Encyclopedia of Geochemistry

1999 Edition
| Editors: Clare P. Marshall, Rhodes W. Fairbridge


  • Elisabeth L. Sikes
  • M. Elaine Kennedy
  • Uwe Brand
  • Ian T. Campbell
  • Joan O. Morrison
  • Christopher J. Capobiano
  • Robert J. Kamilli
  • J. L. Campbell
  • Robert L. Cullers
  • William Shotyk
  • Gregory A. Snyder
  • R. G. Schaefer
  • Bernd R. T. Simoneit
  • Jacques Connan
  • Jean Burrus
  • R. P. Philp
  • R. G. Schaefer
  • D. H. Welte
  • Robert W. Luth
  • Gerald Matisoff
  • W. Crawford Elliott
  • Paul R. Dixon
  • David B. Curtis
  • Wolfgang H. Runde
  • Chris Boreham
  • David W. Mittlefehldt
  • K. A. Foland
  • Brian D. Marshall
  • Scott M. McLennan
  • Grant M. Young
  • R. Michael Easton
  • Roger E. Summons
  • David A. Pickett
Reference work entry
DOI: https://doi.org/10.1007/1-4020-4496-8_15

Paleo-sea surface temperature estimations: Organic geochemistry and paleoclimates

The need for an organic paleotemperature marker

Sea surface temperature (SST) is an extremely good and easily determined measure of modern climatic conditions, and an understanding of paleo-SST is essential for understanding natural climate change. It is known that the Earth's climate has gone through a series of large fluctuations over approximately the last 3 million years, cycling from climatic modes similar to today (interglaciations) to glacial regimes that were generally colder and more severe than at present. Accurate reconstructions of global climate change provide important tests of the robustness of global coupled atmosphere-ocean general circulation models that are employed in studies of contemporary and future climatic conditions.

Until the late 1980s only two quantitative SST estimation techniques were in use: paleontological faunal assemblages and foraminiferal oxygen isotopes. Faunal-based...


Source Rock Sedimentary Organic Matter Greenstone Belt Thermal Ionization Mass Spectrometry Univariant Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Brassell, S.C. (1993) Applications of biomarkers for delineating marine paleoclimatic fluctuations during the Pleistocene, in Organic Geochemistry (eds. M.H. Engel and S.A. Macko). New York: Plenum Press, pp. 699–738.Google Scholar
  2. Brassell, S.C., Eglinton, G., Marlowe, I.T., Pflaumann, U. and Sarnthein, M. (1986). Molecular stratigraphy: a new tool for climatic assessment. Nature, 320, 129–33.Google Scholar
  3. CLIMAP (1981) Seasonal reconstructions of the Earth's surface at the last glacial maximum. Geol. Soc. Am. Map Chart Ser., MC-36, 1–18.Google Scholar
  4. Conte M.H. and Eglinton, G. (1993) Alkenone and alkenoates distributions within the euphotic zone of the eastern North Atlantic: correlation with production temperature. Deep-Sea Res., 40, 1935–61.Google Scholar
  5. Conte, M.H., Eglinton, G. and Madureira, L.A.S. (1992) Long-chain alkenones and alkyl alkenoates as palaeotemperature indicators: their production, flux and early sedimentary diagenesis in the eastern North Atlantic. Org. Geochem., 19, 287–98.Google Scholar
  6. Freeman, K.H. and Wakeham, S.G. (1992) Variations in the distributions and isotopic compositions of alkenones in Black Sea particles and sediments. Org. Geochem., 19, 277–85.Google Scholar
  7. Marlowe, I.T., Brassell, S.C., Eglinton, S.G., Green, J.C. and Course, P.A. (1984) Long chain (n-C37–C39) alkenones in the Prymnesiophyceae: Distribution of alkenones and other lipids and their taxonomic significance. Br. Phycol. J., 19, 203–16.Google Scholar
  8. Prahl, F.G. and Wakeham, S.G. (1987) Calibration of unsaturation patterns in long chain ketone compositions for paleotemperature assessment. Nature, 330, 367–9.Google Scholar
  9. Prahl, F.G., Muehlhausen, L.A. and Zahnle, D.L. (1988) A well preserved geochemical record for long-chain, unsaturated ketones Geochim. Cosmochim. Acta, 52, 2303–10.Google Scholar
  10. Prahl, F.G., de Lange, G.J., Lyle, M. and Sparrow, M.A. (1989) Post depositional stability of long chain alkenones under contrasting redox conditions. Nature, 341, 434–7.Google Scholar
  11. Prahl, F.G., Collier, R.B., Dymond, J., Lyle, M. and Sparrow, M.A. (1993) A biomarker perspective on prymnesiophyte productivity in the northeast Pacific Ocean. Deep-Sea Res., 40, 2061–76.Google Scholar
  12. Rechka, J.A. and Maxwell, J.R. (1987) Characterisation of alkenone temperature indicators in sediments and organisms. Org. Geochem., 13, 727–34.Google Scholar
  13. Rosell-Melé, S., Eglinton, G., Pflaumann, U. and Sarnthein, M. (1995) Atlantic core-top calibration of the Uk 37 index as a sea-surface paleotemperature indicator. Geochim. Cosmochim. Acta, 59, 3009–107.Google Scholar
  14. Sikes E.L. and Volkman, J.K. (1993) Calibration of alkenone unsaturation ratios Uk′ 37 for paleotemperature estimation in cold polar waters. Geochim. Cosmochim. Acta, 57, 1883–9.Google Scholar
  15. Sikes, E.L., Farrington, J.W. and Keigwin, L.D. (1991) Use of the alkenone unsaturation ratio Uk′ 37 to determine past sea surface temperature: core top SST calibrations and methodology considerations. Earth Planet. Sci. Lett., 104, 36–47.Google Scholar
  16. Volkman, J.K., Eglinton, G., Corner, E.D.S. and Sargent, J.R. (1979) Novel unsaturated straight chain C37–C39 methyl and ethyl ketones in marine sediments and a coccolithophore Emiliania huxleyi, in Advances in Organic Geochemistry (eds A.G. Douglas and J.R. Maxwell). Oxford: Pergamon Press, pp. 219–28.Google Scholar
  17. Volkman, J.K., Barrett, S.M., Blackburn, S.I. and Sikes, E.L. (1995) Alkenones in Gephyrocapsa oceanica: implications for studies of paleoclimate. Geochim. Cosmochim. Acta, 59, 513–20.Google Scholar


  1.  Carbonate sediments;  Earth's ocean geochemistry; Paleoenvironments; Paleoproductivity; Paleotemperatures
  1. Beier, J.A. and Hayes, J.M. (1989) Geochemical and isotopic evidence for paleoredox conditions during deposition of the Devonian-Mississippian New Albany Shale, southern Indiana. Geol. Soc. Am. Bull., 101, 774–82.Google Scholar
  2. Broecker, W.S. (1985) How to Build a Habitable Planet. New York: Eldigio Press, 291 pp.Google Scholar
  3. Buchheim, H.P. (1994) Eocene Fossil Lake, Green River Formation, Wyoming: A history of fluctuating salinity. Soc. Sediment. Geol. Sp. Publ., 50, pp. 239–48.Google Scholar
  4. Burns, S.J. and Matter, S. (1995) Geochemistry of carbonate cements in surficial alluvial conglomerates and their paleoclimatic implications, Sultanate of Oman. J. Sediment. Res., A65, 170–7.Google Scholar
  5. Dorn, R.I. and Dickinson, W.R. (1989) First paleoenvironmental interpretation of a pre-Quaternary rock-varnish site, Davidson Canyon, southern Arizona. Geology, 17, 1029–31.Google Scholar
  6. Foos, A.M. (1991) Aluminous lateritic soils, Eleuthera, Bahamas: A modern analog to carbonate paleosols. J. Sediment. Petrol., 61, 340–8.Google Scholar
  7. Girty, G.H., Hanson, A.D., Knaack, C. and Johnson, D. (1994) Provenance determined by REE, Th and Sc analyses of metasedimentary rocks, Boyden Cave roof pendant, central Sierra Nevada, California. J. Sediment. Res., B64, 68–73.Google Scholar
  8. Goldstein, R.H. (1990) Petrographic and geochemical evidence for origin of paleospeleothems, New Mexico: Implications for the application of fluid inclusions to studies of diagenesis. J. Sediment. Petrol., 60, 282–92.Google Scholar
  9. Grammer, G.M., Ginsburg, R.N., Swart, P.K. et al. (1993) Rapid growth rates of syndepositional marine aragonite cements in steep marginal slope deposits, Bahamas and Belize. J. Sediment. Petrol., 63, 983–9.Google Scholar
  10. Gromet, L.P., Dymek, R.F., Haskin, L.A. and Korotev, R.L. (1984) The ‘North American shale composite’: Its compilation, major and trace element characteristics. Geochim. Cosmochim. Acta, 48, 2469–82.Google Scholar
  11. Heller, P.L., Renne, P.R. and O'Neil, J.R. (1992) River mixing rate, residence time, and subsidence rates from isotopic indicators: Eocene sandstones of the US Pacific Northwest. Geology, 20, 1095–8.Google Scholar
  12. Jannik, N.O., Phillips, F.M., Smith, G.I. and Elmore, D. (1991) A 36Cl chronology of lacustrine sedimentation in the Pleistocene Owens River system. Geol. Soc. Am. Bull., 103, 1146–59.Google Scholar
  13. Kraus, M.J. and Aslan, S. (1993) Eocene hydromorphic paleosols: significance for interpreting ancient floodplain processes. J. Sediment. Petrol., 63, 453–63.Google Scholar
  14. Maliva, R.G., Dickson, J.A.D., Smalley, P.C. and Oxtoby, N.H. (1995) Diagenesis of the Machar Field (British North Sea) chalk: Evidence for decoupling of diagenesis in fractures and the host rock. J. Sediment. Res., A65, 105–11.Google Scholar
  15. Park, C.F. Jr. and MacDiarmid, R.A. (1975) Ore Deposits. San Francisco: W.H. Freeman and Company, pp. 391–455.Google Scholar
  16. Pratt, L.M., Comer, J.B. and Brassell, S.C. (1992) Geochemistry of Organic Matter in Sediments and Sedimentary Rocks: SEPM Short Course 27. Tulsa: Society for Sedimentary Geology, 100 pp.Google Scholar
  17. Riediger, C.L. and Bloch, J.D. (1995) Depositional and diagenetic controls on source-rock characteristics of the Lower Jurassic ‘Nordegg Member’, western Canada. J. Sediment. Res., A65, 112–26.Google Scholar
  18. Wallace, M.W., Kerans, C., Playford, P.E. and McManus, S. (1991) Burial diagenesis in the upper Devonian reef complexes of the Geikie Gorge region, Canning Basin, western Australia. Am. Assoc. Petrol. Geol. Bull., 75, 1018–38.Google Scholar
  19. Wedepohl, K.H. (1995) The composition of the continental crust. Geochem. Cosmochim. Acta, 59, 1217–32.Google Scholar
  1. Boyle, E.A. (1988) Cadmium: chemical tracer of deepwater paleoceanography. Paleoceanography, 3, 471–89.Google Scholar
  2. Broecker, W.S. and Peng, T.-H. (1982) Tracers in the sea. New York: Eldigio Press, 690 pp.Google Scholar
  3. Gross, M.G. (1987) Oceanography: a view of the Earth. Englewood Cliffs, New Jersey: Prentice-Hall, 406 pp.Google Scholar
  4. Zachos, J.C. and Arthur, M.A. (1986) Paleoceanography of the Cretaceous/Tertiary event: inferences from stable isotopic and other data. Paleoceanography, 1, 5–26.Google Scholar


  1. Abell, P.I. (1985) Oxygen isotope ratios in modern African gastropod shells: a data base for paleoclimatology. Chem. Geol. (Isotope Geosci. Sect.), 58, 183–93.Google Scholar
  2. Brand, U. (1989) Biogeochemistry of Late Paleozoic North American brachiopods and secular variation of seawater composition. Biogeochemistry, 7, 159–93.Google Scholar
  3. Brand, U. (1994) Continental hydrology and climatology of the Carboniferous Joggins Formation (lower Cumberland Group) at Joggins, Nova Scotia: evidence from the geochemistry of bivalves. Palaeogeogr., Palaeoclimatol., Palaeoecol., 106, 307–21.Google Scholar
  4. Brock, T.D. (1985) Life at high temperatures. Science, 230, 132–8.Google Scholar
  5. Crowley, T.J. and North, G.R. (1991) Paleoclimatology. Oxford Monogr. Geol. Geophys., 18, 339 pp.Google Scholar
  6. DeDeckker, P., Colin, J.-P. and Peypouquet, J.-P. (eds) (1988) Ostracoda in the Earth Sciences. Amsterdam: Elsevier, 302 pp.Google Scholar
  7. Emiliani, C. (1965) Pleistocene temperatures. J. Geol., 63, 538–78.Google Scholar
  8. Emiliani, C. (1966) Paleotemperature analysis of Caribbean cores P6304-8 and P6304-9 and a generalized temperature curve for the past 425 000 years. J. Geol., 74, 109–26.Google Scholar
  9. Epstein, S. and Krishnamurthy, R.V. (1990) Environmental information in the isotopic record in trees. Phil. Trans. R. Soc. Lond., 330, 427–39.Google Scholar
  10. Epstein, S. and Mayeda, T. (1953) Variation of O18 content of waters from natural sources. Geochim. Cosmochim. Acta, 27, 213–24.Google Scholar
  11. Epstein, S., Buchsbaum, R., Lowenstam, H.A. and Urey, H. (1953) Revised carbonate-water temperature scale. Geol. Soc. Am. Bull., 62, 417–26.Google Scholar
  12. Grossman, E.T. and Ku, T. (1981) Aragonite-water isotopic paleotemperature scale based on the benthic foraminifera Hoeglundia elegans. Geol. Soc. Am., Abstracts with Program, p. 464.Google Scholar
  13. Karhu, J. and Epstein, S. (1986) The implication of the oxygen isotope record in coexisting cherts and phosphates. Geochim. Cosmochim. Acta, 50, 1745–56.Google Scholar
  14. Lipps, J.H., Berger, W.H., Buzas, M.A., Douglas, R.G. and Ross, C.A. (eds) (1979) Foraminiferal Ecology and Paleoecology. SEPM Short Course No. 6. Tulsa: Society of Economic Paleontologists and Mineralogists, 198 pp.Google Scholar
  15. Shackleton, N.J. and Opdyke, N.D. (1976) Oxygen isotope and paleomagnetic stratigraphy of Pacific core V29-239, Late Pliocene and Latest Pleistocene. Geol. Soc. Am. Mem., 145, 449–64.Google Scholar
  16. Stuiver, M. (1970) Oxygen and carbon isotope ratios of freshwater carbonates as climatic indicators. J. Geophys. Res., 75, 5247–57.Google Scholar
  17. Tarutani, T., Clayton, R.N. and Mayeda, T.K. (1969) The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water. Geochim. Cosmochim. Acta, 33, 987–96.Google Scholar
  18. Weber, J.N. (1968) Fractionation of stable isotopes of carbon and oxygen in calcareous marine invertebrates–the Asteroidea, Ophuiroidea, and Crinoidea. Geochim. Cosmochim. Acta, 32, 33–70.Google Scholar
  19. Wolfe, J.A. (1978) A paleobotanical interpretation of Teritary climates in the northern hemisphere. Am. Sci., 66, 129–38.Google Scholar


  1.  Biomarker: coals;  Biomarker: higher plant;  Carbonate sediments;  Coal: origin and diagenesis;  Earth's ocean geochemistry;  Oxygen isotopes; Paleo-sea surface temperature estimation; Paleoenvironments; Paleoproductivity;  Stable isotopes
  1. Cabri, L.J. (ed.) (1981) Platinum-group Elements: Mineralogy, Geology, Recovery. Montreal: The Canadian Institute of Mining and Metallurgy, CIM Special Volume23, 267 pp.Google Scholar
  2. Hartley, F.R. (ed.) (1991) Chemistry of the Platinum Group Metals. Amsterdam: Elsevier, 642 pp.Google Scholar
  3. McDonald, D. and Hunt, L.B. (1982) A History of Platinum and its Allied Metals. London: Johnson Matthey, 450 pp.Google Scholar
  4. Mertie, J.B., Jr. (1969) Economic Geology of the Platinum Metals Geological Survey Professional Paper 630. Washington, DC: United States Government Printing Office, 120 pp.Google Scholar
  5. Newsom, H.E. (1995) Composition of the Solar System, Planets, Meteorites, and Major Terrestrial Reservoirs, in Global Earth Physics: A Handbook of Physical Constants (ed. T.J. Ahrens). Washington, DC: American Geophysical Union, pp. 159–89.Google Scholar
  1. Bowen, N.L. (1956) The Evolution of the Igneous Rocks. New York: Dover Publication, Inc., 334 pp.Google Scholar
  2. Bowes, D.R. (ed.) (1989) The Encylopedia of Igneous and Metamorphic Petrology. New York: Van Nostrand Reinhold, 666 pp.Google Scholar
  3. Emmons, W.H. (1936) Hypogene zoning in metalliferous lodes. 16th Int. Geol. Congr. Rep., Part 1, 417–32.Google Scholar
  4. Goldstein, R.H. and Reynolds, T.J. (1994) Systematics of Fluid Inclusions in Diagenetic Minerals. Tulsa: Society for Sedimentary Geology, 198 pp.Google Scholar
  5. Guilbert, J.M. and Park, C.F. (1986) The Geology of Ore Deposits. New York: W.H. Freeman and Company, 985 pp.Google Scholar
  6. Kamilli, R.J. and Ratté, J.C. (1995) Geologic studies of the Mogollon mining district; Does a porphyry system lie below? in Porphyry Copper Deposits of the American Cordillera (eds F.W. Pierce and J.G. Bolm). Tucson: Arizona Geological Society Digest 20, pp. 455–63.Google Scholar
  7. Kamilli, R.J., Cole, J.C., Elliott, J.E. and Criss, R.E. (1993) Geology and genesis of the Baid al Jimalah tungsten deposit, Kingdom of Saudi Arabia. Econ. Geol., 88, 1743–67.Google Scholar
  8. Kutina, J. (1955) Beitrag zur Methodik der genetischen Untersuchen von Anschliffen in der Erzmikroskopie. Chem. Erde, 17, 176–80.Google Scholar
  9. Kutina, J., Park, C.F. Jr. and Smirnov, V.I. (1965) On the definition of zoning and of the relation between zoning and paragenesis, in Symposium on the Problems of Postmagmatic Ore Deposition. Prague: Czech Academy of Sciences.Google Scholar
  10. Ramdohr, P. (1980) The Ore Minerals and Their Intergrowths, 2nd edn. International Series in Earth Science, 35. London: Pergamon Press, 1205 pp.Google Scholar
  11. Roedder, E. (1984) Fluid Inclusions. Rev. Mineral., 12, 644 pp.Google Scholar
  1. Czamanske, G.K., Sisson, T.W., Campbell, J.L. and Teesdale, W.J. (1993) Micro-PIXE analysis of silicate reference standards. Am. Mineral., 78, 893–903.Google Scholar
  2. Griffin, W.L. and Ryan, C.G. (1995) Trace elements in diamond indicator minerals: area selection and target evaluation in diamond exploration. J. Geochem. Expl., 53, 311–37.Google Scholar
  3. Johansson, S.A.E., Campbell, J.L. and Malmqvist, K.G. Principles of Particle-Induced X-Ray Emission Spectrometry. New York: Wiley.Google Scholar
  1. Adam, J. and Green, T.H. (1994) The effects of pressure and temperature on the partitioning of Ti, Sr and REE between amphibole, clinopyroxene and basanitic melts. Chem. Geol., 117, 219–33.Google Scholar
  2. Bea, F., Pereira, M.D. and Stroh, S. (1994) Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chem. Geol., 117, 291–312.Google Scholar
  3. Beattie, P. (1993) On the occurrence of apparent non-Henry's law behaviour in experimental partitioning studies. Geochim. Cosmochim. Acta, 57, 47–56.Google Scholar
  4. Beattie, P., Drake, M., Jones, J. et al. (1993) Terminology for trace-element partitioning. Geochim. Cosmochim. Acta, 57, 1605–6.Google Scholar
  5. Drake, M.J. and Weill, D.F. (1975) Partition of Sr, Ba, Ca, Y, Eu2+, Eu3+, and other REE between plagioclase and magmatic liquid: an experimental study. Geochim. Cosmochim. Acta, 39, 689–712.Google Scholar
  6. Eggler, D.H. (1987) Solubility of major and trace elements in mantle metasomatic fluids: experimental constraints, in Mantle Metasomatism (eds M.A. Menzies and C.J. Hawkesworth). London: Academic Press, pp. 21–41.Google Scholar
  7. Ewart, S. and Griffin, W.L. (1994) Application of proton-microprobe data to trace-element partitioning in volcanic rocks. Chem. Geol., 117, 251–84.Google Scholar
  8. Gaetani, G.A. and Grove, T.L. (1995) Partitioning of rare earth elements between clinopyroxene and silicate melt: crystal-chemical controls. Geochim. Cosmochim. Acta, 59, 1951–62.Google Scholar
  9. Green, T.H. (1994) Experimental studies of trace-element partitioning applicable to igneous petrogenesis–Sedona 16 years later. Chem. Geol., 117, 1–36.Google Scholar
  10. Forsythe, L.M., Nielsen, R.L. and Fisk, M.R. (1994) High-field-strength element partitioning between pyroxene and basaltic to dacitic magmas. Chem. Geol., 117, 107–25.Google Scholar
  11. Hack, P.J., Nielsen, R.L. and Johnston, S.D. (1994) Experimentally determined rare-earth element and Y partitioning behavior between clinopyroxene and basaltic liquids at pressures up to 20 kbar. Chem. Geol., 117, 89–105.Google Scholar
  12. Irving, S.J. (1978) A review of experimental studies of crystal/liquid trace element partitioning. Geochim. Cosmochim. Acta, 6A, 743–70.Google Scholar
  13. McIntire, W.L. (1963) Trace element partition coefficients–a review of theory and applications to geology. Geochim. Cosmochim. Acta, 27, 1209–64.Google Scholar
  14. Watson, E.B. (1985) Henry's law behavior in simple systems and in magmas: criteria for discerning concentration-dependent partition coefficients in nature. Geochim. Cosmochim. Acta, 49, 917–23.Google Scholar
  15. Weaver, J. and Langmuir, C. (1990) Calculation of phase equilibria in mineral–melt systems. Computers Geosci., 16, 1–19.Google Scholar
  1. Crum, H., (1988) A Focus on Peatlands and Peat Mosses. Ann Arbor, MI: University of Michigan Press.Google Scholar
  2. Godwin, H. (1981) The Archives of the Peat Bog. Cambridge: Cambridge University Press.Google Scholar
  3. Gore, A.J.P. (ed.) (1983) Ecosystems of the World, 4A,B. Mires: Swamp, Bog, Fen, and Moor (in 2 volumes). Amsterdam: Elsevier.Google Scholar
  4. Shotyk, W. (1988) Review of the inorganic geochemistry of peats and peatland waters. Earth Sci. Rev., 25, 95–176. Google Scholar
  5. Shotyk, W. (1992) Organic Soils, in Weathering, Soils, and Palaeosols (ed. I.P. Martini and W. Chesworth). Amsterdam: Elsevier, pp. 203–24.Google Scholar
  1. Brown, T.L. and LeMay, H.E. Jr. (1977) Chemistry: The Central Science. Englewood Cliffs, NJ: Prentice-Hall, 815 pp.Google Scholar
  2. Henderson, P. (1982) Inorganic Geochemistry. Oxford: Pergamon Press, 353 pp.Google Scholar
  3. Krauskopf, K.B. and Bird, D.K. (1995) Introduction to Geochemistry. New York: McGraw-Hill, Inc., 647 pp.Google Scholar
  4. Mazurs, E.D. (1974) Graphic Representations of the Periodic System During One Hundred Years. Alabama: University of Alabama Press, 251 pp.Google Scholar
  5. SMI Corporation (1994) Periodic Table 2.02.Google Scholar
  1. Baker, E.W. and Louda, J.W. (1986) Porphyrins in the geologic record, in Biological Markers in Sediments: Methods in Geochemistry and Geophysics, vol. 24 (ed. R.B. Johns). Amsterdam: Elsevier, pp. 125–225.Google Scholar
  2. Béhar, F. and Vandenbroucke, M. (1987) Chemical modelling of kerogens. Org. Geochem., 11, 15–24.Google Scholar
  3. Bordenave, M.L. (ed.) (1993) Applied Petroleum Geochemistry. Paris: Editions Technip, 524 pp.Google Scholar
  4. Durand, B. (ed.) (1980) Kerogen, Insoluble Organic Matter from Sedimentary Rocks. Paris: Editions Technip, 520 pp.Google Scholar
  5. Eckardt, C.B., Dyas, L., Yendle, P.W. and Eglinton, G. (1988) Multimolecular data processing and display in organic geochemistry: The evaluation of petroporphyrin GC-MS data. Org. Geochem., 13, 573–82.Google Scholar
  6. Engel, M.H. and Macko, S.A. (eds) (1993) Organic Geochemistry: Principles and Applications. New York: Plenum Press, 861 pp.Google Scholar
  7. Hayes, J.M., Freeman, K.H., Popp, B.N. and Hoham, C.H. (1990) Compound-specific isotopic analyses: A novel tool for reconstruction of ancient biogeochemical processes. Org. Geochem., 16, 1115–28.Google Scholar
  8. Hunt, J.M. (1995) Petroleum Geochemistry and Geology, 2nd edn. New York: W.H. Freeman & Co., 743 pp.Google Scholar
  9. Magoon, L.B. and Dow, W.G. (eds) (1994) The petroleum system-from source to trap. Am. Assoc. Petrol. Geol. Mem., 60, 655 pp.Google Scholar
  10. Peters, K.E. and Moldowan, J.M. (1993) The Biomarker Guide. Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Englewood Cliffs, NJ: Prentice Hall, 263 pp.Google Scholar
  11. Petrov, S.A. (1987) Petroleum Hydrocarbons. Berlin: Springer-Verlag, 255 pp.Google Scholar
  12. Radke, M. (1987) Organic geochemistry of aromatic hydrocarbons. Adv. Petrol. Geochem., 2, 141–207.Google Scholar
  13. Schoell, M. (1983) Stable isotopes in petroleum research. Adv. Petrol. Geochem., 1, 215–45.Google Scholar
  14. Tissot, B.P. and Welte, D.H. (1984) Petroleum Formation and Occurrence, 2nd edn. Berlin: Springer-Verlag, 699 pp.Google Scholar
  15. Van Krevelen, D.W. (1984) Coal: Typology, Chemistry, Physics, Constitution; Coal Science and Technology, vol. 3; third impression. Amsterdam: Elsevier, 514 pp.Google Scholar
  16. Waples, D.W. and Machihara, T. (1991) Biomarkers for Geologists. A Practical Guide to the Application of Steranes and Triterpanes in Petroleum Geology. Tulsa, OK: American Association of Petroleum Geologists, 91 pp.Google Scholar
  17. Welte, D.H., Horsfield, B. and Baker, D.R. (eds) (1997) Petroleum and Basin Evolution. Berlin: Springer-Verlag, 535 pp.Google Scholar


  1.  Carbon cycle;  Hydrocarbons;  Laboratory simulations of oil and natural gas formation;  Natural gas;  Occurrence of organic facies;  Oil seeps and coastal bitumens;  Oil shales;  Oil-oil and oil-source rock correlation;  Organic geochemistry;  Organics: contemporary degradation and preservation; petroleum hydrothermal Petroleum: hydrothermal; Petroleum: in-reservoir biodegradation; Petroleum: kinetic modeling; Petroleum: primary migration; Petroleum: surface geochemistry; Petroleum: types, occurrence and reserves;  Rock-Eval pyrolysis;  Steroidal compounds
  1. Clifton, C.G., Walters, C.C. and Simoneit, B.R.T. (1990). Hydrothermal petroleums from Yellowstone National Park, Wyoming, USA. Appl. Geochem., 5, 169–91.Google Scholar
  2. Peter, J.M., Peltonen, P., Scott, S.D., Simoneit, B.R.T. and Kawka, O.E. (1991) 14C ages of hydrothermal petroleum and carbonate in Guaymas Basin, Gulf of California: Implications for oil generation, expulsion and migration. Geology, 19, 253–6.Google Scholar
  3. Simoneit, B.R.T. (ed.) (1990). Organic Matter in Hydrothermal Systems–Petroleum Generation, Migration and Biogeochemistry. Appl. Geochem., 5, 248 pp.Google Scholar
  4. Simoneit, B.R.T. and Lonsdale, P.F. (1982). Hydrothermal petroleum in mineralized mounds at the seabed of Guaymas Basin. Nature, 295, 198–202.Google Scholar
  5. Tiercelin, J.-J., Boulégue, J. and Simoneit, B.R.T. (1993). Hydrocarbons, sulphides and carbonate deposits related to sublacustrine hydrothermal seeps in the North Tanganyika Trough, East African Rift, in Bitumens in Ore Deposits (eds J. Parnell, H. Kucha and P. Landais). Berlin: Springer Verlag, pp. 96–113.Google Scholar


  1.  Geochemical exploration;  Hydrocarbons;  Hydrothermal alteration;  Hydrothermal solutions;  Oklo natural nuclear reactor;  Organic geochemistry; Petroleum; petroleum biodegradation Petroleum: in-reservoir biodegradation; Petroleum: kinetic modeling; Petroleum: primary migration; Petroleum: surface geochemistry; Petroleum: types, occurrence and resrves;  Rock-Eval pyrolysis
  1. Bernard, F.P., Connan, J. and Magot, M. (1992) Indigenous micro-organisms in connate water of many oil fields: a new tool in exploration and production techniques. Soc. Petrol. Eng., 24811, 467–76.Google Scholar
  2. Connan, J. (1984) Biodegradation of crude oils in reservoirs, in Advances in Petroleum Geochemistry (eds J. Brooks and D. Welte). London: Academic Press, pp. 299–335.Google Scholar
  3. Demaison, G.J. (1977) Tar sands and supergiant oil fields. Bull. Am. Assoc. Petrol. Geol., 61, 1950–61.Google Scholar
  4. Peters, K.E. and Moldowan, J.M. (1993) Biodegradation, in The biomarker guide (ed. J. Lapidus). Englewood Cliffs, New Jersey: Prentice Hall, pp. 252–65.Google Scholar
  5. Rueter, P., Rabus, R., Wilkes, H. et al. (1994) Anaerobic oxidation of hydrocarbons in crude oils by new types of sulphate-reducing bacteria. Nature, 372, 455–8.Google Scholar


  1.  Biogeochemistry;  Hydrocarbons;  Nutrients;  Occurrence of organic facies;  Organic geochemistry;  Oxidation-reduction; Petroleum; Petroleum: hydrothermal; petroleum kinetic modeling Petroleum: kinetic modeling; Petroleum: primary migration; Petroleum: surface geochemistry; Petroleum: types, occurrence and reserves;  Rock-Eval pyrolysis
  1. Béhar, F., Ungerer, Ph., Kressmann, S. and Rudkievicz, J.L. (1991) Thermal evolution of crude oils in sedimentary basins: Experimental simulation in a confined system and kinetic modelling. Rev. Inst. Fr. Pétrole, 46, 151–81.Google Scholar
  2. Braun, R.L. and Burnham, S.K. (1987) Analysis of chemical reaction kinetics using a distribution of activation energies and simple models. Energy Fuels, 1, 153–61.Google Scholar
  3. Burnham, S.K., Braun, R.L., Gregg, H.R. and Samoun, S.M. (1987) Comparison of methods for measuring kerogen pyrolysis rates and fitting kinetic parameters. Energy Fuels, 1, 452–8.Google Scholar
  4. Horsfield, B., Schenk, H.J., Mills, N. and Welte, D.H. (1992) An investigation of the in-reservoir conversion of oil to gas: Compositional and kinetic findings from closed-system programmed-temperature pyrolysis, in Advances in Organic Geochemistry 1991 (eds C. Eckardt et al.). Oxford: Pergamon Press, pp. 191–204; and Org. Geochem., 19, 191–204.Google Scholar
  5. Jüntgen, H. and van Heek, K.H. (1970) Reaktionsabläufe unter nichtisothermen Bedingungen. Fortschr. Chem. Forsch., 13, 601–99.Google Scholar
  6. Pitt, G.J. (1962) The kinetics of the evolution of volatile products from coal. Fuel, 41, 267–74.Google Scholar
  7. Schaefer, R.G., Schenk, H.J., Hardelauf, H. and Harms, R. (1990) Determination of gross kinetic parameters for petroleum formation from Jurassic source rocks of different maturity levels by means of laboratory experiments, in Advances in Organic Geochemistry 1989 (eds B. Durand and F. Béhar). Oxford: Pergamon Press, pp. 115–20, and Org. Geochem., 16, 115–20.Google Scholar
  8. Schenk, H.J. and Horsfield, B. (1993) Kinetics of petroleum generation by programmed-temperature closed-versus open-system pyrolysis. Geochim. Cosmochim. Acta, 57, 623–30.Google Scholar
  9. Tissot, B.P., Pelet, R. and Ungerer, Ph. (1987) Thermal history of sedimentary basins, maturation indices and kinetics of oil and gas generation. Am. Assoc. Petrol. Geol. Bull., 71, 1445–66.Google Scholar
  10. Ungerer, P. and Pelet, R. (1987) Extrapolation of the kinetics of oil and gas formation from laboratory experiments to sedimentary basins. Nature, 327, 52–4.Google Scholar
  11. Ungerer, Ph. (1993) Modelling of petroleum generation and migration, in Applied Petroleum Geochemistry (ed. M.L. Bordenave). Paris: Editions Technip, pp. 395–442.Google Scholar
  12. Welte, D.H., Horsfield, B. and Baker, D.R. (eds) (1997) Petroleum and Basin Evolution. Berlin: Springer-Verlag, 535 pp.Google Scholar


  1.  Chemical kinetics;  Hydrocarbons;  Organic geochemistry; Petroleum; Petroleum: in-reservoir biodegradation; petroleum primary migration Petroleum: primary migration; Petroleum: surface geochemistry; Petroleum: types, occurrence and reserves
  1. Braun, R.L. and Burnham, S.K. (1990) Mathematical model of oil generation, degradation and expulsion. Energy Fuels, 4, 132–46.Google Scholar
  2. Durand, B. (1988) Understanding of HC migration in sedimentary basins (present state of knowledge). Org. Geochem., 13, 445–59.Google Scholar
  3. England, W.A. and Fleet, S.J. (1991) Petroleum migration: introduction, in Petroleum Migration (eds W.A. England and A.J. Fleet). London: The Geological Society, pp. 1–5.Google Scholar
  4. Leythaeuser, D., Schaefer, R.G. and Radke, M. (1987) On the primary migration of petroleum, 12th World Petrol. Congr. Proc. Special Publ., 2, 1–10.Google Scholar
  5. Tissot, B. and Welte, D.H. (1984) Petroleum Formation and Occurrence, 2nd edn. New York: Springer Verlag, 699 pp.Google Scholar
  6. Ungerer, P. (1990) State of the art of research in kinetic modelling of oil formation and destruction: Org. Geochem., 16, 1–3, 1–25.Google Scholar


  1.  Diagenesis;  Geochemistry of sediments;  Hydrocarbons;  Organic geochemistry;  Oil-oil and oil-source rock correlation; Petroleum; Petroleum: hydrothermal; Petroleum: in-reservoir biodegradation isotopic compositions organic gases; Petroleum: kinetic modeling; petroleum surface geochemistry Petroleum: surface geochemistry; Petroleum: types, occurrence and reserves;  Sedimentary fluids
  1. Adler, H.H. (1974) Concepts of uranium ore formation in reducing environments in sandstones and other sediments, in Proceedings of Formation of Uranium Ore Deposits. International Atomic Energy Agency, pp. 141–68.Google Scholar
  2. Behrens, E.W. (1988) Geology of a continental slope oil seep, northern Gulf of Mexico. Am. Assoc. Petrol. Geol. Bull., 72, 105–14.Google Scholar
  3. Donovan, T.J. (1981) Geochemical prospecting for oil and gas from orbital and suborbital altitudes, in Unconventional Methods in Exploration for Petroleum and Natural Gas II (ed. B.M. Gottlieb). Dallas: Southern Methodist University Press, pp. 96–115.Google Scholar
  4. Donovan, T.J. and Dalziel, M.C. (1977) Late diagenetic indicators of buried oil and gas. US Geol. Survey Open File Rep., 77–817, 38 pp.Google Scholar
  5. Duchscherer, W. Jr. (1981) Carbonates and isotope ratios from surface rocks: a geochemical guide to underlying petroleum accumulations, in Unconventional Methods in Exploration for Petroleum and Natural Gas II (ed. B.M. Gottlieb). Dallas: Southern Methodist University Press, pp. 201–18.Google Scholar
  6. Elmore, R.D., McCollum, R. and Engel, M.H. (1989) Evidence of a relationship between hydrocarbon migration and diagenetic magnetic minerals–implications for petroleum exploration. Am. Assoc. Petrol. Geol. Bull., 5, 1–17.Google Scholar
  7. Goldhaber, M.B. and Reynolds, R.L. (1991) Relations among hydrocarbon reservoirs, epigenetic sulfidization, and rock magnetization: examples from the South Texas Coastal Plain. Geophysics, 56, 748–57.Google Scholar
  8. Horovitz, L. (1981) Hydrocarbon geochemical prospecting after forty years, in Unconventional Methods in Exploration for Petroleum and Natural Gas II (ed. B.M. Gottlieb). Dallasxs: Southern Methodist University Press, pp. 83–95.Google Scholar
  9. Hvoslef, S., Chrisite, O.H.J., Sassen, R., Kennicutt, M.C., Requejo, S.G. and Brooks, J.M. (1996) Test of a new surface geochemistry tool for resource prediction in frontier areas. Mar. Petrol. Geol., 13, 107–24.Google Scholar
  10. Klusman, R.W., Saeed, M.A. and Abu-Ali, M.A. (1992) The potential use of biogeochemistry in the detection of petroleum microseepage. Am. Assoc. Petrol. Geol. Bull., 76, 851–63.Google Scholar
  11. Martin, B.A. and Cawley, S.J. (1991) Onshore and offshore petroleum seepage: Contrasting a conventional study in Papua New Guinea and airborne laser fluorosensing over the Arafura Sea. Aust. Petrol. Expl. Assoc. J., 31, 333–53.Google Scholar
  12. Philp, R.P. and Crisp, P.T. (1982) Surface geochemical methods used for oil and gas prospecting–a review. J. Geochem. Expl., 17, 1–34.Google Scholar
  13. Price, L.C. (1994) Microbial-soil surveying: preliminary results and implications for surface geochemical oil exploration. Am. Assoc. Petrol. Geol. Bull., 9, 81–129.Google Scholar
  14. Saunders, D.F., Branch, J.F. and Thompson, C.K. (1994) Tests of Australian aerial radiometric data for use in petroleum reconnaissance. Geophysics, 59, 411–19.Google Scholar
  15. Segal, D.B., Ruth, M.D. and Merin, I.S. (1986) Remote detection of anomalous mineralogy associated with hydrocarbon production, Lisbon Valley, Utah. Mountain Geol., 23, 51–62.Google Scholar


  1.  Analysis: field methods;  Biogenic methane and gas hydrates;  Biogeochemistry;  Carbonate sediments;  Gas chromatography-mass spectrometry (GC-MS);  Hydrocarbons;  Natural gas;  Oil seeps and coastal bitumens;  Organic geochemistry; Petroleum; Petroleum: hydrothermal; Petroleum: in-reservoir biodegradation; Petroleum: kinetic modeling; Petroleum: primary migration; petroleum types, occurrence and reserves Petroleum: types, occurrence and reserves;  Remote sensing;  Soil
  1. Halbouty, M.T. (ed.) (1992) Giant Oil and Gas Fields of the Decade 1978 to 1988. AAPG Memoir no. 54. Tulsa: American Association of Petroleum Geologists, 526 pp.Google Scholar
  2. Hunt, J.M. (1995) Petroleum Geochemistry and Geology. New York: W.H. Freeman & Co., 743 pp.Google Scholar
  3. International Petroleum Encyclopedia (1996). Tulsa, OK: PennWell Publishing Co., 336 pp.Google Scholar
  4. Masters, C.D., Attanasi, E.D. and Root, D.H. (1994) World petroleum assessment and analysis. 14th World Petrol. Congr. Proc., 2, 529–41.Google Scholar
  5. Rühl, W. (1982) Tar (Extra Heavy Oil) Sands and Oil Shales. Stuttgart: Ferdinand Enke Publishers, 149 pp.Google Scholar
  6. Russell, P.L. (1990) Oil Shales of the World, Their Origin, Occurrence and Exploitation. Oxford: Pergamon Press, 753 pp.Google Scholar
  7. Tiratsoo, E.N. (1986) Oilfields of the World, 3rd edn. Houston, TX: Gulf Publishing Co., 392 pp.Google Scholar
  8. Tissot, B.P. and Welte, D.H. (1984) Petroleum Formation and Occurrence, 2nd edn. Berlin: Springer-Verlag, 699 pp.Google Scholar


  1.  Biomarker: aliphatic;  Biomarker: aromatic;  Biomarker: higher plant;  Hydrocarbons;  Natural gas;  Oil–oil and oil–source rock correlation;  Occurrence of organic facies;  Organic geochemistry;  Organic matter in fossils; Petroleum; Petroleum: hydrothermal; Petroleum: in-reservoir biodegradation; Petroleum: kinetic modeling; Petroleum: primary migration; Petroleum: surface geochemistry
  1. Anderson, G.M. and Crerar, D.A. (1993) Thermodynamics in Geochemistry: The Equilibrium Model. New York: Oxford University Press, 588 pp.Google Scholar
  2. Berman, R.G. (1988) Internally-consistent thermodynamic data for minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2. J. Petrol., 29, 445–522.Google Scholar
  3. Gibbs, J.W. (1961) The Scientific Papers of J. Willard Gibbs. Volume One: Thermodynamics. New York: Dover Publications, 434 pp.Google Scholar
  4. Helgeson, H.C., Delany, J.M., Nesbitt, H.W. and Bird, D.K. (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am. J. Sci., 278-A, 1–229.Google Scholar
  5. Holland, T.J.B. and Powell, R. (1990) An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: the system K2O–Na2O–CaO–MgO–MnO–FeO–Fe2O3–Al2O3–TiO2–SiO2–C–H2–O2. J. Metamorphic Geol., 8, 89–124.Google Scholar
  6. Morse, S.A. (1980) Basalts and Phase Diagrams. An Introduction to the Quantitative Use of Phase Diagrams in Igneous Petrology. New York: Springer-Verlag, 493 pp.Google Scholar
  7. Prigogine, I. and Defay, R. (translated by Everett, D.H.) (1954) Chemical Thermodynamics. New York: John Wiley & Sons, 543 pp.Google Scholar
  8. Ricci, J.E. (1951) The Phase Rule and Heterogeneous Equilibrium. New York: Van Nostrand, 505 pp.Google Scholar
  9. Spear, F.S. (1993) Metamorphic Phase Equilibria and Pressure–Temperature–Time Paths. Washington, DC: Mineralogical Society of America, 799 pp.Google Scholar
  10. Schreinemakers, F.A.H. (1965) Papers by F.A.H. Schreinemakers, Volumes 1 and 2. Collected by the Pennsylvania State University. Originally published in Proceedings of Koninklijke Akademie van Wetenschappen Te Amsterdam.Google Scholar
  11. Zen, E-An. (1966) Construction of pressure–temperature diagrams for multicomponent systems after the method of Schreinemakers–a geometric approach. US Geol. Surv. Bull., 1225, 56 pp.Google Scholar
  1. Hurlbut, C.S. Jr. (1971) Dana's Manual of Mineralogy. New York: John Wiley & Sons, 579 pp.Google Scholar
  2. Lal, D. and Lee, T. (1995) Cosmogenic 32P and 33P used as tracers to study phosphorus recycling in the upper ocean. Nature, 333, 752–4.Google Scholar
  3. Lerman, A. and MacKenzie, F.T. (1971) Modeling of geochemical cycles: Phosphorus as an example. Geol. Soc. Am. Mem., 142, 205–18.Google Scholar
  4. Mason, B. and C.B. Moore (1982) Principles of Geochemistry. New York: John Wiley & Sons, 344 pp.Google Scholar
  5. Van Cappellen, P. and Ingall, E.D. (1996). Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity. Science, 271, 493–6.Google Scholar
  6. Van Wazer, R. (1961) Phosphorus and its Compounds, Vol. 2. New York: Interscience Publications.Google Scholar
  7. Wetzel, R.G. (1975) Limnology. Philadelphia: W.B. Saunders Co., 743 pp.Google Scholar
  1. Alvarez, L.W., Alvarez, W.L., Asaro, F. and Michel, H.V. (1980) Extraterrestrial cause for the Cretaceous/Tertiary boundary extinction. Science, 208, 1095–108.Google Scholar
  2. Anders, E.A. and Grevesse, N. (1989) Abundances of the elements: meteoritic and solar. Geochim. Cosmochim. Acta, 53, 197–214.Google Scholar
  3. Cabri, L.J. (1976) Glossary of platinum-group minerals. Econ. Geol., 71, 1476–80.Google Scholar
  4. Cologni, F. and Nussbaum, E. (1996) Platinum by Cartier, Triumphs of the Jeweler's Art. New York: Harry N. Abrams, Inc., 279 pp.Google Scholar
  5. Ganapathy, R. (1980) A major meteorite impact on Earth 65 million years ago: evidence from the Cretaceous/Tertiary boundary clay. Science, 209, 921–3.Google Scholar
  6. Hartley, F.R. (1973) The Chemistry of Platinum and Palladium. New York: Halsted Press, 544 pp.Google Scholar
  7. Leonard, B.F. (ed.) (1971) Issue devoted to the platinum group metals. Econ. Geol., 71, 1131–492.Google Scholar
  8. Naldrett, A.J. and Duke, J.M. (1980) Platinum metals in magmatic sulfide ores. Science, 208, 1417–24.Google Scholar
  9. Page, N.J., Clark, A.L., Desborough, G.A. and Parker, R.L. (1973) Platinum group metals. US Geol. Surv. Prof. Paper, 820, 537–46.Google Scholar
  10. Parthé, E. (1969) Platinum Group: Handbook of Geochemistry. Heidelberg: Springer Verlag.Google Scholar
  11. Orth, C.J., Qunitana, L.R., Gilmore, J.S. Barrick, J.E., Haywa, J.H. and Spesshardt, S.A. (1988) Pt-group metal anomalies in Lower Mississippian of southern Oklahoma. Geology, 16, 625–30.Google Scholar
  12. von Gruenewaldt, G. (ed.) (1982) A further issue devoted to the platinum group metals. Econ. Geol., 77, 1283–610.Google Scholar
  13. Wright, T.L. and Fleischer, M. (1965) Geochemistry of the platinum group elements. US Geol. Surv. Bull., 1214A, 24 pp.Google Scholar
  1. Curtis, D.B., Fabryka-Martin, J., Dixon, P.R., Aguilar, R.D., Rokop, D.J. and Cramer, J. (1994) Radionuclide release rates from natural analogues of spent nuclear fuel. Radiochem. Acta, 551–7.Google Scholar
  2. Graf, W.L. (1994) Plutonium and the Rio Grande. Environmental Change and Contamination in the Nuclear Age. New York: Oxford University Press.Google Scholar
  3. Levine, C.A. and Seaborg, G.T. (1951). The occurrence of plutonium in nature. J. Am. Chem. Soc., 73, 3278–83.Google Scholar
  4. Perkins, R.W. and Thomas, C.W. (1980) Worldwide fallout, in Transuranic Nuclides in the Environment (ed. W.C. Hansen). Springfield, VA: National Technical Information Service, pp. 53–82.Google Scholar
  5. Seaborg, G.T., McMillan, E.M., Kennedy, J.W. and Wahl, A.C. (1946) Radioactive element 94 from dueterons on uranium. Phys. Rev., 69, 366–7.Google Scholar
  6. Seaborg, G.T. and Wahl, A.C. (1948) The chemical properties of elements 93 and 94. J. Am. Chem. Soc., 70, 1128–34.Google Scholar
  7. Sholkovitz, E.R. (1983) The geochemistry of plutonium in fresh and marine water environments. Earth Sci. Rev., 19, 95–161.Google Scholar
  8. White, M.G. and Dunaway, P.B. (eds) (1977) Transuranics in Natural Environments. Nevada: Nevada Applied Ecology Group.Google Scholar
  9. Yablokov, S.V., Karasev, V.K., Rumyantsev, V.M. et al. (1993) Facts and problems related to radioactive waste disposal in seas adjacent to the territory of the Russian Federation, Office of the President of the Russian Federation, Moscow (translated by P. Gallager and E. Bloomstein). Albuquerque, NM: Small World Publishers, Inc.Google Scholar
  1. Bagnall, K.W. (1966) The Chemistry of Selenium, Tellurium and Polonium. Elsevier: New York.Google Scholar
  2. Gouronnec, A.M., Goutelard, F., Montassier, N., Boulaud, D., Renoux, A. and Tymen, G. (1996) Behavior of radon and its daughters in a basement: model-experiment comparison. Aerosol Sci. Technol., 25, 73–89.Google Scholar
  3. Greenwood, N.N. and Earnshaw, A. (1984) Chemistry of the Elements. Oxford: Pergamon Press Ltd.Google Scholar
  4. Hopke, P.K. (1996) The initial atmospheric behavior of radon decay products. J. Radioanal. Nucl. Chem., 203, 353–75.Google Scholar
  5. Lederer, C.M. and Shirley, V.S. (1978) Table of Radioactive Isotopes. New York: John Wiley & Sons.Google Scholar


  1. Boreham, C.J., Fookes, C.J.R., Popp, B.N. and Hayes, J.M. (1989) Origins of etioporphyrins in sediments: evidence from stable carbon isotopes. Geochim. Cosmochim. Acta, 53, 2451–55.Google Scholar
  2. Filby, R.H. and Branthaver, J.F. (1987) Metal Complexes in Fossil Fuels: Geochemistry, Characterization and Processing. Washington, DC: American Chemical Society, 436 pp.Google Scholar
  3. Gimalt, J.O. and Dorronsorro, C. (1995) Organic Geochemistry: Developments and Applications to Energy, Climate, Environment and Human History: 17th International Meeting on Organic Geochemistry. Donostia-San Sebastian: AIGOA, 1184 pp.Google Scholar
  4. Jeffrey, S.W. (1989) The Chromophyte Algae: Problems and Perspectives (eds. J.C. Green, B.S.C. Leadbeater and W.I. Diver). Oxford: Clarendon Press, pp. 13–36.Google Scholar
  5. Keely, B.J., Blake, S.R., Schaeffer, P. and Maxwell, J.R. (1995) Distribution of pigments in the organic matter in marls from the Vena del Gesso evaporitic sequence. Org. Geochem., 23, 527–39.Google Scholar
  6. Larsen, J.W. and Freeman, D.H. (1990) ACS Symposium on porphyrin geochemistry-a quest for analytical reliability. Energy Fuels, 6, 627–748.Google Scholar
  7. Lewan, M.D. (1984) Factors controlling the proportionality of vanadium to nickel in crude oils. Geochim. Cosmochim. Acta, 48, 2231–38.Google Scholar
  8. Lewan, M.D. and Maynard, J.B. (1987) Factors controlling the enrichment of vanadium and nickel in the bitumen of organic sedimentary rocks. Geochim. Cosmochim. Acta, 46, 2547–60.Google Scholar
  9. Mason, G.M., Trudell, L.G. and Branthaver, J.F. (1987) Review of the stratigraphic distribution and diagenetic history of ablesonite. Org. Geochem., 14, 585–94.Google Scholar
  10. Moldowan, J.M., Albrecht, P. and Philip, R.P. (1992) Biomarkers in Sediments and Petroleum–A Tribute to W. Seifert. New Jersey: Prentice Hall, 411 pp.Google Scholar
  11. Pfaltz, S., Jaun, B., Fässler, S. et al. (1982) Factor F430 from methanogenic bacteria: structure of the porphyrinoid ligand system. Helv. Chim. Acta, 65, 828.Google Scholar
  12. Quirke, J.M., Shaw, G.J., Soper, P.D. and Maxwell J.R. (1980) Petroporphyrins I. The presence of porphyrins with extended alkyl substituents. Tetrahedron, 36, 3261–7.Google Scholar
  13. Rankin, J.G. Czernuszewicz, R.S. and Lash, T.D. (1995) Finger-Printing petroporpyhrin structures with vibrational spectroscopy: II. Resonance Raman bands for the exocyclic rings of nickel tetrahydrobenzoporphyrins and nickel cycloalkanoporphyrins. Org. Geochem., 23, 419–27.Google Scholar
  14. Sakata, K., Yamamoto, K., Ishikawa, H. et al. (1990) Chloro-phyllone-A, a new pheophorbide-A related compound isolated from Ruditapes philippinarum as an antioxidative compound. Tetrahedron Lett., 8, 1165–8.Google Scholar
  15. Storm, C.B., Krane, J., Skjetne, T. et al. (1984) The structure of able-sonite. Science, 223, 1075–6.Google Scholar
  16. Sundararaman, P. and Boreham, C.J. (1991) Vanadyl 3-nor C30 DPEP: indicator of depositional environment of a lacustrine sediment. Geochim. Cosmochim. Acta, 55, 389–95.Google Scholar
  17. Sundararaman, P. and Boreham, C.J. (1993) Comparison of nickel and vanadyl porphyrin distributions in sediments. Geochim. Cosmochim. Acta, 57, 1367–77.Google Scholar
  18. Sundararaman, P. and Moldowan, J.M. (1993) Comparison of maturity based on steroid and vanadyl porphyrin parameters; a new vanadyl porphyrin maturity parameter for higher maturities. Geochim. Cosmochim. Acta, 57, 1379–86.Google Scholar
  19. Sundararaman, P., Hwang, R.J., Ocampo, R. et al. (1994) Temporal changes in the distribution of C33 cyclohepteno PDEP and 17-nor C30 DPEP in rocks. Org. Geochem., 21, 1051–8.Google Scholar
  20. Treibs, S. (1936) Chlorophyll and hemin derivatives in organic materials. Angew. Chem., 49, 682–6.Google Scholar
  21. van Berkel, G.J. (1993) Geoporphyrin analysis using electrospray ionization-mass spectrometry. Energy Fuels, 7, 411–9.Google Scholar
  1. Dalrymple, G.B. and Lanphere, M.A. (1969) Potassium-Argon Dating: Principles, Applications and Techniques. San Francisco: W.H. Freeman, 258 pp.Google Scholar
  2. Dickin, S.P. (1995) Radiogenic Isotope Geology. Cambridge: Cambridge University Press, 452 pp.Google Scholar
  3. Faure, G. (1986) Principles of Isotope Geology, 2nd edn. New York: John Wiley & Sons, 589 pp.Google Scholar
  4. Geyh, M.A. and Schleicher, H. (1990) Absolute Age Determination: Physical and Chemical Dating Methods and their Application. New York: Springer-Verlag, 589 pp.Google Scholar
  5. Jäger, E. and Hunziker J.C. (eds) (1979) Lectures in Isotope Geology. New York: Springer-Verlag, 329 pp.Google Scholar
  6. McDougall, I. and Harrison, T.M. (1988) Geochronology and Thermochronology by the 40Ar/39Ar Method. Oxford: Oxford University Press, 212 pp.Google Scholar
  7. York, D. and Farquhar, R.M. (1972) The Earth's Age and Geochronology. Oxford: Pergamon Press, 178 pp.Google Scholar
  1. Baadsgaard, H. (1987) Rb–Sr and K–Ca isotope systematics in minerals from potassium horizons in the Prairie Evaporite Formation, Saskatchewan, Canada. Chem. Geol. (Isotope Geosci. Sect.), 66, 1–15.Google Scholar
  2. Firestone, R.B. (1996) Table of Isotopes, CD-ROM, 8th edn. New York: Wiley-Interscience.Google Scholar
  3. Kostoyanov, S.I. (1988) The K–Ca method and the excess-argon problem. Geochem. Int., 25, 38–43.Google Scholar
  4. Marshall, B.D. and DePaolo, D.J. (1982) Precise age determinations and petrogenetic studies using the K–Ca method. Geochim. Cosmochim. Acta, 46, 2537–45.Google Scholar
  5. Marshall, B.D. and DePaolo, D.J. (1989) Calcium isotopes in igneous rocks and the origin of granite. Geochim. Cosmochim. Acta, 53, 917–22.Google Scholar
  6. Marshall, B.D., Woodard, H.H. and DePaolo, D.J. (1986) K–Ca–Ar systematics of authigenic sanidine from Waukau, Wisconsin, and the diffusivity of argon. Geology, 14, 936–8.Google Scholar
  7. Nelson, D.R. and McCulloch, M.T. (1989) Petrogenetic applications of the 40K–40Ca radiogenic decay scheme—a reconnaissance study. Chem. Geol. (Isotope Geosci. Sect.), 79, 275–93. Google Scholar
  8. Shih, C.-Y., Nyquist, L.E., Bogard, D.D. and Wiesmann, H. (1994) K–Ca and Rb Sr dating of two lunar granites: relative chronometer resetting. Geochim. Cosmochim. Acta, 58, 3101–16.Google Scholar
  9. Steiger, R.H. and Jäger, E. (1977) Subcommission on geochronology: convention on the use of decay constants in geo-and cosmo-chronology. Earth Planet. Sci. Lett., 36, 359–62.Google Scholar
  1. Bada, J.L., (1995) Cold start. Science, 35, 21–5.Google Scholar
  2. Chumakov, N.M., and Elston, D.P. (1989) The paradox of Late Proterozoic glaciations at low latitudes. Episodes, 12, 115–20.Google Scholar
  3. Clemmey, L. and Badham, N. (1982) Oxygen in the Precambrian atmosphere: an evaluation of the geologic evidence. Geology, 10, 141–6.Google Scholar
  4. Cloud, P.E. (1976) Major features of crustal evolution. Geol. Soc. S. Afr., Annexure to Vol. LXXIX, 33 pp.Google Scholar
  5. Dalziel, I.W.D. (1991) Pacific margins of Laurentia and East Antarctica-Australia as a conjugate rift pair: evidence and major implications for an Eocambrian supercontinent. Geology, 19, 598–601.Google Scholar
  6. Derry, L.A., and Jacobsen, S.B. (1990) The geochemical evolution of Precambrian seawater: evidence from REE's in banded iron formations. Geochim. Cosmochim. Acta, 54, 2965–77.Google Scholar
  7. Derry, L., Kaufman, J. and Jacobsen, S. (1992). Sedimentary cycling and environmental change in the Late Proterozoic: evidence from stable and radiogenic isotopes. Geochim. Cosmochim. Acta. 56, 1317–29.Google Scholar
  8. Dimroth, E. and Kimberley, M.M. (1976) Precambrian atmospheric oxygen: evidence in the sedimentary distributions of carbon, sulfur, uranium, and iron. Can. J. Earth Sci., 13, 1161–85.Google Scholar
  9. Embleton, B.J.J. and Williams, G.E. (1986) Low palaeolatitudes of deposition for late Precambrian periglacial varvites in South Australia: implications for palaeoclimatology. Earth Planet. Sci. Lett., 79, 419–30.Google Scholar
  10. Emiliani, C. (1992) Planet Earth Cosmology, Geology, and the Evolution of Life and Environment. Cambridge: Cambridge University Press, 717 pp.Google Scholar
  11. Eriksson, P.G. and Cheney, E.S. (1992) Evidence for the transition to an oxygen-rich atmosphere during the evolution of red beds in the lower Proterozoic sequences of southern Africa. Precambrian Res., 54, 257–69.Google Scholar
  12. Eyles, N. and Young, G.M. (1994) Geodynamic controls on glaciation in Earth history, in Earth's Glacial Record (eds M. Deynoux, J.M.G. Miller, E.W. Domack, N. Eyles, I.J. Fairchild and G.M. Young). Cambridge: Cambridge University Press, pp. 1–28.Google Scholar
  13. Gay, A.L. and Grandstaffe, D.E. (1980) Chemistry and minerology of Precambrian paleosols at Elliot Lake, Ontario, Canada. Precambrian Res., 12, 349–73.Google Scholar
  14. Gilliland, R.L., (1989) Solar evolution. Palaeogeogr., Palaeoclimatol., Palaeoecol. (Global Planet. Change Sect.), 75, 35–55.Google Scholar
  15. Grotzinger, J.P. (1994) Trends in Precambrian carbonate sediments and their implication for understanding evolution, in Early Life on Earth, Nobel Symposium No. 84 (ed. S. Bengtson). New York: Columbia University Press, pp. 245–58.Google Scholar
  16. Grotzinger, J.P. and Knoll, S. (1995) Anomalous carbonate precipitates: is the Precambrian the key to the Permian? Palaios, 10, 578–96.Google Scholar
  17. Grotzinger, J.P., Bowring, S.A., Saylor, B.Z. and Kaufman, S.J. (1995) Biostrategraphic and geochronologic constraints on early animal evolution. Science, 270, 598–604.Google Scholar
  18. Hambrey, M.J. and Harland, W.B. (eds) (1981) Earth's Pre-Pleistocene Glacial Record. London: Cambridge University Press, 1004 pp.Google Scholar
  19. Han, T.-M. and Runnegar, B. (1992) Megascopic eukaryotic algae from the 2.1 billion-year-old Negaunee iron-formation. Michigan. Science, 257, 232–4.Google Scholar
  20. Harland, W.B. (1981) The Late Archaean(?) Witaterstand conglomerate, South Africa, in Earth's Pre-Pleistocene Glacial record (eds M.J. Hambrey and W.B. Harland). London: Cambridge University Press, pp. 185–7.Google Scholar
  21. Hart, M.H. (1978) The evolution of the atmosphere of the Earth. Icarus, 33, 23–39.Google Scholar
  22. Hoffman, H.J. (1991) Did the breakout of Laurentia turn Gondwanaland inside-out? Science, 252, 1409–12.Google Scholar
  23. Hoffman, P.F. (1989) Speculations on Laurentia's first gigayear (2.0 to 1.0 Ga). Geology, 17, 135–8.Google Scholar
  24. Holland, H.D. and Beukes, N.J. (1990) A paleoweathering profile from Griqualand West, South Africa: evidence for a dramatic rise in atmospheric oxygen between 2.2 and 1.9 bybp. Am. J. Sci., 290–A, 1–34.Google Scholar
  25. James, H.L. (1954) Sedimentary Facies of iron-formation. Econ. Geol., 49, 235–93.Google Scholar
  26. Kasting, J.F. (1987) Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambrian Res., 34, 205–29.Google Scholar
  27. Kasting, J.F. (1993) Earth's early atmosphere. Science, 259, 920–6.Google Scholar
  28. Kasting, J.F. and Toon, O.B. (1989) Climate Evolution on the terrestrial planets, in Origin and Evolution of Planetary and Satellite Atmospheres (eds S.K. Altreya, J.B. Pollack and M.S. Matthews). Tucson: University of Arizona Press, pp. 423–9.Google Scholar
  29. Kasting, J.F., Pollack, J.B. and Ackerman, T.P. (1984) Response of Earth's surface temperature to increases in solar flux and implications for loss of water from Venus. Icarus, 57, 335–55.Google Scholar
  30. Kimberley, M.M. (1989) Exhalative origins of iron formations. Ore Geol. Rev., 5, 13–145.Google Scholar
  31. Klein, C. and Beukes, N.J. (1992) The distribution, stratigraphy, and sedimentologic setting and geochemistry of Precambrian iron formations, in The Proterozoic Biosphere: A Multidisciplinary Study (eds. J.W. Schopf and C. Klein). Cambridge: Cambridge University Press, pp. 139–46.Google Scholar
  32. Knoll, S.H. and Walker, J.C.G. (1980) The environmental context of early Metazoan evolution. Geol. Soc. Am. Prog. Abstr., 22, A128.Google Scholar
  33. Lovelock, J.E. (1979) Gaia: A New Look at Life on Earth. New York: Oxford University Press, 215 pp.Google Scholar
  34. MacLean, P. and Fleet, M.E. (1989) Detrial pyrite in the Witwaterstand gold fields of South Africa. Evidence from truncated growth banding. Econ. Geol., 84, 2008–11.Google Scholar
  35. Maynard, J.B., Ritger, S.D. and Sutton, S.J. (1991) Chemistry of sands from the modern Indus River and the Archean Wiwatersrad basin: implications for the composition of the Archnean atmosphere. Geology, 19, 265–8.Google Scholar
  36. Moores, E.M. (1991) Southwest US–East Antarctic (SWEAT) connection: a hypothesis. Geology, 19, 425–28.Google Scholar
  37. Nesbitt, H.W. and Young, G.M. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–17.Google Scholar
  38. Nesbitt, H.W. and Young, G.M. (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Acta, 48, 1523–34.Google Scholar
  39. Plumb, K.A. (1991) New Precambrian time scale. Episodes, 14, 139–40.Google Scholar
  40. Rankama, K. (1955) Geologic evidence of chemical composition of the Precambrian atmosphere. Geol. Soc. Am., 62, 652–64.Google Scholar
  41. Raymo, M.E. and Ruddiman, W.F. (1992) Tectonic forcing of late Cenozoic climate. Nature, 359, 117–22.Google Scholar
  42. Retallack, G.J. (1994) Were the Ediacaran fossils lichens? Paleobiology, 20, 523–44.Google Scholar
  43. Roscoe, S.M. (1973) The Huronian supergroup, a Paleophebian succession showing evidence of atmospheric evolution. Geol. Assoc. Canada Special Paper, 12, 31–47.Google Scholar
  44. Rye, R., Kuo, P.H. and Holland, H.D. (1995) Atmospheric carbon dioxide concentration before 2.2 billion years ago. Nature, 378, 603–5.Google Scholar
  45. Sagan, C. and Mullen, G. (1972) Earth and Mars, evolution of atmospheres and surface temperatures. Science, 177, 52–6.Google Scholar
  46. Schidlowski, M. (1987). Application of stable carbon isotopes to early biochemical evolution of the Earth. Annu. Rev. Earth Planet. Sci., 15, 47–72.Google Scholar
  47. Schopf, J.W. (1994) The oldest known records of life: Early Archean stromatolites, microfossils, and organic matter, in Early Life on Earth. Nobel Symposium No. 84 (ed. S. Bengston). New York: Columbia University Press, pp. 193–206.Google Scholar
  48. Seilacher, A. (1989) Vendozoa: organismic construction in the Proterozoic biosphere. Lethaia, 22, 229–39.Google Scholar
  49. Shegelski, R.J. (1980) Archean cratonization, emergence and red bed development, Lake Shebandowan area, Canada. Precambrian Res., 12, 331–47.Google Scholar
  50. Towe, K.M. (1994) Earth's early atmosphere: constraints and opportunities for early evolution, in Early Life on Earth. Nobel Symposium No. 84 (ed. S. Bengtson). New York: Columbia University Press, pp. 36–47.Google Scholar
  51. Veizer, J. (1984) The evolving Earth: water tales. Precambrian Res., 25, 5–12.Google Scholar
  52. Veizer J., Compston, W., Hoefs, J. and Nielsen, H. (1983) 87Sr/86Sr in late Proterozoic carbonates: evidence for a mantle event at 900 Ma ago. Geochim. Cosmochim. Acta, 47, 295–302.Google Scholar
  53. Von Brunn, V. and Gold, D.J.C. (1993) Diamictite in the Archaean Pongola sequence of southern Africa. J. Afr. Earth Sci., 16, 367–74.Google Scholar
  54. Williams, G.E. (1975) Late Precambrian glacial climate and the Earth's obliquity. Geol. Mag., 112, 441–65.Google Scholar
  55. Windley, B.F. (1993) Proterozoic anorgenic magmatism and its orgenic connections. J. Geol. Soc. London, 150, 39–50.Google Scholar
  56. Worsley, T.R. and Nance, R.D. (1989) Carbon redox and climate controls through Earth history: a speculative reconstruction. Palaeogeogr. Palaeoclimatol., Palaeoecol. (Global Planet. Change Sect.), 75, 259–82.Google Scholar
  57. Yeo, G.M. (1981) The late Proterozoic Rapitan glaciation in the Northern Cordillera, in Proterozoic Basins of Canada: Paper 81–10 (ed. F.H.A. Campbell). Ottawa: Geological Survey of Canada, pp. 25–46.Google Scholar
  58. Young, G.M. (1973) Tillites, and aluminous quartzies as possible time markers for middle Precambrian (Aphebian) rocks of North America. Geol. Assoc. Canada Special Paper, 12, 99–127.Google Scholar
  59. Young, G.M. (1991) The geologic record of glaciation: relevance to the climatic history of Earth. Geosci. Canada, 18, 100–88.Google Scholar
  60. Young, G.M. (1995) Are Neoproterozoic glacial deposits preserved on the margins of Laurentia related to fragmentation of two supercontinents? Geology, 23, 153–6.Google Scholar


  1.  Biogeochemistry;  Earth's atmosphere;  Nitrogen;  Organics: contemporary degradation and preservation;  Oxygen; Precambrian geochemistry; Precambrian organic matter
  1. Cloud, P. (1976) Beginnings of biospheric evolution and their biogeochemical consequences. Paleobiology, 2, 351–87.Google Scholar
  2. Goles, G. (1972) Precambrian atmosphere–geochemical history, in Encyclopedia of Geochemistry and Environmental Sciences (ed. R.W. Fairbridge). New York: Van Nostrand Reinhold, pp. 977–80.Google Scholar
  3. Grunsky, E.C., Easton, R.M., Thurston, P.C. and Jensen, L.S. (1992) Characterization and statistical classification of Archean volcanic rocks of the superior province using major element geochemistry. Ontario Geol. Surv. Special Vol., 4, 1396–438.Google Scholar
  4. Hall, G.W.E. and Plant, J.A. (1992) Analytical errors in the determination of high field strength elements and their implications in tectonic interpretation studies. Chem. Geol., 95, 141–56.Google Scholar
  5. Percival, J. (1989) Granulite terrains of the lower crust of the Superior province. AGU Geophys. Monogr., 51, 301–10.Google Scholar
  6. Sleep, N.H. (1979) Thermal history and degassing of the Earth, some simple calculations. J. Geol., 87, 671–86.Google Scholar
  7. Taylor, S.R. and Mclennan, S.M. (1985) The Continental Crust: Its Composition and Evolution. London: Blackwell Scientific Publications, 312 pp.Google Scholar
  8. Thurston, P.C. and Chivers, K.M. (1990) Secular variation in greenstone sequence development emphasizing Superior Province, Canada. Precambrian Res., 46, 21–58.Google Scholar
  9. Veizer, J., Laznicka, P. and Jansen, S.L. (1989) Mineralization through geologic time: recycling perspective. Am. J. Sci., 289, 484–524.Google Scholar
  10. Williams, H.R., Stott, G.M., Thurston, P.C. et al. (1992) Tectonic evolution of Ontario: summary and synthesis. Ontario Geol. Surv. Special Vol., 4, 1253–332.Google Scholar
  1. Barghoorn, E.S., Meinschein, W.G. and Schopf, J.W. (1965) Paleobiology of a Precambrian Shale. Science, 148, 461–72.Google Scholar
  2. Derry, L., Kaufman, S.J. and Jacobsen, S.J. (1992) Sedimentary cycling and environmental change in the Late Proterozoic: evidence from stable and radiogenic isotopes. Geochim. Cosmochim. Acta, 56, 1317–29.Google Scholar
  3. Des Marais, D.J., Hayes, J.M., Strauss, H. and Summons, R.E. (1992) Carbon Isotopic evidence for the stepwise oxidation of the Proterozoic environment. Nature, 359, 605–9.Google Scholar
  4. Eglinton, G., Scott, P.M., Belsky, T., Burlingame, S.L. and Calvin, M. (1964) Hydrocarbons of biological origin from a one-billion-year-old sediment. Science, 145, 263–4.Google Scholar
  5. Engel, M.H. and Macko, S.A. (eds) (1993) Organic Geochemistry. New York: Plenum Press.Google Scholar
  6. Fowler, M.G,. and Douglas, S.G. (1987) Saturated hydrocarbon biomarkers in oils of Late Precambrian age from Eastern Siberia. Org. Geochem., 11, 201–3.Google Scholar
  7. Grantham, P.J. (1986) The occurrence of unusual C27 and C29 sterane predominances in two types of Oman crude oil. Org. Geochem., 9, 1–10.Google Scholar
  8. Han, J. and Calvin, M. (1969) Occurrence of fatty acids and aliphatic hydrocarbons in a 3.4 billion-year-old sediment. Nature, 224, 576–7.Google Scholar
  9. Hayes, J.M., Kaplan, I.R. and Wedeking, K.W. (1983) Precambrian organic geochemistry, preservation of the record, in Earth's Earliest Biosphere: Its Origin and Evolution (ed. J.W. Schopf). Princeton: Princeton University Press, pp. 93–134.Google Scholar
  10. Hayes, J.M., Summons, R.E., Strauss, H., Des Marais, D.J. and Lambert, I.B. (1992) Proterozoic biogeochemistry, in The Proterozoic Biosphere: An Interdisciplinary Study (eds. J.W. Schopf and C. Klein). Cambridge: Cambridge University Press, pp. 87–133.Google Scholar
  11. Hoering, T.C. (1965) The extractable organic matter in Precambrian rocks and the problem of contamination. Carnegie Inst. Washington Yearbook, 64, 215–18.Google Scholar
  12. Hoering, T.C. (1966) The criteria for suitable rocks in Precambrian organic geochemistry. Carnegie Inst. Washington Yearbook, 65, 365–72.Google Scholar
  13. Hoering, T.C. (1967) The organic geochemistry of Precambrian rocks. Res. Geochem., 2, 87–111.Google Scholar
  14. Hoering, T.C. (1976) Molecular fossils from the Precambrian Nonesuch Shale. Carnegie Inst. Washington Yearbook, 75, 806–13.Google Scholar
  15. Hoering, T.C. and Navale, V. (1987) A search for molecular fossils in the kerogen of Precambrian sedimentary rocks. Precambrian Res., 34, 247–67.Google Scholar
  16. Imbus, S.W. and McKirdy, D.M. (1993) Organic geochemistry of Precambrian sedimentary rocks, in Organic Geochemistry (eds M. Engel and S. Macko). New York: Plenum Press, pp. 657–78.Google Scholar
  17. Jackson, M.J., Powel, T.G., Summons, R.E. and Sweet, I.P. (1986) Hydrocarbon shows and petroleum source rocks in sediments as old as 1.7 × 109 years. Nature, 322, 727–9.Google Scholar
  18. Klomp, U.C. (1986) The chemical structure of a pronounced series of iso-alkanes in South Oman crudes, in Advances in Organic Geochemistry 1985 (eds D. Leythaeuser and J. Rullkötter). Oxford: Pergamon Press, pp. 807–14.Google Scholar
  19. Knoll, A.H. (1992) The early evolution of eukaryotes: a geologic perspective. Science, 256, 622–7.Google Scholar
  20. Knoll, A.H., and Walter, M.R. (1992) Latest Proterozoic stratigraphy and Earth History. Nature, 356, 673–7.Google Scholar
  21. Knoll, S.H., Hayes, J.M., Kaufman, S.J., Swett, K. and Lambert, I.B. (1986) Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbad and East Greenland. Nature, 321, 832–8.Google Scholar
  22. Kvenvolden, K.A., Peterson, E. and Pollock, G.E. (1969) Optical configuration of amino acids in Precambrian Fig Tree chert. Nature, 221, 141–3.Google Scholar
  23. Leventhal, J., Suess, S.E. and Cloud, P. (1975) Nonprevalence of biochemical fossils in kerogen from Pre-Phanerozoic sediments. Proc. Natl. Acad. Sci. USA, 72, 4706–10.Google Scholar
  24. Logan, G.A., Hayes, J.M., Hieshima, G.B. and Summons, R.E. (1995) Terminal Proterozoic reorganisation of biogeochemical cycles. Nature, 376, 53–6.Google Scholar
  25. McKirdy, D.M. (1974) Organic geochemistry in Precambrian research. Precambrian Res., 1, 75–137.Google Scholar
  26. Pell, S.D., McKirdy, D.M., Jansyn, J. and Jenkins, R.J.F. (1993) Ediacaran carbon isotope stratigraphy of South Australia–an initial study. Trans. R. Soc. South Aust., 117, 153–61.Google Scholar
  27. Peters K.E. and Moldowan, J.M. (1993) The Biomarker Guide: Interpreting Molecular Fossils on Petroleum and Ancient Sediments, New Jersey: Prentice Hall.Google Scholar
  28. Pratt, L.M., Summons, R.E., Hieshima, G.B. and Hayes, J.M. (1991) Sterane and triterpane biomarkers in the Precambrian Nonesuch formation. North America. Geochim. Cosmochim. Acta, 55, 911–16.Google Scholar
  29. Schidlowski, M. (1988) A 3800 Million-year-old isotopic record of life from carbon in sedimentary rocks. Nature, 333, 313–18.Google Scholar
  30. Schopf, J.W. and Klein, C. (eds) (1992) The Proterozoic Biosphere: An Interdisciplinary Study. Cambridge. Cambridge University Press.Google Scholar
  31. Schopf, J.W. and Walter, M.R. (1983) Archean microfossils: new evidence of ancient microbes, in Earth's Earliest Biosphere: Its Origin and Evolution (ed. J.W. Schopf). Princeton: Princeton University Press, pp. 187–213.Google Scholar
  32. Summons, R.E. and Powell, T.G. (1990) Petroleum source rocks of the Amadeus Basin, in Geological and Geophysical Studies in the Amadeus Basin, Central Australia (ed. R.J. Korsch). Canberra: Bureau Mineral Resources Bulletin, pp. 511–24.Google Scholar
  33. Summons, R.E. and Powell, T.G. (1992) Hydrocarbon composition and the depositional environment of source rocks for the Late Proterozoic oils of the Siberian Platform, in Early Organic Evolution and Mineral and Energy Resources (eds M. Schidlowski, S. Golubic, M.M. Kimberley, D.M. McKirdy and P.A. Trudinger). Berlin: Springer-Verlag, pp. 296–307.Google Scholar
  34. Summons, R.E. and Walter, M.R. (1990) Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments. Am. J. Sci., 290A, 212–44.Google Scholar
  35. Summons, R.E., Brassell, S.C., Eglinton, G. et al. (1987) Distinctive hydrocarbon biomarkers from fossiliferous sediment of the late Proterozoic Walcott Member, Chuar Group, Grand Canyon, USA. Geochim. Cosmochim. Acta, 52, 2625–73.Google Scholar
  36. Summons, R.E., Powell, T.G. and Boreham, C.J. (1988) Petroleum geology and geochemistry of the Middle Proteroxoic McArthur Basin, Northern Australia. III. Composition of extractable hydrocarbons. Geochim. Cosmochim. Acta, 52, 1747–63.Google Scholar
  37. Summons, R.E., Taylor, D. and Boreham, C.J. (1994) Geochemical tools for evaluating petroleum generation in Middle Proterozoic sediments of the McArthur Basin, Northern Territory, Australia. Aust. Petrol. Exp. Assoc. J., 34, 692–706.Google Scholar
  38. Wedeking, K.W. and Hayes, J.M. (1983) Carbonisation of Precambrian kerogens, in Advances in Organic Geochemistry 1981 (eds Bjoraøy et al.). Chichester: Wiley Heydon Ltd. pp. 546–53.Google Scholar
  1. Anderson, R.F., Bacon M.P. and Brewer P.G. (1983) Removal of 230Th and 231Pa from the open ocean. Earth Planet. Sci. Lett., 62, 7–23.Google Scholar
  2. Baes, C.F. Jr. and Mesmer, R.E. (1976) The Hydrolysis of Cations. New York: John Wiley & Sons, 489 pp.Google Scholar
  3. Goldstein, S.J., Murrell, M.T. and Williams, R.W. (1993) 231Pa and 230Th Chronology of mid-ocean ridge basalts. Earth Planet. Sci. Lett., 115, 151–9.Google Scholar
  4. Ivanovich, M. and Harmon, R.S. (eds) (1992) Uranium-series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences: Oxford: Clarendon Press, 910 pp.Google Scholar
  5. Ku, T.-L. (1968) Protactinium 231 method of dating coral from Barbados Island. J. Geophys. Res., 73, 2271–6.Google Scholar
  6. Pickett, D.A., Murrell, M.T. and Williams, R.W. (1994) Determination of femtogram quantities of protactinium in geologic samples by thermal ionization mass spectrometry. Anal. Chem., 66, 1044–9.Google Scholar
  7. Sackett, W.M. (1960) Protactinium-231 content of ocean water and sediments. Science, 132, 1761–2.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Elisabeth L. Sikes
  • M. Elaine Kennedy
  • Uwe Brand
  • Ian T. Campbell
  • Joan O. Morrison
  • Christopher J. Capobiano
  • Robert J. Kamilli
  • J. L. Campbell
  • Robert L. Cullers
  • William Shotyk
  • Gregory A. Snyder
  • R. G. Schaefer
  • Bernd R. T. Simoneit
  • Jacques Connan
  • Jean Burrus
  • R. P. Philp
  • R. G. Schaefer
  • D. H. Welte
  • Robert W. Luth
  • Gerald Matisoff
  • W. Crawford Elliott
  • Paul R. Dixon
  • David B. Curtis
  • Wolfgang H. Runde
  • Chris Boreham
  • David W. Mittlefehldt
  • K. A. Foland
  • Brian D. Marshall
  • Scott M. McLennan
  • Grant M. Young
  • R. Michael Easton
  • Roger E. Summons
  • David A. Pickett

There are no affiliations available