Encyclopedia of Geochemistry

1999 Edition
| Editors: Clare P. Marshall, Rhodes W. Fairbridge

B

  • Kathleen S. Smith
  • David W. Mittlefehldt
  • Sylvia Frisia
  • Cynthia E. A. Paimer
  • Charles A. Geiger
  • Austin Long
  • D. Lal
  • S. Krishnaswami
  • Peter S. Bakwin
  • Elizabeth A. Burton
  • Abigail M. Smith
  • Scott M. McLennan
  • Richard M. Kettler
  • Youxue Zhang
  • Ronald S. Kaufmann
  • Eugene S. Ilton
  • Jae-Young Yu
  • T. M. Whitworth
  • J. C. Shearer
  • T. A. Moore
  • R. M. Bustin
  • Ralf Littke
  • Achim Albrecht
  • Montserrat Filella
  • Jacques Buffle
  • Helen N. Mango
  • Roger E. Summons
  • Mark A. Williamson
  • Eric Thorson Brown
  • Ernest B. Ledger
  • Peter A. Rock
  • William H. Casey
  • Dana T. Griffen
  • Hans Keppler
  • Wolfgang H. Runde
  • Mary P. Neu
  • David R. Janecky
Reference work entry
DOI: https://doi.org/10.1007/1-4020-4496-8_2
  • 2.3k Downloads

Barium

General properties

Barium (barite, from Gr., barys, ‘heavy’) is an alkaline earth metal with symbol Ba, atomic number 56, atomic weight 137.327, valence +2 (in nature), specific gravity 3.5 (20°C), melting point 727°C, boiling point 1897°C, electronic configuration [Xe]6s2. The mass numbers of its stable isotopes and their relative abundances are: 138 (71.70%), 137 (11.23%), 136 (7.854%), 135 (6.592%), 134 (2.417%), 130 (0.106%), and 132 (0.101%). There are 22 radioactive isotopes of barium known to exist. Casciarola first referred to barite in the literature in the 17th century, and barium was first separated by Sir H. Davy in 1808 using electrolysis.

Abundance

Barium abundance in the Earth's crust is estimated to be about 500 ppm. It ranks 14th among the elements in the order of abundance. The mean concentration of barium in igneous intrusive rocks is 728 ppm, in consolidated sediments is 538 ppm, and the estimated mean in sea water is about 20 ppb.

Mineralogy

Metallic barium...

Keywords

Source Rock Black Shale Boron Concentration Thermal Maturity Boron Isotope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Adriano, D.C. (1986) Trace Elements in the Terrestrial Environment. New York: Springer-Verlag, 533 pp.Google Scholar
  2. Barbieri, M. (1989) Geochemistry of barium, in Nonmetalliferous Stratabound Ore Fields (ed. M.K. de Brodtkorb). New York: Van Nostrand Reinhold, pp. 9–15.Google Scholar
  3. Clark, S.H.B., Gallagher, M.J. and Poole, F.G. (1990) World barite resources: a review of recent production patterns and a genetic classification, in Minerals, Materials, and Industry. London: The Institution of Mining and Metallurgy, pp. 175–84.Google Scholar
  4. Dawson, K.R. (1985) Geology of Barium, Strontium, and Fluorine Deposits in Canada. Geological Survey of Canada, Economic Geology Report 34, 136 pp.Google Scholar
  5. Fischer, K. and Puchelt, H. (1978) Barium, in Handbook of Geochemistry, Vol. II/4 (ed. K.H. Wedepohl). New York: Springer-Verlag, pp. 56A–56O.Google Scholar
  1. Firestone, R.B. (1996) Table of Isotopes, Volume II: A = 151–272. New York: Wiley-Interscience, 2877 pp.Google Scholar
  2. Seaborg, G. T. and Loveland, W.D. (1990) The Elements Beyond Uranium. New York: Wiley-Interscience, 359 pp.Google Scholar
  3. Thompson, S.G., Ghiorso, A. and Seaborg, G.T. (1950) Element 97. Phys. Rev., 77, 838.Google Scholar

Cross-reference

  1. Measures, C.I. and Edmond, J.M. (1983) The geochemical cycle of 9Be: a reconnaissance. Earth Planetary Sci. Lett., 66, 101–10.Google Scholar
  2. Monaghan, M.C., Klein, J. and Measures, C.I. (1988) The origin of 10Be in island are volcanic rocks. Earth Planetary Sci. Lett., 89, 288–98.Google Scholar
  3. Morris, J.D. (1991) Applications of cosmogenic 10Be to problems in the earth sciences. Annu. Rev. Earth Planetary Sci., 19, 313–50.Google Scholar
  4. Ryan, J.G. (1989) The Systematics of Lithium, Beryllium and Boron in Young Volcanic Rocks. Ph.D. dissertation, Columbia University, 313 pp.Google Scholar
  5. Ryan, J.G. and Langmuir, C.H. (1988) Beryllium systematics in young volcanic rocks: implications for 10Be. Geochim. Cosmochim. Acta, 52, 237–44.Google Scholar
  6. Ryan, J.G., Leeman, W.P., Morris, J.D. and Langmuir, C.H. (1996) The boron systematics of intraplate lavas: implications for crust and mantle evolution. Geochim. Cosmochim. Acta, 60, 415–22.Google Scholar
  7. Tera, F., Brown, L., Morris, J., Sacks, I.S., Klein, J. and Middleton, R. (1986) Sediment incorporation in island-arc magmas: inferences from 10Be. Geochim. Cosmochim. Acta, 50, 535–50.Google Scholar
  1. Hunt, J.M. (1979) Petroleum Geochemistry and Geology. W.H. Freeman and Company, 617 pp.Google Scholar
  2. Kvenvolden, K.A. (1988) Methane hydrate — a major reservoir of carbon in the shallow geosphere? Chem. Geol., 71, 41–51.Google Scholar
  3. Kvenvolden, K.A. (1993) Gas hydrates — geological perspective and global change. Rev. Geophys., 31, 173–87.Google Scholar
  4. Schoell, M. (1988) Multiple origins of methane in the Earth. Chem. Geol., 71, 1–10.Google Scholar
  5. Whiticar, M.J. (1994) Correlation of natural gases with their sources, in The Petroleum System — From Source To Trap (eds L.B. Magoon and W.G. Dow). American Association of Petroleum Geologists Memoir, 60, pp. 261–83.Google Scholar
  6. Whiticar, M.J., Faber, E. and Schoell, M. (1986) Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation — isotopic evidence. Geochim. Cosmochim. Acta, 50, 693–709.Google Scholar
  1. Berthelin, J. (1991) Diversity of Environmental Biogeochemistry. Developments in Geochemistry 6. Amsterdam: Elsevier, 537 pp.Google Scholar
  2. Degens, E.T. (1989) Perspectives on Biogeochemistry. Berlin: Springer Verlag, 423 pp.Google Scholar
  3. Ittekkot, V. et al. (eds) (1990) Facets of Modern Biogeochemistry. Berlin: Springer-Verlag, 433 pp.Google Scholar
  4. Schlesinger, W.H. (1991) Biogeochemistry. An Analysis of Global Change. San Diego: Academic Press, 443 pp.Google Scholar

Cross-references

  1. Biogenic methane and gas hydrates; Biomarker: aliphatic; Biomarker: aromatic; Biomarker: assessment of thermal maturity; Biomarker: coals; Biomarker: higher plant; Biopolymers and macromolecules;  Carbon cycle;  Earth's atmosphere;  Earth's ocean geochemistry;  Geochemistry: low temperature;  Hydrologic cycle; Lipid biomarker;  Nitrogen cycle;  Nutrients;  Organic matter in fossils;  Porphyrins;  Sulfur cycle
  1. Moldowan, J.M., Dahl, J., Huizinga, B.J. et al. (1994) The molecular fossil record of oleanane and its relation to angiosperms. Science, 265, 768–71.Google Scholar
  2. Peters, K.E. and Moldowan, J.M. (1993) The Biomarker Guide — Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Englewood Cliffs, NJ: Prentice-Hall, 363 pp.Google Scholar
  3. Peters, K.E., Kontorovich, A.Eh., Huizinga, B.J., Moldowan, J.M. and Lee, C.Y. (1994) Multiple oil families in the West Siberian Basin. Am. Assoc. Petrol. Geol. Bull., 78, 893–909.Google Scholar
  1. Bouloubassi, I. and Saliot, A. (1993) Dissolved, particulate and sedimentary naturally derived polycyclic aromatic hydrocarbons in a coastal environment: geochemical significance. Marine Chem., 42, 127–43.Google Scholar
  2. Hartgers, W.A., Sinninghe Damsté, J.S., Requejo, A.G. et al. (1994) A molecular and carbon isotopic study towards the origin and diagenetic fate of diaromatic carotenoids. Org. Geochem., 22, 703–25.Google Scholar
  3. Johns, R.B. (ed.) (1986) Biological Markers in the Sedimentary Record. Amsterdam: Elsevier.Google Scholar
  4. LaFlamme, R.E. and Hites, R.A. (1979) Tetra-and pentacyclic, naturally-occurring, aromatic hydrocarbons in recent sediments. Geochim. Cosmochim. Acta, 43, 1687–91.Google Scholar
  5. Mackenzie, A.S., Brassell, S.C., Eglinton, G. and Maxwell, J.R. (1982) Chemical fossils; the geological fate of steroids. Science, 217, 491–504.Google Scholar
  6. Ruhemann, S. and Raud, H. (1932) Über die Harze der Braunkohle. I. Die Sterine des Harzbitumens. Brennstoff-Chemie, 13, 341–5.Google Scholar
  7. Simoneit, B.R.T. (1977) Diterpenoid compounds and other lipids in deep-sea sediments and their geochemical significance. Geochim. Cosmochim. Acts, 41, 463–76.Google Scholar
  8. Simoneit, B.R.T. and Mazurek, M.A. (1982) Organic matter of the troposphere–II. Natural background of biogenic lipid matter in aerosols over the rural western United States. Atm. Environ., 16, 2139–59.Google Scholar
  9. Simoneit, B.R.T., Cardoso, J.N. and Robinson, N. (1990) An assessment of the origin and composition of higher molecular weight organic matter in aerosols over Amazonia. Chemosphere, 21, 1285–301.Google Scholar
  10. Simoneit, B.R.T., Rogge, W.F., Mazurek, M.A., Standley, L.J., Hildemann, L.M. and Cass, G.R. (1993) Lignin pyrolysis products, lignans and resin acids as specific tracres of plant classes in emissions from biomass combustion. Environ. Sci. Technol., 27, 2533–41.Google Scholar
  11. Spyckerelle, C. (1975) Constituents aromatiques de sédiments. Ph.D. thesis, University of Strasbourg, France.Google Scholar
  12. Standley, L.J. and Simoneit, B.R.T. (1994) Resin diterpenoids as tracers for biomass combustion aerosols. J. Atm. Chem., 18, 1–15.Google Scholar
  13. Streibl, M. and Herout, V. (1969) Terpenoids–especially oxygenated mono-, sesqui-, di-, and triterpenes, in Organic Geochemistry: Methods, and Results (G. Eglinton and M.T.J. Murphy eds). Berlin: Springer Verlag, pp. 402–24.Google Scholar
  14. Tan, Y.L. and Heit, M. (1981) Biogenic and abiogenic polynuclear aromatic hydrocarbons in sediments from two remote Adirondack lakes. Geochim. Cosmochim. Acta, 45, 2267–79.Google Scholar
  15. Wakeham, S.G., Schaffner, C. and Giger, W. (1980a) Polycyclic aromatic hydrocarbons in Recent lake sediments–II. Compounds derived from biogenic precursors during early diagenesis. Geochim. Cosmochim. Acta, 44, 415–29.Google Scholar
  16. Wakeham, S., Schaffner, C. and Giger, W. (1980b) Polycyclic aromatic hydrocarbons in Recent lake sediments–I. Compounds having anthropogenic origins. Geochim. Cosmochim. Acta, 44, 403–13.Google Scholar

Cross-references

  1. Biogeochemistry; Biomarker: aliphatic; Biomarker: assessment of thermal maturity; Biomarker: higher plant;  Coal: origin and diagenesis;  Diagenesis;  Hydrocarbons; Lipid biomarker;  Lipids (eubacteria and archaebacteria);  Oil–oil and oil–source rock correlation;  Organics: sources and depositional environments;  Porphyrins
  1. Peters, K.E. and Moldowan, J.M. (1993) The Biomarker Guide–Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Englewood Cliffs, NJ: Prentice Hall, 363 pp.Google Scholar
  2. Requejo, A.G. (1994) Maturation of petroleum source rocks–II. Quantitative changes in extractable hydrocarbon content and composition associated with hydrocarbon generation. Org. Geochem., 21, 91–105.Google Scholar
  1. Chaffee, A.L., Hoover, D.S., Johns, R.B. and Schweighardt, F.K. (1986) Biological markers extractable from coal, in Biological Markers in the Sedimentary Record, Methods in Geochemistry and Geophysics, Vol. 24 (R.B. Johns ed.). Amsterdam: Elsevier, pp. 311–45.Google Scholar
  2. ten Haven, H.L., Littke, R. and Rullkötter, J. (1992) Hydrocarbon biological markers in Carboniferous coals of different maturities, in Biological Markers in Sediments and Petroleum: a Tribute to Wolfgang K. Seifert (J.M. Moldowan, P. Albrecht and R.P. Philp eds). Englewood Cliffs, NJ: Prentice Hall, pp. 142–55.Google Scholar
  3. del Rio, J.C., Gonzalez-Vila, F.J. and Martin, F. (1992) Variation in the content and distribution of biomarkers in two closely situated peat and lignite deposits. Org. Geochem., 18, 67–78.Google Scholar
  4. Stout, S.A. (1992) Aliphatic and aromatic triterpenoid hydrocarbons in a Tertiary angiospermous lignite. Org. Geochem., 18, 51–66.Google Scholar
  5. Sheng, G., Simoneit, B.R.T., Leif, R.N., Chen, X. and Fu, J. (1992) Tetracyclic terpanes enriched in Devonian cuticle humic coals. Fuel, 71, 523–32.Google Scholar
  1. Eglinton, G. and Calvin, M. (1967) Chemical fossils. Sci. Am., 216, 32–43.Google Scholar
  2. Ekweozor, C.M. and Telnaes, N. (1990) Oleanane parameter: verification by quantitative study of the biomarker occurrence in sediments of the Niger delta. Org. Geochem., 16, 401–13.Google Scholar
  3. Johns, R.B. (ed.) (1986) Biological Markers in the Sedimentary Record. Amsterdam: Elsevier, 364 pp.Google Scholar
  4. Mackenzie, A.S., Brassell, S.C., Eglinton, G. and Maxwell, J.R. (1982) Chemical fossils: the geological fate of steroids. Science, 217, 491–504.Google Scholar
  5. Prahl, F.G., Ertel, J.R., Goñi, M.A., Sparrow, M.A. and Eversmeyer, B. (1994) Terrestrial organic carbon contributions to sediments on the Washington margin. Geochim. Cosmochim. Acta, 58, 3035–48.Google Scholar
  6. Simoneit, B.R.T. (1977) Diterpenoid compounds and other lipids in deep-sea sediments and their geochemical significance. Geochim. Cosmochim. Acta, 41, 463–76.Google Scholar
  7. Simoneit, B.R.T., Rogge, W.F., Mazurek, M.A., Standley, L.J., Hildemann, L.M. and Cass, G.R. (1993) Lignin pyrolysis products, lignans and resin acids as specific tracers of plant classes in emissions from biomass combustion. Environ. Sci. Technol., 27, 2533–41.Google Scholar
  8. ten Haven, H.L., Peakman, T.M. and Rullkötter, J. (1992) Early diagenetic transformation of higher-plant triterpenoids in deep-sea sediments from Baffin Bay. Geochim. Cosmochim. Acta, 56, 2001–24.Google Scholar
  9. Wang, T.-G. and Simoneit, B.R.T. (1990) Organic geochemistry and coal petrology of Tertiary brown coal in Zhoujing Mine, Baise Basin, South China: 2. Biomarker assemblage and significance. Fuel, 69, 12–20.Google Scholar

Cross-references

  1. Biogeochemistry; Biomarker: coals;  Coal: origin and diagenesis;  Diagenesis;  Paleotemperatures;  Peat;  Porphyrins
  1. Albrecht, P. and Ourisson, G. (1969) Triterpene alcohol isolated from an oil shale. Science, 163, 1192–3.Google Scholar
  2. Bisseret, P. and Rohmer, M. (1995) From bio-to geohopanoids: an efficient abiotic passage promoted by oxygen in the presence of cuprous chloride. Tetrahedron Lett., 39, 7077–80.Google Scholar
  3. Bisseret, P., Zundel, M. and Rohmer, M. (1985) Prokaryotic triterpenoids. 2. 2β-Methylhopanoids from Methylobacterium organophilum and Nostoc muscorum, a new series of prokaryotic triterpenoids. Eur. J. Biochem., 150, 29–34.Google Scholar
  4. Collister, J.W., Summons, R.E., Lichtfouse, E. and Hayes, J.M. (1992) An isotopic biogeochemical survey of the Green River oil shale. Org. Geochem., 19, 265–76.Google Scholar
  5. Jahnke, L.L., Summons, R.E., Dowling, L.M. and Zahiralis, K.D. (1995) Identification of methanotrophic lipid biomarkers in cold-seep mussel gills: chemical and isotopic analysis. Appl. Environ. Microbiol., 61, 576–82.Google Scholar
  6. Kleemann, G., Poralla, K., Englert, G. et al. (1990) Tetrahymanol of the phototrophic bacterium Rhodopseudomonas palustris: first report of a gammacerane triterpene from a prokaryote. J. Gen. Microbiol., 136, 2551–3.Google Scholar
  7. Mycke, B., Narjes, F. and Michaelis, W. (1987) Bacteriohopanetetrol from chemical degradation of an oil shale kerogen. Nature, 326, 179–81.Google Scholar
  8. Neunlist, S. and Rohmer, M. (1985) Novel hopanoids from the methylotrophic bacteria Methylococcus capsulatus and Methylomonas methanica. Biochem. J., 231, 635–9.Google Scholar
  9. Ourisson, G. and Albrecht, P. (1992) Hopanoids 1. Geohopanoids: the most abundant natural products on earth? Acc. Chem. Res., 25, 398–402.Google Scholar
  10. Ourisson, G. and Rohmer, M. (1982) Prokaryotic polyterpenes: phylogenetic precursors of sterols. Curr. Top. Membr. Transport, 40, 153–82.Google Scholar
  11. Peiseler, B. (1992) Stabilisateurs membranaires d'origine bactérienne en série hopane: nouveaux biohopanoïdes, implications biogénétiques et transformation dans un sédiment récent. Ph.D. Thesis, Université de Haute Alsace, Mulhouse, France.Google Scholar
  12. Perry, G.J., Volkman, J.K., Votas, R.B. and Bavor, H.J. (1979) Fatty acids of bacterial origin in contemporary marine sediments. Geochim. Cosmochim. Acta, 43, 1715–25.Google Scholar
  13. Ries-Kautt, M. and Albrecht, P. (1989) Hopane derived triterpenes in soils. Chem. Geol., 76, 143–51.Google Scholar
  14. Rohmer, M., Bisseret, P. and Neunlist, S. (1992) The hopanoids, prokaryotic triterpenes and precursors of ubiquitous molecular fossils, in Biological Markers in Sediments and Petroleums. A Tribute to Wolfgang Seifert (eds J.M. Moldowan, P. Albrecht and R.P. Philp). Englewood Cliffs: Prentice Hall, pp. 1–17.Google Scholar
  15. Rohmer, M., Bouvier-Navé, P. and Ourisson, G. (1984) Distribution of hopanoid triterpenes in prokaryotes. J. Gen. Microbiol., 130, 1137–50.Google Scholar
  16. Schaeffer, P., Fache-Dany, F., Trifilieff, S., Trendel, J.-M. and Albrecht, P. 1994a. Characterisation of novel 3-carboxyalkyl-steranes occurring in geological samples. Tetrahedron, 50, 12633–42.Google Scholar
  17. Schaeffer, P., Poinsot, J., Hauke, V. et al. (1994b) Novel optically active hydrocarbons in sediments: evidence for an extensive biological cyclization of higher regular polyprenols. Ang. Chem. Int. Edn. English, 33, 1166–9.Google Scholar
  18. Simoneit, B.R.T., Leif, R.N., Radler de Aquino Neto, F., Almeida Azedovo, D., Pinto, A.C. and Albrecht, P. (1990). On the presence of tricyclic terpane hydrocarbons in permian tasmanite algae. Naturwissenschaften, 77, 380–3.Google Scholar
  19. Simonin, P. (1993) Nouvelle voie de biosynthése des isoprénoïdes chez les eubactéries. Biohopanoïdes bactériens. Ph.D. Thesis, Université de Haute Alsace, Mulhouse, France.Google Scholar
  20. Summons, R.E. and Jahnke, L.L. (1992). Hopenes and hopanes methylated in ring-A: correlation of the hopanoids from extant methylotrophic bacteria with their fossils analogues, in Biological Markers in Sediments and Petroleums. A Tribute to Wolfgang Seifert (eds J.M. Moldowan, P. Albrecht and R.P. Philp). Englewood Cliffs: Prentice Hall Inc., pp. 187–200.Google Scholar
  21. Venkatesan, M.I. (1989) Tetrahymanol: its widespread occurrence and geochemical significance. Geochim. Cosmochim. Acta, 53, 3095–101.Google Scholar
  22. Vilchéze, C.P., Neunlist, S., Poralla, K. and Rohmer, M. (1994). Prokaryotic triterpenoids: new hopanoids from the nitrogen fixing bacteria Azotobacter vinelandii, Beijerinckia indica and Beijerinckia mobilis. Microbiology, 140, 2749–53.Google Scholar
  23. Volkman, J.K. (1988) Biological marker compounds as indicators of the depositional environments of petroleum source rocks, in Lacustrine Petroleum Source Rocks (eds A.J. Fleet and M.R. Talbot). London: Geological Society Special Publications, pp. 103–12.Google Scholar

Cross-references

  1. Derenne, S., Largeau, C., Casadevall, E., Berkaloff, C. and Rousseau, B. (1991) Chemical evidence of kerogen formation in source rocks and oil shales via selective preservation of thin resistant outer walls of microalgae: origin of ultralaminae. Geochim. Cosmochim. Acta, 55, 1041–50.Google Scholar
  2. Largeau, C. and De Leeuw, J.W. (1995) Insoluble, non-hydrolyzable, aliphatic macromolecular constituents of microbial cell walls. Adv. Microbial Ecol., 14.Google Scholar
  3. De Leeuw, J.W. and Largeau, C. (1993) A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal and petroleum formation, in Organic Geochemistry Principles and Applications (eds M.H. Engel and S.A. Macko). New York: Plenum, pp. 23–72.Google Scholar
  4. Tegelaar, E.W., De Leeuw, J.W., Derenne, S. and Largeau, C. (1989) A reappraisal of kerogen formation. Geochim. Cosmochim. Acta, 53, 3103–6.Google Scholar

Cross-references

  1. Ahrens, L. and Erlank, A.J. (1969) Bismuth, in Handbook of Geochemistry (ed. K.H. Wedepohl). New York: Springer-Verlag, pp. 83–A–1–83–O–1.Google Scholar
  2. Angino, E.E. and Long, D.T. (eds) (1969) The Geochemistry of Bismuth. Stroudsberg, PA: Dowden, Hutchinson, & Ross, 689 pp.Google Scholar
  3. Fergusson, J.E. (1990) The Heavy Elements: Chemistry, Environmental Impact and Health Effects. New York: Pergamon Press, 614 pp.Google Scholar
  4. Hale, M. (1981) Pathfinder applications of arsenic, antimony, and bismuth in geochemical exploration. J. Geochem. Exp., 15, 307–23.Google Scholar
  5. Heinrichs, H., Schulz-Dobrick, B. and Wedepohl, K.H. (1980) Rb. Geochim. Cosmochim. Acta, 44, 1519–33.Google Scholar
  1. Cita, M.B., de Lange, D.J. and Olausson, E. (1991) Anoxic basins and sapropel deposition in the Eastern Mediterranean: past and present. Mar. Geol., 100, 1–4.Google Scholar
  2. Didyk, B.M., Simoneit, B.R.T., Brassell, S.C. and Eglinton, G. (1978) Organic geochemical indicators of paleoenvironmental conditions of sedimentation. Nature, 272, 216–22.Google Scholar
  3. van Graas, G., Viets, T.C., De Leeuw, J.W. and Schenck, P.A. (1983) A study of the soluble and insoluble organic matter from the Livello Bonarelli, a Cretaceous black shale deposit in the Central Apennines, Italy. Geochim. Cosmochim. Acta, 47, 1051–9.Google Scholar

Cross-references

  1. Biomarker: higher plant; Biopolymers and macromolecules;  Diagenesis;  Geochemistry of sediments;  Oil shales;  Peat;  Weathering: chemical
  1. Aggarwal, J.K. and Palmer, M.R. (1995) Boron isotope analysis. A review. Analyst, 120, 1301–9.Google Scholar
  2. Aggarwal, J.K., Palmer, M.R., Bullen, T.D., Ragnarsdottir, K.V., and Arnorsson, S. (in press) The boron isotope systematics of Icelandic hydrothermal systems charged by meteoric water. Geochim. Cosmochim. Acta.Google Scholar
  3. Austin, S.M. (1981) The creation of the light elements. Prog. Particle Nucl. Phys., 7, 1–46.Google Scholar
  4. Barth, S. (1993) Boron isotope variations in nature: a synthesis. Geol. Rundsch., 82, 640–51.Google Scholar
  5. Cantanzaro, E.J., Champion, C.E., Garner, E.L., Marinenko, G., Sappenfield, K.M. and Shields, W.R. (1970) Boric acid; isotopic and assay standard reference materials. Nat. Bur. Stand. (US) Spec. Publ., 1970, 260–317.Google Scholar
  6. Emsley, J. (1996) The Elements. Oxford: Oxford University Press.Google Scholar
  7. Fogg, T.R. and Duce, R.A. (1985) Boron in the troposphere: distribution and fluxes. J. Geophys. Res., 90, 3781–96.Google Scholar
  8. Goldschmidt, V.M. and Peters, C. (1932) The geochemistry of boron, in The Geochemistry of Boron (ed. C.T. Walker). Stroudsburg, PA: Dowden, Hutchinson and Ross.Google Scholar
  9. Grew, E.S. and Anovitz, L.M. (1996) Boron: Mineralogy, Petrology and Geochemistry. Washington DC: Mineralogical Society of America, p. 862.Google Scholar
  10. Kakihana, H., Kotaka, M., Satoh, S., Nomura, M. and Okamoto, M. (1977) Fundamental studies on the ion-exchange separation of boron isotopes. Bull. Chem. Soc. Jpn., 50, 158–63.Google Scholar
  11. Kanzaki, T., Yoshida, M., Nomura, M., Kakihana, H. and Ozawa, T. (1979) Boron isotopic composition of fumarolic condensates and sassolites from Satsuma Iwo-jima, Japan. Geochim. Cosmochim. Acta., 43, 1859–63.Google Scholar
  12. Leeman, W.P., Sisson, V.B. and Reid, M.R. (1992) Boron geochemistry of the lower crust: Evidence from granulite terranes and deep crustal xenoliths. Geochim. Cosmochim. Acta, 56, 775–88.Google Scholar
  13. Moran, A.E., Sisson, V.B. and Leeman, W.P. (1992) Boron depletion during progressive metamorphism: implications for subduction processes. Earth Planet. Sci. Lett., 111, 331–49.Google Scholar
  14. Palmer, M.R. and Swihart, G.H. (1996) Boron isotope geochemistry: an overview, in Boron Geochemistry (eds Grew, E. and Anovitz, L.). Washington, DC: Mineralogical Society of America.Google Scholar
  15. Palmer, M.R., Spivack, A.J. and Edmond, J.M. (1987) Temperature and pH controls over isotopic fractionation during adsorption of boron on marine clay. Geochim. Cosmochim. Acta, 51, 2319–23.Google Scholar
  16. Ryan, J.G. and Langmuir, C.H. (1993) The systematics of boron abundances in young volcanic rocks. Geochim. Cosmochim. Acta, 57, 1489–98.Google Scholar
  17. Reymer, A. and Schubert, G. (1984) Phanerozoic addition rates to the continental crust and crustal growth. Tectonics, 3, 63–77.Google Scholar
  18. Sanyal, A., Hemming, N.G., Hanson, G.N. and Broecker, W.S. (1995) Evidence for a higher pH in the glacial ocean from boron isotopes in foraminifera. Nature, 373, 234–6.Google Scholar
  19. Spivack, A., You, C.F. and Smith, H.J. (1993) Foraminiferal boron isotope ratios as a proxy for the surface ocean pH over the past 21-Myr. Nature, 363, 149–51.Google Scholar
  20. Thompson, G. and Melson, W.G. (1970) Boron concentration of serpentinites and metabasalts in the oceanic crust: Implications for the boron cycle in the oceans. Earth Planet. Sci. Lett., 8, 61–5.Google Scholar
  21. Truscott, M.G., Shaw, D.M. and Cramer, I.J. (1986) Boron abundance and localisation in granulites and the lower crust. Bull. Geol. Soc. Finland, 58, 169–79.Google Scholar
  22. Vengosh, A., Chivas, A.R., McCulloch, M.T., Starinsky, A. and Kolodny, Y. (1991) Boron isotope geochemistry of Australian salt lakes. Geochim. Cosmochim. Acta, 55, 2591–606.Google Scholar
  23. Vengosh, A., Heumann, K.G., Juraske, S. and Barth, S. (1994) Boron isotopes in groundwater: identification of sources of contamination, in International Conference on Geochronology, Cosmochemistry and Isotope Geology (eds M.A. Lanphere, G.B. Dalrymple and B.D. Turrin). Berkeley, CA, US Geological Survey, 338 pp.Google Scholar
  24. Walker, C.T. (1975) Geochemistry of Boron. Stroudsburg, PA: Dowden, Hutchinson and Ross, 414 pp.Google Scholar
  25. You, C.-F., Spivack, A., Smith, J.M. and Gieskes, J. (1993) Mobilization of boron in convergent margins: implications for the boron geochemical cycle. Geology, 21, 207–10.Google Scholar
  26. Zhai, M. and Shaw, D.M. (1994) Boron cosmochemistry. Part 1: boron in meteorites. Meteoritics, 2, 607–15.Google Scholar
  1. Correns, C.W. (1956) The geochemistry of the halogens, in Physics and Chemistry of the Earth, 1 (ed. L.H. Ahrens). New York: Pergamon Press, pp. 187–233.Google Scholar
  2. Schilling, J.-G., Unni, C.K. and Bender, M.L. (1978) Origin of chlorine and bromine in the oceans. Nature, 273, 631–6.Google Scholar
  3. Urey, H.C. (1953) The concentration of certain elements at the earth's surface. Proc. R. Soc. Lond. Ser. A, 219, 281–330.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Kathleen S. Smith
  • David W. Mittlefehldt
  • Sylvia Frisia
  • Cynthia E. A. Paimer
  • Charles A. Geiger
  • Austin Long
  • D. Lal
  • S. Krishnaswami
  • Peter S. Bakwin
  • Elizabeth A. Burton
  • Abigail M. Smith
  • Scott M. McLennan
  • Richard M. Kettler
  • Youxue Zhang
  • Ronald S. Kaufmann
  • Eugene S. Ilton
  • Jae-Young Yu
  • T. M. Whitworth
  • J. C. Shearer
  • T. A. Moore
  • R. M. Bustin
  • Ralf Littke
  • Achim Albrecht
  • Montserrat Filella
  • Jacques Buffle
  • Helen N. Mango
  • Roger E. Summons
  • Mark A. Williamson
  • Eric Thorson Brown
  • Ernest B. Ledger
  • Peter A. Rock
  • William H. Casey
  • Dana T. Griffen
  • Hans Keppler
  • Wolfgang H. Runde
  • Mary P. Neu
  • David R. Janecky

There are no affiliations available