Encyclopedia of Geochemistry

1999 Edition
| Editors: Clare P. Marshall, Rhodes W. Fairbridge

C

  • Kathleen S. Smith
  • David W. Mittlefehldt
  • Sylvia Frisia
  • Cynthia E. A. Paimer
  • Charles A. Geiger
  • Austin Long
  • D. Lal
  • S. Krishnaswami
  • Peter S. Bakwin
  • Juha Karhu
  • Elizabeth A. Burton
  • Abigail M. Smith
  • Scott M. McLennan
  • Richard M. Kettler
  • Youxue Zhang
  • Ronald S. Kaufmann
  • Eugene S. Ilton
  • Jae-Young Yu
  • T. M. Whitworth
  • J. C. Shearer
  • R. M. Bustin
  • Ralf Littke
  • Achim Albrecht
  • Montserrat Filella
  • Jacques Buffle
  • Helen N. Mango
  • Roger E. Summons
  • Mark A. Williamson
  • Eric Thorson Brown
  • Ernest B. Ledger
  • Peter A. Rock
  • William H. Casey
  • Dana T. Griffen
  • Hans Keppler
  • Wolfgang H. Runde
  • Mary P. Neu
  • David R. Janecky
Reference work entry
DOI: https://doi.org/10.1007/1-4020-4496-8_3

Cadmium

General properties

Cadmium (L., cadmia; Gr., kadmeia, ‘calamine’), is a metal in Group IIB of the Periodic Table with symbol Cd, atomic number 48, atomic weight 112.411, valence +2 (in nature), specific gravity (at 20°C) 8.65, melting point 321.07°C, boiling point 767°C, and electronic configuration [Kr] 4d105s2. The mass numbers of its stable isotopes and their relative abundances are 114 (28.73%), 112 (24.13%), 111 (12.80%), 110 (12.49%), 113 (12.22%), 116 (7.49%), 106 (1.25%), and 108 (0.89%). Radioactive isotopes with the longest half lives include 109Cd, 113mCd, and 115mCd. Cadmium was discovered in 1817 by F. Stromeyer as an impurity in zinc carbonate.

Abundance

The crustal abundance of cadmium is between 0.1 and 0.2 ppm. It is a rare element and ranks 64th in crustal abundance among the elements. Cadmium concentration in igneous rocks is generally low (0.07–0.25 ppm). Among sedimentary rocks, it tends to be enriched in shales, oceanic and lacustrine sediments, and...

Keywords

Carbonic Acid System Cosmogenic Nuclides Coal Type Geological Membranes Vitrinite Reflectance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Brehler, B., Wakita, H. and Schmitt, R.A. (1978) Cadmium, in Handbook of Geochemistry, Vol. II/4 (ed. K.H. Wedepohl). New York: Springer-Verlag., pp. 48A–480.Google Scholar
  2. Llewellyn, T.O. (1994) Cadmium (Materials Flow). Washington, DC: United States Department of the Interior Bureau of Mines, Information Circular 9380, 17 pp.Google Scholar
  3. Nriagu, J.O. (ed.) (1980) Cadmium in the Environment, Part I. New York: John Wiley & Sons, 682 pp.Google Scholar
  4. Nriagu, J.O. and Sprague, J.B. (eds) (1987) Cadmium in the Aquatic Environment. Advances in Environmental Science and Technology, Vol. 19. New York: John Wiley & Sons, 272 pp.Google Scholar
  5. World Health Organization (1993) Cadmium and cadmium compounds. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 59, Beryllium, Cadmium, Mercury and Exposure in the Glass Manufacturing Industry. Lyon: IARC Working Group, pp. 119–237.Google Scholar

Cross-references

  1. Crystal field theory;  Elements: chalcophile;  Elements: transitional
  1. Atkinson, T.C. (1983) Growth mechanisms of speleothems in Castleguard Cave, Columbia Icefields, Alberta, Canada. Arctic Alpine Res., 15, 523–36.Google Scholar
  2. Berner, R.A. (1975) The role of magnesium in the crystal growth of calcite and aragonite from seawater. Geochim. Cosmochim. Acta, 49, 489–504.Google Scholar
  3. Berner, R.A. (1976) The solubility of calcite and aragonite at one atmosphere and 34.5 parts per thousand. Am. J.Sci., 276, 713–30.Google Scholar
  4. Berner, R.A. and Morse, J.W. (1974) Dissolution kinetics of calcium carbonate in seawater. IV: Theory of calcite dissolution. Am. J. Sci., 274, 108–35.Google Scholar
  5. Bishoff, J.L. and Fyfe, W.S. (1968) Catalysis, inhibition, and the calcite-aragonite problem. The aragonite-calcite transformation. Am. J. Sci., 266, 65–79.Google Scholar
  6. Bishoff, J.L. (1968) Temperature controls on aragonite-calcite transformation in aqueous solution. Am. Mineral., 54, 149–55.Google Scholar
  7. Cabrol, P. (1978) Contribution a I'Etude du Concretionnement Carbonate des Grottes de Sud de la France: Morphologie, Genese, Diagenese. Montpellier Editions CERGA, 275 pp.Google Scholar
  8. Carlson, W.D. (1983) The Polymorphs of CaCO3 and the aragonite-calcite transformation. Rev. Mineral., 11, 191–225.Google Scholar
  9. Dreybrodt, W. (1988) Processes in Karst Systems, Physics, Chemistry and Geology. Berlin: Springer-Verlag, 288 pp.Google Scholar
  10. Falini, G., Albeck, S., Weiner, S. and Addadi L. (1996) Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science, 271, 67–69.Google Scholar
  11. Ford, D.C. and Williams, P.W. (1989) Karst Geomorphology and Hydrology. Cambridge: Unwin Hyman, 601 pp.Google Scholar
  12. Frisia, S., Borsato, A., Fairchild, I.J. and Longinelli, A. (1997) Aragonite precipitation at Grotte de Clamouse (Herault, France): Role of magnesium and driprate. Proceedings of the 12th International Congress of Speleology, La Chaux-de-Fonds, 1, 247–250.Google Scholar
  13. Garrels, R.M. and Christ, C.L., (1965) Solutions, Minerals and Equilibria. New York: Harper and Row, 450 pp.Google Scholar
  14. Herring, J.R. (1985) Charcoal fluxes into sediments of the North Pacific Ocean: The Cenozoic record of burning. Geophys. Monogr., 32, 419–42.Google Scholar
  15. Krauskopf, K.B. and Bird, D.K. (1995) Introduction to Geochemistry, 3rd edn. Singapore: McGraw-Hill Book Co., 647 pp.Google Scholar
  16. Morse, J.W. (1983) The kinetics of calcium carbonate dissolution and precipitation. Rev. Mineral., 11, 227–64.Google Scholar
  17. Morse, J.W. and Mackenzie, F.T. (1990) Geochemistry of Sedimentary Carbonates. Amsterdam: Elsevier Science Publisher B.V., 707 pp.Google Scholar
  18. Pingitore, N.E. (1976) Vadose and phreatic diagenesis: Processes, products and their recognition in corals. J. Sed. Petrol., 46, 985–1006.Google Scholar
  19. Plummer, L.N. and Busemberg, E. (1982) The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C and an evaluation of the aqueous model for the system CaCO3-CO2-H2O. Geochim. Cosmochim. Acta, 46, 1011–40.Google Scholar
  20. Sass, E., Morse, J.W. and Millero, F.J. (1983) Dependence of values of calcite and aragonite thermodynamic solubility products on ionic models. Am. J. Sci., 283, 218–29.Google Scholar
  21. Smith, R.M. and Martel, A.E. (1976) Critical Stability Constants. New York: Plenum Press, 37 pp.Google Scholar
  22. Stumm, W. and Morgan J.J. (1981) Aquatic Chemistry, 2nd edn. New York: Wiley, 780 pp.Google Scholar
  23. Sundquist, E.T. (1985) Geological perspectives on carbon dioxide and the carbon cycle. Geophys. Monogr., 32, 5–59.Google Scholar
  24. Vear, A. and Curtis, C. (1981) A quantitative evaluation of pyrite weathering. Earth Surface Proc., 6, 191–8.Google Scholar
  25. Walter, L.M. (1986) Relative efficiency of carbonate dissolution and precipitation during diagenesis: A progress report on the role of solution chemistry, In Roles of Organic Matter in Sediment Diagenesis (ed. D.L. Gautier). Tulsa: SEPM Special Publication 38, pp. 1–11.Google Scholar

Cross-references

  1.  Acid deposition; Carbon-14 dating and other applications; Carbon cycle; Carbon isotopes; Carbonate compensation depth; Carbonate sediments;  Dolomite and dolomitization;  Earth's ocean geochemistry;  Elements alkali and alkaline earth;  Fluid–rock interactions;  Geochemistry of sediments
  1. Firestone, R.B. (1996) Table of Isotopes, Volume II: A = 151–272. New York: Wiley-Interscience, 2877 pp.Google Scholar
  2. Janzow, E.F. (1983) Industrial usage of californium-252, In Opportunities and Challenges in Research with Transplutonium Elements. Washington, DC: National Academy Press.Google Scholar
  3. Maruyama, Y. (1983) New radioisotope for human cancer therapy, In Opportunities and Challenges in Research with Transplutonium Elements. Washington, DC: National Academy Press.Google Scholar
  4. Seaborg, G.T. and Loveland. W.D. (1990) The Elements Beyond Uranium. New York: Wiley-Interscience, 359 pp.Google Scholar
  5. Thompson, S.G., Street, K., Jr. Ghiorso, A. and Seaborg, G.T. (1950) Element 98. Phys. Rev., 78, 298.Google Scholar

Cross-reference

  1. Navrotsky, A. (1979) Calorimetry: its application to petrology. Annu. Rev. Earth Planet. Sci., 7, 93–115.Google Scholar
  2. Robie, R.A. (1987) Calorimetry, In Hydrothermal Experimental Techniques (ed. G.C. Ulmer and H.L. Barnes). New York: Wiley and Sons, pp. 389–422.Google Scholar
  3. Robie, R.A. and Hemingway, B.S. (1972) Calorimeters for heat of solution and low-temperature heat capacity measurements. Geol. Surv. Prof. Paper, 755, 32 pp.Google Scholar
  4. Robie, R.A. Hemingway, B.S. and Fischer, J.R. (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. Geol. Surv. Bull., 1452, 456 pp (reprinted in 1979 with corrections).Google Scholar
  1. Atreya, S.K., Pollack, J.B. and Mathews, M.S. (eds) (1989) Origin and Evolution of Planetary and Satellite Atmospheres. Tucson, AZ: The University of Arizona Press, 881 pp.Google Scholar
  2. Berner, R.A. (1991) A model for atmospheric CO2 over Phanerozoic time. Am. J. Sci., 291, 339–76.Google Scholar
  3. Koruga, D., Harmeroff, S., Withers, J., Loutfy, R. and Koruga, D. (1993) Fullerene C60: History, Physics, Nanobiology, Nanotechnology. Amsterdam: North Holland. 381 pp. For more on fullerenes, the 29 July 1994 issue of Science contains two research articles on fullerences in impact crater debris, plus a Perspectives article on structures.Google Scholar
  4. Mitchell, J.F.B., Johns, T.C., Gregory, J.M. and Tett, S.F.B. (1995) Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature, 376, 501–4.Google Scholar
  5. Sundquist, E.T. and Broecker, W.S. (eds) (1985) The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. Washington, DC: American Geophysical Union, Monograph 32, 637 pp.Google Scholar
  6. Sundquist, E.T. (1993) The global carbon dioxide budget. Science, 259, 934–41.Google Scholar

Cross-references

  1. Calcium carbonate and the carbonic acid systems; Carbon-14 dating and other applications; Carbon cycle; Carbon isotopes; Carbonate compensation depth; Carbonate sediments;  Dating methods;  Elements: radioactive;  Elements: siderophile;  Geochronology and radioisotopes;  Nutrients;  Nucleosynthesis;  Organic geochemistry;  Radioactivity;  Stable isotopes
  1. Anderson, E.C., Libby, W.F., Weinhouse, S., Reid, A.F., Kirshenbaum, A.D. and Grosse, A.V. (1947) Natural radiocarbon from cosmic radiation. Phys. Rev., 72, 931–6.Google Scholar
  2. Andree, M., Moor, E., Oeschger, H. et al. (1984) 14C dating of polar ice. Nucl. Instrum. Methods, 233B, 385–8.Google Scholar
  3. Bard, E., Hamelin, B., Fairbanks, R.G. and Zindler, A. (1990) Calibration of the 14C timescale over the past 30000 years using mass spectrometric U-Th ages from Barbados corals. Nature, 345, 405–10.Google Scholar
  4. Broecker, W.S. (1994) Massive iceberg discharges as triggers for global climate change. Nature, 372, 421–4.Google Scholar
  5. Broecker, W.S. and Peng, T.H. (1982) Tracers in the Sea. New York: Eldigeo Press, 690 pp.Google Scholar
  6. Broecker, W.S., Peng, T.H., Ostuland, G. and Stuiver, M. (1985) The distribution of bomb radiocarbon in the ocean. J. Geophys. Res., 90, 6953–70.Google Scholar
  7. Craig, H. (1957) The natural distribution of radiocarbon and the exchange time of carbon dioxide between atmosphere and the sea. Tellus, 9, 1–17.Google Scholar
  8. Craig, H. (1963) The natural distribution of radiocarbon: mixing rates in the sea and the residence times of carbon and water, in Earth Sciences and Meteoritics (eds J. Geiss and E.D. Goldberg). Amsterdam: North Holland, pp. 103–14.Google Scholar
  9. Craig, H. (1969) Abyssal carbon and radiocarbon in the Pacific. J. Geophys. Res., 74, 5491–506.Google Scholar
  10. Duplessy, J.C., Arnold, M., Bard, E., Leclerc, A.J., Kallel, N. and Labeyrie, L. (1989) AMS 14C study of transient events and of the ventillation rate of the Pacific intermediate water during the last deglaciation. Radiocarbon, 31, 493–502.Google Scholar
  11. Elmore, D. and Phillips, F.M. (1987) Accelerator mass spectrometry for measurement of long-lived radio-isotopes. Science, 236, 543–50.Google Scholar
  12. Godwin, H. (1962) Half-life of radiocarbon. Nature, 195, 984.Google Scholar
  13. Goslar, T., Arnold, M., Bard, E. et al. (1995) High concentration of atmospheric 14C during the Younger Dryas episode. Nature, 377, 414–17.Google Scholar
  14. Hajdas, I., Zolistschka, B., Ivy-Ochs, S.D. et al. (1995) AMS radiocarbon dating of annually laminated sediments from Lake Holzmar, Germany. Quatern. Res., 14, 137–43.Google Scholar
  15. Hesshaimer, V., Helmann, M. and Levin. I. (1994) Radioactive evidence for a smaller oceanic carbon dioxide sink than previously believed. Nature, 370, 201–3.Google Scholar
  16. Jull, A.J.T., Lal, D., Donahue, D.J. et al. (1994) Measurements of cosmic-ray-produced 14C in firn and ice from Antarctica. Nucl. Instrum. Methods, Phys. Res., B92, 326–30.Google Scholar
  17. Lal, D. (1969) Characteristics of large scale ocean circulation as derived from the distribution of radioactive elements, In Morning Review Lectures of 2nd International Oceanographic Congress, Moscow, 1966. United Nations, pp. 29–48.Google Scholar
  18. Lal, D. (1992a) Expected secular variations in the global terrestrial production rate of radiocarbon, In NATO ASI Series vol. 12. The Last Deglaciation: Absolute and Radiocarbon Chronologies (eds E. Bard and W.S. Broecker). Berlin: Springer-Verlag, pp. 113–16.Google Scholar
  19. Lal, D. (1992b) Cosmogenic in situ radiocarbon on the earth, In Radiocarbon after Four Decades (eds R.E. Taylor, A. Long and R.S. Kra). Berlin: Springer-Verlag, pp. 146–61.Google Scholar
  20. Lal, D. and Peters, B. (1967) Cosmic ray produced radioactivity on the earth, In Encyclopedia of Physics, XLV1/2 (ed. S. Flugge). Berlin: Springer-Verlag, pp. 551–612.Google Scholar
  21. Lal, D. and Jull, A.J.T. (1994) Studies of cosmogenic in situ 14CO and 14CO2 produced in terrestrial and extra-terrestrial samples: experimental procedures and applications. Nucl. Instrum. Methods, Phys. Res., B92, 291–6.Google Scholar
  22. Lal, D., Jull, A.J.T., Donahue, D.J., Burtner, D. and Nishiizumi, K. (1990) Polar ice ablation rates based on in situ cosmogenic 14C. Nature, 346, 350–2.Google Scholar
  23. Lederer, C.M. and Shirley, V.S. (1978) Table of Isotopes. New York: John Wiley and Sons.Google Scholar
  24. Libby, W.F. (1952) Radiocarbon Dating, 2nd edn. Chicago: University of Chicago Press.Google Scholar
  25. Lingenfelter, R.E. and Ramaty, R. (1970) Astrophysical and Geophysical variations in 14C production, In Radiocarbon Variations and Absolute Chronology (ed. I.U. Olsson). New York: Wiley, pp. 513–37.Google Scholar
  26. Mook, W.G. (1980) Carbon-14 in hydrogeological studies, In Handbook of Environmental Isotope Geochemistry, Vol. 1 (eds P. Fritz and J. Ch. Fontes). Amsterdam: Elsevier, pp. 49–74.Google Scholar
  27. Mook, W.G. (1984) Archaeological and geological interest in applying 14C AMS to small samples. Nucl. Instrum. Methods, 233B, 297–302.Google Scholar
  28. Nozaki, Y., Cochran, J.K., Turekian, K.K. and Keller, G. (1977) Radiocarbon and 210Pb distribution in the submersible taken deep sea cores from project FAMOUS. Earth Planet. Sci. Lett., 34, 167–73.Google Scholar
  29. Oeschger, H. (1982) The contribution of radioactive and chemical dating to the understanding of the environmental system, In Nuclear and Chemical Dating Techniques (ed. L.A. Currie). Washington, DC: American Chemical Society, pp. 5–42.Google Scholar
  30. Oeschger, H., Alder, B., Loosli, H., Langway, C.C. and Renaud, A. (1966) Radiocarbon dating of ice. Earth Planet. Sci. Lett., 1, 49–54.Google Scholar
  31. Peng. T.H. (1989) Changes in ocean ventillation rates over the last 7000 years based on 14C variations in the atmosphere and oceans. Radiocarbon, 31, 481–92.Google Scholar
  32. Peng. T.H. and Broecker, W.S. (1984) The impacts of bioturbation on the age difference between benthic and planktonic foraminifera in deep sea sediments. Nucl. Instrum. Methods, 233B, 346–52.Google Scholar
  33. Siegenthaler, U. (1993) Modelling the present day oceanic carbon cycle, In The Global Carbon Cycle (ed. M. Heimann). Berlin: Springer-Verlag, pp. 367–96.Google Scholar
  34. Stuiver, M. (1978) Carbon-14 dating: a comparison of beta and ion counting. Science, 202, 881–3.Google Scholar
  35. Stuiver, M. and Braziunas, T.F. (1993) Modeling atmospheric 14C influences and 14C ages of marine samples to 10 000 BC. Radiocarbon, 35, 137–90.Google Scholar
  36. Stuiver, M. and Polach, H.A. (1977) Reporting of 14C data. Radiocarbon, 19, 355–63.Google Scholar
  37. Stuiver, M., Quay, P.D. and Ostuland, H.G. (1983) Abyssal water C-14 distribution and the age of the world ocean. Science, 219, 849–51.Google Scholar
  38. Stuiver, M., Braziunas, T.F., Becker, B. and Kromer, B. (1991) Climatic, solar, ocean and geomagnetic influences on late glacial and Holocene atmosphere 14C/12C change. Quatern. Res., 35, 1–24.Google Scholar
  39. Suess, H.E. (1986) Secular variations of cosmogenic 14C on Earth: their discovery and interpretation. Radiocarbon, 28, 259–65.Google Scholar
  40. Taylor, R.E. (1987) Radiocarbon Dating: An Archaeological Perspective. New York: Academic Press, 212 pp.Google Scholar

Cross-references

  1. Calcium carbonate and the carbonic acid systems; Carbon cycle; Carbon isotopes;  Dating methods;  Elements: radioactive;  Geochronology and radioisotopes;  Geologic time scale;  Organic geochemistry;  Organic matter in fossils;  Radioactivity
  1. Berner, R.A. (1990) Atmospheric carbon dioxide levels over phanerozoic time. Science, 249, 1382–6.Google Scholar
  2. Berner, R.A. and Lasaga, A.C. (1989) Modeling the geochemical carbon cycle. Sci. Am., 260, 74–81.Google Scholar
  3. Broecker, W.S. and Peng, T.-H. (1982) Tracers in the Sea. Lamont-Doherty Geological Observatory: Eldigio Press, 690 pp.Google Scholar
  4. Ciais, P. et. al. (1995) A large northern hemisphere terrestrial CO2 sink indicated by 13C/12C of atmospheric CO2. Science, 269, 1098–102.Google Scholar
  5. Houghton, R.A. (1995) Effects of land-use change, surface temperature, and CO2 concentration on terrestrial stores of carbon, in Biotic Feedbacks in the Global Climate System (eds G.M. Woodwell and F.T. Mackenzie). New York: Oxford University Press, pp. 333–66Google Scholar
  6. Intergovernmental Panel on Climate Change (IPCC) (1996) Climate Change 1995 (eds J.T. Houghton et al.). Cambridge: Cambridge University Press, 572 pp.Google Scholar
  7. Kasting, J.F. (1993) Earth's early atmosphere. Science, 259, 920–6.Google Scholar
  8. Keeling, C.D. et al. (1995) Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature, 375, 666–70.Google Scholar
  9. Perry, H. and Landsberg, H.H. (1977) Projected world energy consumption in energy and Climate/Geophysics Study Committee, Geophysics Research Board, Assembly of Mathematical and Physical Sciences, National Research Council. Washington DC: National Academy of Sciences, 158 pp.Google Scholar
  10. Raynaud, D. et al. (1993) The ice record of greenhouse gases. Science, 259, 926–34.Google Scholar
  11. Schlesinger, W.H. (1991) Biogeochemistry: An Analysis of Global Change. New York: Academic Press, 443 pp.Google Scholar
  12. Shackleton, N.J. (1977) Carbon-13 in Uvigerina: tropical rainforest history and the equatorial Pacific carbonate dissolution, In The Fate of Fossil Fuel CO2 in the Oceans (eds N.R. Anderson and A. Malahoff). New York: Plenum, pp. 401–27.Google Scholar
  13. Stumm, W. and Morgan, J.J. (1981) Aquatic Chemistry, 2nd edn. New York: Wiley, 780 pp.Google Scholar
  14. Takahashi, T., Broecker, W.S. and Bainbridge, A.E. (1981) Supplement to the alkalinity and total carbon dioxide concentration in the world oceans, in Carbon Cycle Modelling, SCOPE 16 (ed. B. Bolin). New York: John Wiley, pp. 159–99.Google Scholar
  15. Tans, P.P., Fung, I.Y. and Takahashi, T. (1990) Observational constraints on the global atmospheric CO2 budget. Science, 247, 1431–8.Google Scholar
  16. Tans, P.P. (1998) Why carbon dioxide from fossil fuel burning won't go away, in Perspectives in Environmental Chemistry (ed. D. Macalady). New York: Oxford University Press, pp. 271–91.Google Scholar
  17. Vitousek, P.M. et al. (1986) Human appropriation of the products of photosynthesis. Bio Science, 36, 368–73.Google Scholar
  1. Anderson, T.F. and Arthur, M.A. (1983) Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems, in Stable Isotopes in Sedimentary Geology, SEPM Short Course No. 10 (eds M.A. Arthur, T.F. Anderson, I.R. Kaplan, J. Veizer and L.S. Land), 151 pp.Google Scholar
  2. Cerling, T.E. (1991) Carbon dioxide in the atmosphere: evidence from Cenozoic and Mesozoic paleosols. Am. J. Sci., 291, 377–400.Google Scholar
  3. Chacko, T., Mayeda, T.K., Clayton, R.N. and Goldsmith, J.R. (1991) Oxygen and carbon isotope fractionations between CO2 and calcite. Geochim. Cosmochim, Acta, 55, 2867–82.Google Scholar
  4. Coplen, T.B. (1996) New guidelines for reporting stable hydrogen, carbon, and oxygen isotope-ratio data. Geochim. Cosmochim. Acta, 60, 3359–60.Google Scholar
  5. Craig, H. (1953) The geochemistry of the stable carbon isotopes. Geochim. Cosmochim. Acta, 3, 53–92.Google Scholar
  6. Deines, P. (1980) The isotopic composition of reduced organic carbon, in Handbook of Environmental Isotope Geochemistry (eds P. Fritz and J. Ch. Fontes). Amsterdam: Elsevier, pp. 329–406.Google Scholar
  7. Deines, P. (1989) Stable isotope variations in carbonatites, in Carbonaties, Genesis and Evolution (ed. K. Bell). London: Hyman, pp. 301–59.Google Scholar
  8. Freyer, H.D. and Belacy, N. (1983) 13C/12C records in northern hemispheric trees during the past 500 years–anthropogenic impact and climatic superpositions. J. Geophys. Res., 88, 6844–52.Google Scholar
  9. Friedli, H., Lötscher, H., Oeschger, H., Siegenthaler, U. and Stauffer, B. (1986) Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature, 324, 237–8.Google Scholar
  10. Friedman, I. and O'Neil, J.R. (1977) Compilation of stable isotope fractionation factors of geochemical interest, in Data of Geochemistry, 6th edn, Geological Survey Professional Paper 440–KK (ed. M. Fleischer). Washington, DC: US. Govt. Printing Office.Google Scholar
  11. Friedman, U. and O'Neil, J.R. (1977) Compilation of stable isotope fractionation factors of geochemical interest, in Data of Geochemistry, 6th edn, Geological Survey Professional Paper 440-KK (ed. M. Fleischer). Washington, DC: US. Govt. Printing Office.Google Scholar
  12. Hayes, J.M., Kaplan, I.R. and Wedeking, K.W. (1983) Precambrian organic geochemistry, Preservation of the record, in Earth's Earliest Biosphere, its Origin and Evolution (ed. J.W. Schopf). Princeton: Princeton University Press, pp. 93–134.Google Scholar
  13. Hoefs, J. (1997) Stable isotope Geochemistry, 4th edn. Berlin: Springer, 201 pp.Google Scholar
  14. Holser, W.T., Schidlowski, M., Mackenzie, F.T. and Maynard, J.B. (1988) Geochemical cycles of carbon and sulfur, in Chemical Cycles in the Evolution of the Earth (eds. C.B. Gregor, R.M. Garrels, F.T. Mackenzie and J.B. Maynard). New York: John Wiley & Sons, pp. 105–73.Google Scholar
  15. Karhu, J.A. and Holland, H.D. (1996) Carbon isotopes and the rise of atmospheric oxygen. Geology, 24, 867–70.Google Scholar
  16. Kaufman, A.J. and Knoll A.H. (1995) Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biochemical implications. Precambrian Res., 73, 27–49.Google Scholar
  17. Keeling, C.D. (1958) The concentration and isotopic abundance of atmospheric carbon dioxide in rural areas. Geochim. Cosmochim. Acta, 13, 322–34.Google Scholar
  18. Keeling, C.D. (1961) The concentration and isotopic abundances of carbon dioxide in rural and marine air. Geochim, Cosmochim, Acta, 24, 277–98.Google Scholar
  19. Kerridge, J.F. (1985) Carbon, hydrogen and nitrogen in carbonaceous chondrites: Abundances and isotopic compositions in bulk samples. Geochim. Cosmochim. Acta, 49, 1707–14.Google Scholar
  20. Kitchen, N.E. and Valley, J.W. (1995) Carbon isotope thermometry in marbles of the Adirondack Mountains, New York. J. Metamorph. Geol., 13, 577–94.Google Scholar
  21. Kroopnick, P.M. (1985) The distribution of 13C of ΣCO2 in the world oceans. Deep-Sea Res., 32, 57–84.Google Scholar
  22. Kyser, T.K. (1986) Stable isotope variations in the mantle. Mineral. Soc. Am. Rev. Mineral., 16, 141–64.Google Scholar
  23. Kyser, T.K. (1987) Equilibrium fractionation factors for stable isotopes, Mineral. Assoc. Canada, Short Course Handbook, 13, 1–84.Google Scholar
  24. Leuenberg, M., Siegenthaler, U. and Langway, C.C. (1992) Carbon isotope composition of atmospheric CO2 during the last ice age from an Antarctic ice core. Nature, 357, 488–90.Google Scholar
  25. Mook, W.G., Koopman, M., Carter, A.F. and Keeling, C.D. (1983) Seasonal, latitudional and secular variations in the abundance and isotopic ratios of atmospheric carbon dioxide. I. Results from land stations. J. Geophys. Res., 88, 10915–33.Google Scholar
  26. O'Neil, J.R. (1986) Theoretical and experimental aspects of isotopic fractionation. Mineral. Soc. Am. Rev., 16, 1–40.Google Scholar
  27. Ott, U. (1993) Interstellar grains in meteorites. Nature, 364, 25–33.Google Scholar
  28. Park, R. and Epstein, S. (1960) Carbon isotope fractionation during photosynthesis. Geochim. Cosmochim. Acta, 21, 110–26.Google Scholar
  29. Romanek, C.S., Grossman, E.L. and Morse, J.W. (1992) Carbon isotope fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochim. Cosmochim. Acta, 56, 419–30.Google Scholar
  30. Rosenbaum, J. and Sheppard, S.M.F. (1986) An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochim. Cosmochim. Acta, 50, 1147–50.Google Scholar
  31. Schidlowski, M. and Aharon, P. (1992) Carbon cycle and carbon isotope record: Geochemical impact of life over 3.8 Ga of Earth history, in Early Organic Evolution: Implications for Mineral and Energy Resources (eds M. Schidlowski, S. Golubic, M.M. Kimberley and P.A. Trudinger). Berlin: Springer, pp. 147–75.Google Scholar
  32. Schidlowski, M., Hayes, J.M. and Kaplan, I.R. (1983) Isotopic inference of ancient biochemistries: Carbon, sulfur, hydrogen and nitrogen, in Earth's Earliest Biosphere, its Origin and Evolution (ed. J.W. Schopf). Princeton: Princeton University Press, pp. 149–86.Google Scholar
  33. Sheppard, S.M.F. and Schwarcz, H.P. (1970) Fractionation of carbon and oxygen isotopes and magnesium between coexisting metamorphic calcite and dolomite. Contrib. Mineral. Petrol., 26, 161–98.Google Scholar
  34. Turner, J.V. (1982) Kinetic fractionation of carbon-13 during calcium carbonate precipitation. Geochim. Cosmochim. Acta, 46, 1183–92.Google Scholar
  35. Valley, J.W. (1986) Stable isotope geochemistry of metamorphic rocks. Mineral. Soc. am. Rev. Mineral., 16, 445–89.Google Scholar
  36. Veizer, J., Holser, W.T. and Wilgus, C.K. (1980) Correlation of 13C/12C and 34S/32S secular variations. Geochim. Cosmochim, Acta, 44, 579–87.Google Scholar
  37. Wachter, E.A. and Hayes, J.M. (1985) Exchange of oxygen isotopes in carbon dioxide-phosphoric acid systems. Chem. Geol. (Isotope Geosci. Sect.), 52, 365–74.Google Scholar
  38. Wefer, G. and Berger, W.H. (1991) Isotope paleontology: growth and composition of extant calcareous species. Mar. Geol., 100, 207–48.Google Scholar
  39. Yapp, C.J. and Poths, H. (1996) Carbon isotopes in continental weathering environments and variations in ancient atmospheric CO2 pressure. Earth Planet, Sci. Lett., 137, 71–82.Google Scholar
  40. Zhang, J., Quay, P.D. and Wilbur, D.O. (1995) Carbon isotope fractionation during gas–water exchange and dissolution of CO2. Geochim. Cosmochim. Acta, 59, 107–14.Google Scholar

Cross-references

  1. Morse, J.W. and Mackenzie, F.T. (1990) Geochemistry of Sedimentary Carbonates. Amsterdam: Elsevier, 707 pp.Google Scholar

Cross-references

  1. Calcium; Calcium carbonate and the carbonic acid systems; Carbonate sediments;  Dolomite and dolomitization;  Earth's ocean geochemistry;  Fluid–rock interactions;  Geochemistry of sediments
  1. Bathurst, R.G.C. (1975) Carbonate Sediments and their Diagenesis. Developments in Sedimentology 12. 2nd edn. Amsterdam: Elsevier, 658 pp.Google Scholar
  2. Bhattacharyya, A. and Friedman, G.M. (1983) Modern Carbonate Environments. Benchmark Papers in Geology, Vol. 74. Stroudsburg: Hutchinson Ross, 376 pp.Google Scholar
  3. Lees, A. (1975) Possible influence of salinity and temperature on modern shelf carbonate sedimentation. Marine Geol., 19, 159–98.Google Scholar
  4. Milliman, J.D. (1974) Marine Carbonates. New York: Springer-Verlag, 375 pp.Google Scholar
  5. Morse, J.W. and Mackenzie, F.T. (1990) Geochemistry of Sedimentary Carbonates. Developments in Sedimentology 40. Amsterdam: Elsevier, 707 pp.Google Scholar
  6. Nelson, C.S. (ed.) (1988) Non-tropical shelf carbonates–modern and ancient. Sediment. Geol., 60, 367 pp.Google Scholar
  7. Renaut, R.W. and Last, W.M. (1994) Sedimentology and Geochemistry of Modern and Ancient Salt Lakes. Tulsa: Society of Economic Paleontologists and Mineralogists Special Publication No.50.Google Scholar
  8. Scoffin, T.P. (1987) An Introduction to Carbonate Sediments and Rocks. Glasgow: Blackie, 274 pp.Google Scholar
  9. Tucker, M.E. and Wright, V.P. (1990) Carbonate Sedimentology. Oxford: Blackwell Scientific Publications, 482 pp.Google Scholar
  10. Warme, J.E., Douglass, R.G. and Winterer, E.L. (eds) (1981) The Deep Sea Drilling Project: A Decade of Progress. Tulsa: Society of Economic Paleontologists and Mineralogists Special Publication No. 32, 564 pp.Google Scholar
  1. Ahrland, S. (1973) Thermodynamics of the stepwise formation of metal-ion complexes in aqueous solution. Struct. Bond., 15, 167–88.Google Scholar
  2. Anderegg, G. (1971) Multidentate ligands, in Coordination Chemistry (ed. A.E. Martell). New York: Van Nostrand and Reinhold, pp. 427–90.Google Scholar
  3. Means, J.L. and Alexander, C.A. (1981) The environmental biogeochemistry of chelating agents and recommendations for the disposal of chelated radioactive wastes. Nucl. Chem. Waste Manag., 2, 183–96.Google Scholar
  4. Palmer, D.A. and Bell, J.L.S. (1994) Aluminum speciation and equilibria in aqueous solution: IV. A potentiometric study of aluminum acetate complexation in acidic NaCl brines to 150°C. Geochim. Cosmochim. Acta, 58, 651–9.Google Scholar
  5. Ridley, M.K., Palmer, D.A., Wesolowski, D.J. and Kettler, R.M. (1998) Potentiometric and solubility studies of association quotients of aluminum malonate complexation in NaCl media to 75°C. Geochim. Cosmochim. Acta, 62, 2279–91.Google Scholar
  6. Schwarzenbach, G. (1952) Der chelateffekt. Helv. Chim. Acta, 35, 2344–59.Google Scholar
  1. Ganguly, J. (ed.)(1991). Diffusion, Atomic Ordering, and Mass Transport. New York: Springer-Verlag, 567 pp.Google Scholar
  2. Ganguly, J. and Saxena, S.K. (1987) Mixtures and Mineral Reactions. New York: Springer-Verlag, 291 pp.Google Scholar
  3. Hofmann, A.W., Giletti, B.J., Yoder, H.S. and Yund, R.A.(eds) (1974) Geochemical Transport and Kinetics. Washington: Carnegie Institution of Washington Publ., 353 pp.Google Scholar
  4. Jena, A.K. and Chaturvedi, M.C. (1992) Phase Transformations in Materials. Englewood Cliffs, NJ: Prentice Hall, 482 pp.Google Scholar
  5. Lasaga, A.C. (1998) Kinetic Theory in the Earth Sciences. Princeton: Princeton University Press, 728 pp.Google Scholar
  6. Lasaga, A.C. and Kirkpatrick, R.J. (eds). (1981) Kinetics of Geochemical Processes. Reviews in Mineralogy, Vol. 8. Washington, DC: Mineralogical Society of America, 398 pp.Google Scholar
  7. Saxena, S.K. (ed) (1982) Advances in Physical Geochemistry, Vol. 2. New York: Springer-Verlag, 353 pp.Google Scholar
  8. Saxena, S.K. (ed.)(1983) Kinetics and Equilibrium in Mineral Reactions. New York: Springer-Verlag, 273 pp.Google Scholar
  9. Stumm, W. and Morgan, J.J. (1996) Aquatic Chemistry. New York: Wiley, 1022 pp.Google Scholar
  10. Thompson, A.B. and Rubie, D.C. (eds) (1985) Metamorphic Reactions: Kinetics, Textures, and Deformation. New York: Springer-Verlag, 291 pp.Google Scholar
  11. Zhang, Y. (1994) Reaction kinetics, geospeedometry, and relaxation theory. Earth Planet. Sci. Lett., 122, 373–91.Google Scholar
  12. Zhang, Y., Solper, E.M. and Thinger, P.D. (1995) Kinetics of the reaction H2O +O = 2OH in rhyolitic and albitic glasses: preliminary results. Am. Mineral., 80, 593–612.Google Scholar
  1. Correns, C.W. (1956) The geochemistry of the halogens, in Physics and Chemistry of the Earth, Vol. 1 (ed. L.H. Ahrens). New York: Pergamon Press, pp. 181–233.Google Scholar
  2. Hanor, J.S. (1983) Fifty years of development of thought on the origin and evolution of subsurface sedimentary brines, in Revolution in the Earth Sciences: Advances in the Past Half Century (ed. S.J. Boardman). Dubuque: Kendall/Hunt, pp. 99–111.Google Scholar
  3. Kaufmann, R.S., Frape, S.K., McNutt, R. and Eastoe, C. (1993) Chlorine stable isotope distribution of Michigan Basin Formation waters. Appl. Geochem., 8, 403–7.Google Scholar
  4. Phillips, F.M., Marttick, J.L., Duval, T.A., Elmore, D. and Kubik, P.W. (1988) Chlorine-36 and tritium from nuclear weapons fallout as tracers for long-term liquid and vapor movement in desert soils. Water Resources Res., 24, 1877–91.Google Scholar
  5. Schilling, J.-G., Unni, C.K. and Bender, M.L. (1978) Origin of chlorine and bromine in the oceans. Nature, 273, 631–6.Google Scholar
  1. Charlet, L. and Manceau A. (1992) X-ray absorption spectroscopic study of the sorption of Cr(III) at the oxide-water interface. J. Colloid interface Sci., 148, 443–58.Google Scholar
  2. Elderfield, H. (1970) Chromium speciation in sea water. Earth Planet. Sci. Lett., 9, 10–16.Google Scholar
  3. Deng B. and Stone A.T. (1996) Surface catalyzed chromium (VI) reduction: reactivity comparisons of different organic reductants and different oxide surfaces. Environ. Sci. Technol., 30, 2484–94.Google Scholar
  4. Ilton, E.S. and Veblen D.R. (1994) Chromium sorption by phlogopite and biotite in acidic solutions at 25°C: insights from X-ray photoelectron spectroscopy and electron microscopy. Geochim. Cosmochim. Acta, 58, 2777–88.Google Scholar
  5. Kaczynski, S.E. and Kieber R. (1993) Aqueous trivalent chromium photoproduction in natural waters. Environ. Sci. Technol. 27, 1572–6.Google Scholar
  6. Loveley, D.R. and Phillips, E.J.P. (1994) Reduction of chromate by Desulfovibrio vulgaris and its c(sub)3 cytochrome. Appl. Environ. Microbiol., 60, 726–8.Google Scholar
  7. Nriagu, J.O. and Niebor, E. (eds) (1988) Chromium in the Natural and Human Environment. New York: Wiley & Sons (a number of pertinent chapters).Google Scholar
  8. Peterson, M.L., Brown, G.E., Jr. and Parks, G.A. (1996) Direct XAFS evidence for heterogeneous redox reaction at the aqueous chromium/magnetite interface. Colloid Surf. A, 107, 77–88.Google Scholar
  9. Matzat, K. (1972) Chromium, in Handbook of Geochemistry, Vol. II-3 (ed. K.H. Wedepohl). Berlin: Springer Verlag, p. 24A.Google Scholar
  10. Shiraki, K. (1978) Chromium, in Handbook of Geochemistry, Vol. II-3 (ed. K.H. Wedepohl). Berlin: Springer-Verlag, pp. 24B–24O.Google Scholar
  11. Sutton, S.R. et al. (1993) Reduced chromium in olivine grains from lunar basalt 15555: X-ray absorption near edge structure (XANES). Geochim. Cosmochim. Acta, 55, 461–8.Google Scholar
  1. Clapeyron, B.P.E. (1883) Mémoir sur la Puissance Motrice de la Chaleur. Paris.Google Scholar
  2. Nordstrom, D.K. and Munoz, J.L. (1985) Geochemical Thermodynamics. Melano Park, CA: Benjamin/Cummings Publishing Co., 477 pp.Google Scholar
  3. Philpotts, A.R. (1990) Principles of Igneous and Metamorphic Petrology. Englewood Cliffs, NJ: Prentice Hall., 498 pp.Google Scholar
  1. Fritz, S.J. (1986) Ideality of clay membranes in osmotic processes: a review. Clays Clay Miner. 34, 214–23.Google Scholar
  2. Fritz, S.J. and Eady, C.D. (1985) Hyperfiltration-induced precipitation of calcite. Geochim. Cosmochim. Acta, 49, 761–8.Google Scholar
  3. Fritz, S.J. and Whitworth, T.M. (1994) Hyperfiltration-induced fractionation of lithium isotopes: ramifications relating to representativeness of aquifer sampling. Water Resources Res., 30, 225–35.Google Scholar
  4. Katchalsky, A. and Curran, P.F. (1965) Biophysics. Cambridge: Harvard University Press, 248 pp.Google Scholar
  5. Kharaka, Y.K. and Berry, F.A.F. (1973) Simultaneous flow of water and solutes through geologic membranes, I. Experimental investigation. Geochim. Cosmochim. Acta, 37, 2577–603.Google Scholar

Cross-references

  1. Benson, L.V. (1982) A tabulation and evaluation of ion exchange data on smectites. Environ. Geol., 4, 23–7.Google Scholar
  2. Bolt, G.H. (ed.) (1982) Soil Chemistry B: Physico-Chemical Models, Developments in Soil Science 5B. Amsterdam: Elsevier, 527 pp.Google Scholar
  3. Grim, R.E. (1968) Clay Mineralogy. New York: McGraw-Hill, 596 pp.Google Scholar
  4. Sposito, G. (1981) Cation exchange in soils: an historical and theoretical perspective, in Chemistry in the Soil Environment (ed. M. Stelly). American Society of Agronomy Special Publication number 40, pp. 13–30.Google Scholar
  5. Xu, S. and Harsh, J.B. (1992) Hard and soft acid-base model verified for monovalent cation selectivity. Soil Sci. Soc. Am. J., 54, 1596–601.Google Scholar
  1. Cohen, A.D. and Spackman, W. (1980) Phytogenic organic sediments and sedimentary environments in the Everglades–Mangrove complex. Part III. The alteration of plant material in peats and the origin of coal macerals. Palaeontographica, 172B, 125–49.Google Scholar
  2. Cohen, A.D., Spackman, W. and Raymond, R. (1987) Interpreting the characteristics of coal seams from chemical, physical and petrographic studies for peat deposits, in Coal and Coal-bearing Strata (ed. A.C. Scott). London: Geological Society Special Publication No. 32, pp. 107–25.Google Scholar
  3. DiMichele, W.A. and Phillips, T.L. (1994) Paleobotanical and paleoecological constraints on models of peat formation in the Late Carboniferous of Euramerica. Palaeogeogr., Palaeoclimatol., Palaeoecol., 106, 39–90.Google Scholar
  4. International Committee for Coal Petrology (1971) International Handbook of Coal Petrology–Supplement to the Second Edition. Paris: Centre National de la Recherche Scientifique, Paris.Google Scholar
  5. International Committee for Coal Petrology (1994) ICCP System 1994, Vitrinite classification. International Committee for Coal and Organic Petrology, 24 pp.Google Scholar
  6. Koch, J. (1969) Mikropetrographische Untersuchungen and einigen organischen Kompoenten Jungpleistozaner und holozaner Torfe Suddeutschlands und der Schweiz. Geology Jb., 87, 333–60.Google Scholar
  7. Moore, T.A. (1990) An Alternative Method for Sampling and Petrographically Characterizing an Eocene Coal Bed, Southeast Kalimantan, Indonesia. Lexington: University of Kentucky, 240 pp.Google Scholar
  8. Moore, T.A. and Ferm, J.C. (1992) Composition and grain-size of an Eocene coal bed in southeastern Kalimantan, Indonesia. Int. J. Coal Geol., 21, 1–30.Google Scholar
  9. Moore, T.A. and Hilbert, R.E. (1992) Petrographic and anatomical characteristics of plant material from two peat deposits of Holocene and Miocene age, Kalimantan, Indonesia. Rev. Palaeobot. Palynol., 72, 199–227.Google Scholar
  10. Nas, C. (1994) Spatial Variations in the Thickness and Coal Quality of the Sangatta Seam, Kutei Basin, Kalimantan, Indonesia. University of Wollongong.Google Scholar
  11. Quick, J.C. (1992) Fundamental Characterization of New Zealand Bituminous Coal for Prediction of Carbonization Behaviour–With Special Emphasis on Fluorometric Analysis. University of Canterbury, 330 pp.Google Scholar
  12. Schneider, W. (1992) Floral successions in Miocene swamps and bogs of central Europe. Z. Geol. Wiss., 20, 555–70.Google Scholar
  13. Schneider, W. (1995) Palaeohistological studies on Miocene brown coals of Central Europe. Int. J. Coal Geol., 28, 229–48.Google Scholar
  14. Scott, A.C. and Collinson, M.E. (1978) Organic sedimentary particles: results from scanning electron microscope studies of fragmentary plant material, in Scanning Electron Microscopy in the Study of Sediments (ed. W.B. Whalley). Norwich, UK: Geo Abstracts, pp. 137–67.Google Scholar
  15. Shearer, J.C. and Moore, T.A. (1994a) Grain-size and botanical analysis of two coal beds from the South Island of New Zealand. Rev. Palaeobot. Palynol., 80, 85–114.Google Scholar
  16. Shearer, J.C. and Moore, T.A. (1994b) Botanical control on banding character in two New Zealand coal beds. Palaeog., Palaeoclimatol. Palaeoecol., 110, 11–28.Google Scholar
  17. Shearer, J.C., Moore, T.A. and Demchuk, T.D. (1995) Delineation of the distinctive nature of Tertiary coal beds. Int. J. Coal Geol., 28, 71–98.Google Scholar
  18. Stach, E., Machowsky, M.-T., Teichmüller, M., Taylor, G.H., Chandra, D. and Teichmüller, R. (1982) Stach's Textbook of Coal Petrology. Berlin: Gebruder Bonntraeger, 535 pp.Google Scholar
  19. Stopes, M.C. (1919) On the four visible ingredients in banded bituminous coal. Proc. R. Soc., Ser. B., 90, 470–87.Google Scholar
  20. Stopes, M.C. (1935) On the petrology of banded bituminous coals. Fuel, 14, 4–13.Google Scholar
  21. Teichmüller, M. (1982) Fluoreszenz von Liptiniten und Vitriniten in Beziehung zu Inkohlungsgrad und Verkokungsverhalten. Geologisches Landesamt Nordrhein-Westfalen, Krefeld, 119 pp.Google Scholar
  22. Teichmüller, M. (1989) The genesis of coal from the viewpoint of coal petrology. Int. J. Coal Geol., 12, 1–87.Google Scholar
  23. Thiessen, R. (1920) Structure in Paleozoic bituminous coals. US Bur. Mines Bull., 117, 296 pp.Google Scholar
  24. Thiessen, R. (1937) Classification of coal from the viewpoint of a paleobotanist. Trans. Am. Inst. Mining Metall. Eng. 88, 419–37.Google Scholar
  25. Thiessen, R. and Sprunk, G.C. (1941) Coal paleobotany. US Bureau of Mines Technical Paper, 631, 56 pp.Google Scholar
  26. Winston, R.B. (1989) Identification of plant megafossils in Pennsylvanian-age coal. Rev. Palaeobat. Palynol., 57, 265–76.Google Scholar

Cross-references

  1.  Biomarker: coals; Coal: origin and diagenesis; Coal: types and characteristics; Coal: vitrinite reflectance and maturity assessment;  Organic geochemistry
  1. Bustin, R.M. (1989) Diagenesis of kerogen, in GAC/MAC Short Course–Burial Diagenesis, Vol. 15 (ed. I. Hutchinson), pp. 1–38.Google Scholar
  2. Diessel, C.F.K. (1992) Coal–bearing Depositional Systems. New York: Springer-Verlag, 721 pp.Google Scholar
  3. Tissot, B.P. and Welte, D.H. (1984) Petroleum Formation and Occurrence, 2nd edn. New York: Springer-Verlag, 699 pp.Google Scholar

Cross-references

  1.  Biomarker: coals;  Biomarker: higher plant; Coal: organic petrography; Coal: types and characteristics; Coal: vitrinite reflectance and maturity assessment;  Diagenesis;  Organic geochemistry;  Peat;  Sedimentary fluids
  1. Cameron, A.R. (1978) Megascopic description of coal with particular reference to seams in southern Illinois, in Field Description of Coal, ASTM STP 661 (ed. R.R. Dutcher). Philadelphia, PA: American Society for Testing Materials, pp. 9–32.Google Scholar
  2. Davis, A. (1978) Compromise in coal seam description, in Field Description of Coal, ASTM STP 661 (ed. R.R. Dutcher). American Society for Testing Materials, pp. 33–40.Google Scholar
  3. Esterle, J.S. and Ferm, J.C. (1986) Relationship between petrographic and chemical properties and coal seam geometry, Hance seam, Breathitt Formation, southeast Kentucky. Int. J. Coal Geol., 6, 199–214.Google Scholar
  4. Esterle, J.S., O'Brien, G. and Kojovic, T. (1994) Influence of coal texture and rank on breakage energy and resulting size distributions in Australian coals. Proc. 6th Aust. Coal Sci. Conf. Newcastle, 175–81.Google Scholar
  5. Esterle, J.S., O'Brien, G.O. and Moore, T.A. (1995) A comparison of breakage behavior for New Zealand and Australian coals. Proc. 6th NZ Coal Conf., 2, 373–83.Google Scholar
  6. George, A.M. (1982) Latrobe Valley brown coal-lithotypes: macerals: coal properties. Aust. Coal Geol., 4, 111–30.Google Scholar
  7. Hower, J.C., Graese, A.M. and Klapheke, J. (1987) Influence of microlithotype composition on Hargrove grindability for selected eastern Kentucky coals. Int. J. Coal Geol., 7, 227–44.Google Scholar
  8. Moore, T.A. (1990) An Alternative Method for Sampling and Petrographically Characterizing an Eocene Coal Bed, Southeast Kalimantan, Indonesia. Lexington: University of Kentucky, 240 pp.Google Scholar
  9. Moore, T.A. (1995) Developing models for spatial prediction of mining and utilisation potentials in coal seams: An example from the Greymouth Coalfield. In: Proc. 6th NZ Coal Conf., 2, 385–402.Google Scholar
  10. Moore, T.A. (1996) Rock and coal type distribution in the Greymouth area: applications for mining. Proc. 29th Ann. Conf. Aust. Inst. Mining Metall., 200–27.Google Scholar
  11. Moore, T.A. and Ferm J.C. (1992) Composition and grain-size of an Eocene coal bed in southeastern Kalimantan, Indonesia. Int. J. Coal Geol., 21, 1–30.Google Scholar
  12. Moore, T.A., Ferm, J.C. and Weisenfluh, G.A. (1991) Guide to Eocene Coal Types in Kalimantan Selatan, Indonesia. Lexington: University of Kentucky.Google Scholar
  13. Moore, T.A., Shearer, J.C. and Esterle, J.S. (1993) Quantitative macroscopic textural analysis. Soc. Org. Petrol. News., 9, 13–16.Google Scholar
  14. Newman, J. and Newman, N.A. (1982) Reflectance anomalies in Pike River coals: evidence of variability in vitrinite type, with implications for maturation studies and’ suggate rank’. NZ J. Geol. Geophys., 25, 233–43.Google Scholar
  15. Robinson, J.M. (1990) Lignin, land plants and fungi: biological evolution affecting Phanerozoic oxygen balance. Geology, 15, 607–10.Google Scholar
  16. Schopf, J.M. (1960) Field description and sampling of coal beds. US Geol. Surv. Bull., 1111-B, 25–67.Google Scholar
  17. Shearer, J.C. and Moore, T.A. (1994) Grain-size and botanical analysis of two coal beds from the South Island of New Zealand. Rev. Palaeobot. Palynol., 80, 85–114.Google Scholar
  18. Shearer, J.C., Moore, T.A. and Demchuk, T.D. (1995) Delineation of the distinctive nature of Tertiary coal beds. Int. J. Coal Geol., 28, 71–98.Google Scholar
  19. Smyth, M. and Buckley, M.J. (1993) Statistical analysis of the microlithotype sequences in the Bulli Seam, Australia, and relevance to permeability for coal gas. Int. J. Coal Geol., 22, 167–87.Google Scholar
  20. Stach, E., Machowsky, M.-T., Teichmüller, M., Taylor, G.H., Chandra, D. and Teichmüller, R. (1982) Stach's Textbook of Coal Petrology. Berlin: Gebruder Bonntraeger, 535 pp.Google Scholar
  21. Stopes, M.C. (1919) On the four visible ingredients in banded bituminous coal. Proc. R. Soc., Ser. B, 90, 470–87.Google Scholar
  22. Suggate, R.P. (1959) New Zealand Coals. Their Geological Setting and Its Influence on Their Properties. New Zealand Department of Scientific and Industrial Research.Google Scholar
  23. Thiessen, R. (1920) Structure in Paleozoic bituminous coals. USBM Bull., 117, 296 pp.Google Scholar
  24. Warwick, P.D. and Stanton, R.W. (1988) Petrographic characteristics of the Wyodak-Anderson coal bed (Paleocene), Powder River Basin, Wyoming, USA. Org. Geochem., 12, 389–99.Google Scholar

Cross-references

  1.  Biomarker: coals; Coal: organic petrography; Coal: origin and diagenesis; Coal: vitrinite reflectance and maturity assessment;  Organic geochemistry
  1. van Krevelen, D.W. (1961) Coal. Typology-Chemistry-Physics-Constitution. Amsterdam: Elsevier, 513 pp.Google Scholar
  2. Schenk, H.J. et al. (1990) Structural modification of virtinite and alginite concentrates during pyrolytic maturation at different heating rates. Org. Geochem., 16, 943–50.Google Scholar
  3. Sweeney, J.J. and Burnham, A.K. (1990) Evolution of a simple model of vitrinite reflectance based on chemical kinetics. American Association of Petroleum Geologists, Bulletin 74, 1559–70.Google Scholar
  4. Taylor, G.H. et al. (1998) Organic Petrology. Stuttgart: Gebrüder Bornträger, 704 pp.Google Scholar

Cross-references

  1.  Biomarker: coals; Coal: organic petrography; Coal: origin and diagenesis; Coal: types and characteristics;  Occurrence of organic facies;  Organic geochemistry;  Peat;  Rock-eval pyrolysis
  1. Merian, E. (ed.) (1991) Metals and Their Compounds in the Environment. Occurrence, Analysis and Biological Relevance. Weinheim: VCH, 1438 pp.Google Scholar
  2. Morel, F.M.M. and Hering J.G. (1993) Principles and Applications of Aquatic Chemistry. New York: John Wiley & Sons, 588 pp.Google Scholar
  3. Salomons, W. and Förstner U. (1984) Metals in the Hydrocycle. Berlin: Springer, 349 pp.Google Scholar
  4. Stumm, W. and Morgan J.J. (1996) Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd edn. New York: John Wiley & Sons, 1022 pp.Google Scholar
  5. Wedepohl, K.H. (ed.) (1969, 1972, 1974, 1978) Handbook of Geochemistry. Berlin: Springer.Google Scholar
  1. Bird, R.P., Stewart, W.E. and Lightfoot, E.N. (1960) Transport Phenomena. New York: Wiley, 780 pp.Google Scholar
  2. Buffle, J. and van Leeuwen, H.P. (ed.) (1992) Environmental Particles, Vol. 1. IUPAC Environmental Analytical and Physical Chemistry Series. Chelsea, MI: Lewis Publishers, 554 pp.Google Scholar
  3. Buffle, J. and van Leeuwen, H.P. (ed.) (1993) Environmental Particles, Vol. 2. IUPAC Environmental Analytical and Physical Chemistry Series. Chelsea, MI: Lewis Publishers, 426 pp.Google Scholar
  4. Everett, D.H. (1972) Definitions, terminology and symbols in colloid and surface chemistry, part I, Pure Appl. Chem., 31, 579–638.Google Scholar
  5. Gregory, J. (1989) Fundamentals of flocculation. CRC Crit. Rev. Environ. Cont., 19, 185–230.Google Scholar
  6. Hirtzel, C.S. and Rajagopalan R. (1985) Colloidal Phenomena. Advanced Topics. Park Ridge: Noyes, 318 pp.Google Scholar
  7. Hochella, M.F. and White, A.F. (eds) (1990) Mineral-Water Interface Geochemistry. Reviews in Mineralogy, Vol. 23. Washington, DC: Mineralogical Society of America, 603 pp.Google Scholar
  8. Ives, K.J. (1978) The Scientific Basis of Flocculation. Alphen aan den Rijn: Sijthoff and Noordhoff., 369 pp.Google Scholar
  9. Lyklema, J. (1991) Fundamentals of Colloid and Interface Science, Vol. I: Fundamentals. London: Academic Press, 612 pp.Google Scholar
  10. Meakin, P. (1988) Fractal aggregates. Adv. Colloid. Interface Sci., 28, 249–331.Google Scholar
  11. Stumm, W. (1992) Chemistry of the Solid-Water Interface. Processes at the Mineral-Water and Particle-Water Interface in Natural Systems. New York: Wiley, 428 pp.Google Scholar
  12. Tanford, C. (1961) Physical Chemistry of Macromolecules. New York: Wiley, 710 pp.Google Scholar
  13. Van de Ven, T.G.M. (1989) Colloidal Hydrodynamics. New York: Academic Press, 582 pp.Google Scholar
  14. Vold, M.J. and Vold, R.D. (1964) Colloid Chemistry. The Science of Large Molecules, Small Particles, and Surfaces. New York: Reinhold, 118 pp.Google Scholar
  1. Barnes, H.L. (1979) Solubilities of ore minerals, in Geochemistry of Hydrothermal Ore Deposits, 2nd edn. (ed. H.L. Barnes). New York: Wiley & Sons, pp. 404–60.Google Scholar
  2. Brimhall, G.H. and Crerar, D.A. (1987) Ore fluids: magmatic to supergene. Rev. Mineral., 17, 235–321.Google Scholar
  3. Domenico, P.A. and Schwartz, F.W. (1990) Physical and Chemical Hydrogeology. New York: Wiley & Sons, 824 pp.Google Scholar
  4. Krauskopf, K.B. and Bird, D.K. (1995) Introduction to Geochemistry, 3rd edn. New York: McGraw-Hill, 647 pp.Google Scholar
  5. Pearson, R.G. (1963) Hard and soft acids and bases. J. Am. Chem. Soc., 85, 3533–40.Google Scholar
  6. Richardson, S.M. and McSween, H.Y. Jr. (1989) Geochemistry: pathways and Processes. Englewood Cliffs: Prentice-Hall, 488 pp.Google Scholar

Cross-references

  1. Chelation; Chemical kinetics; Clay minerals–ion exchange; Colloids;  Earth's ocean geochemistry;  Electronegativity;  Fluid–rock interactions;  Hydrothermal solutions;  Ionic radii;  Ore deposits;  Sedimentary fluids
  1. Baylis, S.A., Hall, K., and Jaumeau, E.J. (1994) The analysis of C1-C5 components of natural gas samples using gas chromatography–combustion–isotope ratio mass spectrometry. Organ. Geochem., 21, 777–86.Google Scholar
  2. Clayton, C.J. and Bjoraøy, M. (1994) Effect of maturity on 13C/12C ratios of individual compounds in North Sea oils. Organ. Geochem., 21, 737–50.Google Scholar
  3. Freeman, K.H., Hayes, J.M., Trendel, J.-M. and Albrecht, P. (1990) Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons. Nature, 343, 254–6.Google Scholar
  4. Hayes, J.M. (1993), Factors controlling 13C contents of sedimentary organic compounds: principles and evidence. Mar. Geol., 113, 111–25.Google Scholar
  5. Hayes, J.M., Freeman, K.H., Popp, B.N. and Hoham, C.H. (1990) Compound-specific isotope analysis: a novel tool for reconstruction of ancient biogeochemical processes, in Advances in Organic Geochemistry 1989 (eds B. Durand and F. Behar). Pergamon Press, pp. 1115–28.Google Scholar
  6. Jasper, J.P. and Hayes, J.M. (1990) A carbon isotope record of CO2 levels during the late Quaternary. Nature, 347, 462–4.Google Scholar
  7. Matthews, D.E. and Hayes, J.M. (1978) Isotope-ratio-monitoring gas chromatography mass spectrometry., Anal. Chem., 50, 1465–73.Google Scholar
  8. Merritt, D.A. and Hayes, J.M. (1994) Nitrogen isotopic analysis by isotope-ratio-monitoring gas chromatography-mass spectrometry. J. Am. Soc. Mass Spectrom., 5, 387–97.Google Scholar
  9. Merritt, D.A., Brand, W.A. and Hayes, J.M. (1994) Carbon isotopic analysis of atmospheric methane by isotope-ratio-monitoring gas chromatography–mass spectrometry. Org. Geochem., 21, 573–83.Google Scholar
  10. Merritt, D.A., Hayes, J.M. and Des Marais, D.J. (1995) Isotope-ratio-monitoring gas chromatography-mass spectrometry: methods for isotopic calibration. J. Geophys. Res., 100, 1317–26.Google Scholar
  11. Ricci, M.P., Merritt, D.A., Freeman, K.H. and Hayes, J.M. (1994) Acquisition and processing of data for isotope-ratio-monitoring gas chromatography-mass spectrometry. Organ. Geochem., 21, 561–72.Google Scholar
  12. Schoell, M., Schouten, S., Sinninghe Damsté, J.S., de Leeuw J.W. and Summons, R.E. (1994) A molecular organic carbon isotope record of Miocene climate changes. Science, 263, 1122–5.Google Scholar
  13. Summons, R.E. Jahnke, L.L. and Roksandic, Z. (1994) Carbon isotopic fractionation in lipids from methanotrophic bacteria: relevance for interpretation of the geochemical record of biomarkers. Geochim. Cosmochim. Acta, 58, 2853–63.Google Scholar
  1. Adriano, D.C. (1986) Trace Elements in the Terrestrial Environment. New York: Springer-Verlag, 533 pp.Google Scholar
  2. Baes, C.F. Jr. and Mesmer, R.E. (1976) The Hydrolysis of Cations. New York: Wiley-Interscience, 325 pp.Google Scholar
  3. Ball, J.W. and Nordstrom, D.K. (1991) User's mannual for WATEQ4F with revised thermodynamic data base and test cases for calculating speciation of major, trace and redox elements in natural waters. United States Geological Survey Open-File Rpt. 91–183.Google Scholar
  4. Bodek, I. et al. (1989) Environmental Inorganic Chemistry. New York: Pergamon Press, 835 pp.Google Scholar
  5. Boyle, E.A. (1977) Copper in natural waters, in Copper in the Environment (ed. J.O. Nriagu). New York: John Wiley and Sons, pp. 77–88.Google Scholar
  6. Faure, G. (1991) Principles and Application of Inorganic Geochemistry. New York: MacMillan Publishing Co., 626 pp.Google Scholar
  7. Hem, J.D. (1992) Study and Interpretation of the Chemical Characteristics of Natural Water. United States Geological Survey Water Supply Paper 2254.Google Scholar
  8. Hem, J.D. (1977) Reactions of metal ions at the surfaces of hydrous iron oxide. Geochim. Cosmochim. Acta, 41, 527–38.Google Scholar
  9. Krauskopf, K.B. and Bird, D.K. (1995) Introduction to Geochemistry. New York: McGraw-Hill.Google Scholar
  10. Leckie, J.O. and Davis, J.A. III (1977) Aqueous environmental chemistry of copper, in Copper in the Environment (ed. J.O. Nriagu). New York: John Wiley and Sons. pp. 88–122.Google Scholar
  11. Wedepohl, K.H. (ed.) (1978) Handbook of Geochemistry. New York: Springer-Verlag.Google Scholar
  1. Anders, E. and Ebihara, M. (1982) Solar-system abundances of the elements. Geochim. Cosmochim. Acta, 46, 2363–80.Google Scholar
  2. Anders, E. and Grevesse, N. (1989) Abundances of the elements; meteoritic and solar. Geochim. Cosmochim. Acta, 53, 197–214.Google Scholar
  3. Burbridge, E.M., Burbidge, G.R., Fowler, W.A. and Hoyle, F. (1957) Synthesis of the elements in stars. Rev. Mod. Phys., 29, 547–650.Google Scholar
  4. Cameron, A.G.W. (1973) Abundances of elements in the solar system. Space. Sci. Rev., 15, 121–46.Google Scholar
  5. Clarke, F.W. (1892) The relative abundance of the chemical elements. Washington Phil. Soc. Bull., 11, 131–42.Google Scholar
  6. Clayton, D.D. (1988) Stellar nucleosynthesis and chemical evolution of the solar neighbourhood, in Meteorites and the Early Solar System (eds J.F. Kerridge and M.S. Matthews). Tucson: University of Arizona Press, pp. 1020–62.Google Scholar
  7. Fowler, P.H. (1972) Evolution of the elements. Proc. R. Soc. Lond, A329, 1–16.Google Scholar
  8. Goldschmidt, V.M. (1937) Geochemische verteilungsgesetze der element IX, Skrifter utgitt av det Norske videnscaps-akademi i Oslo, I. Matematisk-naturvidenskapelig klasse, No. 4.Google Scholar
  9. Goldschmidt, V.M. (1954) Geochemistry (ed. A. Muir). Oxford: Clarendon Press, 760 pp.Google Scholar
  10. Meyer, J.-P. (1985) Solar-stellar outer atmospheres and energetic particles, and galactic cosmic rays. Astrophys. J. Suppl., 57, 173–204.Google Scholar
  11. Pagel, B.E.J. (1994) Chemical evidence on galaxy formation and evolution, in The Formation and Evolution of Galaxies (eds C. Munoz-Tunon and F. Sanchez). Cambridge University Press, p. 149.Google Scholar
  12. Penzias, A.A. (1979) The origin of the elements. Science, 205, 549–54.Google Scholar
  13. Suess, H.E. (1947) Uber kosmische kernhaufigkeifen. Zeitschr. Naturforsch., 2a, 311–604.Google Scholar
  14. Suess, H.E. and Urey, H.C. (1956) Abundances of the elements. Rev. Mod. Phys., 28, 53–74.Google Scholar
  15. Urey, H.C. (1952) Abundances of the elements. Phys. Rev., 88, 248–252.Google Scholar
  16. Urey, H.C. (1972) Abundances of the elements. Ann. NY Acad. Sci., 194, 35–44.Google Scholar
  17. Wefel, J.P. (1991) The composition of cosmic rays: an update, in Cosmic Rays, Supernovae and the Interstellar Medium (eds M.M. Shapiro, R. Silberberg and J.P. Wefel). NATO ASI Series C, Dordrecht: Kluwer Academic Publishers, Vol. 337, pp. 29–55.Google Scholar
  18. Woolum, D.S. (1988) Solar system abundances and processes of nucleosynthesis, in Meteorites and the Early Solar System (eds J.F. Kerridge and M.S. Matthews). Tuscon: University of Arizona Press, pp. 995–1020.Google Scholar
  1. Cerling, T.E. and Craig, H. (1994) Geomorphology and in-situ cosmogenic isotopes. Annu. Rev. Earth Planet. Sci., 22, 273–317.Google Scholar
  2. Elmore, D. and Phillips, F. (1987) Accelerator mass spectrometry for measurement of long-lived radioisotopes. Science, 236, 543–50.Google Scholar
  3. Faure, G. (1986) Principles of Isotope Geology, 2nd edn. New York: John Wiley and Sons, 598 pp. Google Scholar
  4. Kurz, M.D. and Brook, E.J. (1994) Surface exposure dating with cosmogenic nuclides, in Dating in Exposed and Surface Contexts (ed. C. Beek). Albuquerque: University of New Mexico Press, pp. 139–59.Google Scholar
  5. Lal, D. and Peters, B. (1967) Cosmic ray produced radioactivity on the Earth, in Handbuch der Physik (ed. S. Flugge). Vol. 46/2. Berlin: Springer-Verlag. pp. 551–612.Google Scholar
  6. Lal, D. (1991) cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth Planet. Sci. Lett., 104, 424–39.Google Scholar
  7. Roth, E. and Poty, B. (eds) (1989) Nuclear Methods of Dating. Dordrecht: Kluwer Academic Publishers, 600 pp.Google Scholar
  8. Vogt, S., Herzog, G.F. and Reedy, R.C. (1990) Cosmogenic nuclides in extraterrestrial materials. Rev. Geophys., 28, 253–75.Google Scholar
  1. Anonymous (1994) Instruments and Systems for Nuclear Spectroscopy. Oak Ridge, Tennessee: EG&G ORTEC Nuclear Instruments, 317.Google Scholar
  2. Bartow, P.M. and Ledger, E.B. (1994) Determination of natural radioactivity in Wilcox lignite (Eocene), Eastern Texas. Gulf Coast Assoc. Geol. Soc. Trans., 44, 1–6. Google Scholar
  3. Denham, D.H. (1982) Analysis of environmental samples by chemical and physical means, in Handbook of Environmental Radiation (ed. Alfred W. Klement). Boca Raton, FL: CRC Press. pp. 155–72.Google Scholar
  4. Ettensohn, F.R., Fulton, L.P. and Kepferle, R.C. (1979) Use of scintillometer and gamma-ray logs for correlation and stratigraphy in homogeneous black shales. Geol. Soc. Am. Bull., 90, 828–49.Google Scholar
  5. Fertl, W.H., Chilingarian, G.V. and Yen, T.F. (1982) Use of natural gamma ray spectral logging in evaluation of clay minerals. Energy Sources, 6, 335–60.Google Scholar
  6. Gadeken, L.L., Arnold, D.M. and Smith, H.D. Jr. (1984) Applications of the Compensated Spectral Natural Gamma Tool. Paper read at the 25th Annual Society of Professional Well Log Analysts Symposium June 1984, in New Orleans, Louisiana.Google Scholar
  7. Klug, H.P. and Alexander, L.E. (1974) X-Ray Diffraction Procedures, 2nd edn. New York: Wiley, 966 pp.Google Scholar
  8. Ledger, E.B., Tieh, T.T. and Rowe, M.W. (1980) Delayed neutron activation determination of uranium in thirteen French rock reference samples. Geostandards Newsl., 4, 5–8.Google Scholar
  9. Ledger, E.B., Rowe, M.W. and Howard, J.M. (1988) Uranium contents of carbonatite minerals, Magnet Cove, Arkansas, Chem. Geol., 69, 165–9.Google Scholar
  10. Moore, D.M. and Reynolds R.C. (1997) X-Ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd edn. New York: Oxford University Press.Google Scholar
  11. Slaughter, T.A., Ledger, E.B. and Sartin, A.A. (1987) Lithology and strontium distribution of the De Queen formation at the Highland Gypsum Quarry, Highland, Arkansas. Gulf Coast Assoc. Geol. Soc. Trans., 37, 479–86.Google Scholar
  1. Holland, H. D. and Malinin, S.D. (1979) The solubility and occurrence of non-ore minerals, in The Geochemistry of Hydrothermal Ore Deposits (ed. H. L. Barnes). New York: John Wiley and Sons, pp. 461–508.Google Scholar
  1. Berry, F. J. and Vaughan, D. J., eds. (1985) Chemical Bonding and Spectroscopy in Mineral Chemistry. New York: Chapman and Hall, 325 pp.Google Scholar
  2. Bloss, F.D. (1971) Crystallography and Crystal Chemistry. New York: Holt, Rinehart and Winston, 545 pp.Google Scholar
  3. Boisen, M.B. Jr. and Gibbs, G. V. (1985) Mathematical Crystallography. Reviews in Mineralogy, Vol. 15. Washington: Mineralogical Society of America, 460 pp.Google Scholar
  4. Brady, P. V. (ed.) (1996) Physics and Chemistry of Mineral Surfaces. Boca Raton: CRC Press, 368 pp.Google Scholar
  5. Brown, I.D. and Shannon R. D. (1981) The bond–valence method: an empirical approach to chemical structure and bonding, in Structure and Bonding in Crystals, Vol. 2 (eds M. O'Keefe and A. Navrotsky). New York: Academic Press, pp. 1–31.Google Scholar
  6. Burdett, J. K. (1995) Chemical Bonding in Solids. New York: Oxford University Press, 319 pp.Google Scholar
  7. Burdett, J. K. and McLarnen, T. M. (1984) An orbital interpretation of Pauling's rules. Am. Mineral., 69, 601–21.Google Scholar
  8. Burns, G. and Glazer A. M. (1990) Space Groups for Solid State Scientists. San Diego: Academic Press, 343 pp.Google Scholar
  9. Burns, R. G. (1993) Mineralogical Applications of Crystal Field Theory. Cambridge: Cambridge University Press, 551 pp.Google Scholar
  10. Deer, W. A., Howie, R. A. and Zussman, J. (1992) An Introduction to the Rock-Forming Minerals. Essex: Longman Scientific & Technical, 696 pp.Google Scholar
  11. Durif, A. (1995) Crystal Chemistry of Condensed Phosphates. New York: Plenum Press, 408 pp.Google Scholar
  12. Evans, R. C. (1964) An Introduction to Crystal Chemistry. Cambridge: Cambridge University Press, 411 pp.Google Scholar
  13. Gibbs, G.V. (1982) Molecules as models for bonding in silicates. Am. Mineral., 67, 421–50.Google Scholar
  14. Griffen, D. T. (1992) Silicate Crystal Chemistry. New York: Oxford University Press, 442 pp.Google Scholar
  15. Hahn, T. (ed.) (1987) International Tables for Crystallography, Vol. A. Dordrecht: D. Reidel Publishing Company, 878 pp.Google Scholar
  16. Hazen, R. M. and Finger, L. W. (1982) Comparative Crystal Chemistry: Temperature, Pressure, Composition, and the Variation of Crystal Structure. New York: Wiley, 231 pp.Google Scholar
  17. Jaffe, H. W. (1988) Crystal Chemistry and Refractivity. Cambridge: Cambridge University Press, 335 pp.Google Scholar
  18. Kieffer, S. W. and Navrotsky, A. (eds) (1985) Microscopic to Macroscopic. Reviews in Mineralogy, Vol. 14. Washington: Mineralogical Society of America, 428 pp.Google Scholar
  19. Kostov, I.D. and Jordanka, M. (1982) Sulphide Minerals: Crystal Chemistry, Parageneses, and Systematics. Stuttgart: E. Schweizerbart'sche Verlagsbuchhandlung, 211 pp.Google Scholar
  20. Krebs, H. (1968) Fundamentals of Inorganic Crystal Chemistry. London: McGraw-Hill, 405 pp.Google Scholar
  21. Lasaga, A. C. and Kirkpatrick, R. J. (eds) (1981) Kinetics of Geochemical Processes. Reviews in Mineralogy, Vol. 8. Washington: Mineralogical Society of America, 398 pp.Google Scholar
  22. Megaw, H. D. (1973) Crystal Structures: A Working Approach. Philadelphia: Saunders, 563 pp.Google Scholar
  23. Pauling, L. (1929) The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc., 51, 1010–26.Google Scholar
  24. Price, G. D. and Ross N. L. (eds) (1992) The Stability of Minerals. London: Chapman and Hall, 368 pp.Google Scholar
  25. Putnis, A. and McConnell, J. D.C. (1980) Principles of Mineral Behaviour. New York: Elsevier, 257 pp.Google Scholar
  26. Salje, E. K.H. (1990) Phase Transitions in Ferroelastic and Co-Elastic Crystals. Cambridge: Cambridge University Press, 281 pp.Google Scholar
  27. Tilley, R. J.D. (1987) Defect Crystal Chemistry and its Applications. New York: Chapman and Hall, 236 pp.Google Scholar
  28. Tolédano, J. and Tolédano P. (1987) The Landau Theory of Phase Transitions. Singapore: World Scientific Publishing Co., 451 pp.Google Scholar
  29. Tossell, J. A. and Vaughan, D. J. (1992) Theoretical Geochemistry: Applications of Quantum Mechanics in the Earth and Mineral Sciences. New York: Oxford University Press, 524 pp.Google Scholar
  30. Vaughan, D. J. and Craig, J. R. (1978) Mineral Chemistry of Metal Sulfides. Cambridge: Cambridge University Press, 493 pp.Google Scholar
  31. Vaughan, D. J. and Pattrick, R. A.D. (eds) (1985) Mineral Surfaces. London: Chapman and Hall, 370 pp.Google Scholar
  1. Bethe, H. (1929) Termaufspaltung in Kristallen. Ann. Phys., 3, 133–206.Google Scholar
  2. Burns, R. G. (1985) Thermodynamic data from crystal field spectra. Rev. Mineral., 14, 277–316.Google Scholar
  3. Burns, R. G. (1993) Mineralogical Applications of Crystal Field Theory, 2nd edn. Cambridge: Cambridge University Press, 551 pp.Google Scholar
  4. Cotton, F. A. (1971) Chemical Applications of Group Theory, 2nd edn. New York: John Willey & Sons, 386 pp.Google Scholar
  5. Figgis, B. N. (1966) Introduction to Ligand Fields. New York: John Wiley & Sons, 351 pp.Google Scholar
  6. Rossman, G. R. (1988) Optical spectroscopy. Rev. Mineral., 18, 207–54.Google Scholar
  7. Tanabe, Y. and Sugano, S. (1954) On the absorption spectra of complex ions. J. Phys. Soc. Jpn, 9, 753–79.Google Scholar
  1. Crank, J. (1975) The Mathematics of Diffusion. Oxford: Clarendon Press, 414 pp.Google Scholar
  2. Huang, D. D. and Seinfeld J. H. (1992) Prediction of homogeneous nucleation free-energy change from the cell model of liquids. J. Colloid Interface Sci., 151, 258–87.Google Scholar
  3. Jena, A. K. and Chaturvedi, M. C. (1992) Phase Transformations in Materials. Englewood Cliffs, N.J: Prentice Hail, 482 pp.Google Scholar
  4. Journal of Crystal Growth (1967–present). Amsterdam: North-Holland.Google Scholar
  5. Kerr, R. C. (1995) Convective crystal dissolution. Contrib. Mineral. Petrol., 121, 237–46.Google Scholar
  6. Kirkpatrick R. J. (1981) Kinetics of crystallization of igneous rocks. Rev. Mineral., 8, 321–98.Google Scholar
  7. Kirkpatrick, R. J. (1983) Theory of nucleation in silicate melts. Am. Mineral., 68, 66–77.Google Scholar
  8. Lasaga, A. C. (1982) Toward a master equation in crystal growth. Am. J. Sci., 282, 1264–88.Google Scholar
  9. Liu, X. Y., Bennema, P. and van der Eerden J. P. (1992) Rough-flat-rough transition of crystal surfaces. Nature, 356, 778–90.Google Scholar
  10. Proussevitch, A. A., Sahagian, D. L. and Anderson, A. T. (1993) Dynamics of diffusive bubble growth in magmas: Isothermal case. J. Geophys. Res., 98, 22283–307.Google Scholar
  11. Zhang, Y., Walker, D. and Lesher, C. E. (1989) Diffusive crystal dissolution. Contrib. Mineral. Petrol., 102, 492–513.Google Scholar
  1. Allard, B., Olofsson, U., Torstenfeldt, B. and Kipatski, H. (1983) Sorption Behavior of Actinides in well-defined Oxidation States. Göteborg: Chalmers University of Technology, Dept. of Nuclear Chemistry, 05–15.Google Scholar
  2. Fuger, J. (1992) Thermodynamic properties of actinide aqueous species relevant to geochemical problems. Radiochim. Acta, 58/59, 81–91.Google Scholar
  3. Katz, J. J. and Seaborg, G. T. (1957) The Chemistry of the Actinide Elements. New York: John Wiley & Sons, 373 pp.Google Scholar
  4. Kim, J. I. (1993) The chemical behavior of transuranium elements and barrier functions in natural aquatic systems. Mat. Res. Soc. Symp. Proc., 294, 3–21.Google Scholar
  5. Lederer, C. M. and Shirley, V. S. (1978) Table of Radioactive Isotopes. New York: John Wiley & Sons.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Kathleen S. Smith
  • David W. Mittlefehldt
  • Sylvia Frisia
  • Cynthia E. A. Paimer
  • Charles A. Geiger
  • Austin Long
  • D. Lal
  • S. Krishnaswami
  • Peter S. Bakwin
  • Juha Karhu
  • Elizabeth A. Burton
  • Abigail M. Smith
  • Scott M. McLennan
  • Richard M. Kettler
  • Youxue Zhang
  • Ronald S. Kaufmann
  • Eugene S. Ilton
  • Jae-Young Yu
  • T. M. Whitworth
  • J. C. Shearer
  • R. M. Bustin
  • Ralf Littke
  • Achim Albrecht
  • Montserrat Filella
  • Jacques Buffle
  • Helen N. Mango
  • Roger E. Summons
  • Mark A. Williamson
  • Eric Thorson Brown
  • Ernest B. Ledger
  • Peter A. Rock
  • William H. Casey
  • Dana T. Griffen
  • Hans Keppler
  • Wolfgang H. Runde
  • Mary P. Neu
  • David R. Janecky

There are no affiliations available