Encyclopedia of Geochemistry

1999 Edition
| Editors: Clare P. Marshall, Rhodes W. Fairbridge


  • Brian D. Marshall
  • Thomas J. Wolery
  • Uwe Brand
  • Joan O. Morrison
  • Ian T. Campbell
  • James L. Gooding
  • K. Stüwe
  • Sylvia Frisia
  • Scott M. McLennan
Reference work entry
DOI: https://doi.org/10.1007/1-4020-4496-8_4

Dating Methods

One of the greatest contributions of geochemistry to man's knowledge of the Earth and solar system has been the development and application of chemical and isotopic techniques used to measure the passage of time. Rates of geologic processes, rates of biological evolution, and contemporaneity of past events all depend on accurate ages of geologic materials. Many geochemical methods have been used to determine ages of rocks and minerals; the ages determined may record the time of mineral crystallization or recrystallization, the time of last heating beyond a given temperature (see Geothermometers), or the time elapsed since exposure on the surface. The basic requirement for a chemical or isotopic geochronometer is some measurable parameter that changes as a function of time. Furthermore, for accurate ages to be determined, the parameter must have a known (and invariant) relationship with age or must be able to be calibrated.

Dating methods are required both for simple...


Differential Thermal Analysis Activity Coefficient Vitrinite Reflectance Diagenetic Process Multicomponent Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Geyh, M. A. and Schleicher, H. (1990) Absolute Age Determination. Berlin: Springer-Verlag, 503pp.CrossRefGoogle Scholar
  1. Davies, C. W. (1962) Ion Association. London: Butterworths, 190pp.Google Scholar
  2. Nordstrom, D. K. and Munoz, J. L. (1985) Geochemical Thermodynamics. Menlo Park, CA: The Benjamin/Cummings Publishing Co., Inc., 477pp.Google Scholar
  3. Pitzer, K. S. (1973) Thermodynamics of electrolytes-I. Theoretical basis and general equations. J. Phys. Chem., 77, 268–77.CrossRefGoogle Scholar
  4. Robinson, R. A. and Stokes, R. H. (1965) Electrolyte Solutions, 2nd edn, revised. London: Butterworths, 571pp.Google Scholar
  1. Bathurst, R. G. C. (ed.) (1976) Carbonate sediments and their diagenesis. Developments in Sedimentology, 12, Amsterdam: Elsevier, 658pp.Google Scholar
  2. Beaumont, E. A. and Foster, N. H. (1988) Geochemistry: Treatise of Petroleum Geology, Reprint Series #8. Tulsa: American Association of Petroleum Geologists, 660pp.Google Scholar
  3. Brand, U. (1994) Morphochemical and replacement diagenesis of biogenic carbonates, in Diagenesis IV. Developments in Sedimentology (eds K. H. Wolf and G. V. Chilingarian). Amsterdam: Elsevier, pp. 217–82.Google Scholar
  4. Foscolos, A. E. and Powell, T. G. (1979) Catagenesis in shales and occurrence of authigenic clays in sandstones, North Sabine H-49 well, Canadian Arctic Islands. Can. J. Earth Sci., 16, 1309–14.CrossRefGoogle Scholar
  5. Larsen, G. and Chilingar, G. V. (eds) (1979) Diagenesis in Sediments and Sedimentary Rocks. Developments in Sedimentology. Amsterdam: Elsevier 579pp.Google Scholar
  6. Mcllreath, I. A. and Morrow, D. W. (eds) (1990) Diagenesis. Reprint Series 4. Geoscience Canada. Geological Association of Canada, 338pp.Google Scholar
  7. Morse, J. W. and Mackenzie, F. T. (eds) (1990) Geochemistry of Sedimentary Carbonates. Developments in Sedimentology 48, Amsterdam: Elsevier, 707pp.Google Scholar
  8. Tissot, B. and Welte, D. H. (1978) Petroleum Formation and Occurrence; a new approach to oil and gas exploration. Berlin: Springer-Verlag, 538pp.CrossRefGoogle Scholar
  9. Zenger, D. H., Dunham, J. B. and Ethington, R. L. (eds) (1980) Concepts and Models of Dolomitization. Special Publication #28. Tulsa: SEPM, 320pp.Google Scholar
  1. Journal of Thermal Analysis. 1969–present.Google Scholar
  2. MacKenzie R. C. (ed.) (1972) Differential Thermal Analysis, Volumes 1 and 2. London: Academic Press.Google Scholar
  3. Smykatz-Kloss, W. and Warne, S. St. J. (eds) (1991) Thermal Analysis in the Geosciences. Berlin: Springer-Verlag, 379pp.Google Scholar
  4. Stucki, J. W. and Bish, D. L. (eds) (1990) Thermal Analysis in Clay Science, CMS Workshop Lectures, Volume 3. Boulder, Co: The Clay Minerals Society, 192pp.Google Scholar
  5. Thermochimica Acta 1970–present.Google Scholar
  1. Beaumont, C., Fullsack, P. and Hamilton, J. (1992) Erosional control of active compressional orogens, in Thrust Tectonics (ed. K. R. McClay). London: Chapman & Hall, pp. 1–18.CrossRefGoogle Scholar
  2. Bickle, M. J. and McKenzie, D. (1987) The transport of heat and matter by fluid during metamorphism. Contrib. Mineral. Petrol., 95, 384–92.CrossRefGoogle Scholar
  3. Brady, J. B. and McCallister, R. H. (1983) Diffusion data for clinopyroxenes from homogenization and self-diffusion experiments. Am. Mineral., 68, 95–105.Google Scholar
  4. Carslaw, H. S. and Jaeger, J. C. (1959) Conduction of Heat in Solids. Oxford: Oxford University Press, 510pp.Google Scholar
  5. Chakraborty, S. and Ganguly, J. (1990) Compositional zoning and cation diffusion in garnets, in Diffusion, Atomic Ordering and Mass Transport: Selected Problems in Geochemistry (ed. J. Ganguly). New York: Springer-Verlag, pp. 121–171.Google Scholar
  6. Crank, J. (1975) The Mathematics of Diffusion, 2nd edn. Oxford: Oxford University Press, 410pp.Google Scholar
  7. Cussler, E. L. (1984) Diffusion–Mass Transfer in Fluid Systems. Cambridge: Cambridge University Press, 525pp.Google Scholar
  8. Cygan, R. T. and Lasaga, A. C. (1985) Self-diffusion of magnesium in garnet at 750°C to 900°C. Am. J. Sci., 285, 328–50.CrossRefGoogle Scholar
  9. Dodson, M. H. (1973) Closure temperature in cooling geochronological and petrological systems. Contrib. Mineral. Petrol., 40, 259–74.CrossRefGoogle Scholar
  10. Dodson, M. H. (1986) Closure profiles in cooling systems. Mat. Sci. Forum, 7, 145–54.CrossRefGoogle Scholar
  11. Dunn, J. T. (1986) Diffusion in silicate melts: an introduction and literature review, in Short Course in Silicate Melts (ed. C. M. Scarfe). Ottawa: Mineralogical Association of Canada, pp. 57–92.Google Scholar
  12. Ehlers, K. and Powell, R. (1994) An empirical modification of Dodson's equation for closure temperature in binary systems. Geochim. Cosmochim. Acta, 58, 241–8.CrossRefGoogle Scholar
  13. Ehlers, K., Powell, R. and Stüwe, K. (1994). The determination of cooling histories from garnet-biotite equilibrium. Am. Mineral., 79, 737–44.Google Scholar
  14. Ehlers, K., Stüwe, K., Powell, R., Sandiford, M. and Frank, W. (1994) Thermometrically inferred cooling rates from the Plattengneiss, Koralm region, eastern Alps. Earth Planet. Sci. Lett., 125, 307–21.CrossRefGoogle Scholar
  15. Eiler, J. M., Baumgartner, L. P. and Valley, J. W. (1992) Intercrystalline stable isotope diffusion: a fast grain boundary model. Contrib. Mineral. Petrol., 112, 543–57.CrossRefGoogle Scholar
  16. Elphick, S. C., Ganguly, J. and Loomis, T. P. (1985) Experimental determination of cation diffusivities in aluminosilicate garnets. Contrib. Mineral. Petrol., 90, 36–44.CrossRefGoogle Scholar
  17. Fick, A. (1855) Über Diffusion. Ann. Phys. Chem., 94, 59–86.CrossRefGoogle Scholar
  18. Fischer, G. W. (1973) Non-equilibrium thermodynamics as a model for diffusion controlled metamorphic processes. Am. J. Sci., 273, 897–924.CrossRefGoogle Scholar
  19. Fischer, G. W. (1977) Nonequilibrium thermodynamics in metamorphism, in Thermodynamics in Geology (ed. D. G. Fraser). Dordrecht: D. Reidel Publishing Company, pp. 381–403.CrossRefGoogle Scholar
  20. Fortier, S. M. and Giletti B. J. (1991) Volume self diffusion of oxygen in biotite, muscovite and phlogopite micas. Geochim. Cosmochim. Acta, 55, 1319–30.CrossRefGoogle Scholar
  21. Fourier, J. B. (1822) Theorie Analytique de la Chaleur, Envres de Fourier. English translation by A. Freeman. New York: Dover Publications, 1955.Google Scholar
  22. Freer, R. (1981) Diffusion in silicate minerals and glasses: A data digest and guide to the literature. Contrib. Mineral. Petrol., 76, 440–54.CrossRefGoogle Scholar
  23. Giletti, B. J. (1991) Rb and Sr diffusion in alkali feldspars, with implications for cooling histories of rocks. Geochim. Cosmochim. Acta, 55, 1331–43.CrossRefGoogle Scholar
  24. Harrison, T. M. (1981) Diffusion of 40Ar in Hornblende. Contrib. Mineral. Petrol., 787, 324–31.Google Scholar
  25. Harrison, T. M., Duncan, I. and McDougall, I. (1985) Diffusion of 40Ar in biotite: temperature, pressure and compositional effects. Geochim. Cosmochim. Acta, 49, 2461–8.CrossRefGoogle Scholar
  26. Hart, S. R. (1981) Diffusion compensation in natural silicates. Geochim. Cosmochim. Acta, 45, 279–91.CrossRefGoogle Scholar
  27. Itayama, K. and Stüwe, H. P. (1974) Mittlere Reaktions-geschwindigkeit bei zeitlich veränderter Temperature. Zeitschr. Metallk., 65, 70–2.Google Scholar
  28. Joesten, R. (1977) Evolution of mineral assemblage zoning in diffusion metasomatism. Geochim. Cosmochim. Acta, 41, 649–70.CrossRefGoogle Scholar
  29. Lasaga, A. C. (1979) Multicomponent exchange and diffusion in silicates. Geochim. Cosmochim. Acta, 43, 455–69.CrossRefGoogle Scholar
  30. Lasaga, A. C. (1983) Geospeedometry: an extension of geothermometry, in Kinetics and Equilibrium in Mineral Reactions (ed. S. K. Saxena). New York: Springer Verlag, pp. 82–114.Google Scholar
  31. Lasaga, A. C., Richardson, S. M. and Holland, H. D. (1977) The mathematics of cation diffusion and exchange between silicate minerals during retrograde metamorphism, in Energetics of Geological Processes (eds S. K. Saxena and S. Bhattacharji). New York: Springer Verlag, pp. 353–88.CrossRefGoogle Scholar
  32. Lesher, C. E. and Walker, D. (1991) Thermal diffusion in petrology, in Diffusion, Atomic Ordering and Mass Transport: Selected Problems in Geochemistry (ed. J. Ganguly). New York: Springer-Verlag, pp. 396–451.CrossRefGoogle Scholar
  33. Lister, G. S. and Baldwin, S. L. (1995) Modelling the effect of arbitrary PTt histories on argon diffusion in minerals using the MacArgon program for the Apple Macintosh. Tectonophysics, 253, 83–109.CrossRefGoogle Scholar
  34. Muncill, G. E. and Chamberlain, C. P. (1988) Crustal cooling rates inferred from homogenization of metamorphic garnets. Earth Planet. Sci. Lett., 87, 390–6.CrossRefGoogle Scholar
  35. Oelkers, E. H. (1996) Physical and chemical properties of rocks and fluids for chemical mass transport calculations. Rev. Mineral., 34, 131–92.Google Scholar
  36. Onsager, L. (1931) Reciprocal relations in irreversible processes–I. Phys. Rev., 37, 405–26.CrossRefGoogle Scholar
  37. Pasquill, F. (1974) Atmospheric Diffusion. New York: John Wiley & Sons, 429pp.Google Scholar
  38. Poirier, J. P. (1989) Creep of Crystals. High Temperature Deformation Processes in Metals, Ceramics and Minerals. Cambridge: Cambridge University Press, 206pp.Google Scholar
  39. Roper, G. W. and Whittle, D. P. (1980) Interdiffusion in two phase ternary solid systems. Metal Sci., 148–53.Google Scholar
  40. Rutherford, J. C. (1994) River Mixing. New York: John Wiley & Sons, 347pp.Google Scholar
  41. Rutter, E. H. (1976) The kinetics of rock deformation by pressure solution. Phil. Trans. R. Soc. Lond., 283, 203–19.CrossRefGoogle Scholar
  42. Soret, C. (1879) Concentrations differences d'une dissolution dont deux parties sont á des temperatures differentes. Arch. Sci. Phys. Nature., 2, 48–61.Google Scholar
  43. Spear, F. S. (1993) Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths. Mineralogical Society of America Monograph. Chelsea, MI: Book Crafters.Google Scholar
  44. Stüwe, K. (1995) Thermal buffering at the solidus. Implications for the equilibration of partially melted metamorphic rocks. Tectonophysics, 248, 39–51.CrossRefGoogle Scholar
  45. Stüwe, K. and Ehlers, K. (1996) The qualitative zoning record of minerals. A method for determining the duration of metamorphic events? Mineral. Petrol., 56, 171–84.CrossRefGoogle Scholar
  46. Takahashi, T., Katoh, M., Minamino, Y. and Yamane, T. (1986) Ternary diffusion and thermodynamic interactions in Cu-Ni-Sn solid solutions. Trans. Jpn Inst. Metals, 27, no. 12.Google Scholar
  47. Trudinger, C. M., Enting, I. G., Etheridge, D. M. et al. (1997) Modeling air movement and bubble trapping in firn. J. Geophys. Res., 102, D6, 6747–63.CrossRefGoogle Scholar
  48. Winchell, P. (1969) The compensation law for diffusion in silicates. High Temp. Sci., 1, 200–15.Google Scholar
  49. Yardley, B. W. D. (1977) An empirical study of diffusion in garnet. Am. Mineral., 62, 793–800.Google Scholar
  1. Baker, P. A. and Kastner, M. (1981) Constraints on the formation of sedimentary dolomite. Science, 213, 214–16.CrossRefGoogle Scholar
  2. *Frisia, S. (1994) Mechanisms of complete dolomitization in a carbonate shelf: comparison between the Norian Dolomia principale (Italy) and the Holocene of Abu Dhabi Sabkha, in Dolomites: A Volume in Honour of Dolomieu (eds B. Purser. M. Tucker and D. Zenger). Oxford: Blackwell Scientific Publications. pp. 55–74.CrossRefGoogle Scholar
  3. *Frisia, S. and Wenk, H-R. (1994) TEM and AEM study of pervasive, multi-step dolomitization of the Upper Triassic Dolomia Principale (Northern Italy). J. Sediment. Petrol., 63, 1049–58.Google Scholar
  4. *Hardie, L. A. (1987) Dolomitization: A critical view of some current views. J. Sediment. Petrol., 57, 166–83.CrossRefGoogle Scholar
  5. Katz, A. and Matthews, A. (1977) The dolomitization of CaCO3: an experimental study at 252–295°C. Geochim. Cosmochim. Acta, 41, 297–308.CrossRefGoogle Scholar
  6. Nielsen, P., Swennen, R. and Keppens, E. (1994) Multi-step recrystallization within massive ancient dolomite units: an example from the Dinantian in Belgium. Sedimentology, 41, 567–84.CrossRefGoogle Scholar
  7. Nordeng, S. H. and Sibley, D. F. (1994) Dolomite stoichiometry and Ostwald's step rule. Geochim. Cosmochim. Acta, 58, 191–6.CrossRefGoogle Scholar
  8. *Reeder, R. J. (1983) Crystal chemistry of the rhombohedral carbonates. Rev. Mineral., 11, 1–47.Google Scholar
  9. *Reeder, R. J. (1992) Carbonates: growth and alteration microstructures. Rev. Mineral., 27, 381–424.Google Scholar
  10. Reeder, R. J. and Wenk, H.-R. (1983) Structure refinement of some thermally disordered dolomites. Am. Mineral., 68, 769–76.Google Scholar
  11. Usdowsky, E. (1994) Synthesis of dolomite and geochemical implications, in Dolomites: A Volume in Honour of Dolomieu (eds B. Purser, M. Tucker and D. Zenger). Oxford: Blackwell Scientific Publications, pp. 345–60.CrossRefGoogle Scholar
  12. Vasconcelos, C., McKenzie, J. A., Bernasconi, S., Grujic, D. and Tien, A. J. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature, 377, 220–2.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Brian D. Marshall
  • Thomas J. Wolery
  • Uwe Brand
  • Joan O. Morrison
  • Ian T. Campbell
  • James L. Gooding
  • K. Stüwe
  • Sylvia Frisia
  • Scott M. McLennan

There are no affiliations available