Encyclopedia of Geochemistry

1999 Edition
| Editors: Clare P. Marshall, Rhodes W. Fairbridge

T

  • A. M. R. Neiva
  • Paul R. Dixon
  • David B. Curtis
  • Vidojko Jović
  • Scott M. McLennan
  • Peter van Calsteren
  • Mitchell Schulte
  • Patrick K. Gallagher
  • Christophe Falguéres
  • H. C. Weed
  • S. Krishnaswami
  • François Farges
  • Roger L. Nielsen
  • Austin Long
  • John C. Groen
Reference work entry
DOI: https://doi.org/10.1007/1-4020-4496-8_19
  • 2.3k Downloads

Tantalum

Tantalum was discovered in 1802 and named after the Greek mythological hero Tantalus. In 1844, it was reported that two similar elements, tantalum and niobium, were obtained from columbite (Fe,Mn)(Nb,Ta)2O6. In 1866, these two elements were separated. Tantalum is a gray, body-centered cubic metallic element, with atomic number 73 and atomic weight 180.948. It has two natural isotopes 180 and 181, the latter being the more abundant. The electronic configuration of tantalum is [Xe]4f143d36s2, with common valence of 5+. Its ionic radius for coordination number 6 is 0.72 Å and electronegativity, 1.5. Tantalum has similar chemical properties to those of niobium. Its boiling point is 5425°C. It is a refractory metal, with a high melting point of 2996°C, and is resistant to corrosion. Tantalum is mainly used in electronics and optics (50%) and in cemented carbides or as an allyoing additive in superalloys (30–40%). Ta-dominant minerals (e.g. tantalite-columbite, wodginite,...

Keywords

Thermal Ionization Mass Spectrometry Tungsten Content Nonbridging Oxygen Tritium Unit Bulk Silicate Earth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

  1. Černý, P. (1989a) Characteristics of pegmatite deposits of tantalum, in Lanthanides, Tantalum and Niobium (eds P. Černý and F. Saupé). Berlin: Springer-Verlag, pp. 195–239.Google Scholar
  2. Černý, P. (1989b) Exploration strategy and methods for pegmatite deposits of tantalum, in Lanthanides, Tantalum and Niobium (eds P. Möller, P. Černý and F. Saupé). Berlin: Springer-Verlag, pp. 274–302.Google Scholar
  3. Černý, P., Meintzer, R. and Anderson, A. J. (1985) Extreme fractionation in rare-element granitic pegmatites: selected examples of data and mechanisms. Can. Mineral., 23, 381–421.Google Scholar
  4. Möller, P. (1989) REE (Y), Nb and Ta enrichment in pegmatites and carbonatite–alkalic rock complexes, in Lanthanides, Tantalum and Niobium (eds P. Möller, P. Černý and F. Saupé). Berlin: Springer-Verlag, pp. 103–144.Google Scholar
  5. Morteani, G. and Gaupp, R. (1989) Geochemical evaluation of the tantalum potential of pegmatites, in Lanthanides, Tantalum and Niobium (eds P. Möller, P. Černý and F. Saupé). Berlin: Springer-Verlag, pp. 303–310.Google Scholar
  6. Pollard, P. J. (1989) Exploration for granite-hosted tantalum deposits: an approach via district analysis, in Lanthanides, Tantalum and Niobium (eds P. Möller, P. Černý and F. Saupé). Berlin: Springer-Verlag, pp. 266–73.Google Scholar
  7. Spilde, M. N. and Sllearer, C. K. (1992) A comparison of tantalum–niobium oxide assemblages in two mineralogically distinct rare-element granitic pegmatites, Black Hills, South Dakota. Can. Mineral., 30, 729–38.Google Scholar
  1. Curtis D. B., Benjamin, T., Gancarz, A., et al. (1989) Fission product retention in the Oklo natural fission reactors. Appl. Geochem., 4, 49–62.Google Scholar
  2. Curtis, D. B., Fabryka-Martin, J., Dixon, P. R., Aguilar, R. D. and Cramer, J. (1994) Radionuclide release rates from natural analogues of spent nuclear fuel. Radiochem. Acta, 551–7.Google Scholar
  3. Dixon, P. R., Rokop, D. J., Curtis, D. B. and Fabryka-Martin, J. T. (1996) Extraction and measurement of subpicogram quantities of technetium from geologic and other matrices. Pr. Second Alfred O. Nier Symp. Inorg. Mass Spectrometry, pp. 38–41.Google Scholar
  4. Kuroda P. K. (1982) The Origin of the Chemical Elements. Berlin: Springer Verlag.Google Scholar
  5. Loss, R. D., Rosman, K. J. R., De-Laeter, J. R. et al. (1989) Fission-product retentivity in peripheral rocks at the Oklo natural fission reactors, Gabon. Chem. Geol., 76, 71–84.Google Scholar
  6. See also special volume on technetium in Radiochimica Acta, 63, 1993.Google Scholar
  1. Beaty, R. D. and Manuel, O. K. (1973) Tellurium in rocks Chem. Geol., 12, 155–9.Google Scholar
  2. Cohen, B. L. (1984) Anomalous behavior of tellurium abundances. Geochim. Cosmochim. Acta, 48, 203–5.Google Scholar
  3. Leutwein, F. (1974) Tellurium, in Handbook of Geochemistry, Vol. II-4 (ed. K. H. Wedepohl). Berlin–Heidelberg: Springer-Verlag, pp. 52–B–52–O.Google Scholar
  4. Schroeder, H. A., Buckman, J. and Balassa, J. J. (1967) Abnormal trace elements in man: tellurium. J. Chronic Dis., 20, 147–61.Google Scholar
  5. Smith, C. L., De Laeter, J. R. and Rosman, K. J.R. (1977) Mass spectro-metric isotope dilution analyses of tellurium in meteorites and standard rocks. Geochim. Cosmochim. Acta, 41, 676–81.Google Scholar

Cross-reference

  1. De Albuquerque, C. A. R. and Shaw, D. M. (1974) Thallium, in Handbook of Geochemistry, Vol. II (ed. K. H. Wedepohl). Berlin–Heidelberg: Springer-Verlag, pp. 81–B–81–O.Google Scholar
  2. Heinrichs, H., Schulz-Dobrick, B. and Wedepohl, K. H. (1980) Terrestrial geochemistry of Cd, Bi, Tl, Pb, Zn and Rb. Geochim. Cosmochim. Acta, 44, 1519–33.Google Scholar
  3. Jović, V. (1993) Thallium in rocks, soils and plants: past progress and future needs. Neues Jahrbuch Mineral. Abhandl., 166, 43–52.Google Scholar
  4. Marowsky, G. and Wedepohl, K. H. (1971) General trends in the behaviour of Cd, Hg, Tl and Bi in some rock forming processes. Geochim. Cosmochim. Acta, 35, 1255–67.Google Scholar
  5. Vlasov, K. A. (ed) (1966) Geochemistry and Mineralogy of Rare Elements and Genetic Types of Their Deposits. Vol. I. Geochemistry of Rare Elements. Jerusalem: Israel Program for Scientific Translations, 688 pp.Google Scholar
  1. Faure, G. (1986) Principles of Isotope Geology, 2nd edn. New York: John Wiley & Sons, 589 pp.Google Scholar
  2. Geyh, M. A. and Schleicher, H. (1990) Absolute Age Determination. Berlin: Springer Verlag, 503 pp.Google Scholar
  3. Dickin, A. P. (1995) Radiogenic Isotope Geology.Google Scholar
  1. Atkins, P. W. (1990) Physical Chemistry. New York: W.H. Freeman and Company, 995 pp.Google Scholar
  2. Garrels, R. M. and Christ, C. L. (1965) Solutions, Minerals, and Equilibria. New York: Harper & Row, Inc., 450 pp.Google Scholar
  3. Helgeson, H. C., Delany, J. M., Nesbitt, H. W. and Bird, D. K. (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am. J. Sci., 278A, 1–229.Google Scholar
  4. Robie, R. A. and Waldbaum, D. R. (1968) Thermodynamic properties of minerals and related substances at 298.15°K (25.0°C) and one atmosphere (1.013 bars) pressure and at high temperatures, US Geol. Surv. Bull., 1259, 256 pp.Google Scholar
  5. Rock, P. A. (1983) Chemical Thermodynamics. Mill Valley, CA: University Science Books, 548 pp.Google Scholar
  1. Aylmer, D. and Rowe, M. W. (1984) A new method for the simultaneous determination of pyrite content and proximate analysis of coal. Thermochim. Acta, 78, 81–92.Google Scholar
  2. Bracconi, P. and Gallagher, P. K. (1979) Phase diagram of a nickel–zinc ferrite of composition: Ni0.685Zn0.177Fe2.138O4+x. J. Am. Ceramic Soc., 62, 171–6.Google Scholar
  3. Brown, M. E. (1988) Introduction to Thermal Analysis: Techniques and Applications. London: Chapman and Hall.Google Scholar
  4. Brown, M. E., Dollimore, D. and Galway, A. K. (1980) Comprehensive Chemical Kinetics, Vol. 22. Amsterdam: Elsevier.Google Scholar
  5. Dollimore, D. and Dunn, J. (1993) Treatise on Analytical Chemistry Part One, Vol. 13, Thermal Methods. New York: Wiley Interscience.Google Scholar
  6. Gallagher, P. K. (1993) Thermal analysis. Adv. Anal. Geochem., 1, 211–57.Google Scholar
  7. Gallagher, P. K. (1997a) methodology. Thermal Characterization of Polymeric Materials, 2nd edn (ed. E. A. Turi). New York: Academic Press.Google Scholar
  8. Gallagher, P. K. (1997b) Thermomagnetometry. J. Thermal Anal., 49, 33–44.Google Scholar
  9. Khorami, J., Choquette, D., Kimmerle, F. M. and Gallagher, P. K. (1984) Interpretation of EGA and DTG analysis of crysotile asbestos. Thermochim. Acta, 76, 87–96.Google Scholar
  10. Speyer, R. F. (1993) Thermal Analysis of Materials. New York: Marcel Dekker.Google Scholar
  11. Wendlandt, W. W. (1986) Thermal Analysis, 3rd edn. New York: Wiley Interscience.Google Scholar
  12. Wiedemann, H. G. and Bayer, G. (1985) Note on the thermal decomposition of dolomite. Thermochim. Acta, 121, 479–85.Google Scholar
  1. Aitken, M. J. (1985) Thermoluminescence Dating. London: Academic Press 359 pp.Google Scholar
  2. Göksu, H. Y., Fremlin, J. H., Erwin, H. T. and Fryxell, R. (1974) Age determination of burnt flint by a thermoluminescent method. Science, 183, 651–4.Google Scholar
  3. Guérin, G. (1983) La thermoluminescence des plagioclase, méthode de datation du volcanisme: applications au domaine volcanique francais: Chaîne des Puys, Mont-Dore et Cézallier, Bas Vivarais. Ph.D Thesis, Université P. et M. Curie, Paris, 253 pp. Unpublished.Google Scholar
  4. Huntley, D. J., Godfrey-Smith, D. I. and Thewalt, M. L. W. (1985) Optical dating of sediments. Nature, 313, 105–7.Google Scholar
  5. Huxtable, J. and Aitken, M. J. (1985) Thermoluminescence dating results for the Paleolithic site Maastricht-Belvedere. Analecta Prœhistoria Leidensia, 18, 41–4.Google Scholar
  6. Miallier, D., Faïn, J., Montret, M., Pilleyre, T., Sanzelle, S. and Soumana, S. (1990) Properties of the red TL peak quartz relevant to thermoluminescence dating. Nuclear Tracks Radiat. Measurements, 18, 89–94.Google Scholar
  7. Miallier, D., Sanzelle, S., Falguéres, C. et al. (1994b) Intercomparisons of red TL and ESR signals from heated quartz grains. Radiation Measurements, 23, 143–53.Google Scholar
  8. Singhvi, A. K., Sharna, Y. P. and Agrawal, D. P. (1982) Thermoluminescence dating of sand dunes in Rajasthan. Nature, 295, 313–15.Google Scholar
  9. Valladas, H. (1985) Datation par la thermoluminescence de gisements moustériens du sud de la France. Ph.D Thesis, Université P. et M. Curie, Paris, 178 pp.Google Scholar
  10. Wintle, A. G. and Huntley, D. J. (1979) Thermoluminescence dating of a deep-sea core. Nature, 279, 710–12.Google Scholar
  1. Bauer, W. H. and Collins, E. A. (1967) Thixotropy and dilantancy, in Rheology: Theory and Applications, Vol. 4 (ed. F. R. Eirich). New York: Academic Press, pp. 423–59.Google Scholar
  2. Gabrysh, A. F., Eyring, H. and Cutler, I. (1962) Rheological factors for attapulgite suspended in water. J. Am. Ceram. Soc., 45, 334–43.Google Scholar
  3. Hunter, R. J. (1993) Introduction to Modern Colloid Science, 1st edn. New York: Oxford University Press, 338 pp.Google Scholar
  4. Ramsay, J. D. F. and Lindner, P. (1993) Small angle neutron scattering investigations of the structure of thixotropic dispersions of smectite clay colloids. J. Chem. Soc., Faraday Trans., 89, 4207–14.Google Scholar
  1. Andersson, P. S., Wasserburg, G. J., Chen, J. H., Papanastassiou, D. A. and Ingri, J. (1995) 238U−234U and 232Th−230Th in the Baltic sea and river water. Earth Planet. Sci. Lett., 130, 217–34.Google Scholar
  2. Bacon, M. P. and Anderson, R. F. (1982) Distribution of thorium isotopes between dissolved and particulate forms in the deep sea. J. Geophys. Res., 87, 2045–56.Google Scholar
  3. Bacon, M. R., Cochran, J. K., Hirschberg, D., Hammar, T. R. and Fleer, A. P. (1996) Export flux of carbon at equator during the EqPac time-series cruises estimated from 234Th measurements. Deep Sea Res., 43, 1133–54.Google Scholar
  4. Bhat, S. G., Krishnaswami, S., Lal, D. Rama and Moore, W. S. (1969) Thorium-234/Uranium-238 ratios in the ocean. Earth Planet. Sci. Lett., 5, 483–91.Google Scholar
  5. Buesseler, K. D., Bacon, M. P., Cochran, J. K. and Livingston, H. D. (1992) Carbon and nitrogen export during the JGOFS Atlantic Bloom experiment estimated from 234Th:238U disequilibria. Deep Sea Res., 39, 1115–37.Google Scholar
  6. Burnett, W. C. and Veeh, H. H. (1992) Uranium series studies of marine phosphates and carbonates, in Uranium-Series Disequilibrum: Applications to Earth, Marine and Environmental Science (eds M. Ivanovich and R. S. Harmon), Oxford: Clarendon Press, pp. 487–512.Google Scholar
  7. Chabaux, F., Cohen, A. S., O'Nions, R. K. and Hein, J. R. (1995) 238U−234U−230Th chronometry of Fe–Mn crusts: growth processes and recovery of thorium isotopic ratios of sea water. Geochim. Cosmochim. Acta, 59, 633–8.Google Scholar
  8. Chen, J. H., Edwards, R. L. and Wasserburg, G. J. (1986) 238U, 234U and 232Th in sea water. Earth Planet. Sci. Lett., 80, 241–51.Google Scholar
  9. Chen, J. H., Edwards, R. L. and Wasserburg, G. J. (1992) Mass spectrometry and applications to uranium series disequilibrium, in Uranium-Series Disequilibrium: Applications to Earth, Marine and Environmental Sciences (eds M. Ivanovich and R. S. Harmon). Oxford: Clarendon Press, pp. 174–206.Google Scholar
  10. Coale, K. H. and Bruland, K. W. (1985) 234Th:238U disequilibrium within the California current. Limnol. Oceanogr., 30, 22–33.Google Scholar
  11. Cochran, J. K. (1992) The oceanic chemistry of uranium-and thorium series nuclides, in Uranium-Series Disequilibrium: Applications to Earth, Marine and Environmental Sciences (eds M. Ivanovich and R. S. Harmon). Oxford: Clarendon Press, pp. 334–95.Google Scholar
  12. Cochran, J. K., Livingston, H. D., Hirschberg, D. J. and Surprenant, L. D. (1987) Natural and anthropogenic radionuclide distributions in the north west Atlantic ocean. Earth Planet. Sci. Lett., 84, 135–52.Google Scholar
  13. Cochran, J. K., Buesseler, K. D., Bacon, M. P. and Livingston, H. D. (1993) Thorium isotopes as indicators of particle dynamics in the upper ocean: results from the JGOFS north Atlantic Bloom experiment. Deep Sea Res., 40, 1569–95.Google Scholar
  14. Faure, G. (1986) Principles of Isotope Geology, 2nd edn. New York: John Wiley and Sons, 589 pp.Google Scholar
  15. Gascoyne, M. and Harmon, R. S. (1992) Palaeoclimatology and palaeo sea levels, in Uranium-Series Disequilibrium: Applications to Earth, Marine and Environmental Science (eds M. Ivanovich and R. S. Harmon). Oxford: Clarendon Press, pp. 553–82.Google Scholar
  16. Gill, J. B., Pyle, D. M. and Williams, R. W. (1992) Igneous rocks, in Uranium-Series Disequilibrium: Applications to Earth, Marine and Environmental Sciences (eds M. Ivanovich and R. S. Harmon). Oxford: Clarendon Press, pp. 207–58.Google Scholar
  17. Guo, L., Santschi, P. H., Baskaran, M. and Zindler, A. (1995) Distribution of dissolved and particulate 230Th and 232Th in seawater from the Gulf of Mexico and oV Cape Hatteras as measured by SIMS. Earth Planet. Sci. Lett., 133, 117–28.Google Scholar
  18. Huh, C.-A. and Ku, T. L. (1984) Radiochemical observation on manganese nodules from three sedimentary environments in the north Pacific. Geochim. Cosmochim. Acta, 48, 951–63.Google Scholar
  19. Huh, C.-A., Moore, W. S. and Kadko, D. C. (1989) Oceanic 232Th: a reconnaissance and implications of global distribution from manganese nodules. Geochim. Cosmochim. Acta, 53, 1357–66.Google Scholar
  20. Hussain, N. and Krishnaswami, S. (1980) 238U series radioactive disequilibrium in ground waters: implications to the origin of excess 234U and fate of reactive pollutants. Geochim. Cosmochim. Acta, 44, 1287–91.Google Scholar
  21. Kigoshi, K. (1971) Alpha-recoil thorium-234: dissolution into water and the 234U/238U disequilibrium in nature. Science, 173, 47–8.Google Scholar
  22. Kigoshi, K. (1973) 234U/238U disequilibrium and age of underground water. Paper presented at the IAEA Panel on uranium isotope disequilibrium in Hydrology, Vienna.Google Scholar
  23. Krishnaswami, S. and Cochran, J. K. (1978) Uranium and thorium series nuclides in oriented ferromanganese nodules, growth rates, turnover times and nuclide behavior. Earth Planet. Sci. Lett., 40, 45–62.Google Scholar
  24. Krishnaswami, S. and Sarin, M. M. (1976) The simultaneous determination of Th, Pu, Ra isotopes, 210Pb, 55Fe, 32Si and 14C in marine suspended phases. Anal. Chim. Acta, 83, 143–56.Google Scholar
  25. Krishnaswami, S., Graustein, W. C., Turekian, K. K. and Dowd, J. F. (1982) Radium, thorium and radioactive lead isotopes in ground waters: applications to the in-situ determination of adsorption rate constants and retardation factors. Water Resources Res., 18, 1663–75.Google Scholar
  26. Ku, T. L. (1977) Rates of manganese accretion. Elsevier Oceanogr. Ser., 8, 249–67.Google Scholar
  27. Ku, T.-L., Luo, S., Leslie, B. W. and Hammond, D. E. (1992) Decay-series disequilibria applied to the study of rock–water interaction and geothermal systems, in Uranium-Series Disequilibrium: Applications to Earth, Marine and Environmental Sciences (eds M. Ivanovich and R. S. Harmon). Oxford: Clarendon Press, pp. 631–68.Google Scholar
  28. Lally, A. E. (1992) Chemical procedures, in Uranium-Series Disequilibrium: Applications to Earth, Marine and Environmental Sciences (eds M. Ivanovich and R. S. Harmon). Oxford: Clarendon Press, pp. 95–126.Google Scholar
  29. Latham, A. G. and Schwarcz, H. P. (1992) Carbonate and sulphate precipitates, in Uranium-Series Disequilibrium: Applications to Earth, Marine and Environmental Sciences (eds M. Ivanovich and R. S. Harmon). Oxford: Clarendon Press, pp. 423–59.Google Scholar
  30. McKenzie, D. P. (1985) 230Th−238U disequilibrium and the melting process beneath the ridge axes. Earth Planet. Sci. Lett., 72, 149–57.Google Scholar
  31. Moore, W. S. and Krishnaswami, S. (1972) Thorium: element and geochemistry, in Encyclopedia of Geochemistry and Environmental Sciences (ed. R. Fairbridge). New York: Von Nostrand, pp. 1183–9.Google Scholar
  32. Murray, J. W., Young, J., Newton, J. et al. (1996) Export flux of particulate organic carbon from the central equatorial Pacific determined using a combined drifting trap−234Th approach. Deep Sea Res., 43, 1095–132.Google Scholar
  33. Nozaki, Y., Horibe, Y. and Tsubota, H. (1981) The water column distributions of Th isotopes in the western north Pacific. Earth Planet. Sci. Lett., 54, 203–16.Google Scholar
  34. Nozaki, Y., Yang, H. S. and Yamada, M. (1987) Scavenging of thorium in the ocean. J. Geophys. Res., 92, 772–8.Google Scholar
  35. Osmond, J. K. and Ivanovich, M. (1992) Uranium-series mobilization and surface hydrology, in Uranium-Series Disequilibrium: Applications to Earth Marine and Environmental Sciences (eds M. Ivanovich and R. S. Harmon). Oxford: Clarendon Press, pp. 259–89.Google Scholar
  36. Potts, P. J. (1987) A Handbook of Silicate Rock Analysis. Glasgow: Blackie and Son Ltd., 622 pp.Google Scholar
  37. Rosholt, J. N. (1982) Mobilization and weathering, in Uranium Series Disequilibrium: Applications to Environmental Problem (eds M. Ivanovich and R. S. Harmon). Oxford: Clarendon Press, pp. 167–80.Google Scholar
  38. Sarin, M. M., Krishnaswami, S., Ramesh, R. and Somayajulu, B. L. K. (1994) 238U decay series nuclides in the north-eastern Arabian sea: scavenging rates and cycling processes. Continental Shelf Res., 14, 251–65.Google Scholar
  39. Taylor, S. R. (1975) Lunar Science: A Post Apollo Perspective. New York: Pergamon Press Inc., 371 pp.Google Scholar
  40. Turekian, K. K., Krishnaswami, S., Ribe, N. M. and Reinitz, I. M. (1996) Radioactive disequilibrium among 238U series nuclides in recent volcanic rocks: a model for chronology and mechanism of formation. Geochem. Int., 33, 1–14.Google Scholar
  1. Jochum, K. P., Hofman, A. W. and Seufert, H. M. (1993) Tin in mantle-derived rocks: constraints on Earth evolution. Geochim. Cosmochim. Acta, 57, 3585–96.Google Scholar
  2. Lehmann, B. (1990) Metallogeny of Tin. Lecture Notes in Earth Sciences. Berlin: Springer-Verlag, 211 pp.Google Scholar
  3. McNaughton, N. J. and Rosman, K. J. R. (1991) Tin isotope fractionation in terrestrial cassiterites. Geochim. Cosmochim. Acta, 55, 499–504.Google Scholar
  4. Taylor, R. G. (1979) Geology of Tin Deposits. Developments in Economic Geology. Amsterdam: Elsevier Scientific Publishing Company, 543 pp.Google Scholar
  5. Taylor, J. R. and Wall, V. J. (1993) Cassiterite solubility, tin speciation, and tranport in a magmatic aqueous phase. Econ. Geol., 88, 437–60.Google Scholar
  1. Farges, F. et al. (1996) Local structure around Ti in silicate glasses and melts. Parts I, II, III (and IV). Geochim. Cosmochim. Acta, 60, 3023–66.Google Scholar
  2. Green, T. H. (1994) Experimental studies of trace-element partitioning applicable to igneous petrogenesis–Sedona 16 years later. Chem. Geol., 117, 1–36.Google Scholar
  3. Henderson, P. (1982) Inorganic Geochemistry. Oxford: Pergamon Press, 353 pp.Google Scholar
  4. Hess, P. C. (1991) The role of high field strength cations in silicate melts, in Physical Chemistry of Magmas (eds L. L. Perchuk and I. Kushiro). New York: Springer-Verlag, pp. 152–91.Google Scholar
  5. Mysen, B. O. (1988) Structure and Properties of Silicate Melts. Amsterdam: Elsevier, 354 pp.Google Scholar
  1. Beattie, P. (1994) Systematics and energetics of trace-element partitioning between olivine and silicate melts: Implications for the nature of mineral/melt partitioning. Chem. Geol., 117, 57–71.Google Scholar
  2. Blundy, J. D. and Wood, B. J. (1991) Crystal–chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions. Geochim. Cosmochim. Acta, 55, 193–209.Google Scholar
  3. Blundy, J. D. and Wood, B. J. (1994) Prediction of crystal–melt partition coefficients from elastic moduli. Nature, 372, 452–5.Google Scholar
  4. Colson, R. O., McKay, G. A. and Taylor, L. A. (1989) Charge balancing of trivalent trace elements in olivine and low-Ca pyroxene: a test using experimental partitioning data. Geochim. Cosmochim. Acta, 53, 643–8.Google Scholar
  5. Drake, M. J. and Weill, D. F. (1975) Partitioning of Sr, Ba, Ca, Y, Eu2+, Eu3+ and other REE between plagioclase feldspar and magmatic liquids: an experimental study. Geochim. Cosmochim. Acta, 39, 689–712.Google Scholar
  6. Ellison, A. J. G. and Hess, P. C. (1989) Solutian properties of rare earth elements in silicate melts: inferences from immiscible melts. Geochim. Cosmochim. Acta, 53, 1965–74.Google Scholar
  7. Forsythe, L. M., Nielsen, R. L., Fisk, M. R. and Gallahan, W. E. (1994) The partitioning of HFSE between pyroxene and natural mafic to intermediate composition silicate liquids at 1 atm to 10 kb. Chem. Geol., 117, 107–26.Google Scholar
  8. Gallahan, W. E. and Nielsen, R. L. (1992) Experimental determination of the partitioning of Sc, Y and REE between high-Ca clinopyroxene and natural mafic liquids. Geochim. Cosmochim. Acta, 56, 2387–404.Google Scholar
  9. Ghiorso, M. S. and Sack, R. O. (1994) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib. Mineral. Petrol., 114, 221–55.Google Scholar
  10. Hack, P. J., Nielsen, R. L. and Johnston, A. D. (1994) Experimentally determined rare earth element and Y partitioning behavior between clinopyroxene and basaltic liquids at pressures up to 20 kbar. Chem. Geol., 117, 89–106.Google Scholar
  11. Hart, S. R. and Davis, K. E. (1978) Nickel partitioning between olivine and silicate melt. Earth Planet. Sci. Lett., 40, 203–19.Google Scholar
  12. Hirshman, M. C. and Ghiorso, M. S. (1994) Activities of nickel, cobalt and manganese silicates in magmatic liquids and applications to olivine/liquid and to silicate/metal partitioning. Geochim. Cosmochim. Acta, 58, 4109–26.Google Scholar
  13. Irving, A. J. (1978) A review of experimental studies of crystal/liquid trace element partitioning. Geochim. Cosmochim. Acta, 42, 743–70.Google Scholar
  14. Kohn, S. C. and Shofield, P. F. (1994) The importance of melt composition in controlling trace-element behavior: an experimental study of Mn and Zn partitioning between forsterite and silicate melts. Chem. Geol., 117, 73–87.Google Scholar
  15. Leeman, W. P. and Lindstrom, D. J. (1978) Partitioning of Ni2+ between basaltic and synthetic melts and olivines: an experimental study. Geochim. Cosmochim. Acta, 42, 801–16.Google Scholar
  16. Lindstrom, D. J. and Weill, D. F. (1978) Partitioning of transition metals between diopside and coexisting silicate liquids. I. Nickel, cobalt and manganese. Geochim. Cosmochim. Acta, 42, 817–31.Google Scholar
  17. McKay, G. A., Wagstaff, J. and Yang, S. R. (1986) Clinopyroxene REE distribution coefficients for shergottites: the REE content of the Shergotty melt. Geochim. Cosmochim. Acta, 50, 927–37.Google Scholar
  18. Mysen, B. O. and Virgo, D. (1980) Trace element partitioning and melt structure: an experimental study at one atmosphere. Geochim. Cosmochim. Acta, 44, 1917–30.Google Scholar
  19. Nielsen, R. L. (1992) BIGD.FOR: A FORTRAN program to calculate trace element partition coefficients for natural mafic and intermediate composition magmas. Computers Geosci., 18, 773–88.Google Scholar
  20. Nielsen, R. L. and Gallahan, W. E. (1990) In defense of the two lattice melt model: a comment on Ellison and Hess. Geochim. Cosmochim. Acta, 55, 132–5.Google Scholar
  21. Nielsen, R. L., Gallahan, W. E. and Newberger, F. (1992) The partitioning of Sc, Y, and the REE between olivine, low-Ca pyroxene, ilmenite, magnetite and natural silicate magmas. Contrib. Mineral. Petrol., 110, 488–99.Google Scholar
  22. Nielsen, R. L., Forsythe, L. M., Gallahan, W. E. and Fisk, M. R. (1994) The major element controls on the partitioning of HFSE between magnetite and mafic to intermediate composition natural silicate liquids at 1 atmosphere. Chem. Geol., 117, 167–93.Google Scholar
  23. Onuma, N., Higuchi, J., Wakita, H. and Nagasawa, H. (1968) Trace element partitioning between two pyroxenes and the host lava. Earth Planet. Sci. Lett., 5, 47–51.Google Scholar
  24. Watson, E. B. (1977) Partitioning of manganese between forsterite and silicate melt. Geochim. Cosmochim. Acta, 41, 1363–75.Google Scholar
  1. Berger, R. and Libby, L. M. (eds) (1981) Radiocarbon and Tritium, vol. I in the series, The Publications of Willard Frank Libby. Santa Monica, CA: Geo Science Analytical, Inc.Google Scholar
  2. Broecker, W. S., Peng, T.-H. and Engh, R. (1980) Modeling the carbon system. Radiocarbon, 22, 565–98.Google Scholar
  3. Grosse, A. V., Johnston, W. H., Woldgang, R. L. and Libby, W. F. (1951) Tritium in nature. Science, 113, 1–2.Google Scholar
  4. Lal, D. and Peters, B. (1967) Cosmic-ray-produced radioactivity on the Earth. Handbuch Phys., 42, 551–612.Google Scholar
  5. Lehmann, B. E., Davis, S. N. and Fabryka-Martin, J. T. (1993) Atmospheric and subsurface sources of stable and radioactive nuclides used for groundwater dating. Water Resources Res., 29, 2027–40.Google Scholar
  6. Urey, H. C. and Murphy, G. M. (1933) A name and symbol for H2. J. Chem. Phys., 1, 512–13.Google Scholar
  1. Anders, E. and Grevesse, N. (1989) Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta, 53, 197–214.Google Scholar
  2. Baes, C. F. Jr. and Mesmer, R. E. (1976) The Hydrolysis of Cations. New York: John Wiley & Sons.Google Scholar
  3. Earth Science (1986), 18 (special issue on the geology of tungsten).Google Scholar
  4. Evans, H. T. Jr. and Krauskopf, K. B. (1978) Tungsten (Wolfram), in Handbook of Geochemistry (ed. K. H. Wedepohl). Berlin: Springer-Verlag, pp. 74A1–74O4.Google Scholar
  5. Hutchison, C. S. (1983) Economic Deposits and their Tectonic Setting. New York: John Wiley & Sons.Google Scholar
  6. Ivanova, G. F. (1986) Geochemistry of tungsten. Earth Sci., 18, 11–43.Google Scholar
  7. Lide, D. R. (ed). (1994) CRC Handbook of Chemistry and Physics. Boca Raton, FL: CRC Press.Google Scholar
  8. Newsom, H. E., Sims, K. W. W., Noll, P. D. Jr., Jaeger, W. L., Maehr, S. A. and Beserra, T. B. (1996) The depletion of tungsten in the bulk silicate earth: Constraints on core formation. Geochim. Cosmochim. Acta, 60, 1155–69.Google Scholar
  9. Smith, G. R. (1993) Tungsten, in Mineral Commodity Summaries. Washington, DC: US Dept. of the Interior, Bureau of Mines, pp. 186–7.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • A. M. R. Neiva
  • Paul R. Dixon
  • David B. Curtis
  • Vidojko Jović
  • Scott M. McLennan
  • Peter van Calsteren
  • Mitchell Schulte
  • Patrick K. Gallagher
  • Christophe Falguéres
  • H. C. Weed
  • S. Krishnaswami
  • François Farges
  • Roger L. Nielsen
  • Austin Long
  • John C. Groen

There are no affiliations available