Encyclopedia of Geochemistry

1999 Edition
| Editors: Clare P. Marshall, Rhodes W. Fairbridge

S

  • Scott M. McLennan
  • Carla W. Montgomery
  • Jean M. Richardson
  • C. Wagner
  • Ian E. Hutcheon
  • Eugene S. Ilton
  • Nancy W. Hinman
  • Helen N. Mango
  • David W. Mittlefehldt
  • William S. Fyfe
  • Erich Königsberger
  • Heinz Gamsjäger
  • Ian T. Campbell
  • Uwe Brand
  • Ian D. Clark
  • Peter A. Rock
  • William H. Casey
  • John K. Volkman
  • R. Hellmann
  • E. Craig Simmons
  • Jon Davidson
  • Joan O. Morrison
  • Jeremy P. Richards
  • Hans G. Machel
  • Robert D. Francis
  • Martin A. A. Schoonen
  • Keith Hannan
  • Vidojko Jović
  • Christian Ludwig
  • Philip J. Potts
  • Rhodes W. Fairbridge
Reference work entry
DOI: https://doi.org/10.1007/1-4020-4496-8_18
  • 2.3k Downloads

Samarium

Samarium (Sm) is a silvery-white metal with an atomic number (Z) of 62, electronic configuration of [Xe]4f65d06s2, atomic weight of 150.36 and melting point of 1350 K. It is a Group IIIB inner transition element and one of the lanthanide and rare earth elements. Samarium has seven natural isotopes, 144Sm (3.075%), 147Sm (15.00%), 148Sm (11.24%), 149Sm (13.82%), 150Sm (7.38%), 152Sm (26.74%) and 154Sm (22.75%). Three isotopes are radioactive (with a half-lives (T1/2) in parentheses): 147Sm (1.06 × 1011 years), 148Sm (8 × 1015 years) and 149Sm (> 1016 years). Discovered in 1879, Sm is named after the mineral samarskite and is used as a radioactive tracer and in magnets.

Samarium is typically a trace element in most rocks and minerals. It is refractory and under most conditions is lithophile and found in the trivalent state. The major importance of Sm in geochemistry is that it is one of the middle trivalent rare earth elements (or lanthanides), among the most useful trace...

Keywords

Oxygen Fugacity Sulfur Isotope Sulfide Liquid Deplete Mantle Rare Earth Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Cross-references

  1. DePaolo, D. J. (1981a) Neodymium isotopes in the Colorado Front Range and implications for crust formation and mantle evolution in the Proterozoic. Nature, 291, 193–7.Google Scholar
  2. DePaolo, D. J. (1981b) Nd isotopic studies: some new perspectives on Earth structure and evolution. EOS, 62, 137–40.Google Scholar
  3. DePaolo, D. J. (1988) Neodymium Isotope Geochemistry. New York: Springer-Verlag, 156 pp.Google Scholar
  4. DePaolo, D. J. and Wasserburg, G. J. (1976) Nd isotopic variations and petrogenetic models. Geophys. Res. Lett., 3, 249–52.Google Scholar
  5. Dickin, A. P. (1995) Radiogenic Isotope Geology. Cambridge: Cambridge University Press.Google Scholar
  6. Faure, G. (1986) Principles of Isotope Geology, 2nd edn. New York: John Wiley & Sons, 589 pp.Google Scholar
  7. Goldstein, S. L. and Jacobsen, S. B. (1988) Nd and Sr istopic systematics of river water suspended material: implications for crustal evolution. Earth Planet. Sci. Lett., 87, 249–65.Google Scholar
  8. Goldstein, S. L., O'nions, R. K. and Hamilton, P. J. (1984) A Sm–Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth Planet. Sci. Lett., 70, 221–36.Google Scholar
  9. Henderson, P. (1982) Inorganic Geochemistry. Oxford: Pergamon Press.Google Scholar
  10. Jacobsen, S. B. and Wasserburg, G. J. (1980) Sm–Nd isotopic evolution of chondrites. Earth Planet. Sci. Lett., 50, 139–55.Google Scholar
  11. Jacobsen, S. B. and Wasserburg, G. J. (1984) Sm–Nd isotopic evolution of chondrites and achondrites, II. Earth Planet. Sci. Lett., 67, 137–50.Google Scholar
  12. Lugmair, G. W. and Marti, K. (1978) Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth Planet. Sci. Lett., 39, 3349–57.Google Scholar
  13. McCulloch, M. T. and Wasserburg, G. J. (1978) Sm–Nd and Rb–Sr chronology of continental crust formation. Science, 200, 1003–11.Google Scholar
  14. McKay, G. A. (1989) Partitioning of rare earth elements between major silicate minerals and basaltic melts. Rev. Mineral., 21, 45–77.Google Scholar
  15. Patchett, P. J. (1989) Radiogenic isotope geochemistry of rare earth elements. Rev. Mineral., 21, 25–44.Google Scholar
  16. Piepgras, D. J., Wasserburg, G. J. and Dasch, E. J. (1979) The isotopic composition of Nd in different ocean masses. Earth Planet. Sci. Lett., 45, 223–236.Google Scholar
  17. Zindler, A. and Hart, S. R. (1986) Chemical geodynamics. Annu. Rev. Earth Planet. Sci., 14, 493–571.Google Scholar
  1. Gy., P. M. (1979) Sampling of Particulate Materials–Theory and Practice. New York: Elevier Scientific Publishing.Google Scholar
  2. Lightfoot, P. C. and Riddle, C. 1990. An Introductory Guide to Sampling for Geoanalysis. Toronto: Ministry of Northern Development and Mines, Toronto, p. 18.Google Scholar
  3. Merks, J. M. (1985) Sampling and Weighing of Bulk Solids. Trans-Tech Publications, p. 410.Google Scholar
  4. Pitard, F. F. (1989) Pierre Gy's Sampling Theory and Sampling Practice Vol 1. Heterogeneity and Sampling. Boca Raton, FL: CRC Press.Google Scholar
  5. Richardson, J. M. (1993) A practical guide to field sampling for geological programs, in Analysis of Geological Materials (ed. C. Riddle). New York: Marcel Dekker Inc., pp. 37–64.Google Scholar
  1. Blanc, P., Roger, G. and Couto, H. (1994) Recherche de signatures magmatique et hydrothermale dans des apatites du Nord du Portugal: étude par cathodoluminescence, microscopie à balayage et microsonde électronique. Bull. Soc. Géol. Fr., 165, 329–39.Google Scholar
  2. Cesbron, F., Ohnenstetter, D., Blanc, P., Rouer, O. and Sichère, M.-C. (1993) Incorporation de terres rares dans des zircons de synthèse: étude par cathodoluminescence. CR Acad. Sci. Paris, 316, 1231–8.Google Scholar
  3. Rémond, G., Cesbron, F., Chapoulie, R., Ohnenstetter, D., Roques-Carmes, C. and Schvoerer, M. (1992) Cathodoluminscence applied to microcharacterization of mineral materials: a present status in experimentation and interpretation. Scanning Microsc., 6, 23–68.Google Scholar
  1. Carpenter, A. B. (1978) Origin and chemical evolution of sedimentary brines in sedimentary basins. Oklahoma Geol. Surv. Circ., 79, 60–77.Google Scholar
  2. Fisher, J. B. and Boles, J. R. (1990) Water–rock interaction in Tertiary sandstones, San Joaquin basin, California, USA: diagenetic controls on water composition. Chem. Geol., 82, 83–101.Google Scholar
  3. Hanor, J. (1994) Origin of saline fluids in sedimentary basins. Geofluids: origin, migration and evolution of fluids in sedimentary basins, 151. Geol. Soc. Spec. Publ., 78, 151–74.Google Scholar
  4. Hesse, R. (1990) Early diagenesis porewater/sediment interaction: modern offshore basins. Geol. Assoc. Canada Reprint Series, IV, 277–316.Google Scholar
  5. Hiyagon, H. and Kennedy, B. M. (1992) Noble gases in CH4-rich gas fields, Alberta, Canada. Geochim. Cosmochin. Acta, 56, 1569–90.Google Scholar
  6. Hutcheon, I., Shevalier, M. and Abercrombie, H. J. (1993) pH buffering by metastable mineral–fluid equilibria and evolution of carbon dioxide fugacity during burial diagenesis. Geochim. Cosmochim. Acta, 57, 1017–27.Google Scholar
  7. Lundegard, P. D. and Kharaka, Y. K. (1990) Geochemistry of organic acids in subsurface waters: field data, experimental data and models. Am. Chem. Soc. Symp. Series, 416, 169–89.Google Scholar
  8. Machel, H. G., Krouse, H. R. and Sassen, R. (1995) Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Appl. Geochem., 10, 373–390.Google Scholar
  1. * Davis, J. A. and Kent, D. B. (1990) Surface complexation modeling in aqueous geochemistry. Rev. Min., 23, 177–248.Google Scholar
  2. Finkelman, R. B. and Mrose, M. E. (1977) Downeyite, the first verifiable occurrence of SeO2. Am. Mineral., 62, 316–20.Google Scholar
  3. * Goles, G. G. (1969) Cosmic abundances, in Handbook of Geochemistry (ed. K. H. Wedepohl). Berlin: Springer-Verlag, pp. 116–33.Google Scholar
  4. Hayes et al. 1987. In situ X-ray absorption study of surface complexes: selenium oxyanions on α-FeOOH. Science, 238, 783–6.Google Scholar
  5. National Academy of Sciences Food and Nutrition Review Board (1976) Selenium and Human Health Nutrition Reviews. Washington, DC: National Academy of Sciences, 347 pp.Google Scholar
  6. * Oremland, R. S., Steinberg, N. A. and Presser, T. S. (1991) In situ bacterial selenate reduction in the agricultural drainage systems of western Nevada. Appl. Environ. Microbiol., 57, 615–17.Google Scholar
  7. Page, A. L. and Bingham, F. T. (1986) Availability and phytotoxicity of selenium to crops in relation to chemical form and concentration, in Technical Progress Report, University of California Salinity Drainage Task Force (ed. K. K. Tanji). Davis, CA: University of California, pp. 146–51.Google Scholar
  8. Shrift, A. (1964) A selenium cycle in nature? Nature, 201, 1304–5.Google Scholar
  1. CRC. (1986) Handbook of Chemistry and Physics (ed. R. C. Weast), Chemical Rubber Company Press, p. B–256.Google Scholar
  2. Heaney, P. J., Prewitt, C. T. and Gibbs, G. V. (eds) (1994) materials applications. Rev. Mineral., 29.Google Scholar
  3. Iler, R. A. (1979) The Chemistry of Silica. New York: John Wiley and Sons, 865 pp.Google Scholar
  4. Krauskopf, K. B. and Bird, D. K. (1995) Introduction to Geochemistry, 3rd edn. New York: McGraw-Hill.Google Scholar
  5. Matheney, R. K. and Knauth, L. P. (1993) New isotopic temperature estimates for early silica diagenesis in bedded cherts. Geology, 21, 519–22.Google Scholar
  6. Wedepohl, K. H. (1974) Handbook of Geochemistry, Vol. II. New York: Springer-Verlag, Ch. 14.Google Scholar
  7. Williams, L. A. and Crerar, D. A. (1985) Silica diagenesis, II. General mechanisms. J. Sediment. Petrol., 55, 312–21.Google Scholar
  8. Williams, L. A., Parks, G. A. and Crerar, D. A. (1985) Silica diagenesis, I. Solubility controls. J. Sediment. Petrol., 55, 301–11.Google Scholar
  1. Anthony, J., Bideaux, R. A., Bladh, K. W. and Nichols, M. C. (1990) Handbook of Mineralogy. Tucson: Mineral Data Publishing, 588 pp.Google Scholar
  2. Aubert, H. and Pinta, H. (1997) Trace Elements in Soils. Amsterdam: Elsevier Scientific Publishing Co., 395 pp.Google Scholar
  3. Berger, B. R. and Bethke, P. M. (eds) (1985) Geology and geochemistry of epithermal systems. Rev. Econ. Geol., 2, 298 pp.Google Scholar
  4. Evans, A. M. (1993) Ore Geology and Industrial Minerals: An Introduction. Oxford: Blackwell Scientific Publications, 390 pp.Google Scholar
  5. Faure, G. (1991) Principles and Applications of Inorganic Geochemistry. New York: Macmillan, 626 pp.Google Scholar
  6. Guilbert, J. M. and Park, F. Jr. (1986) The Geology of Ore Deposits. New York: W.H. Freeman and Co., 985 pp.Google Scholar
  7. Henderson, P. (1986) Inorganic Geochemistry. Oxford: Pergamon Press, 353 pp.Google Scholar
  8. Krauskopf, K. B. and Bird, D. K. (1995) Introduction to Geochemistry, 3rd edn. New York: McGraw-Hill, 647 pp.Google Scholar
  9. Levinson, A. A. (1974) Introduction to Exploration Geochemistry. Calgary: Applied Publishing Ltd., 612 pp.Google Scholar
  10. Mason, B. (1979) Cosmochemistry, Part I: Meteorites. Am. Geol. Surv. Professional Paper, 440-B-1, 132 pp.Google Scholar
  11. Parker, R. (1967) Composition of the Earth's Crust. Am. Geol. Surv. Professional Paper, 440-D, 19 pp.Google Scholar
  12. Roberts, R. G. and Sheahan, P. A. (1989) Ore Deposit Models. Geoscience Canada Reprint Series, 3, 194 pp.Google Scholar
  13. Seward, T. M. (1976) The stability of chloride complexes of silver in hydrothermal solutions up to 350°C. Geochim. Cosmochim. Acta, 40, 1329–41.Google Scholar
  14. Weast, R. C. (ed.) (1990) Handbook of Chemistry and Physics. Boca Raton, FL: CRC Press, 2475 pp.Google Scholar
  15. Wedepohl, K. H. (1978) Handbook of Geochemistry, Volume II/4. Berlin: Springer Verlag 47–A–1–47–O–4.Google Scholar
  16. Whitney, J. A. and Naldrett, A. J. (eds) (1989) Ore deposition associated with magmas. Rev. Econ. Geol., 4, 250 pp.Google Scholar
  1. Brown, L. R. and Wolf, E. C. (1984) Soil erosion: quiet crisis in the world economy. Worldwatch Inst. Paper, 60, 46 pp.Google Scholar
  2. Fyfe, W. S. (1989) Soil and global change. Episodes, 12, 249–54.Google Scholar
  3. Fyfe, W. S. (1993) The life support system in danger: challenge for the earth sciences. Earth Sci., 47, 179–201.Google Scholar
  4. Hausenbuiller, R. L. (1985) Soil Science, 3rd edn. Dubuque, Iowa: Wm. C. Brown Publishers.Google Scholar
  5. Konhauser, K. O., Fyfe, W. S., Zang, W., Bird, M. I. and Kronberg, B. I. (1995) Advances in Amazonian biogeochemistry. Am. Chem. Soc. Symp. Ser., 588, 208–47.Google Scholar
  6. Mertz, W. (1981) The essential trace elements. Science, 213, 1332–8.Google Scholar
  7. Pearce, F. (1992) Soils spoilt by farming and industry. New Sci., May 16, 7.Google Scholar
  8. Sadik, N. (1989) The State of World Population, 1989. New York: United Nations Population Fund, 34 pp.Google Scholar
  9. Seymour, J. (1996) Hungry for a new revolution. New Sci., 149, 32–7.Google Scholar
  10. World Resources Institute (1994) World Resources 1994–95, People and the Environment. Oxford: Oxford University Press, 400 pp.Google Scholar
  1. Bale, C. W. and Pelton, A. D. (1990) The unified interaction parameter formalism: thermodynamic consistency and applications. Metall. Trans. A, 21A, 1997–2002.Google Scholar
  2. Bertrand, G. L., Acree, W. E. Jr and Burchfield, T.E. (1983) Thermochemical excess properties of multicomponent systems: representation and estimation from binary mixing data. J. Sol. Chem., 12, 327–46.Google Scholar
  3. Darken, L. S. and Gurry, R. W.. (1953) Physical Chemistry of Metals. New York: McGraw-Hill, 535 pp.Google Scholar
  4. Fei, Y., Saxena, S. K. and Eriksson, G. (1986) Some binary and ternary silicate solution models. Contrib. Mineral. Petrol., 94, 221–9.Google Scholar
  5. Guggenheim, E. A. (1937) Theoretical basis of Raoult's law. Trans. Faraday Soc., 33, 151–9.Google Scholar
  6. Kohler, F. (1960) Zur Berechnung der thermodynamischen Daten eines ternären Systems aus den zugehörigen binäaren Systemen. Monatsh. Chem., 91, 738–40.Google Scholar
  7. Köonigsberger, E. and Gamsjäger, H. (1992) Solid-solute phase equilibria in aqueous solution. VII. A re-interpretation of magnesian calcite stabilities. Geochim. Cosmochim. Acta, 56, 4095–8.Google Scholar
  8. Köonigsberger, E. and Schrunner, H. (1989) On lattice parameters and enthalpies of mixing of alkali halide solid solutions. Phys. Status Solidi (b), 151, 101–9.Google Scholar
  9. Kubaschewaski, O., Alcock, C. B. and Spencer, P. J.. (1993)Materials Thermochemistry. Oxford: Pergamon Press, 363 pp.Google Scholar
  10. McGlashan, M. L. (1979) Chemical Thermodynamics. London: Academic Press, 345 pp.Google Scholar
  11. McSwiggen, P. L. (1993a) Alternative solution model for the ternary carbonate system CaCO3–MgCO3–FeCO3. I. A ternary Bragg–Williams ordering model. Phys. Chem. Minerals, 20, 33–41.Google Scholar
  12. McSwiggen, P. L. (1993b) Alternative solution model for the ternary carbonate system CaCO3–MgCO3–FeCO3 II. Calibration of a combined ordering model and mixing model. Phys. Chem. Minerals, 20, 42–55.Google Scholar
  13. Oates, W. A. (1969) Ideal solutions. J. Chem. Educ., 46, 501–4.Google Scholar
  14. Saxena, S. K., Chatterjee, N., Fei Y. and Shen, G. (1993) Thermodynamic Data on Oxides and Silicates. Berlin: Springer Verlag, 428 pp.Google Scholar
  15. Shi, P., Saxena, S. K. and Sundman, B. (1992) Sublattice solid solution model and its application to orthopyroxene (Mg,Fe)2Si2O6. Phys. Chem. Minerals, 18, 393–405.Google Scholar
  16. Temkin, M. (1945) Mixtures of fused salts as ionic solutions. Acta Physicochim. URSS, 20, 411–20.Google Scholar
  17. Thompson, J. B. Jr and Waldbaum, D.R. (1969) Mixing properties of sanidine crystalline solutions. III. Calculation based on two-phase data. Am. Mineral., 54, 811–38.Google Scholar
  18. Urusov, V. S. (1992) Crystal chemical and energetic characterization of solid solution, in Thermodynamic Data Systematics and Estimation (ed. S. K. Saxena). New York: Springer Verlag, pp. 162–93.Google Scholar
  1. Cohen-Adad, R., Lorimer, J. W., Salomon, M. and Saugier-Cohen Adad, M.-T. (1994) Introduction to the solubility data series, in Solubility Data Series (ed. J. W. Lorimer). Oxford: Oxford University Press, 54, VI–XII.Google Scholar
  2. Ewing, M. B., Lilley, T. H., Olofsson, G. M., Rätsch, M. T. and Somsen, G. (1994) Standard quantities in chemical thermodynamics. Pure Appl. Chem., 66, 533–52.Google Scholar
  3. Fernández-Prini, R. (1995) Solubility in fluids close to their critical points. Pure Appl. Chem., 67, 519–26.Google Scholar
  4. Freiser, H. and Nancollas, G. H. (eds) (1994) Compendium of Analytical Nomenclature (the Orange Book). Oxford: Blackwell Scientific Publications.Google Scholar
  5. Gamsjäger, H. (1995) Solubility equilibria: from chemical potentiometry to industrial applications. Pure Appl. Chem., 67, 535–42.Google Scholar
  6. Huang, H. H. (1989) STABCAL (stability calculation for aqueous systems). Stabcal Co., Prof. H. H. Huang, Dept. of Metallurgy Engineering, Montana Tech, Butte, MT 59701, USA.Google Scholar
  7. Königsberger, E. and Eriksson, G. (1995) A new optimization routine for ChemSage. CALPHAD, 19, 207–14.Google Scholar
  8. McCormick, S., Morefield, G., McCormick, A. and McCormick, M. (1994) TAPP-A database of Thermochemical And Physical Properties. ES Microware, Inc., 2234 Wade Court, Hamilton, OH 45031, USA.Google Scholar
  9. McGlashan, M. L. (1979) Chemical Thermodynamics. London: Academic Press.Google Scholar
  10. Mills, I., Cvitaš, T., Homann, K. and Kuchitsu, K. (1993) Quantities Units and Symbols in Pysical Chemistry, 2nd edn. London: Blackwell Scientific Publications.Google Scholar
  11. Oonk, H. A. J. (1981) Phase Theory. Amsterdam: Elsevier Scientific Publishing Co.Google Scholar
  12. Pabalan, R. T. and Pitzer, K. S. (1991) Mineral solubilities in electrolyte solutions, in Activity Coefficients in Electrolyte Solutions (ed. K. S. Pitzer). Boca Raton, FL: CRC Press, pp. 435–90.Google Scholar
  13. Schneider, G. M. (1993) Phase equilibrium investigations of fluid systems at high pressures. Pure Appl. Chem., 65, 173–82.Google Scholar
  1. Skoog, D. A. and West, D. M. (1980) Principles of Instrumental Analysis, 2nd edn. Philadelphia: Holt-Saunders International, 769 pp.Google Scholar
  2. Skoog, D. A., West, D. M. and Holler, F. J. (1988) Fundamentals of Analytical Chemistry, 5th edn. New York: Saunders College Publ., 894 pp.Google Scholar
  1. Clark, I. D. and Fritz, P. (1997) Environmental Isotopes in Hydrogeology. Boca Raton, FL: CRC Lewis Publishers, 320 pp.Google Scholar
  2. Claypool, G. E., Holser, W. T., Kaplan, I. R., Sakai, H. and Zak, I. (1980) The age curves of sulfur and oxygen isotopes in marine sulphate and their mutual interpretation. Chem. Geol., 28, 199–260.Google Scholar
  3. Craig, H. (1961) Isotopic variations in meteoric waters. Science, 133, 1702–3.Google Scholar
  4. Dansgaard, W. (1964) Stable isotopes in precipitation. Tellus, XVI, 436–68.Google Scholar
  5. Epstein, S. E., Buchsbaum, R., Lowenstaum, H. A. and Urey, H. C. (1953) Revised carbonate-water isotopic temperature scale. Bull. Soc. Am., 64, 1315.Google Scholar
  6. Epstein, S. (1959) The variations of the O18/O16 ratio in nature and some geologic implications, in Researches in Geochemistry (ed. P. H. Abelson). New York: Wiley, pp. 217–40.Google Scholar
  7. Epstein, S. and Taylor, H. P. (1967) Variation of O18/O16 in minerals and rocks, in Researches in Geochemistry (ed. P. H. Abelson). New York: Wiley, pp. 29–62.Google Scholar
  8. Rozanski, K., Araguás-Araguás, L. and Gonfiantini, R. (1993) Isotopic patterns in modern global precipitation. Am. Geophys. Union Monogr., 78.Google Scholar
  9. Urey, H. C. (1947) The thermodynamic properties of isotopic substances. J. Chem. Soc., 1947, 562–81.Google Scholar
  10. Veizer, J. (1989) Strontium isotopes in seawater through time. Annu. Rev. Earth Planet. Sci. Lett., 17, 141–67.Google Scholar
  11. Veizer, J., Bruckschen, P., Pawellek, F. et al. (1995) Oxygen isotope evolution of Phanerozoic seawater. Paleogeogr. Paleoclimat. Paleoecol., 132, 159–72.Google Scholar
  12. Winograd, I. J., Coplen, T. B., Landwehr, J. M. et al. (1992) Continuous 500,000-year climatic record from vein calcite in Devils Hole, Nevada. Science, 258, 255–60.Google Scholar
  1. Alberty, R. A. and Silbey, R. S. (1992) Physical Chemistry. New York: John Wiley, 898 pp.Google Scholar
  2. Anderson, G. M. and Crerar, D. A. (1993) Thermodynamics in Geochemistry. New York: Oxford University Press, 588 pp.Google Scholar
  3. Laidler, K. J. (1993) The World of Physical Chemistry. New York: Oxford University Press, 476 pp.Google Scholar
  4. Lewis, G. L. and Randall, M. (1961) Thermodynamics (revised by K. S. Pitzer and L. Brewer). New York: McGraw-Hill, 724 pp.Google Scholar
  5. Nordstrom, D. K. and Munoz, J. L. (1994) Geochemical Thermodynamics, 2nd edn. Cambridge, MA: Blackwell Scientific Publications, 494 pp.Google Scholar
  6. Rock, P. A. (1983) Chemical Thermodynamics. Mill Valley, CA: University Science Books, 548 pp.Google Scholar
  1. de Leeuw, J. W., Cox, H. C., Baas, M., Peakman, T. M., van de Graaf, B. and Baas, J. M.A. (1993) Relative stabilities of sedimentary rearranged sterenes as calculated by molecular mechanics: a key to unravel further steroid diagenesis. Org. Geochem., 20, 1297–302.Google Scholar
  2. Huang, W. Y. and Meinschein, W. G. (1979) Sterols as ecological indicators. Geochim. Cosmochim. Acta, 43, 739–45.Google Scholar
  3. Moldowan, J. M., Albrecht, P. and Philp, R. P. (eds) (1992) Biological Markers in Sediments and Petroleum. A Tribute to Wolfgang K. Seifert. New Jersey: Prentice Hall, 411 pp.Google Scholar
  4. McCaffrey, M. A., Moldowan, J. M., Lipton, P. A. et al. (1994) Paleoenvironmental implications of novel C30 steranes in Precambrian to Cenozoic age petroleum and bitumen. Geochim. Cosmochim. Acta, 58, 529–32.Google Scholar
  5. Summons, R. E. and Capon, R. J. (1991) Identification and significance of 3α-methyl steranes in sediments and petroleum. Geochim. Cosmochim. Acta, 55, 2391–5.Google Scholar
  6. Summons, R. E., Thomas, J., Maxwell, J. R. and Boreham, C. J. (1992) Secular and environmental constraints on the occurrence of dinosterane in sediments. Geochim. Cosmochim. Acta, 56, 2437–44.Google Scholar
  7. ten Haven, H. L., de Leeuw, J. W., Peakman, T. M. and Maxwell, J. R. (1986) Anomalies in steroid and hopaniod maturity indexes. Geochim. Cosmochim. Acta, 50, 853–5.Google Scholar
  8. Volkman, J. K. (1986) A review of sterol markers for marine and terrigenous organic matter. Org. Geochem., 9, 83–99.Google Scholar
  9. Volkman, J. K., Farrington, J. W. and Gagosian, R. B. (1987) Marine and terrigenous lipids in coastal sediments from the Peru upwelling region at 15°S: sterols and triterpene alcohols. Org. Geochem., 11, 463–77.Google Scholar
  10. Withers, N. (1987) Dinoflagellate sterols. Biol. Monogr., 21, 316–59.Google Scholar
  1. Casey, W. H., Westrich, H. R., Banfield, J. F., Ferruzzi, G. and Arnold, G. W. (1993) Leaching and reconstruction at the surfaces of dissolving chain-silicate minerals. Nature, 366, 253–5.Google Scholar
  2. Dran, J.-C., Della Mea, G., Paccagnella, A., Petit, J.-C. and Trotignon, L. (1988) The aqueous dissolution of alkali silicate glasses: reappraisal of mechanisms by H and Na depth profiling with high energy ion beams. Phys. Chem. Glasses, 29, 249–55.Google Scholar
  3. Hellmann, R. (1994) The albite–water system: Part I. The kinetics of dissolution as a function of pH at 100, 200, and 300°C. Geochim. Cosmochim. Acta, 58, 595–611.Google Scholar
  4. Hellmann, R. (1995) The albite–water system: Part II. The time-evolution of the stoichiometry of dissolution as a function of pH at 100, 200 and 300°C. Geochim. Cosmochim. Acta, 59, 1669–97.Google Scholar
  5. Hellmann, R., Crerar, D. A. and Zhang, R. (1989) Albite feldspar hydrolysis to 300°C, in Reactivity of Solids: Proceedings of the 11th Symposium (eds M. S. Whittingham, S. Bernasek, A. J. Jacobson and A. Navrotsky). Amsterdam: North Holland, pp. 314–29.Google Scholar
  6. Hellmann, R., Dran, J.-C. and Della Mea, G. (1997) The albite–water system: Part III. Characterization of leached and hydrogenenriched layers formed at 300°C using MeV ion beam techniques. Geochim. Cosmochim. Acta, 61, 1575–94.Google Scholar
  7. Petit, J.-C., Della Mea, G., Dran, J.-C., Magonthier, M.-C., Mando, P. A. and Paccagnella, A. (1990) Hydrated layer formation during dissolution of complex silicate glasses and minerals. Geochim. Cosmochim. Acta, 54, 1941–55.Google Scholar
  1. Banner, J. L. (1995) Application of the trace element and isotope geochemistry of strontium to studies of carbonate diagenesis. Sedimentology, 42, 805.Google Scholar
  2. Burke, W. H., Denison, R. E., Hetherington, E. A., Koepnick, R. B., Nelson, N. F. and Otto, J. B. (1982) Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology, 10, 516.Google Scholar
  3. Faure, G. (1986) Principles of Isotope Geology. New York: John Wiley & Sons, 589 pp.Google Scholar
  4. Faure, G. and Powell, J. L. (1972) Strontium Isotope Geology. New York: Springer-Verlag, 188 pp.Google Scholar
  5. Lide, D. R. (ed.) (1992) CRC Handbook of Chemistry and Physics. Boca Raton, FL: CRC Press.Google Scholar
  6. Parrington, J. R., Knox, H. D., Breneman, S. L., Baum, E. M. and Feiner, F. (1996) Nuclides and Isotopes. San Jose: General Electric Nuclear Energy, 64 pp.Google Scholar
  7. Peterman, Z. E. and Stuckless, J. S. (1993) Application of strontium and other radiogenic tracer isotopes to paleohydrologic studies. Proc. NEA Workshop, Nuclear Energy Agency Organisation for Economic Co-operation and Development, p. 59.Google Scholar
  8. Shannon, R. D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in Halides and Chalcogenides. Acta Crystallogr., A32, 751.Google Scholar
  9. Taylor, S. R. and McLennan, S. M. (1985) The Continental Crust: its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Boston: Blackwell Scientific Publications, 312 pp.Google Scholar
  10. Wedepohl, K. R. (executive ed.) (1978) Handbook of Geochemistry, V. II/4. New York: Springer-Verlag.Google Scholar
  11. Weeks, M. E. (1956) Discovery of the Elements. Easton, PA: Journal of Chemical Education, 910 pp.Google Scholar
  1. Dickin, A. P. (1995) Radiogenic Isotope Geology. Cambridge: Cambridge University Press, 452 pp.Google Scholar
  2. Faure, G. (1986) Principles of Isotope Geochemistry, 2nd edn. New York: John Wiley and Sons, 589 pp.Google Scholar
  3. Faure, G. and Powell, J. L. (1972) Strontium. New York: Springer-Verlag, 188 pp.Google Scholar
  4. Henderson, P. (1982) Inorganic Geochemistry. Oxford: Pergamon Press, 353 pp.Google Scholar
  5. Wilson, B. M. (1989) Igneous Petrogenesis: A Global Tectonic Approach. London: Unwin Hyman, 466 pp.Google Scholar
  1. Allsopp, H. L., Ulrych, T. J. and Nicolaysen, L. O. (1968) Dating some significant events in the history of the Swaziland system by the Rb–Sr isochron method. Can. J. Earth Sci., 5, 605–19.Google Scholar
  2. Bates, N. R. and Brand, U. (1990) Secular variation of calcium carbonate mineralogy: an evaluation of ooid and micrite chemistries. Geol. Rundschau, 79, 27–46.Google Scholar
  3. Brand, U. (1987) Depositional analysis of the Breathitt Formation's marine horizons, Kentucky. USA: trace elements and stable isotopes. Chem. Geol. (Isotope Geosci. Sect.), 65, 117–36.Google Scholar
  4. Brand, U. (1991) Strontium isotope diaenesis of biogenic aragonite and low-Mg calcite. Geochim. Cosmochim. Acta, 55, 505–13.Google Scholar
  5. Brand, U. and Morrison, J. O. (1987) Paleoscene #6. Biogeochemistry of fossil marine invertebrates. Geosci. Can., 14, 85–107.Google Scholar
  6. Burke, W. H., Denison, R. E., Hetherington, E. A., Koepnick, R. B., Nelson, H. F. and Nelson, J. B. (1982) Variation of seawater 87Sr/86SR through Phanerozoic time. Geology, 10, 516–19.Google Scholar
  7. Carpenter, S. J. and Lohmann, K. C. (1992) Sr/Mg ratios of modern marine calcite: Empirical indicators of ocean chemistry and precipitation rate. Geochim. Cosmochim. Acta, 56, 1837–49. Google Scholar
  8. Faure, G. and Powell, J. L. (1972) Strontium Isotope Geology. New York: Springer-Verlag, 188 pp.Google Scholar
  9. Ingram, B. L. and Sloan, D. (1992) Strontium isotopic composition in esiuarine sediments as paleosalinity and paleoclimate indicators. Science, 235, 68–72.Google Scholar
  10. Lorens, R. B. (1981) Sr, Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate. Geochin. Cosmochim. Acta, 45, 553–61.Google Scholar
  11. Lowenstam, H. A. (1961) Mineralogy, O18/O16 ratios, and strontium and magnesium contents of Recent and fossil brachiopods and their bearing on the history of the oceans. J. Geol., 69, 241–60.Google Scholar
  12. Mackenzie, F. T. and Morse, J. W. (1992) Sedimentary carbonates through Phanerozoic time. Geochim. Cosmochim. Acta, 56, 3281–95.Google Scholar
  13. Morrison, J. O. and Brand, U. (1986) Paleoscene #5. Geochemistry of Recent marine invertebrates. Geosci. Can., 13, 237–54.Google Scholar
  14. Peterman, Z. E., Hedge, C. E. and Tourtelot, H. A. (1970) Isotopic composition of strontium in seawater throughout Phanerozoic time. Geochim. Cosmochim. Acta, 34, 105–20.Google Scholar
  15. Pingitore, N. E., Lytle, F. W., Davies, B. M., Eastman, M. P., Eller, P. G. and Larson, E. M. (1992) Mode of incorporation of Sr2+ in calcite: Determination by X-ray absorption spectroscopy. Geochim. Cosmochim. Acta, 56, 1531–7.Google Scholar
  16. Veizer, J. (1989) Strontium isotopes in seawater through time. Annu. Rev. Earth Planet. Sci., 17, 141–67.Google Scholar
  1. Berry, L. G., Mason, B. and Dietrich, R.V. (1983) Mineralogy, 2nd edn. San Francisco: W.H. Freeman & Co., 561 pp.Google Scholar
  2. Deer, W. A., Howie, R. A. and Zussman, J. (1992) An Introduction to the Rock-Forming Minerals, 2nd edn. Harlow, England: Longman Scientific & Technical, 696 pp.Google Scholar
  3. Phillips, W. R. and Griffen, D. T. (1981) Optical Mineralogy: The Nonopaque Minerals. San Francisco: W.H. Freeman & Co., 677 pp.Google Scholar
  4. Wuensch, B. J. (1978) Sulfur: crystal chemistry, in Handbook of Geochemistry, Vol. II/2 (ed. K. H. Wedepohl). New York: Springer-Verlag, pp. 16–A–1–16–A–19.Google Scholar

Cross-references

  1.  Mineralogy; Sulfate reduction; Sulfide minerals; Sulfosalt minerals; Sulfur; Sulfur cycle; Sulfur isotopes
  1. Elsgaard, L., Isaksen, M. F. and Jörgensen, B. B. (1994) Microbial sulfate reduction in deep-sea sediments at the Guayamas Basin hydrothermal vent area: influence of temperature and substrates. Geochim. Cosmochim. Acta, 58, 3335–43.Google Scholar
  2. Jørgensen, B. B., Isaksen, M. F. and Jannasch, H. W. (1992) Bacterial sulfate reduction above 100°C in deep sea hydrothermal vent sediments. Science, 258, 1756–7.Google Scholar
  3. Kiyosu, Y. and Krouse, H. R. (1990) The role of organic acid in the abiogenic reduction of sulfate and the sulfur isotope effect: Geochem. J., 24, 21–7.Google Scholar
  4. Machel, H. G. (1992) Low-temperature and high-temperature origins of elemental sulfur in diagenetic environments, in Native Sulfur–Developments in Geology and Exploration (eds G. R. Wessel and B. H. Wimberly). Littleton, CO: Society for Mining, Metallurgy, and Exploration, pp. 3–22.Google Scholar
  5. Machel, H. G., Krouse, H. R. and Sassen, R. (1995) Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Appl. Geochem., 10, 373–89.Google Scholar
  6. Orr, W. L. (1977) Geologic and geochemical controls on the distribution of hydrogen sulfide in natural gas, in Advances in Organic Geochemistry (eds R. Campos and J. Goni). Madrid: Enadisma, pp. 571–97.Google Scholar

Cross-references

  1.  Carbonate sediments;  Diagenesis;  Dolomite and dolomitization;  Earth's ocean geochemistry;  Elements: alkali and alkaline earth;  Hydrocarbons;  Organic geochemistry;  Oxidation–reduction; Sulfate minerals; Sulfide minerals; Sulfosalt minerals; Sulfur; Sulfur cycle; Sulfur isotopes;  Thermochemistry
  1. Berry, L. G., Mason, B. and Dietrich, R. V. (1983) Mineralogy, 2nd edn. San Francisco: W.H. Freeman & Co., 561 pp.Google Scholar
  2. Craig, J. R. and Scott, S. D. (1976) Sulfide phase equilibria, in Sulfide Mineralogy (ed. P. H. Ribbe). Washington, DC: Mineralogical Society of America, pp. CS–1–CS–110.Google Scholar
  3. Craig, J. R. and Vaughan, D. J. (1994) Ore Microscopy and Ore Petrography, 2nd edn. New York: Wiley & Sons, 434 pp.Google Scholar
  4. Wuensch, B. J. (1978) Sulfur: crystal chemistry, in Handbook of Geochemistry, Vol. II/2 (ed. K. H. Wedepohl). New York: Springer-Verlag, pp. 16–A–1–16–A–19.Google Scholar

Cross-references

  1.  Elements: chalcophile;  Mineralogy;  Ore deposits; Sulfate minerals; Sulfate reduction; Sulfides in mafic and ultramafic rocks; Sulfosalt minerals; Sulfur cycle; Sulfur isotopes in geochemistry
  1. Alt, J. C., Shanks, W. C. and Jackson, M. C. (1993) Cycling of sulfur in subduction zones: the geochemistry of sulfur in the Mariana Island arc and back-arc trough. Earth Planet. Sci. Lett., 119, 477–94.Google Scholar
  2. Batiza, R., Rosendahl, B. R. and Fischer, R. L. (1977) Evolution of oceanic crust, 3. Petrology and chemistry of basalts from the East Pacific Rise and the Siqueiros transform fault. J. Geophys. Res., 82, 265–76.Google Scholar
  3. Czamanski, G. K. and Moore, J. G. (1977) Composition and phase chemistry of sulfide globules in basalt from the mid-Atlantic ridge rift valley near 37°N lat. Geol. Soc. Am. Bull., 88, 587–99.Google Scholar
  4. Doyle, C. D. and Naldrett, A. J. (1987) The oxygen content of’ sulfide’ magma and its effect on the partitioning of nickel between coexisting olivine and molten ores. Econ. Geol., 82, 208–11.Google Scholar
  5. Fleet, M. E. and MacRae, N. D. (1983) Partition of Ni between olivine and sulfide and its application to Ni–Cu sulfide deposits. Contrib. Mineral Petrol., 83, 75–81.Google Scholar
  6. Francis, R. D. (1980) On the fractionation of sulfur, copper and related transition elements in silicate liquids. Ph.D. thesis, Scripps Institution of Oceanography.Google Scholar
  7. Francis, R. D. (1990) Sulfide globules in mid-ocean ridge basalts (MORB), and the effect of oxygen abundance in Fe–S–O liquids on the ability of those liquids to partition metals from MORB and komatiite magmas. Chem. Geol., 85, 199–213.Google Scholar
  8. Groves, D. I., Marchant, T., Maske, S. and Cawthorn, R. G. (1986) Composition of ilmenites in Fe–Ni–Cu sulfide and host rocks, Insizwa, Southern Africa; proof of coexisting immiscible sulfide and silicate liquids. Econ. Geol., 81, 725–31.Google Scholar
  9. Haughton, D. R., Roeder, P. L. and Skinner, B. J. (1974) Solubility of sulfur in mafic magmas. Econ. Geol., 74, 451–61.Google Scholar
  10. Luhr, J. F. (1990) Experimental phase relations of water-and sulfur-saturated arc magmas and the 1982 eruptions of El Chichon Volcano. J. Petrol., 31, 1071–114.Google Scholar
  11. Maclean, W. H., Cabri, L. J. and Gill, J. E. (1972) Exsolution products in heated chalcopyrite. Can. J. Earth Sci., 9, 1305–17.Google Scholar
  12. Mathez, E. A. (1976) Sulfur solubility and magmatic sulfides in submarine basalt glass. J. Geophys. Res., 81, 4269–84.Google Scholar
  13. Peach, C. L., Mathez, E. A. and Keays, R. R. (1990) Sulfide melt-silicate distribution coefficients for noble metals and other chalcophile elements as deduced from MORB: implications for partial melting. Geochim. Cosmochim. Acta, 54, 3379–89.Google Scholar
  1. Berry, L. G., Mason, B. and Dietrich, R. V. (1983) Mineralogy, 2nd edn. San Francisco: W.H. Freeman & Co., 561 pp.Google Scholar
  2. Craig, J. R. and Scott, S. D. (1976) Sulfide phase equilibria, in Sulfide Mineralogy (ed. P. H. Ribbe). Washington, DC: Mineralogical Society of America, pp. CS–1–CS–100.Google Scholar
  3. O'Donoghue, M. (ed.) (1976) Encyclopedia of Minerals and Gemstones. London: Orbis Publishing, 304 pp.Google Scholar
  4. Seal, R. R. II, Essene, E. J. and Kelley, W. C. (1972) Tetrahedrite and tennantite: evaluation of thermodynamic data and phase equilibria. Can. Mineral., 28, 725–38.Google Scholar
  5. Wuensch, B. J. (1976) Determination, relationships, and classification of sulfide mineral structures, in Sulfide Mineralogy (ed. P. H. Ribbe). Washington, DC: Mineralogical Society of America, pp. W–1–W–44.Google Scholar
  6. Wuensch, B. J. (1978) Sulfur: crystal chemistry, in Handbook of Geochemistry, Vol. II/2 (ed. K. H. Wedepohl). New York: Springer-Verlag, pp. 16–A–1–16–A–19.Google Scholar

Cross-references

  1.  Elements: chalcophile;  Mineralogy; Sulfate minerals; Sulfate reduction; Sulfide minerals
  1. Boulegue, J. (1978) Solubility of elemental sulfur in water at 298 K. Phosphorus Sulfur, 5, 127–8.Google Scholar
  2. Cotton, F. A. and Wilkinson, G. (1980) Advanced Inorganic Chemistry. New York: Wiley, 1396 pp.Google Scholar
  3. Faure, G. (1986) Principles of Isotope Geology, 2nd edn. New York: John Wiley & Sons, 589pp.Google Scholar
  4. Meyer, B. (1976) Elemental sulfur. Chem. Rev., 76, 367–88.Google Scholar

Cross-references

  1.  Elements: chalcophile;  Natural gas;  Nutrients;  Oil shales;  Oklo natural nuclear reactor;  Ore deposits; Stable isotopes; Sulfate minerals; Sulfate reduction; Sulfide minerals; Sulfosalt minerals; Sulfur cycle; Sulfur isotopes
  1. Berner, E. K. and Berner, R. A. (1996) Global Environment. Upper Saddle River, NJ: Prentice Hall, 376 pp.Google Scholar
  2. Brimblecombe, P. et al. (1989) Human influence on the sulfur cycle, in Evolution of the Global Biogeochemical Sulfur Cycle (eds P. Brimblecombe and A. L. Lein). New York: Wiley & Sons, pp. 77–124.Google Scholar
  3. Charlson, R. J., Anderson, T. L. and McDuff, R. E. (1992) The sulfur cycle, in Global Biogeochemical Cycles (eds S. S. Butcher, R. J. Charlson, G. H. Orians and G. V. Wolfe). New York: Academic Press, pp. 285–300.Google Scholar
  4. Holser, W. T., Maynard, J. B. and Cruikshank, K. M. (1989) Modelling the natural cycle of sulfur through phanerozoic time, in Evolution of the Global Biogeochemical Sulfur Cycle (eds P. Brimblecombe and A. L. Lein). New York: Wiley & Sons, pp. 77–124.Google Scholar
  5. Ivanov et al. (1989) in Evolution of the Global Biogeochemical Sulfur Cycle (eds P. Brimblecombe and A. L. Lein). New York: Wiley & Sons, pp. 77–124.Google Scholar
  6. Schlesinger, W. H. (1991) Biogeochemistry: an Analysis of Global Change. New York: Academic Press, 443 pp.Google Scholar
  7. Staudt, W. J. and Schoonen, M. A. A. (1995) Sulfate incorporation into sedimentary carbonates, in Geochemical Transformations of Sedimentary Sulfur (eds M. A. Vairavamurthy and M. A. A. Schoonen). Washington, DC: American Chemical Society, pp. 332–37.Google Scholar
  8. Vairavamurthy, M. A., Orr, W. L. and Manowitz, B. (1995) Geochemical transformations of sedimentary sulfur: an introduction, in Geochemical Transformations of Sedimentary Sulfur (eds M. A. Vairavamurthy and M. A. A. Schoonen). Washington, DC: American Chemical Society, pp. 1–15.Google Scholar

Cross-references

  1. Bachinski, D. J. (1969) Bond strength and sulfur isotope fractionation in coexisting sulfides. Econ. Geol., 64, 56–65.Google Scholar
  2. Beaudoin, G., Taylor, B. E., Rumble, D. III and Thiemens, M. (1994) Variations in the sulfur isotope composition of troilite from the Cañon Diablo iron meteorite. Geochim Cosmochim. Acta, 58, 4253–5.Google Scholar
  3. Faure, G. (1977) Principles of Isotope Geology. New York: John Wiley and Sons,, 464 pp.Google Scholar
  4. Feely, H. W. and Kulp, J. L. (1957) The origin of the Gulf Coast salt dome sulfur deposits. Bull. Am. Assoc. Petrol. Geol., 41, 1802–53.Google Scholar
  5. Franklin, J. M., Lydon, J. W. and Sangster, D. F. (1981) Volcanic-associated massive sulfide deposits. Econ. Geol., 75, 485–627.Google Scholar
  6. Goldhaber, M. B. and Kaplan, I. R. (1975) Controls and consequences of sulfate reduction rates in recent marine sediments. Soil Sci., 119, 42–55.Google Scholar
  7. Hannan, K. W., Golding, S. D., Herbert, H. K. and Krouse, H. R. (1993) Contrasting alteration assemblages in metabasites from Mount Isa, Queensland, Implications for copper ore genesis. Econ. Geol., 88, 1135–75.Google Scholar
  8. Hoefs, J. (1987) Stable Isotope Geochemistry. Berlin: Springer-Verlag, 241 pp.Google Scholar
  9. Holser, W. T. (1977) Catastrophic chemical events in the history of the oceans. Nature, 267, 403–8.Google Scholar
  10. Holser, W. T., Schidlowski, F. T., Mackenzie, F. T. and Maynard, J. B. (1988) Biogeochemical cycles of carbon and sulfur, in Chemical Cycles in the Evolution of the Earth (eds B. C. Gregor, R. M. Garrels, F. T. Mackenzie and J. B. Maynard). New York: John Wiley and Sons.Google Scholar
  11. Krouse, H. R., Ueda, A. and Campbell, F. A. (1990) Sulfur istope abundances in coexisting sulfate and sulfide. Kinetic isotope effects versus exchange phenomena, in Stable Isotopes and Fluid Processes in Mineralization (eds H. K. Herbert and E. H. Ho). University of Western Australia, Geology Department, pp. 226–43.Google Scholar
  12. Kyser, T. K. (1986) Stable isotope variations in the mantle. Rev. Mineral., 16, 141–64.Google Scholar
  13. Kusakabe, M., Hori, M., Masuhisa, Y. (1990) Primary mineralisation–alteration of the El Teniente and Rio Blanco prophyry copper deposits, Chile; stable isotopes, fluid inclusions, and Mg2+/Fe2+/Fe2+ ratios of hydrothermal biotite, in Stable Isotopes and Fluid Processes in Mineralogy (eds H. K. Herbert and E. H. Ho). University of Western Australia Geology Department, Publication 23, pp. 244–59.Google Scholar
  14. McCready, R.G.L., Kaplan, I. R. and Din, G. A. (1974) Fractionation of sulfur isotopes by the yeast Saccharomyces cerevisiae. Geochim. Cosmochim. Acta, 38, 1239–53.Google Scholar
  15. Ohmoto, H. (1986) Stable isotope geochemistry of ore deposits. Rev. Mineral., 16, 491–559.Google Scholar
  16. Ohmoto, H. and Lasaga, A. C. (1982) Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. Geochim. Cosmochim. Acta, 46, 1727–45.Google Scholar
  17. Ohmoto, H., Kaiser, C. J. and Geer, K. A. (1990) Systematics of sulfur isotopes in recent marine sediments and ancient sediment-hosted basemetal deposits, in Stable Isotopes and Fluid Processes in Mineralization (eds H. K. Herbert and E. H. Ho). University of Western Australia, Geology Department, pp. 70–120.Google Scholar
  18. Sakai, H. (1968) Isotopic properties of sulfur compounds in hydrothermal processes. Geochem. J., 2 29–49.Google Scholar
  19. Skinner, B. J. (ed) (1981) 75th Anniversary Volume, Econ. Geol., 964 pp.Google Scholar
  20. Taylor, B. E. (1987) Stable isotope geochemistry of ore-forming fluids. Mineral. Assoc. Can., 13, 337–445.Google Scholar
  21. Thode, H. G. (1981) Sulfur isotope ratios in petroleum research and exploration, Willston Basin. Bull. Am. Assoc. Petrol. Geol., 65, 1527–35.Google Scholar

Cross-references

  1.  Carbon isotopes;  Fluid–rock interactions;  Gas source mass spectrometry;  Geochemistry: low temperature;  Geothermal systems;  Hydrogen isotopes;  Hydrothermal alteration;  Hydrothermal solutions;  Isotope fractionation;  Nitrogen isotopes;  Ore deposits;  Organic geochemistry;  Oxygen isotopes; Stable isotopes; Sulfate minerals; Sulfate reduction; Sulfides in mafic and ultramafic rocks; Sulfosalt minerals; Sulfur cycle
  1. Conybeare, C. E. B. (1979) Ore deposits. Encyclopedia Britannica, 15th edn. 13, 661–72.Google Scholar
  2. Krauskopf, K. B. (1982) Introduction to Geochemistry, 2nd edn. Singapore: McGraw-Hill, 617 pp.Google Scholar
  3. Lelong, F., Tardy, Y., Grandin, G., Trescases, J. J. and Boulange, B. (1976) Pedogenesis, chemical weathering and processes of formation of supergene ore deposits, in Handbook of Strata-Bound and Startiform Ore Deposits (ed. K. H. Wolf). Amsterdam: Elsevier, pp. 39–173.Google Scholar
  4. Maynard, J. B. (1983) Geochemistry of Sedimentary Ore Deposits. New York: Springer-Verlag, 305 pp.Google Scholar
  5. Perel'man, A. I. (1967) Geochemistry of Epigenesis. New York: Plenum Press, 266 pp.Google Scholar
  1. Adamson, A. W. (1982) Physical Chemistry of Surfaces. New York: John-Wiley, 662 pp.Google Scholar
  2. Schindler, P. W. (1983) A solution chemist's view of surface chemistry. Pure Appl. Chem., 63, 1697–704.Google Scholar
  3. Sposito G. (1984) The Surface Chemistry of Soils. New York: Oxford University Press, 234 pp.Google Scholar
  4. Stumm, W. (1992) Chemistry of the Solid–Water Interface. New York: John-Wiley, 425 pp.Google Scholar
  5. Yariv, S. and Cross, H. (1979) Geochemistry of Colloid Systems for Earth Sciences. New York: Springer-Verlag, 450 pp.Google Scholar
  1. Smith, J. V. (1995) Synchrotron X-ray sources: instrumental characteristics, new applications in microanalysis, tomography, absorption spectroscopy and diffraction. Analyst, 120, 1231–45.Google Scholar
  2. Smith, J. V. and Rivers, M. L. (1995) Synchrotron X-ray microanalysis, in Microprobe Techniques in the Earth Sciences (eds P. J. Potts, J. F. W. Bowles, S. J. B. Reed and M. R. Cave). London: Chapman and Hall, pp. 163–233.Google Scholar
  1. Krauskopf, K. B. and Bird, D. K. (1995) Introduction to Geochemistry. New York: McGraw-Hill.Google Scholar
  2. Larsen, G. and Chilingar, G. V. (eds) (1983) Diagenesis in Sediments and Sedimentary Rocks, 2nd edn. Amsterdam: Elsevier, 572 pp.Google Scholar
  3. Moores, E. M. (ed.) (1990) Shaping the Earth (readings from Scientific American). New York: Freeman & Co.Google Scholar
  4. Orme, G. R. and Fairbridge, R. W. (1978) The Encyclopedia of Sedimentology (eds R. W. Fairbridge and J. Bourgeois). Stroudsburg, PA: Dowden, Hutchinson & Ross, pp. 252–6. Google Scholar
  5. Park, C. F. and MacDiamid, R. A. (1970) Ore Deposits. San Francisco: W.H. Freeman, 522 pp.Google Scholar
  6. Rona, P., Bostrom, K., Laubier, J. and Smith, S. (eds) (1983) Hydrothermal Processes at Sea-floor Spreading Centers. New York: Plenum Press.Google Scholar
  7. Seibold, E. and Berger, W. H. (1993) The Sea Floor. Berlin: Springer Verlag.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Scott M. McLennan
  • Carla W. Montgomery
  • Jean M. Richardson
  • C. Wagner
  • Ian E. Hutcheon
  • Eugene S. Ilton
  • Nancy W. Hinman
  • Helen N. Mango
  • David W. Mittlefehldt
  • William S. Fyfe
  • Erich Königsberger
  • Heinz Gamsjäger
  • Ian T. Campbell
  • Uwe Brand
  • Ian D. Clark
  • Peter A. Rock
  • William H. Casey
  • John K. Volkman
  • R. Hellmann
  • E. Craig Simmons
  • Jon Davidson
  • Joan O. Morrison
  • Jeremy P. Richards
  • Hans G. Machel
  • Robert D. Francis
  • Martin A. A. Schoonen
  • Keith Hannan
  • Vidojko Jović
  • Christian Ludwig
  • Philip J. Potts
  • Rhodes W. Fairbridge

There are no affiliations available