Mineral., 72, 902–13.Google Scholar
  3. Fialin, M., Remond, G. and Bonnelle, C. (1994) New developments in electron probe microanalysis of oxygen in wide band gap oxides. Microbeam Anal., 3, 211–24.Google Scholar
  4. Mathez, E. A. and Delaney. J. R. (1981) The nature and distribution of carbon in submarine basalts and peridotite nodules. Earth Planet. Sci. Lett., 56, 217–32.Google Scholar
  5. McGee, J. J., Slack. J. F. and Herrington, C. R. (1991) Boron analysis by electron microprobe using MoB4C layered synthetic crystals. Am. Mineral., 76, 681–4.Google Scholar
  6. Merlet, C. and Bodinier, J.-L., (1990) Electron microprobe determination of minor and trace transition elements in silicate minerals: A method and its application to mineral zoning in the peridotite nodule PHN 1611. Chem. Geol., 83, 55–69.Google Scholar
  7. Pouchou, J.-L., and Pichoir, F. (1984) Un nouveau modèle de calcul pour la microanalyse quantitative par spectrométrie de rayons X. Rech. Aérospatiale, 3, 167–92.Google Scholar
  8. Pouchou, J.-L., and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model PAP, in Electron Probe Quantitation (eds K. F. J. Heinrich and D. E. Newbury). New York: Plenum Press, P. 400.Google Scholar
  1. Allen, L. C. (1994) Chemistry and electronegativity. Int. J. Quantum Chem., 49, 253–77.Google Scholar
  2. Allred, A. L. and Rochow, E. G. (1958) Electronegativities of carbon, Silicon, germanium, tin, and lead. J. Inorg. Nucl. Chem., 5, 264–88.Google Scholar
  3. Chattaraj, P. K. (1992) Electronegativity and hardness: a density functional treatment. J. Ind. Chem. Soc., 69, 178–83.Google Scholar
  4. De Tavernier. S., Baekelandt, B. and Schoonheydt, R. A. (1991) Siting of copper (2+) in zeolites by electronegativity equalization method. J. Phys. Chem., 95, 6322–9.Google Scholar
  5. Huheey, J. E. (1978) Inorganic Chemistry, 2nd edn. New York: Harper & Row, 889 pp.Google Scholar
  6. Langmuir, D. (1979) Techniques of estimating thermodynamic properties for some aqueous complexes for geochemical interest, in ACS Symposium Series, 93: Chemical Modeling in Aqueous Systems (ed. E. A. Jenne). Washington, DC: American Chemical Society, pp. 353–87.Google Scholar
  7. Mulliken, R. S. (1934) A new electroaffinity scale: together with data on valence states and on valence ionization potentials and electron affinities. J. Chem. Phys., 2, 782–93.Google Scholar
  8. Mulliken, R. S. (1935) Electronic structures of molecules: XI. Electroaffinity, molecular orbitals and dipole moments. J. Chem. Phys., 3, 573–85.Google Scholar
  9. Pauling, L. (1960) The Nature of Chemical Bonds, 3rd edn. Cornell University Press, 644 pp.Google Scholar
  10. Pearson, R. G. (1990) Electronegativity scales. Accounts Chem. Res., 23, 1–2.Google Scholar
  11. Sanderson, T. (1952) Electronegativities in inorganic chemistry. A revision of atomic charge data. J. Chem. Educ., 29, 539.Google Scholar
  12. Sanderson, T. (1976) Chemical Bonds and Bond Energy. New York: Academic Press, 218 pp.Google Scholar
  13. Slaughter, M. (1966) Chemical binding in silicate minerals. Geochim. Cosmochim. Acta, 30, 299–339.Google Scholar
  14. Yu, J. (1994) Theoretical calculation of the Gibbs free energy of mixing between phlogopite and eastonite. J. Geol. Soc. Korea, 30, 578–90.Google Scholar

Cross-references

  1. Abachi, S. et al. (1995) DO Collaboration. Phys. Rev. Lett., 74, 2632.Google Scholar
  2. Abe, F. et al. (1995) CFD Collaboration. Phys. Rev. Lett., 74, 2626.Google Scholar
  3. Gellman, M. (1964) Phys. Lett., 8, 214.Google Scholar
  4. Yukawa, H. (1935) Physico-Math Soc. Jap., 17, 48.Google Scholar
  5. Zweig, G. CERN Report 8409/Th. 412 (unpublished).Google Scholar
  1. Cowan, G. A. (1976) A natural fission reactor. Sci. Am., 235, 36–47.Google Scholar
  2. Durrance, E. M. (1986) Radioactivity in Geology: Principles and Applications. Chichester: John Wiley and Sons, 441 pp.Google Scholar
  3. Ivanovich, M. and Harmon, R. S. (1992) Uranium-series Disequilibrium. Application to Earth, Marine and Environmental Sciences, 2nd edn. Oxford: Clarendon Press, 910 pp.Google Scholar
  4. Pauling, L. (1960) The Nature of the Chemical Bond, 3rd edn. Cornell University Press, 644 pp.Google Scholar
  5. Shannon, R. D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A., 32, 751–767.Google Scholar

Cross-references

  1. Anders, E. and Grevesse N. (1989) Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta, 53, 197–214.Google Scholar
  2. Dickin, A. P. (1995) Radiogenic Isotope Geology. Cambridge: Cambridge University Press, 452 pp.Google Scholar
  3. Emsley, J. (1991) The Elements, 2nd edn. Oxford: Clarendon Press, 251 pp.Google Scholar
  4. Gaillardet, J., Dupre, B. and Allégre, C. J. (1995) A global geochemical mass budget applied to the Congo Basin rivers: erosion rates and continental crust composition. Geochim. Cosmochim. Acta, 59, 3469–85.Google Scholar
  5. Gill, J. and Condomines, M. (1992) Short-lived radioactivity and magma genesis. Science, 257, 1368–76.Google Scholar
  6. Govindaraju, K. (1994) 1994 compilation of working values and sample descriptions for 383 geostandards. Geostandards News. Special Issue, 18, 158 pp.Google Scholar
  7. Hofmann, A. W. (1988) Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planetary Sci. Lett., 90, 297–314.Google Scholar
  8. Lide, D.R. (ed.) (1994) CRC Handbook of Chemistry and Physics, 75th edn. Boca Raton, FL: CRC Press, 2572 pp.Google Scholar
  9. Macdougall, J. D. (1995) Using short-lived U and Th series isotopes to investigate volcanic processes, in Annual Review of Earth and Planetary Sciences, Volume 23 (eds G. W. Wetherill, A. L. Albee and K. C. Burke). Palo Alto, CA: Annual Reviews Inc., pp. 143–67.Google Scholar
  10. McDonough, W. F. and Sun, S. (1995) The composition of the Earth. Chem. Geol., 120, 223–53.Google Scholar
  11. Merriman, R. J., Bevins, R. E. and Ball, T. K. (1986) Petrological and geochemical variations within the Tal y Fan intrusion: A study of element mobility during low-grade metamorphism with implications for petrotectonic modelling. J. Petrol., 27, 1409–36.Google Scholar
  12. Moody, B. (1991) Comparative Inorganic Chemistry, 3rd edn. London: Edward Arnold, 562 pp.Google Scholar
  13. Morris, J. D. (1991) Applications of 10Be to problems in the Earth sciences, in Annual Review of Earth and Planetary Sciences, Volume 19 (eds. G. W. Wetherill. A. L. Albee and K. C. Burke). Palo Alto, CA: Annual Reviews Inc., pp. 313–50.Google Scholar
  14. Nesbitt, H. W., Markovics. G. and Price, R. C. (1980) Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochim. Cosmochim. Acta, 44, 1659–66.Google Scholar
  15. Richardson, S. M. and McSween, H. Y. Jr. (1989) Geochemistry: Pathways and Processes. Englewood Cliffs, NJ: Prentice Hall, 488 pp.Google Scholar
  16. Rollinson, H. R. and Windley, B. F. (1980) Selective elemental depletion during metamorphism of Archaean granulites, Scourie, NW Scotland. Contrib. Mineral. Petrol., 72, 257–63.Google Scholar
  17. Rudnick, R. L. and Fountain, D. M. (1995) The nature and composition of the continental crust: A lower crustal perspective. Rev. Geophys., 33, 267–309.Google Scholar
  18. Ryan, J. G and Langmuir, C. H. (1987) The systematics of lithium abundances in young volcanic rocks. Geochim. Cosmochim. Acta, 51, 1727–41.Google Scholar
  19. Ryan, J. G and Langmuir, C. H. (1988) Beryllium systematics in young volcanic rocks: Implications for 10Be. Geochim. Cosmochim. Acta, 52, 237–44.Google Scholar
  20. Schilling, J.-G., Zajac M., Evans, R. et al. (1983) Petrologic and geochemical variations along the mid-Atlantic ridge from 29°N to 73°N. Am. J. Sci., 283, 510–86.Google Scholar
  21. Taylor, S. R. and McLennan, S. M. (1995) The geochemical evolution of the continental crust. Rev. Geophys., 33, 241–65.Google Scholar
  22. Wasson, J. T. and Kallemeyn, G. W. (1988) Compositions of chondrites. Phil. Trans. R. Soc. Lond. A, 325, 535–44.Google Scholar

Cross-references

  1.  40Argon-39Argon dating method;  Calcium carbonate and the carbonic acid systems;  Carbonate compensation depth;  Carbonate sediments;  Cosmogenic nuclides; Earth’s continental crust; Earth’s formation and geochemical evolution; Earth’s mantle geochemistry; Earth’s ocean geochemistry; Earth’s oceanic crust; Elements: distribution; Elements: incompatible; Elements: large ion lithophile; Elements: lithophile; Elements: radioactive; Elements: trace;  Geochemical classification of the elements;  Geochronology and radioisotopes;  Ionic radii;  Magmatic processes;  Meteorites;  Potassium-argon dating method;  Potassium-calcium decay system;  Radioactivity;  Rubidium-strontium method;  Strontium in igneous rock;  Strontium in sedimentary rocks
  1. Allen, O. R. and Mason, B. (1973) Minor and trace elements in some meteoritic minerals, Geochim. Cosmochim. Acta, 37, 1435–56.Google Scholar
  2. Goldschmidt, V. M. (1923) Geochemische Verteilung sgesetze der Elemente (I): Videskapsselskapets Skrifter. I. Mat.-Naturv. Klasse, 3, 1–17.Google Scholar
  3. Goldschmidt, V. M. (ed. A. Muir) (1954) Geochemistry. Oxford: Clarendon Press, 730 pp.Google Scholar

Cross-references

  1. Earth’s formation and geochemical evolution; Elements: lithophile; Elements: siderophile;  Geochemical classification of the elements;  Meteorites;  Sulfide minerals;  Sulfides in mafic and ultramafic rocks
  1. Allegre, C. J., Poirier, J.-P., Humler, E. and Hofmann, A. W.. (1995) The chemical composition of the Earth. Earth Planet. Sci. Lett., 134, 515–26.Google Scholar
  2. GERM (Geochemical Earth Reference Model) 1997, _http://www-ep.es.llnl.gov/germ/germ-home.html.Google Scholar
  3. Grossman, L. and Larimer, J. W. (1978) Early chemical history of the solar system. Rev. Geophys. Space Phys., 12, 71–101.Google Scholar
  4. Mason, B. (1992) Victor Moritz Goldschmidt: Father of modern geochemistry. Special Publication No. 4. San Antonio, Texas: The Geochemical Society, 184 pp.Google Scholar
  5. McDonough, W. F. and Sun, S. S. (1995) The composition of the Earth. Chem. Geol., 120, 223–53.Google Scholar
  6. Ringwood, A. E. (1991) Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochim. Cosmochim. Acta, 55, 2083–110.Google Scholar
  7. Rudnick, R. L. and Fountain, D. M. (1995) Nature and composition of the continental crust: A lower crustal perspective. Rev. Geophys., 33, 267–309.Google Scholar
  8. Taylor, S. R. (1992) Solar System Evolution. Cambridge: Cambridge University Press, 307 pp.Google Scholar
  9. Wetherill, G. W. (1994) Provenance of the terrestrial planets. Geochim. Cosmochim. Acta, 58, 4513–20.Google Scholar

Cross-references

  1.  Biogeochemistry;  Cosmic elemental abundances; Earth’s atmosphere; Earth’s continental crust; Earth’s core geochemistry; Earth’s formation and geochemical evolution; Earth’s mantle geochemistry; Earth’s ocean geochemistry; Earth’s oceanic crust;  Geoavailability;  Geochemical classification of the elements;  Geochemistry: low temperature;  Meteorites;  Nucleosynthesis
  1. Allen, R. D. (1952) Variations in the chemical and physical properties of fluorite. Am. Mineral., 37, 910–30.Google Scholar
  2. Correns, C. W. (1956) The geochemistry of the halogens, in Physics and Chemistry of the Earth. Vol. 1 (ed. L. H. Ahrens). New York: Pergamon Press, pp. 181–233.Google Scholar
  3. Schilling, J. G., Unni, C. K. and Bender, M. L. (1978) Origin of chlorine and bromine in the oceans. Nature, 273, 631–6.Google Scholar

Cross-references

  1.  Atomic mass unit;  Avogadro constant and mole;  Atomic number; Earth’s continental crust; Earth’s formation and geochemical evolution; Earth’s mantle geochemistry; Earth’s ocean geochemistry; Earth’s oceanic crust;  Geochemical classification of the elements;  Ionic radii
  1. Bea, F., Pereira, M. D., Corretgé, L. G. and Fershtater, G. B. (1994) Differentiation of strongly peraluminous, perphosphorous granites. The Pedrobernardo pluton, central Spain. Geochim. Cosmochim. Acta, 58, 2609–28.Google Scholar
  2. Rogers, J. J. W. and Adams, J. A. S. (1969) Uranium, in Handbook of Geochemistry (ed. K. H. Wedepohl), II-5. Berlin: Springer-Verlag.Google Scholar
  3. Schmucker, U. (1969) Geophysical aspects of structure and composition of the Earth, in Handbook of Geochemistry, Vol. I (ed. K. H. Wedepohl). Berlin: Springer-Verlag, pp. 134–226.Google Scholar
  4. Sawka, W. N. and Chappell, B. W. (1988). Fractionation of uranium, thorium and rare earth elements in a vertically zoned granodiorite: Implications for heat production distribution in the Sierra Nevada batholith, California, U. S. A. Geochim. Cosmochim. Acta, 52, 1131–44.Google Scholar
  1. Ahrens, L. H. (1953) The use of ionization potentials. Part 2. Anion affinity and geochemistry. Geochim. Cosmochim. Acta, 3, 1–29.Google Scholar
  2. Chayes, F. (1965) Titania and alumina content of oceanic and circumoceanic basalt. Mineral. Mag., 34, 126–31.Google Scholar
  3. Floyd, P. A. and Winchester, J. A. (1975) Magma type and tectonic setting discrimination using immobile elements. Earth Planet. Sci. Lett., 27, 211–18.Google Scholar
  4. Gill, J. B. (1981) Orogenic Andesites and Plate Tectonics. Berlin: Springer Verlag, p. 389.Google Scholar
  5. Pearce, J. A. and Cann, J. R. (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet. Sci. Lett., 19, 290–300.Google Scholar
  6. Pearce, J. A. and Norry, M. J. (1979). Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib. Mineral. Petrol., 69, 33–47.Google Scholar
  7. Rowlinson, H. (1993) Using Geochemical Data: Evaluation, Presentation, Interpretation. New York: Longman Scientific and Technical Publishers, p. 352.Google Scholar
  8. Sun, S-S., Nesbitt, R. W. and Sharaskin, A. Ya. (1979) Geochemical characteristics of mid-ocean ridge basalts. Earth Planet. Sci. Lett., 44, 119–38.Google Scholar
  9. Thompson, R. N., Morrison, M. A., Dickin, A. P. and Hendry, G. L. (1983) Continental flood basalts ... arachnids rule OK?, in Continental Basalts and Mantle Xenoliths (eds C. J. Hawkesworth and M. J. Norry). Shiva Publishing Limited, pp. 158–85.Google Scholar
  1. Albarede, F. (1995) Introduction to Geochemical Modeling. Cambridge: Cambridge University Press, 543 pp.Google Scholar
  2. Hanson, G. N. (1978) The application of trace elements to the petrogenesis of igneous rocks of granitic composition, in Developments in Petrology 5: Trace Elements in Igneous Petrology (eds C. J. Allegre and S. R. Hart). Amsterdam: Elsevier Scientific, pp. 26–43.Google Scholar
  3. Hanski, E. and Czamanske, G. K. (1990) Bibliography on Trace-element Partitioning Studies. US Geological Survey Open-File Report 90–10–A, 50 pp.Google Scholar
  4. Joron, J-L. and Treuil, M. (1989) Hygromagmaphile element distributions in oceanic basalts as fingerprints of partial melting and mantle heterogeneities: a specific approach and proposal of an identification and modelling method, in Magmatism in the Ocean Basins (eds A. D. Saunders and M. J. Norry). London: Geological Society Special Publ. No. 42, pp. 277–99.Google Scholar

Cross-references

  1. Earth’s formation and geochemical evolution; Elements: alkali and alkaline earth; Elements: distribution; Elements: large ion lithophile; Elements: lithophile; Elements: trace;  Geochemical classification of the elements;  Henry’s law;  Magmatic processes;  Partition coefficients;  Trace element partitioning models
  1. Aller, L. H. (1987) Chemical abundances, in Spectroscopy of Astrophysical Plasmas (eds A. Dalgarno and D. Layzer). Cambridge: Cambridge University Press, pp. 89–124.Google Scholar
  2. Clarke, A. M. (1984) Mineralogy of the rare earth elements, in Rare Earth Element Geochemistry (ed. P. Henderson). Amsterdam: Elsevier, pp. 33–61.Google Scholar
  3. DeBievre, P., Gallet, M., Holden, N. E. and Barnes, I. L. (1984) Isotopic abundances and atomic weights of the elements. J. Phys. Chem. Ref. Data, 13, 809–91.Google Scholar
  4. DePaolo, D. J. (1988) Neodymium Isotope Geochemistry. New York: Springer-Verlag.Google Scholar
  5. Harper, C. L. Jr, and Jacobsen, S. B. (1992) Evidence from coupled 147Sm–143Nd and 146Sm–142Nd systematics for very early (4.5-Gyr) differentiation of the Earth’s mantle. Nature, 360, 728–32.Google Scholar
  6. Henderson, P. (ed.) (1984) Rare Earth Element Geochemistry. Amsterdam: Elsevier, 510 pp.Google Scholar
  7. Kornacki, A. S. and Fegley, B. Jr. (1986) The abundances and relative volatility of refractory trace elements in Allende Ca, Al-rich inclusions: implications for chemical and physical processes in the solar nebula. Earth Planet. Sci. Lett., 79, 217–34.Google Scholar
  8. Lee, J. H. and Byrne, R. H. (1993) Complexation of trivalent rare earth elements (Ce, Eu, Gd, Tb, Yb) by carbonate ions. Geochim. Cosmochim. Acta, 57, 295–302.Google Scholar
  9. Lipin, B. R. and Mckay, G. A. (eds) (1989) Geochemistry and mineralogy of rare earth elements. Rev. Mineral., 21.Google Scholar
  10. McLennan, S. M. (1989) Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. Rev. Mineral., 21, 169–200.Google Scholar
  11. McLennan, S. M. (1994) Rare earth geochemistry and the ‘tetrad’ effect. Geochim. Cosmochim. Acta, 58, 2025–33.Google Scholar
  12. Patchett, P. J. (1983) Importance of the Lu–Hf isotopic system in studies of planetary chronology and chemical evolution. Geochim. Cosmochim. Acta, 47, 81–91.Google Scholar
  13. Ross, J. E. and Aller, L. H. (1976) The chemical composition of the Sun. Science, 191, 1223–9.Google Scholar
  14. Shannon, R. D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., A32, 751–67.Google Scholar
  15. Sverjensky, D. M. (1984) Europium redox equilibrium in aqueous solutions. Earth Planet. Sci. Lett., 67, 70–78.Google Scholar
  16. Tanaka, T., Shimizu, H., Kawaka and Masuda, A. (1987) Combined La–Ce and Sm–Nd isotopic systematics in petrogenetic studies. Nature, 327, 113–17.Google Scholar
  17. Taylor, S. R. and McLennan, S. M. (1985) The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications, 312 pp.Google Scholar
  18. Taylor, S. R. and McLennan, S. M. (1988) The significance of the rare earths in geochemistry and cosmochemistry, in Handbook on the Physics and Chemistry of Rare Earths (eds. K. A. Gschneidner Jr. and L. Eyring). Vol. II. Amsterdam: Elsevier, pp. 485–578.Google Scholar
  19. Wood, S. A. (1990) The aqueous geochemistry of the rare-earth elements and yttrium 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chem. Geol., 82, 159–86.Google Scholar
  1. Faure, G. (1991) Principles and Applications of Inorganic Geochemistry. New York: Macmillan, 626 pp.Google Scholar
  2. Gast, P. W. (1972) The chemical composition and structure of the moon. The Moon, 5, 121–48.Google Scholar
  3. Rudnick, R. L. and Fountain, D. M. (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophys., 33, 267–309.Google Scholar
  4. Saunders, A. D., Tarney, J. and Weaver, S. D. (1980) Transverse geochemical variations across the Antarctic peninsula: implications for the genesis of calc-alkaline magmas. Earth Planet. Sci. Lett., 46, 344–60.Google Scholar
  5. Schilling, J.-G. (1973) Iceland mantle plume: geochemical study of Reykjanes ridge. Nature, 242, 565–71.Google Scholar
  6. Sun. S.-S. and McDonough, W. F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, in Magmatism in the Ocean Basins (eds A. D. Saunders and M. J. Norry). London: Geological Society Special Publ. No. 42, pp. 313–45.Google Scholar
  7. Taylor, S. R. and McLennan, S. M. (1985) The Continental Crust: Its Composition and Evolution. Oxford: Blackwell, 312 pp.Google Scholar

Cross-references

  1. Earth’s continental crust; Earth’s mantle geochemistry; Earth’s oceanic crust; Elements: high-field strength; Elements: incompatible; Elements: lanthanide series, rare earths; Elements: lithophile;  Geochemical classification of the elements.
  1. Goldschmidt, V. M. (1923) Geochemische Verteilungsgesetze der Elements (I). Videnskapsselskapets Skrifter. I. Mat.-Naturv. Klasse. 3, 1–17.Google Scholar
  2. Goldschmidt, V. M. (1924) Geochemische Verteilungsgesetze der Element (II), Videnskapsselskapets Skrifter. I. Mat.-Naturv. Klasse. 4, 1–37.Google Scholar
  3. Goldschmidt, V. M. (ed. A. Muir) (1954) Geochemistry. Oxford: Clarendon Press, 730 pp.Google Scholar
  4. Mason, B. and Moore, C. B. (1982) Principles of Geochemistry. New York: John Wiley & Sons, 340 pp [German edition].Google Scholar
  5. McDonough, W. F. and Sun, S.-s. (1995) The composition of the Earth. Chem. Geol., 120, 223–53.Google Scholar

Cross-references

  1. Elements: chalcophile; Elements: incompatible Elements: large-ion lithophile; Elements: siderophile;  Geochemical classification of the elements;  Rocks
  1. Braman, R. S. and Tomkins, M. A. (1978) Atomic emission spectrometric determination of antimony, germanium, and methylgermanium compounds in the environment. Anal. Chem., 50, 1088–94.Google Scholar
  2. Cullen, W. R. and Reimer, K. J. (1989) Arsenic speciation in the environment. Chem. Rev., 89, 713–64.Google Scholar
  3. Ferguson, J. E. (1990) The Heavy Elements, Chemistry, Environmental Impact and Health Effects. Oxford: Pergamon.Google Scholar
  4. Florence, T. M. and Batley, G. E. (1980) Chemical speciation in natural waters. CRC Crit. Rev. Anal. Chem., 9, 219–98.Google Scholar
  5. Salomons, W. and Forstner, U. (1984) Metals in the Hydrocycle. Berlin: Springer-Verlag.Google Scholar
  6. Vlasov, K. A. (1966) Geochemistry and Mineralogy of Rare Elements and Genetic Types of their Deposits. Volume 1, Geochemistry of Rare Elements. Jerusalem: Israel Program for Scientific Translations.Google Scholar

Cross-references

  1. Allégre C. J., Staudacher, Th. and Sarda, Ph. (1986/87) Rare gas systematics: formation of the atmosphere, evolution and structure of the Earth’s mantle. Earth Planet. Sci. Lett., 81, 127–50.Google Scholar
  2. Cook G. A. (1961) Argon, helium and the rare gases. The Elements of the Helium Group, Vol I, History. Occurrence and Properties. New York: Interscience Publishers.Google Scholar
  3. Dalrymple, G. B. and Lanphere, M. A. (eds) (1969). Potassium Argon Dating, Principles, Techniques and Applications to Geochronology. San Francisco: W.H. Freeman and Company, p. 257.Google Scholar
  4. Handbook of Chemistry and Physics (1988–1989) 69th edn. Boca Raton. FL: CRC Press, Inc.Google Scholar
  5. Staudacher, Th., Jessberger, E. K., Flohs, I. and Kirsten, T. (1979) 40Ar–39Ar age systematics of consortium breccia 73255. Proc. Lunar Plan. Sci. Conf., 10, 745–62.Google Scholar
  6. Staudacher, Th. and Allégre, C. J. (1993) Age of the second caldeira of Piton de la Fournaise volcano, Réunion Island, determined by cosmic ray produced 3He and 21 Ne. Earth Planet. Sci. Lett., 119, 395–404.Google Scholar

Cross-references

  1. Earth’s atmosphere; Elements: trace;  Geochemical classification of the elements
  1. Barnes, S.-J., Naldrett, A. J. and Gorton, M. P. (1985) The origin of the fractionation of platinum group elements in terrestrial magmas. Chem. Geol., 53, 303–23.Google Scholar
  2. Bates, R. L. and Jackson, J. A. (1987) Glossary of Geology. Alexandria: American Geological Institute, 788 pp.Google Scholar
  3. Boudreau, A. E., Mathez, E. A. and McCallum, I. S. (1986) Halogen geochemistry of the Stillwater and Bushveld complexes: Evidence for transport of the platinum-group elements by Cl-rich fluids. J. Petrol., 27, 967–86.Google Scholar
  4. Cabri, L. J. (1981) Relationship of mineralogy to the recovery of platinum-group elements from ores, in Platinum-Group Elements: Mineralogy, Geology and Recovery (ed. L. J. Cabri). Canadian Institute of Mining and Metallurgy, Special Volume 23, pp. 233–50.Google Scholar
  5. Cotton, F. A. and Wilkinson, G. (1966) Advanced Inorganic Chemistry. London: John Wiley & Sons, 1136 pp.Google Scholar
  6. Crocket, J. H. et al. (1988) Distribution of noble metals across the Cretaceous/Tertiary boundary at Gubbio, Italy: Iridium variations as a constraint on the duration and nature of the Cretaceous/Tertiary boundary events. Geology, 16, 77–80.Google Scholar
  7. Lightfoot, P. J. and Naldrett, A. J. (1994) Proceedings of the Sudbury-Noril’sk Symposium. Toronto: Ontario Geol. Surv. Special Volume 5, 423 pp.Google Scholar
  8. Morgan, J. W. (1986) Ultramafic xenoliths: Clues to Earth’s late accretionary history. J. Geophys. Res., 91, 12375–87.Google Scholar
  9. Wood, S. A. and Vlassopoulos, D. (1990) The dispersion of Pt, Pd and Au in surficial media about two PGE–Cu–Ni prospects in Quebec. Can. Mineral., 28, 649–64.Google Scholar

Cross-references

  1.  Crystal field theory; Elements: high field strength; Elements: transitional;  Geochemical classification of the elements;  Ore deposits
  1. American Nuclear Society (1992) Controlled Nuclear Chain Reactions: The First 50 Years. La Grange Park, IL: American Nuclear Society, 193 pp.Google Scholar
  2. Browne, E. and Firestone, R. B. (1986) In Table of Radioactive Isotopes (ed. V. S. Shirley). New York: John Wiley and Sons, 1400 pp.Google Scholar
  3. Cerling, T. E. and Craig, H. (1994) Gemorphology and in situ cosomogenic isotopes. Annu. Rev. Earth Planet. Sci., 22, 273–317.Google Scholar
  4. Faure, G. (1986) Principles of Isotope Geology, 2nd edn. New York: John Wiley and Sons.Google Scholar
  5. Gat, J. R. (1980) The isotopes of hydrogen and oxygen in precipitation, in Handbook of Environmental Isotope Geochemistry, Vol. 1A (eds A. P. Fritz and J. Fontes). Amsterdam: Elsevier, pp. 21–47.Google Scholar
  6. IAFA (1986) Summary Report on the Post-accident Review Meeting on the Chernobyl Accident (IAEA Safety Series 75). Vienna: IAEA-STI/PUB/740.Google Scholar
  7. Ivanovich, M. and Harmon, R. S. (eds) (1992) Uraninum Series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences, 2nd edn. Oxford: Clarendon Press.Google Scholar
  8. Lawerence, J. W. (1989). Radioisotopes: Today’s Applications. DOE/NE-0089. Washington: US Department of Energy.Google Scholar
  9. Nydal, R. and Lovseth, K. (1983) Tracing bomb 14C in the atmosphere 1962–1980. J. Geophys. Res., 88, 3621–42.Google Scholar
  10. Perkins, R. W. and Thomas, C. W. (1980) Worldwide fallout, in Transuranic Nuclides in the Environment (ed. W. C. Hansen). Springfield, VA: DOE/TIC-22800, National Technical Information Service, pp. 53–82.Google Scholar
  11. Stubbs, J. B. and Wilson, L. A. (1991) Nuclear medicine: a state-of-the-art review. Nucl. News.Google Scholar
  12. US Department of Energy (1994) National Isotope Strategy, 1994, Prepared by: Isotope Production and Distribution Program.Google Scholar
  13. Wang, Y. (ed.) (1969) CRC Handbook of Radioactive Nuclides. Cleveland, OH: The Chemical Rubber Company, 960 pp.Google Scholar
  14. Weast, R. C., Lide, D. R., Astle, M. J. and Beyer, W. H. (eds) (1989) CRC Handbook of Chemistry and Physics, 70th edn. Boca Raton, FL: CRC Press Inc., 2435 pp.Google Scholar
  15. White, M. G. and Dunaway, P. B. (eds) (1977) Transuranics in Natural Environments. evada Applied Ecology Group.Google Scholar

Cross-references

  1.  Dating methods; Earth’s formation and geochemical evolution; Elements: actinide series; Elements: heat producing;  Fluid–rock interactions;  Geochemical classification of the elements;  Geochronology and radioisotopes;  Geologic time scale;  Radioactivity
  1. Goldschmidt, V. M. (ed. A. Muir) (1954) Geochemistry. Oxford: Clarendon Press, 730 pp.Google Scholar
  2. O’Neill, H.St. C. and Palme, H. (1997) Accretion and core formation in the Earth, in The Earth’s Mantle (ed. I. N. S. Jackson). Cambridge: Cambridge University Press, pp. 3–126.Google Scholar

Cross-references

  1. Elements: chalcophile; Elements: lithophile;  Geochemical classification of the elements
  1. Brownlow, A. H. (1979) Geochemistry. Englewood Cliffs: Prentice-Hall, Inc., 498 pp.Google Scholar
  2. Burns, R. G. (1970) Mineralogical Applications of Crystal Field Theory. New York: Cambridge University Press, 224 pp.Google Scholar
  3. Burns, R. G. (1973) The partitioning of trace transition elements in crystal structures: A provocative review with applications to mantle geochemistry. Geochim. Cosmochim. Acta, 37, 2395–403.Google Scholar
  4. Burns, R. G. and Fyfe, W. S. (1967) Crystal-field theory and the geochemistry of transition elements, in Researches in Geochemistry, Vol. 2 (ed. P. H. Abelson). New York: John Wiley and Sons, Inc., pp. 259–85.Google Scholar
  5. Condie, K. C., Dengate, J. and Cullers, R. L. (1995) Behavior of rare earth elements in a paleoweathering profile on granodiorite in the Front Range, Colorado, USA. Geochim. Cosmochim. Acta, 59, 279–94.Google Scholar
  6. Goldschmidt, V. M. (1937) The principles of distribution of chemical elements in minerals and rocks. J. Chem. Soc., 655–72.Google Scholar
  7. Jones, J. H., Walker, D., Pickett, D. A., Murrell, M. T. and Beattie, P. (1995) Experimental investigations of the partitioning of Nb, Mo, Ba, Ce, Pb, Ra, Th, Pa, and U between immiscible carbonate and silicate liquids. Geochim. Cosmochim. Acta, 59, 1307–20.Google Scholar
  8. Ringwood, A. E. (1955) The principles governing trace element distribution during magmatic crystallization. Geochim. Cosmochim. Acta, 7, 189–202, 242–54.Google Scholar
  9. Taylor, S. R. and McLennan, S. M. (1985) The Continental Crust: Its Composition and Evolution. Oxford: Blackwell, 312 pp.Google Scholar
  10. Wedepohl, K. H. (1995) The composition of the continental crust. Geochem. Cosmochim. Acta, 59, 1217–32.Google Scholar

Cross-references

  1.  Analytical techniques;  Crystal field theory; Earth’s continental crust; Earth’s formation and geochemical evolution; Electronegativity; Elements: incompatible; Elements: lanthanide series, rare earths; Elements: transitional;  Geochemical classification of the elements;  Geochemical tectonics;  Ionic radii;  Magmatic processes;  Onuma diagrams;  Partition coefficients;  Trace element partitioning models
  1. Ahrens, L. H. (1965) Distribution of the Elements in our Planet. McGraw-Hill.Google Scholar
  2. Anderson, D. L. (1989) Theory of the Earth. Oxford: Blackwell Scientific Publications.Google Scholar
  3. Burns, R. G. (1993) Mineralogical Applications of Crystal Field Theory. Cambridge: Cambridge University Press.Google Scholar
  4. Cameron, A. G. W. (1973) Abundances of the elements in the solar system. Space Sci. Rev., 15, 121–46.Google Scholar
  5. Cotton, F. A. and Wilkinson, G. (1988) Advanced Inorganic Chemistry, 5th edn. New York: Wiley Interscience.Google Scholar
  6. Day, F. H. (1963) The Chemical Elements in Nature. Harrap and Co. Ltd., 372 pp.Google Scholar
  7. Greenwood, N. N. and Earnshaw, A. (1984) Chemistry of the Elements, 1st edn. Oxford: Pergamon Press.Google Scholar
  8. Guyot, F., Madon, M., Peyronneau, J. and Poirier, J. P. (1988) X-ray microanalysis of high-pressure high-temperature phases synthesized from natural olivine in diamond anvil cell. Earth Planet. Sci. Lett., 90, 52–64.Google Scholar
  9. Keenan, C. W., Wood, J. H. and Kleinfelter, D. C. (1976) General College Chemistry, 5th edn. New York: Harper and Row, 754 pp.Google Scholar
  10. Krauskopf, K. B. (1967) Introduction to Geochemistry. McGraw-Hill.Google Scholar
  11. Langer, K. (1988) UV to NIR of silicate minerals obtained by microscope spectrometry and their use in mineral thermodynamics and kinetics, in Physical Properties and Thermodynamic Behaviour of Minerals (ed. E. K. H. Salje.) Dordrecht: D. Reidel Pub. Co., pp. 639–85.Google Scholar
  12. Lapp, R. E. (1968) Matter. New York: Time-Life Books, 200 pp.Google Scholar
  13. Malavergne, V., Guyor, F., Peyronneau, J. and Poirier, J. P. (1995) Distribution du fer, du cobalt et du nickel entre minéraux du manteau inférieur terrestre ä haute pression et haute température. CR Acad. Sci. IIA, 320, 455–62.Google Scholar
  14. Moses, A. J. (1978) The Practicing Scientists Handbook: A Guide for Physical and Terrestrial Scientists and Engineers. Amsterdam: an Nostrand Reinhold.Google Scholar
  15. Pauling, L. (1960) The Nature of the Chemical Bond, 3rd edn. New York: Cornell University Press.Google Scholar
  16. Shannon, R. D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A, 32, 751–67.Google Scholar
  17. Sherman, D. M. (1988) High-spin to low-spin transition of iron (II) oxides at high pressures: possible effects on the physics and chemistry of the lower mantle, in Structural and Magnetic Phase Transitions in Minerals (eds S. Ghose, J. M. D. Coey and E. Salje). New York: Springer-Verlag.Google Scholar
  18. Taylor, S. R. and McLennan, S. M. (1985) The Continental Crust: Its Composition and Evolution; An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Oxford: Blackwell Scientific.Google Scholar
  19. Walker, F. W., Kirouac, G. J. and Rourke, F. M. (1977) Chart of the Nuclides, 12th edn. General Electric.Google Scholar
  1. Anderson, G. M. and Crerar, D. A. (1993) Thermodynamics in Geochemistry. The Equilibrium Model. New York: Oxford University Press, 588 pp.Google Scholar
  2. Atkins, P. W. (1986) Physical Chemistry, 3rd edn. New York: W. H. Freeman, 857 pp.Google Scholar
  3. Nordstrom, D. K. and Munoz, J. L. (1994) Geochemical Thermodynamics, 2nd edn. Cambridge, MA: Blackwell Scientific Publications, 493 pp.Google Scholar
  4. Robie, R. A., Hemingway, B. S. and Fisher, J. R. (1978) Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures. US Geological Survey Bulletin, 1452. 456 pp.Google Scholar
  1. Anderson, G. M. and Crerar, D. A. (1993) Thermodynamics in Geochemistry. The Equilibrium Model. New York: Oxford University Press, 588 pp.Google Scholar
  2. Atkins, P. W. (1986) Physical Chemistry, 3rd edn. New York: W. H. Freeman, 857 pp.Google Scholar
  3. Denbigh, K. (1971) The Principles of Chemical Equilibrium, 3rd edn. Cambridge: Cambridge University Press, 494 pp.Google Scholar
  4. McGlashan, M. L. (1966) The use and misuse of the laws of thermodynamics. J. Chem. Ed., 43, 226–32.Google Scholar
  5. McGlashan, M. L. (1979) Chemical Thermodynamics. New York: Academic Press, 345 pp.Google Scholar
  6. Nordstrom, D. K. and Munoz, J. L. (1994) Geochemical Thermodynamics, 2nd edn. Cambridge, MA: Blackwell Scientific Publications, 493 pp.Google Scholar
  1. Amstutz, G. C. (1959) Syngenese und Epigenese in Petrographie und Lagerstättenkunde. Schweizerische Mineralogische und Petrographische Mitteilungen, 39, 1–84.Google Scholar
  2. Kossovskaya, A. G. and Shutov, V. D. (1971) Epigenesis problem, in Epigenesis and Its Mineral Indicators (ed. A. G. Kossovskaya). Moscow: Nauka (Academy of Sciences of the USSR, Transactions 221), pp. 9–34 (in Russian).Google Scholar
  3. Larsen, G. and Chilingar, G. V. (eds) (1967) Diagenesis in Sediments. Amsterdam: Elsevier, 551 pp.Google Scholar
  4. Maynard, J. B. (1983) Geochemistry of Sedimentary Ore Deposits. New York: Springer-Verlag, 305 pp.Google Scholar
  5. Perel’man, A. I. (1967) Geochemistry of Epigenesis. New York: Plenum Press, 266 pp.Google Scholar
  6. Rukhin, L. B. (1953) Principles of Lithology. Moscow: Gostoptehizdat, 671 pp. (In Russian).Google Scholar
  1. Gibbs, J. W. (1875) On the equilibrium of heterogeneous substances, in The Collected Works of J. Willard Gibbs. volume I: Thermodynamics. New Haven: Yale University Press. Reprinted 1948, P. 56.Google Scholar
  2. McGlashan, M. L. (1979) Chemical Thermodynamics. London: Academic Press, 345 pp.Google Scholar
  1. Ewing, M.B., Lilley, T.H., Olofsson, G.M., Rätzsch, M.T. and Somsen, G. (1994) Standard quantities in chemical thermodynamics. Pure Appl. Chem., 66, 533–52.Google Scholar
  2. McGlashan, M.L. (1979) Chemical Thermodynamics. London: Academic Press, 345 pp.Google Scholar
  3. Mills, I., Cvitaš, T., Homann, K., Kallay, N. and Kuchitsu, K. (1993) Quantities, Units and Symbols in Physical Chemistry, 2nd edn. Oxford: Blackwell Scientific Publications.Google Scholar
  4. Wood, S.E. and Battino, R. (1990) Thermodynamics of Chemical Systems. Cambridge: Cambridge University Press, 437 pp.Google Scholar
  1. Elements: lanthanide series, rare earths; Elements: large ion lithophile; Elements: lithophile; Elements: traceGoogle Scholar
  2. Elements: lanthanide series, rare earths; Elements: large ion lithophile; Elements: lithophile; Elements: traceGoogle Scholar
  3. Hawthorne, F.C. (ed) (1988) Spectroscopic Methods in Mineralogy and Geology. Rev. Mineral., 18, 698 pp.Google Scholar
  4. Holloway, J.R. and Wood B. J. (1988) Simulating the Earth Experimental Geochemistry. Boston: Unwin Hyman Inc., 196 pp.Google Scholar
  5. Manghnani, M. H.. and Syono, Y. (eds) (1987) High-Pressure Research in Mineral Physics. Geophysical Monograph 39 — Mineral Physics 2. Tokyo: Terra Scientific Publishing Co., 486 pp.Google Scholar
  6. Putnis, A. (1992) Introduction to Mineral Sciences. Cambridge: Cambridge University Press, 457 pp.Google Scholar
  7. Ulmer, G.C. and Barnes, H.L. (eds) (1987) Hydrothermal Experimental Techniques. New York: John Wiley and Sons, 523 pp.Google Scholar
  1. Andersen, D.J., Bishop, F.C. and Lindsley, D.H. (1991) Internally consistent solution models for Fe–Mg–Mn–Ti oxides: Fe–Mg–Ti oxides and olivine. Am. Mineral., 76, 427–44.Google Scholar
  2. Belonoshko, A.B. and Saxena, S.K. (1992). A unified equation of state for fluids of C–H–O–N–S–Ar composition and their mixtures up to very high temperatures and pressures. Geochim. Cosmochim. Acta, 56, 3611–26.Google Scholar
  3. Blencoe, J.G., Guidotti, C.V. and Sassi, F. P. (1994) The paragonite–muscovite solvus: II. Numerical geothermometers for natural, quasibinary paragonite–muscovite pairs. Geochim. Cosmochim. Acta, 58, 2277–88.Google Scholar
  4. Brown, N.E., Navrotsky, A., Nord, G. L. Jr. and Banerjee, S. K. (1993) Hematite–ilmenite (Fe2O3–FeTiO3) solid solutions: determinations of Fe–Ti order from magnetic properties. Am. Mineral., 78, 941–51.Google Scholar
  5. Busek, P. R., Nord, G. L. and Veblen, D. R. (1980) Subsolidus phenomena in pyroxenes. Rev. Mineral., 7, 117–221.Google Scholar
  6. Circone, S. and Navrotsky, A. (1972). Substitution of [6, 4]Al in phlogopite: high-temperature solution calorimetry, heat capacities, and thermodynamic properties of the phlogopite–eastonite join. Am. Mineral., 77, 1191–205.Google Scholar
  7. Craig, J. R. and Scott, S. D. (1976) Sulfide phase equilibria. Rev. Mineral., 1, CS–1–CS–110.Google Scholar
  8. Douce, A. E. P., Johnston, A. D. and Rice, J. (1993) Octahedral excess mixing properties in biotite: A working model with applications to geobarometry and geothermometry. Am. Mineral., 78, 113–31.Google Scholar
  9. Essene, E. J. (1983) Solid solutions and solvi among metamorphic carbonates with applications to geologic thermobarometry. Rev. Mineral., 11, 77–96.Google Scholar
  10. Gasparik, T. (1990) A thermodynamic model for the enstatite-diopside join. Am. Mineral., 75, 1080–91.Google Scholar
  11. Ghose, S. (1981) Subsolidus reactions and microstructures in amphiboles. Rev. Mineral., 9A, 325–68.Google Scholar
  12. Guidotti, C. V., Sassi, F. P., Blencoe, J. G. and Selverstone, J. (1994) The paragonite-muscovite solvus: I. P–T–X limits derived from the Na–K compositions of natural, quasibinary paragonite-muscovite pair. Geochim. Cosmochim. Acta, 58, 2269–76.Google Scholar
  13. Hovis, G. L., Delbove, F. and Bose, M. R. (1991) Gibbs energies and entropies of K–Na mixing for alkali feldspars from phase equilibrium data: implications for feldspar solvi and short-range order. Am. Mineral., 76, 913–27.Google Scholar
  14. Mukhopadhayay, B., Basu, S. and Holdaway, M. J. (1993) A discussion of Margules-type formulations for multicomponent solutions with a generalized approach. Geochim. Cosmochim. Acta, 57, 277–83.Google Scholar
  15. Rancourt, D. G., Christie, I. A. D., Royer, M. et al. (1994) Determination of accurate [4]Fe3+, [6]Fe3+, and [6]Fe2+ site populations in synthetic annite by Mössbauer spectroscopy. Am. Mineral., 79, 51–62.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • M. A. K. Khalil
  • Stuart Ross Taylor
  • Scott M. McLennan
  • William F. McDonough
  • H. Palme
  • W. Ian Ridley
  • Joris M. Gieskes
  • Michael Perfit
  • Richard B. Wanty
  • Cynthia E. A. Palmer
  • Thomas J. Wolery
  • Carla W. Montgomery
  • C. Wagner
  • Jae Young Yu
  • R. K. Varma
  • Benoit Villemant
  • David W. Mittlefehldt
  • Frederick A. Frey
  • Ronald S. Kaufmann
  • Fernando Bea
  • V. J. M. Salters
  • Roberta L. Rudnick
  • H. G. Stosch
  • Graeme E. Batley
  • Thomas Staudacher
  • Sarah Jane Barnes
  • Paul R. Dixon
  • M. Elaine Kennedy
  • L. Galoisy
  • C. Marshall
  • Carl O. Moses
  • Vidojko Jovi°C
  • Heinz Gamsjäger
  • Erich Königsberger
  • Charles A. Geiger

There are no affiliations available