Encyclopedia of Geochemistry

1999 Edition
| Editors: Clare P. Marshall, Rhodes W. Fairbridge

R

  • Stephen A. Prevec
  • Arthur W. Rose
  • T. Akagi
  • David A. Rothery
  • John W. Morgan
  • R. R. Barefoot
  • Kenneth E. Peters
  • Vidojko Jovic
  • E. Craig Simmons
  • Leon E. Long
Reference work entry
DOI: https://doi.org/10.1007/1-4020-4496-8_17
  • 2.2k Downloads

Radioactivity

Radioactivity represents the phenomenon whereby unstable atomic nuclei spontaneously decompose, releasing nuclear particles and/or energy in the process. Of the 287 naturally occurring isotopes, at least 62 are unstable. Radioactive decay can be characterized in terms of the breakdown of the unstable parent nuclide (or radionuclide), defined by its mass and atomic numbers, into a radiogenic daughter nuclide (which may itself be radioactive), plus other nuclear particles plus energy, occurring at a quantifiable rate in time. For example, the decay of 238U to 206Pb may be described by the following expression: 23892U → 20682Pb + 8α + 6β + Q, where the α particle is equivalent to a 42He atom, and Q is the decay energy. The length of time for one half of the parent nuclides to decay to the radiogenic daughter nuclides is known as the half-life of the parent. This function may also be described as the decay constant (λ), which is the inverse of the half-life and is therefore...

Keywords

Source Rock Instrumental Neutron Activation Analysis Radon Concentration Platinum Group Element Vitrinite Reflectance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

  1. Armstrong, R.L. (1991) A brief history of geochronometry and radiogenic isotopic studies, in Applications of Radiogenic Isotope Systems to Problems in Geology (eds L.M. Heaman and J.N. Ludden). Toronto: Mineralogical Association of Canada Short Course Handbook, pp. 1–26.Google Scholar
  2. Choppin, G., Rydberg, J. and Liljenzin, J.O. (1995) Radiochemistry and Nuclear Chemistry, 2nd edn. Oxford: Butterworth-Heinemann Ltd.Google Scholar
  3. Faure, G. (1986) Principles of Isotope Geology, 2nd edn. New York: John Wiley & Sons, 589 pp.Google Scholar
  1. Ivanovich, M. and Harmon, R.S. (1992) Uranium-Series Disequilibrium: Applications to Earth, Marine and Environmental Sciences, 2nd edn. Oxford: Clarendon Press, 910 pp.Google Scholar
  2. Greeman, D.J., Rose, A.W. and Jester, W.A. (1990) From and behavior of radium, uranium and thorium in central Pennsylvania soils derived from dolmite. Geophys. Res. Lett., 17, 833–6.CrossRefGoogle Scholar
  3. Scott, M.R. (1982) The chemistry of U-and Th-series nuclides in rivers, in Uranium Series Disequilibrium (eds M. Ivanovich and R.S. Harmon). Oxford: Clarendon Press, pp. 198–200.Google Scholar

Cross references

  1. Greeman, D.J., Rose, A.W. and Jester, W.A. (1990) Form and behavior of radium, uranium and thorium in central Pennsylvania soils developed from dolomite. Geophys. Res. Lett., 17, 833–6.CrossRefGoogle Scholar
  2. Gunderson, L.C.S., Schumann, R.R., Otton, J.K., Dubiel, R.F., Owen, D.E. and Dickinson, K.A. (1992) Geology of Radon in the United States. Geol. Soc. Am. Special Paper, 271, 1–16.CrossRefGoogle Scholar
  3. Nazaroff, W.W. and Nero, A.V. (1988) Radon and its Decay Products in Indoor Air. New York: Wiley Interscience.Google Scholar
  4. Paulsen, R.T. (1991) Radionuclides in ground water, rock and soil, and indoor air of the northeastern United States and southeastern Canada–a literature review and summary of data. US Geological Survey Bulletin, 1971, 195–225.Google Scholar
  5. Stein, L. (1987) Chemical properties of radon. Am. Chem. Soc. Symp. Ser., 331, 10–29.Google Scholar
  6. Tanner, A.B. (1964) Radon migration in the ground: a review, in The Natural Radiation Environment (eds J.A.S. Adams and W.M. Lowder). Chicago: University of Chicago Press, pp. 161–90.Google Scholar
  7. Tanner, A.B. (1980) Radon migration in the ground: a supplementary review, in Natural Radiation Environment III (eds T.F. Gesell and W.M. Lowder). US Dept. of Energy Rept. CONF-780422. Springfield, VA: Natl. Techn. Inf. Service, pp. 5–56.Google Scholar
  8. Washington, J.W. and Rose, A.W. (1992) Temporal variability of radon concentration in the interstitial gas of soils in Pennsylvania. J. Geophys. Res., 97B, 9145–59.CrossRefGoogle Scholar

Cross references

  1.  Elements: noble gases; Radioactivity
  1. Jørgensen, C. K. (1979) Theoretical chemistry of rare earths, in Handbook on the Physics and Chemistry of Rare Earth, Vol. 3. Amsterdam: North-Holland, pp. 111–69.Google Scholar
  2. Kagi, H., Dohmoto, Y., Takano, S. and Masuda, A. (1993) Tetrad effect in lanthanide partitioning between calcium sulfate crystal and its saturated solution. Chem. Geol., 107, 71–82.CrossRefGoogle Scholar
  3. Masuda, A., Kawakami, O., Dohmoto, Y. and Takenaka, T. (1987) Lanthanite tetrad effects in nature: two mutually opposite types, W and M. Geochem. J., 21, 119–24.CrossRefGoogle Scholar
  4. McLennan, S.M. (1994) Rare earth element geochemistry and the tetrad effect. Geochim. Cosmochim. Acta, 58, 2025–33.CrossRefGoogle Scholar
  5. Peppard, D.F., Mason, G.W. and Lewey, S. (1969) A tetrad effect in the liquid–liquid extraction ordering of lanthanide (III). J. Inorg. Nucl. Chem., 31, 2271–2.CrossRefGoogle Scholar
  1. Drury, S.A. (1993) Image Interpretation in Geology, 2nd edn. London: Chapman and Hall, 283 pp.Google Scholar
  2. Gupta, R.P. (1991) Remote Sensing Geology. Berlin: Springer-Verlag, 356 pp.CrossRefGoogle Scholar
  3. Kahle, A.B. (1987) Surface emittance, temperature and thermal inertia derived from thermal infrared multispectral scanner (TIMS) data for Death Valley, California. Geophysics, 52, 858–74.CrossRefGoogle Scholar
  4. Klose, K.B., Wood, J.A. and Hashimoto, A. (1992) Mineral equilibria and the high radar reflectivity of Venus mountaintops. J. Geophys. Res., 97, 16353–69. CrossRefGoogle Scholar
  5. Pieters, C.M. and Englert, P.A.J. (1993) Remote Geochemical Analysis: Elemental and Mineralogical Composition. Cambridge: Cambridge University Press, 594 pp.Google Scholar
  6. Prost, G.L. (1994) Remote Sensing for Geologists: A Guide to Image Interpretation. Lausanne: Gordon & Breach, 358 pp.Google Scholar
  7. Saunders, R.S. and Pettengill, G.H. (1991) Magellan: mission summary. Science, 252, 247–9 (and other papers in the same issue).CrossRefGoogle Scholar
  8. Saunders, R.S., Spear, A.J., Allin, R.C. et al. (1992) Magellan mission summary. J. Geophys. Res., 97, 13067–90 (and other papers in the same issue).CrossRefGoogle Scholar
  1. Esser, B.K. and Turekian, K.K. (1993) The osmium isotopic composition of the continental crust. Geochim. Cosmochim. Acta, 57, 3093–104.CrossRefGoogle Scholar
  2. Horan, M.F., Morgan, J.W., Grauch, R.I., Coveney, R.M., Murowchick, J.B. and Hulbert, L.J. (1994) Rhenium and osmium isotopes in black shales and Ni–Mo–PGE–rich sulfide layers, Yukon Territory, Canada, and Hunan and Guizhou provinces, China. Geochim. Cosmochim. Acta, 58, 257–65.CrossRefGoogle Scholar
  3. Morgan, J.W. (1986) Ultramafic xenoliths: Clues to the Earth's late accretionary history. J. Geophys. Res., 91, 12375–87.CrossRefGoogle Scholar
  4. Pernicka, E. and Wasson, J.T. (1987) Ru, Re, Os, Pt and Au in iron meteorites. Geochim. Cosmochim. Acta, 51, 1717–26.CrossRefGoogle Scholar
  5. Walker, R.J., Morgan, J.W., Hanski, E.J. and Smolkin, V.F. (1994) The röle of the Re–Os system in deciphering the origin of magmatic sulphide ores: A tale of three ores, in Proceedings of the Sudbury-Noril'sk Symposium. Ont. Geol. Surv. Special Vol., 5, 343–55.Google Scholar
  1. Anbar, A.D., Creaser, R.A., Papanastassiou, D.A. and Wasserburg, G.J. (1992). Rhenium in seawater: confirmation of generally conservative behavior. Geochim. Cosmochim. Acta, 56, 4099–103.CrossRefGoogle Scholar
  2. Creaser, R.A., Papanastassiou, D.A. and Wasserburg, G.J. (1991) Negative thermal ion mass spectrometry of osmium, rhenium and iridium. Geochim. Cosmochim. Acta, 55, 397–401.CrossRefGoogle Scholar
  3. Esser, B.K. and Turekian, K.K. (1993) The osmium isotopic composition of the continental crust. Geochim. Cosmochim. Acta, 57, 3093–104.CrossRefGoogle Scholar
  4. Foster, J.G., Lambert, D.D., Frick, L.R. and Maas, R. (1996) Re–Os isotopic evidence for genesis of Archean nickel ores from uncontaminated komatiites. Nature, 382, 703–6.CrossRefGoogle Scholar
  5. Hattori, K., Cabri, L.J. and Hart, S.R. (1991) Os-isotope study of PGM nuggets associated with Freetown layered complex, Sierra Leone. Contrib. Mineral. Petrol., 109, 10–18.CrossRefGoogle Scholar
  6. Horan, M.F., Morgan, J.W., Grauch, R.I., Coveney, R., Murowchick, J. and Hulbert, L. (1994) Re and Os isotopes in black shales and Ni–Mo–PGE sulfide layers, Yukon Territory, Canada, and Hunan and Guizhou Provinces, China. Geochim. Cosmochim. Acta, 58, 257–65.CrossRefGoogle Scholar
  7. Lambert, D.C., Walker, R.J., Morgan, J.W. et al. (1995) Re–Os isotopic evidence for the involvement of Archean subcontinental mantle in the genesis of the Stillwater Complex, Montana. J. Geol., 35, 1717–53.Google Scholar
  8. Marcantonio, F., Zindler, A., Elliott, T. and Staudigel, H. (1995) Os isotopic systematics of La Palma, Canary Islands: Evidence for recycled crust in the mantle source of HIMU ocean islands. Earth Planet. Sci. Lett., 133, 397–410.CrossRefGoogle Scholar
  9. McCandless, T.E. and Ruiz, J. (1991) Rhenium–osmium evidence for regional mineralization in southwestern North America. Science, 261, 1262–6.Google Scholar
  10. Meisel, T., Walker, R.J. and Morgan, J.W. (1996) The osmium isotopic composition of the primitive upper mantle. Nature, 383, 517–20.CrossRefGoogle Scholar
  11. Pearson, D.G., Carlson, R.W., Shirey, S.B., Boyd, F.R. and Nixon, P.H. (1995) Stabilization of Archean lithospheric mantle: A Re–Os study of peridotite xenoliths from Kaapvaal craton. Earth Planet. Sci. Lett., 134, 341–57.CrossRefGoogle Scholar
  12. Pegram, W.J., Krishnaswami, S., Ravizza, G.E. and Turekian, K.K. (1992) The record of seawater 187Os/188Os variation through the Cenozoic. Earth Planet. Sci. Lett., 113, 568–76.CrossRefGoogle Scholar
  13. Ravizza, G.E. and Bothner, M.H. (1991) Osmium isotopes and silver as tracers of anthropogenic metals in sediments from Massachusetts and Cape Cod Bays. Geochim. Cosmochim. Acta, 60, 2753–63.CrossRefGoogle Scholar
  14. Ravizza, G.E. and Turekian, K.K. (1989) Application of the 187Re/187Os system to black shale geochronometry. Geochim. Cosmochim. Acta, 53, 3257–62.CrossRefGoogle Scholar
  15. Sharma, M., Papanastassiou, D.A. and Wasserburg, G.J. (1997) The concentration and isotopic composition of osmium in the oceans. Geochim. Cosmochim. Acta, 61, 3287–99.CrossRefGoogle Scholar
  16. Shirey, S.B. and Walker R.J. (1995) Carius tube digestion for low-blank rhenium-osmium analysis. Anal. Chim., 34, 2136–41.CrossRefGoogle Scholar
  17. Smoliar, M.I., Walker, R.J. and Morgan, J.W. (1996) Re–Os isotope constraints on the age of Group IIA, IIIA, IVA and IVB iron meteorites. Science, 271, 1099–102.CrossRefGoogle Scholar
  18. Snow, J.E. and Reisberg, L. (1995) Os isotopic systematics of the MORB mantle: results from altered abyssal peridotites. Earth Planet. Sci. Lett., 133, 411–21.CrossRefGoogle Scholar
  19. Stein, H.J., Sundblad, K., Markey, R.J., Morgan, J.W. and Motuza, G. (1998) Re–Os ages for Archean molybdenite and pyrite, Kuittila-Kivisuo, Finland and Proterozoic molybdenite, Kabeliai, Lithuania: testing the chronometer in a metamorphic and metasomatic setting. Mineralium Deposita, 33, 329–45.CrossRefGoogle Scholar
  20. Walker, R.J., Echeverria, L.M., Shirey, S.B. and Horan, M.F. (1991). Re–Os isotopic constraints on the origin of volcanic rocks, Gorgona Island, Colombia: Os isotopic evidence for ancient heterogeneities in the mantle. Contrib. Mineral. Petrol., 107, 150–62.CrossRefGoogle Scholar
  21. Walker, R.J., Morgan, J.W., Smoliar, M.I., Beary, E., Czamanske, G.K. and Horan, M.F. (1997) Applications of the 190Pt-186Os isotope system to geochemistry and cosmochemistry. Geochim. Cosmochim. Acta., 61, 4799–807.CrossRefGoogle Scholar

Cross-references

  1. Benner, L.S., Suzuki, T., Meguro, K. and Tanaka, S. (1991) Precious Metals, Science and Technology. Austin, TX: International Precious Metals Institute, 799 pp.Google Scholar
  2. Cabri, L.J. (ed.) (1981) Platinum-group elements: mineralogy, geology, recovery. Can. Inst. Mining Metall. Special Vol., 23, 267 pp.Google Scholar
  3. Minerals Yearbook, Volume 1 (1992) Washington: US Government Printing Office, 1495 pp.Google Scholar
  4. Naldrett, A.J. (1981) Platinum-group element deposits. Can. Inst. Mining Metall. Special Vol., 23, 199–231.Google Scholar
  5. Van Loon, J.C. and Barefoot, R.R. (1991) Determination of the Precious Metals. New York: John Wiley and Sons, 276 pp.Google Scholar
  1. Peters, K.E. and Cassa, M.R. (1994) Applied source-rock geochemistry. Am. Assoc. Petrol. Geol. Mem., 60, 93–120.Google Scholar
  1. Bucher, K. and Frey, M. (1994) Petrogenesis of Metamorphic Rocks, 6th edn. Berlin-Hieidelberg: Springer-Verlag, 318 pp.CrossRefGoogle Scholar
  2. Fairbridge, R.W. and Bourgeois, J. (eds) (1978) The Encyclopedia of Sedimentology. Stroudsburg: Dowden, Hutchinson and Ross, Inc., 901 pp.Google Scholar
  3. Hall, A. (1987) Igneous Petrology. Harlow: Longman Scientific and Technical, 573 pp.Google Scholar
  4. Miyashiro, A. (1994) Metamorphic Petrology. London: UCL Press, 404 pp.Google Scholar
  5. Pettijohn, F.J. (1975) Sedimentary Rocks, 3rd eda. New York: Harper and Row, 628 pp.Google Scholar
  1. Catanzaro, E.J., Murphy, T.J., Garner, E.L. and Shields, W.R. (1969) Absolute isotopic ratio and atomic weight of terrestrial rubidium. J. Res. Nat. Bur. Std., 73A. 511.CrossRefGoogle Scholar
  2. Davis, D.W., Gray, J. and Cumming, G.L. (1977) Determination of the 87Rb decay constant, Geochim. Cosmochim. Acta, 41, 1745.CrossRefGoogle Scholar
  3. Kielland, J. (1937) Individual activity coefficients of ions in aqueous solutions. J. Am. Chem. Soc., 59, 1675.CrossRefGoogle Scholar
  4. Lide, D.R. (ed.) (1992) CRC Handbook of Chemistry and Physics. Boca Raton, FL: CRC Press.Google Scholar
  5. Parrington, J.R., Knox, H.D., Breneman, S.L., Baum, E.M. and Feiner, F. (1996) Nuclides and Isotopes. San Jose: General Electric Nuclear Energy, 64 pp. Google Scholar
  6. Shannon, R. D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in Halides and Chalcogenides. Acta Crystallogr., A32, 751.CrossRefGoogle Scholar
  7. Taylor, S.R. and McLennan, S.M. (1985) The Continental Crust: its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Boston: Blackwell Scientific Publications. 312 pp.Google Scholar
  8. Wedephol, K.R. (executive ed.) (1978) Handbook of Geochemistry, Vol. II/4. New York: Springer-Verlag.Google Scholar
  9. Weeks, M.E. (1956) Discovery of the Elements. Easton, PA: Journal of Chemical Education. 910 pp.Google Scholar
  1. Carlson, R.W. and Hart, W.K. (1988) Flood basalt volcanism in the northwestern United States, in Continental Flood Basalts (J.D. Macdougall ed.). Dordrecht: Kluwer Academic Publishers, pp. 35–61.CrossRefGoogle Scholar
  2. Dalrymple, G.B. (1991) The Age of the Earth. Stanford: Stanford University Press, 474 pp.Google Scholar
  3. Davies, G.R., Halliday, A.N., Mahood, G.A. and Hall, C.M. (1994) Isotopic constraints on the production rates, crystallisation histories and residence times of pre-caldera silicic magmas, Long Valley, California. Earth Planet. Sci. Lett., 125, 17–37.CrossRefGoogle Scholar
  4. Garvie, L.A.J. and Long, L.E. (1995) Clay mineralogy and Rb-Sr dating of a relict soil developed on Precambrian schist, northeastern Llano Uplift, central Texas. Proc. 10th Int. Clay Conf. Melbourne: CSIRO Publishing, pp. 504–9.Google Scholar
  5. Hart, S.R. (1984) A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309, 753–7.CrossRefGoogle Scholar
  6. Hart, S.R., Gerlach, D.C. and White, W.M. (1986) A possible new Sr-Nd-Pb mantle array and consequences for mantle mixing. Geochim. Cosmochim. acta, 50, 1551–7.CrossRefGoogle Scholar
  7. Hawkesworth, C.J., Kempton, P.D., Rogers, N.W., Ellam, R.M. and van Calsteren, P.W. (1990) Continental mantle lithosphere, and shallow level enrichment processes in the Earth's mantle. Earth Planet. Sci. Lett., 96, 256–68.CrossRefGoogle Scholar
  8. Long, L.E. (1964) Rb-Sr chronology of the Carn Chuinneag intrusion, Ross-shire, Scotland. J. Geophys. Res., 69, 1589–97.CrossRefGoogle Scholar
  9. McCulloch, M.T. and Chappell, B.W. (1982) Nd isotopic characteristics of S-and I-type granites. Earth Planet. Sci. Lett., 58, 51–64.CrossRefGoogle Scholar
  10. Minster, J.-F., Birck, J.-L. and Allègre, C.J. (1979) Absolute age of formation of chondrites studied by the 87Rb-87Sr method. Nature, 300, 414–19.CrossRefGoogle Scholar
  11. Morton, J.P. (1985) Rb-Sr dating of diagenesis and source age of clays in Upper Devonian black shales of Texas. Geol. Soc. Am. Bull., 96, 1043–9.CrossRefGoogle Scholar
  12. Palmer, M.R. and Edmond, J.M. (1989) The strontium isotope budget of the modern ocean. Earth Planet. Sci. Lett., 92. 11–26.CrossRefGoogle Scholar
  13. Steiger, R.H. and Jäger, E. (1977) Subcommission on geochronology: convention on the use of decay constants in geo-and cosmochronology. Earth Planet. Sci. Lett., 36, 359–62.CrossRefGoogle Scholar
  14. Veizer, J. (1989) Strontium isotopes in seawater through time. Annu Rev. Earth Planet. Sci., 17, 141–67.CrossRefGoogle Scholar
  1. Benner, L.S., Suzuki, T., Meguro, K. and Tanaka, S. (1991) Precious Metals. Science and Technology. Austin, TX: International Precious Metals Institute, 799 pp.Google Scholar
  2. Cabri, L.J. (1981) Platinum-Group Elements: Mineralogy, Geology, Recovery. CIM Special Volume 23. Toronto: Canadian Institute of Mining and Metallurgy, 267 pp.Google Scholar
  3. Minerals Yearbook, Volume 1, 1992. Washington: US Government Printing Office, 1495 pp.Google Scholar
  4. Naldrett, A.J. (1981) Platinum-Group Element Deposits, in Platinum-Group Elements: Mineralogy, Geology, Recovery. CIM Special Volume 23 (L.J. Cabri ed.). Toronto: Canadian Institute of Mining and Metallurgy, pp. 199–231.Google Scholar
  5. Van Loon, J.C. and Barefoot, R.R. (1991) Determination of the Precious Metals. New York: John Wiley and Sons, 276 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Stephen A. Prevec
  • Arthur W. Rose
  • T. Akagi
  • David A. Rothery
  • John W. Morgan
  • R. R. Barefoot
  • Kenneth E. Peters
  • Vidojko Jovic
  • E. Craig Simmons
  • Leon E. Long

There are no affiliations available