Encyclopedia of Geochemistry

1999 Edition
| Editors: Clare P. Marshall, Rhodes W. Fairbridge

O

  • R. Basil Johns
  • Andrew T. Revill
  • Clifford C. Walters
  • Mark J. Rigali
  • Bartholomew Nagy
  • Jean M. Richardson
  • Martin Hale
  • John K. Volkman
  • Stephen A. Macko
  • Michael H. Engel
  • Scott Messenger
  • Stuart G. Wakeham
  • John W. Morgan
  • Charles G. Patterson
  • Steven C. Semken
  • Ethan L. Grossman
Reference work entry
DOI: https://doi.org/10.1007/1-4020-4496-8_14
  • 2.4k Downloads

Occurrence of organic facies

Organic matter occurs in nature in dispersed and more concentrated forms, both liquid and solid as well as hydrocarbon gases and often in economically important quantities as fossil fuels. Conventionally, the term organic facies has described the occurrence of dispersed organic matter in mappable sedimentary units of similar organic richness and organic type reflecting a particular depositional environment. This article uses the term organic facies to encompass the several styles of major occurrences of organic matter in the geosphere.

Kerogen as dispersed organic matter

Kerogen is the term used to describe the occurrence of solid organic matter in dispersed sediments and shales. With the growth in understanding of the chemical formation of kerogens there has been a move from the historically narrower definition of kerogen as organic matter in oil shales to the broader definition of kerogen as organic matter insoluble in organic and aqueous alkaline...

Keywords

Organic Matter Source Rock Fission Product Meteoric Water Isotope Ratio Mass Spectrometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

  1. Irwin, H. and Meyer, T. (1990) Lacustrine organic facies. A biomarker study using multivariate statistical analysis. Org. Geochem., 16, 197–210.Google Scholar
  2. Rafalska-Bloch, J. and Cunningham, R. (1986) Organic facies in Recent sediments of carbonate platforms: Southwest Puerto Rico and Northern Belize. Org. Geochem., 10, 717–24.Google Scholar
  3. Tissot, B.P. and Welte, D.H. (1984) Petroleum Formation and Occurrence, 2nd edn. Berlin: Springer-Verlag.Google Scholar
  4. Tuweni, A.O. and Tyson, R.V. (1994) Organic facies variations in the Westbury Formation (Rhaetic, Bristol Channel, S.W. England). Org. Geochem., 21, 1001–14.Google Scholar
  5. Wiesner, M.G., Haake, B. and Wirth, H. (1990) Organic facies of surface sediments in the North Sea. Org. Geochem., 15, 419–32.Google Scholar
  1. Blumer, M. (1972) Submarine seeps: are they a major source of open ocean pollution? Science, 176, 1257–8.Google Scholar
  2. Connan, J. and Deschesne, O. (1992) Archaeological bitumen: Identification, origins and uses of an ancient near eastern material. Mater. Res. Soc. Symp. Proc., 683–720.Google Scholar
  3. Currie, T.J., Alexander, R. and Kagi, R.I. (1992) Coastal bitumens from western-Australia–long distance transport by ocean currents. Org. Geochem., 18, 595–601.Google Scholar
  4. Harvey, G.R., Requejo, A.G., McGillivary, P.A. and Tokar, J.M. (1979) Observation of a subsurface oil-rich layer in the open ocean. Science, 205, 999–1001.Google Scholar
  5. McKirdy, D.M., Cox, R.E., Volkman, J.K. and Howell, V.J. (1986) Botryococcane in a new class of Australian non-marine crude oils. Nature, 320, 57–9.Google Scholar
  6. NRC (1985) Oil in the Sea, Inputs, Fates and Effects. Washington, DC: National Academy Press.Google Scholar
  7. Reed, W.E. and Kaplan, I.R. (1977) The chemistry of marine petroleum seeps. J. Geochem. Expl., 7, 255–93.Google Scholar
  8. Wilson, R.D., Monaghan, P.H., Osanik, A., Price, L.C. and Rogers, M.A. (1974) Natural marine oil seepage. Science, 184, 857–65.Google Scholar
  1. Australian Institute of Petroleum (1992) Oil Industry Statistics 1992. Melbourne: Australian Institute of Petroleum.Google Scholar
  2. Revill, A.T., Volkman, J.K., O'Leary, T. et al. (1994) Hydrocarbon biomarkers, thermal maturity, and depositional setting of tasmanite oil shales from Tasmania, Australia. Geochim. Cosmochim. Acta, 58, 3803–22.Google Scholar
  3. Rullkötter, J. (1987) Geochemistry, organic, Encyclopedia Phys. Sci. Technol., 6, 53–77.Google Scholar
  4. Russell, P.L. (1990) Oil Shales of the World, Their Origin, Occurrence and Exploitation. Oxford: Pergamon Press, 753 pp.Google Scholar

Cross-references

  1.  Biopolymers and macromolecules;  Black shales and sapropels;  Chromium;  Clay minerals–ion exchange;  Cobalt;  Copper;  Geochemistry of sediments;  Hydrocarbons;  Laboratory simulations of oil and natural gas formation;  Nickel; Oil seeps and coastal bitumens; Oil–oil and oil–source rock correlation; Occurrence of organic facies; Organic geochemistry;  Sulfur;  Uranium;  Vanadium;  Weathering: chemical
  1. Bjoraøy, M., Hall, P.B. and Moe, R.P. (1993) Stable carbon isotope variations in n-alkanes in Central Graben oils. Org. Geochem., 22, 355–81.Google Scholar
  2. Curiale, J.A. (1993) Oil to source rock correlation: concepts and case studies, in Organic Geochemistry (eds M.H. Engel and S.A. Macko). New York: Plenum Press, pp. 473–90.Google Scholar
  3. Curiale, J.A. (1994) Correlation of oils and source rocks–a conceptual and historical perspective. Am. Assoc. Petrol. Geol. Mem., 60, 251–60.Google Scholar
  4. Hunt, J.M., Stewart, F. and Dickey, P.A. (1954) Origin of hydrocarbons in Uinta Basin, Utah. Am. Assoc. Petrol. Geol. Bull., 38, 1671–98.Google Scholar
  5. Dow, W.G. (1974) Application of oil-correlation and source-rock data to exploration in the Williston Basin. Am. Assoc. Petrol. Geol. Bull., 58, 1253–62.Google Scholar
  6. Magoon, L.B. and Claypool, G.E. (1985) Alaska north slope oil/rock correlation study. Studies Geol., 20, 682 pp.Google Scholar
  7. Moldowan, J.M., Seifert, W.K. and Gallegos, E.J. (1985) The relationship between petroleum composition and the environment of deposition of petroleum source rocks. Am. Assoc. Petrol. Geol. Bull., 69, 1255–68.Google Scholar
  8. Peters, K.E. and Moldowan, J.M. (1993) The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Englewood Cliffs, NJ: Prentice Hall, 363 pp.Google Scholar
  9. Seifert, W.K. (1977) Source rock–oil correlations by C27–C30 biomarker hydrocarbon distributions, in Advances in Organic Geochemistry (eds R. Campos and J. Goni). Madrid: ENADIMASA, pp. 21–44.Google Scholar
  10. Williams, J.A. (1974) Characterization of oil types in Williston Basin. Am. Assoc. Petrol. Geol. Bull., 58, 1243–52.Google Scholar
  1. Cowan, G.A. (1976) A natural fission reactor. Sci. Am., 235, 36–47.Google Scholar
  2. Curtis, D., Benjamin, T., Gancarz, A., Loss, R., Rosman, K. and DeLaeter, J. (1989) Fission product retention in the Oklo natural fission reactors. Appl. Geochem., 4, 49–62.Google Scholar
  3. Gauthier-Lafaye, F. and Weber, F. (1989) The Francevillian (Lower Proterozoic) uranium ore deposits of Gabon. Econ. Geol., 84, 2267–85.Google Scholar
  4. Gauthier-Lafaye, F., Weber, F. and Ohmoto, H. (1989) Natural fission reactors of Oklo. Econ. Geol., 84, 2286–95.Google Scholar
  5. Hidaka, H., Sugiyama, T., Ebihara, M. and Holliger, P. (1994) Isotopic evidence for the retention of 90Sr from excess Zr in the Oklo natural fission reactors: Implication for geochemical behavior of fissiogenic Rb, Sr, Cs and Ba. Earth Planet. Sci. Lett., 122, 173–82.Google Scholar
  6. Holliger, P. (1992) Geochemical and isotopic characterization of the reaction zones (uranium, transuranium, lead and fission products). Proc. Joint Commission European Communities–Commissariat à l' Energie Atomique, 2nd Meeting, Brussels, Belgium, EUR, pp. 27–38.Google Scholar
  7. Holliger, P. and Devillers, C. (1981) Contribution à l'étude de la température dans les réacteurs fossiles dOklo par la mésure du rapport isotopique du lutétium. Earth Planet. Sci. Lett., 52, 76–84.Google Scholar
  8. Janeczek, J. and Ewing, R. (1995) Mechanisms of lead release in the natural fission reactors in Gabon. Geochim. Cosmochim. Acta, 59, 1917–31.Google Scholar
  9. Nagy, B. and Rigali, M.J. (1993) Newly discovered, organic matter-rich natural fission reactors at Oklo and Bangombé: are they useful analogs for long-term anthropogenic nuclear waste containment? Waste Management ‘93 Conference Proceedings, pp. 897–900.Google Scholar
  10. Nagy, B., Gauthier-Lafaye, F., Holliger, P., Mossman, D.J., Leventhal, J.S. and Rigali, M.J. (1993) Role of organic matter in the Proterozoic Oklo natural fission reactors, Gabon, Africa. Geology, 21, 655–8.Google Scholar
  11. Naudet, R. (1991) Oklo: Des Réacteurs Nucléaires. Paris: Commissariat à l'Energie Atomique, 695 pp.Google Scholar
  1. Goldschmidt, V.M. (1937) The principle of distribution of chemical elements in minerals and rocks. J. Chem. Soc., 655–72.Google Scholar
  2. Jensen, B.B. (1973) Patterns of trace element partitioning. Geochim. Cosmochim. Acta, 37, 2227–42.Google Scholar
  3. Matsui, Y., Onuma, N., Nagasawa, H., Higuchi, H. and Banno, S. (1977) Crystal structure control in trace element partitioning among crystals and magmas. Bull. Soc. Fr. Mineral. Crystallogr., 100, 315–24.Google Scholar
  4. Onuma, N., Higuchi, H., Wakita, H. and Nagasawa, H. (1968) Trace element partitioning between two pyroxenes and the host lava. Earth Planet. Sci. Lett., 5, 47–51.Google Scholar
  1. Adams, S.S. (1991) Evolution of genetic concepts for principal types of sandstone uranium deposits in the United States. Econ. Geol. Monogr., 8, 225–48.Google Scholar
  2. Bardossy, G. and Aleva, G.J.J. (1990) Lateritic Bauxites. Amsterdam: Elsevier, 624 pp.Google Scholar
  3. Barnes, H.L. (1979) Geochemistry of Hydrothermal Ore Deposits, 2nd edn. New York: Wiley, 798 pp.Google Scholar
  4. Brookins, D.G. (1988) Eh–pH Diagrams for Geochemistry. Berlin: Springer-Verlag, 176 pp.Google Scholar
  5. Force, E.R. and Cannon, F.W. (1988) Depositional models for shallow-marine manganese deposits around basins. Econ. Geol., 83, 93–117.Google Scholar
  6. Golightly, J.P. (1981) Nickeliferous laterite deposits. Econ. Geol., 75th Anniversary Volume, 710–35.Google Scholar
  7. Hawley, J.E. (1962) The Sudbury ores, their mineralogy and origin. Can. Mineral., 7, 1–207.Google Scholar
  8. Morris, R.C. (1985) Genesis of iron ore in banded iron formation by supergene and supergene metamorphic processes–a conceptual model, in Handbook of Stratabound and Stratiform Ore Deposits (ed. K.H. Wolf). Amsterdam: Elsevier, Vol. 12, Ch. 12.Google Scholar
  9. Pirajno, F. (1992) Hydrothermal Mineral Deposits. Berlin: Springer-Verlag, 709 pp.Google Scholar
  10. Sheppard, S.M.F. (1986) Characterization and isotopic variations in natural waters. Rev. Mineral., 16, 165–83.Google Scholar
  11. Whitney, J.A. and Naldrett, A.J. (eds) (1989) Ore Deposition Associated with Magmas. Rev. Econ. Geol., 4. El Paso: Society of Economic Geologists, 250 pp.Google Scholar
  1. Brooks, J. and Fleet, A.J. (eds) (1987) Marine Petroleum Source Rocks. London: Blackwell Scientific, 435 pp.Google Scholar
  2. Clemett, S.J., Maechling, C.R., Zare, R.N., Swan, P.D. and Walker, R.M. (1993) Identification of complex aromatic molecules in individual interplanetary dust particles. Science, 262, 721–5.Google Scholar
  3. Engel, M.H. and Macko S.A. (eds) (1993) Organic Geochemistry: Principles and Applications. New York: Plenum Press, 861 pp.Google Scholar
  4. Fleet, A.J., Kelts, K. and Talbot, M.R. (eds) (1988) Lacustrine Petroleum Source Rocks. Oxford: Blackwell, 391 pp.Google Scholar
  5. Hunt, J.M. (1979) Petroleum Geochemistry and Geology. San Francisco: W.H. Freeman, 617 pp.Google Scholar
  6. Jasper, J.P., Hayes, J.M., Mix, A.C. and Prahl, F.G. (1994) Photosynthetic fractionation of 13C and concentrations of dissolved CO2 in the central Equatorial Pacific during the last 255,000 years. Paleoceanography, 9, 781–98.Google Scholar
  7. Johns, R.B. (ed.) (1986) Biological Markers in the Sedimentary Record. Amsterdam: Elsevier, 364 pp.Google Scholar
  8. Killops, S.D. and Killiops, V.J. (1993) An Introduction to Organic Geochemistry. London: Longman Scientific and Technical, 265 pp.Google Scholar
  9. Manning, D.A.C. (1991) Organic Geochemistry. Advances and Applications in the Natural Environment. Manchester: Manchester University Press, 662 pp.Google Scholar
  10. McKay, D.S., Gibson, E.K. Jr., Thomas-Keprta, K.L. et al. (1996) Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science, 273, 924–30.Google Scholar
  11. Meyers, P.A. and Ishiwatari, R. (1993) Lacustrine organic geochemistry–an overview of indicators of organic matter sources and diagenesis in lake sediments. Org. Geochem., 20, 867–900.Google Scholar
  12. Moldowan, J.M., Albrecht, P. and Philp, R.P. (eds) (1992) Biological Markers in Sediments and Petroleum. New Jersey: Prentice Hall, 411 pp.Google Scholar
  13. Orr, W.L. and White, C.M. (eds) (1990) Geochemistry of Sulfur in Fossil Fuels. Washington, DC: American Chemical Society Symposium Series 429.Google Scholar
  14. Peters, K.E. and Moldowan, J.M. (1993) The Biomarker Guide. Interpreting Molecular Fossils in Petroleum and Ancient Sediments. New Jersey: Prentice Hall, 363 pp.Google Scholar
  15. Repeta, D.J. (1989) Carotenoid diagenesis in recent marine sediments: III. Degradation of fucoxanthin to loliolide. Geochim. Cosmochim. Acta, 53, 699–707.Google Scholar
  16. Rullkötter, J. (1987) Geochemistry, organic, in Encyclopedia of Physical Science and Technology, Vol. 6. London: Academic Press, pp. 53–77.Google Scholar
  17. Shock, E.L. and Schulte, M.D. (1990) Summary and implications of reported amino acid concentrations in the Murchison meteorite. Geochim. Cosmochim. Acta, 54, 3159–73.Google Scholar
  18. Tissot, B.P. and Welte, D.H. (1984) Petroleum Formation and Occurrence. Berlin: Springer-Verlag, 699 pp.Google Scholar
  19. Volkman, J.K. (1988) Biological marker compounds as indicators of the depositional environments of petroleum source rocks. Geol. Soc. Spec. Publ., 40, 103–22.Google Scholar
  20. Wakeham, S.G. (1993) Reconstructing past oceanic temperatures from marine organic biogeochemistry, chemical fossils and molecular stratigraphy. Environ. Sci. Technol., 27, 29–33.Google Scholar

Cross-references

  1.  Biomarker: coals;  Coal: organic petrography;  Coal: origin and diagenesis;  Coal: types and characteristics;  Coal: vitrinite reflectance and maturity assessment;  Geochemistry: low temperature;  Hydrogen isotopes;  Laboratory simulations of oil and natural gas formation; Occurrence of organic facies; Oil seeps and coastal bitumens; Oil shales; Oil–oil and oil–source rock correlation; Organic matter in fossils; Organic matter in meteorites; Organics: contemporary degradation and preservation; Organics: sources and depositional environments;  Peat;  Petroleum;  Petroleum: hydrothermal;  Petroleum: in-reservoir biodegradation;  Petroleum: kinetic modeling;  Petroleum: primary migration;  Petroleum: surface geochemistry;  Petroleum: types, occurrence and reserves;  Porphyrins;  Precambrian organic matter;  Sulfate reduction;  Sulfur isotopes
  1. Abelson, P.H. (1954) Organic constituents of fossils. Carnegie Inst. Washington Yearbook, 53, 97–101.Google Scholar
  2. Ambler, R.P. and Daniel, M. (1991) Protein and molecular palaeontology. Phil. Soc. Trans. R. Soc. Lond. B, 333, 381–9.Google Scholar
  3. Bada, J.L., Wang, X.S., Poinar, H.N., Paabo, S. and Poinar, G.O. (1994) Amino acid racemization in amber-entombed insects: Implications for DNA preservation. Geochim. Cosmochim. Acta, 58, 3131–5.Google Scholar
  4. Engel, M.H. and Macko, S.A. (1986) Application of stable isotopes for evaluating the origins of amino acids in fossils. Nature, 323, 531–3.Google Scholar
  5. Engel, M.H., Goodfriend, G.A., Qian, Y. and Macko, S.A. (1994) Indigeneity of organic matter in fossils: A test using stable isotope analysis of amino acid enantiomers in Quaternary mollusk shells. Proc. Natl Acad., 91, 10475–8.Google Scholar
  6. Golenberg, E.M. (1991) Amplification and analysis of Miocene plant fossil DNA. Phil. Soc. Trans. R. Soc. Lond. B, 333, 419–27.Google Scholar
  7. Hagelberg, E., Bell, L.S., Allen, T., Boyde, A., Jones, S.J. and Clegg, J.B. (1991) Analysis of ancient bone DNA: techniques and applications. Phil. Soc. Trans. R. Soc. Lond. B, 333, 399–407.Google Scholar
  8. Harrigan-Ostrom, P., Macko, S.A., Engel, M.H., Silfer, J.A. and Russell, D. (1990) Geochemical characterization of high molecular weight material isolated from Late Cretaceous fossils. Org. Geochem., 16, 1139–44.Google Scholar
  9. Lowenstein, J.M. (1991) Immunospecificity of fossil proteins: implications for the establishment of evolutionary trends, in Organic Geochemistry (eds M.H. Engel and S.A. Macko). New York: Plenum, pp. 816–30.Google Scholar
  10. Macko, S.A. (1994) Compound specific approaches using stable isotopes, in Stable Isotopes in Ecology (eds K. Lajtha and R. Michener). Oxford: Blackwell Scientific, pp. 241–7.Google Scholar
  11. Macko, S.A. and Engel, M.H. (1991) Assessment of indigeneity in fossil organic matter: amino acids and stable isotopes. Phil. Soc. Trans. R. Soc. Lond. B, 333, 367–74.Google Scholar
  12. Mitterer, R.M. (1993) The diagenesis of amino acids and proteins in fossil shells, in Organic Geochemistry (eds M.H. Engel and S.A. Macko). New York: Plenum, pp. 739–54.Google Scholar
  13. Muyzer, G., Sandberg, P., Knapen, M.H.J., Vermeer, C., Collins, M. and Westbroek, P. (1992) Preservation of the bone protein osteocalcin in dinosaurs. Geology, 20, 871–4.Google Scholar
  14. Ostrom, P.H., Macko, S.A., Engel, M.H. and Russell, D. (1993) An assessment of trophic structure in fossil communities based on stable isotopes. Geology, 21, 491–4.Google Scholar
  15. Paabo, S. and Wilson, A.C. (1991) Miocene DNA sequences–a dream come true? Curr. Biol., 1, 45–6.Google Scholar
  16. Paabo, S., Irwin, D.M. and Wilson, A.C. (1990) DNA damage promotes jumping between templates during enzymatic amplification. J. Biol. Chem., 265, 4718–21.Google Scholar
  17. Poinar, G.O., Poinar, H.N. and Cano, R.J. (1994) DNA from amber inclusions, in Ancient DNA (eds B. Herrmann and S. Hummel). New York: Springer-Verlag, pp. 92–103.Google Scholar
  18. Poinar, H.N., Poinar, G.O. and Cano, R.J. (1993) Oldest DNA from plants. Nature, 363, 677.Google Scholar
  19. Robbins, L.L. and Ostrom, P.H. (1995) Molecular isotopic and biochemical evidence of the origin and diagenesis of shell organic material. Geology, 23, 345–8.Google Scholar
  20. Robbins, L.L., Muyzer, G. and Brew, K. (1991) Macromolecules from living and fossil biominerals: Implications for the establishment of molecular phylogenies, in Organic Geochemistry (eds M.H. Engel and S.A. Macko). New York: Plenum, pp. 799–816.Google Scholar
  21. Serban, A., Engel, M.H. and Macko, S.A. (1989) The distribution, stereochemistry and stable isotopic composition of amino acid constituents of fossil and modern mollusk shells. Org. Geochem., 13, 1123–9.Google Scholar
  22. Sidow, A., Wilson, A.C. and Paabo, S. (1991) Bacterial DNA in Clarkia fossils. Phil. Soc. Trans. R. Soc. Lond. B, 333, 429–33.Google Scholar
  23. Wehmiller, J.F. (1993) Applications of organic geochemistry for quaternary research: aminostratigraphy and aminochronology, in Organic Geochemistry (eds M.H. Engel and S.A. Macko). New York: Plenum, pp. 755–84.Google Scholar
  24. Weiner, S. and Lowenstam, H.A. (1980) Well preserved fossil mollusk shells: characterization of mild diagenetic processes, in Biogeochemistry of Amino Acids (eds P.E. Hare et al.). New York: John Wiley, pp. 95–114.Google Scholar
  25. Weiner, S., Lowenstam, H.A., Taborek, B. and Hood, L. (1979) Fossil mollusc shell organic matrix components preserved for 80 million years. Paleobiology, 5, 144–50.Google Scholar

Cross-references

  1.  Biogeochemistry;  Biomarker: higher plant;  Coal: organic petrography;  Coal: origin and diagenesis; Organic geochemistry; Organics: contemporary degradation and preservation; Organics: sources and depositional environments;  Peat;  Precambrian organic matter
  1. Cronin, J.R., Pizzarello, S. and Cruikshank, D.P. (1988) Organic matter in carbonaceous chondrites, planetary satellites, asteroids and comets, in Meteorites and the Early Solar System (eds J.F. Kerridge and M.S. Matthews). Tucson: University of Arizona Press, pp. 819–57.Google Scholar
  2. Cronin, J.R., Pizzarello, S., Epstein, S. and Krishnamurthy, R.V. (1993) Molecular and isotopic analyses of the hydroxy acids, dicarboxylic acids, and hydroxydicarboxylic acids of the Murchison meteorite. Geochim. Cosmochim. Acta, 57, 4745–52.Google Scholar
  3. Kerridge, J.F., Chang, S. and Shipp, R. (1987) Isotopic characterization of kerogen-like material in the Murchison carbonaceous chondrite. Geochim. Cosmochim. Acta, 51, 2527–40.Google Scholar
  4. Krishnamurthy, R.V., Epstein, S., Cronin, J.R., Pizzarello, S. and Yuen, G.U. (1992) Isotopic and molecular analyses of hydrocarbons and monocarboxylic acids of the Murchison meteorite. Geochim. Cosmochim. Acta, 56, 4045–8.Google Scholar
  5. Pizzarello, S., Krishnamurthy, R.V., Epstein, S. and Cronin, J.R. (1991) Isotopic analyses of amino acids from the Murchison meteorite. Geochim. Cosmochim. Acta, 55, 905–10.Google Scholar
  6. Zinner, E.K. (1988) Interstellar cloud material in meteorites, in Meteorites and the Early Solar System (eds J.F. Kerridge and M.S. Matthews). Tucson: University of Arizona Press, pp. 956–83.Google Scholar

Cross-references

  1.  Biopolymers and macromolecules;  Meteorites; Organic geochemistry; Organic matter in fossils;  Precambrian organic matter
  1. Berner, R.A. (1989) Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time. Paleogeogr., Paleoclimatol, Paleoecol. (Global Planet. Change Sect.), 75, 97–122.Google Scholar
  2. Deming, J.W. and Baross, J.A. (1993) The early diagenesis of organic matter: bacterial activity, in Organic Geochemistry (eds M.H. Engel and S.A. Macko). New York: Plenum Press, pp. 119–45.Google Scholar
  3. Hedges, J.I. and Prahl, F.G. (1993) Early diagenesis: consequences for applications of molecular biomarkers, in Organic Geochemistry (eds M.H. Engel and S.A. Macko). New York: Plenum Press, pp. 237–53.Google Scholar
  4. Henrichs, S.M. (1993) Early diagenesis of organic matter: the dynamics (rates) of cycling of organic compounds, in Organic Geochemistry (eds M.H. Engel and S.A. Macko). New York: Plenum Press, pp. 101–17.Google Scholar
  5. Lee, C., (1992) Controls on organic carbon preservation: the use of stratified water bodies to compare intrinsic rates of decomposition in oxic and anoxic systems. Geochim. Cosmochim. Acta, 56, 3323–35.Google Scholar
  6. Mayer, L.M. (1994) Surface area control of organic carbon accumulation in continental shelf sediments. Geochim. Cosmochim. Acta, 58, 1271–4.Google Scholar
  7. Tegelaar, E.W., Derenne, S., Largeau, C. and de Leeuw, J.W. (1989) A reappraisal of kerogen formation. Geochim. Cosmochim. Acta, 53, 3103–7.Google Scholar
  8. Wakeham, S.G. and Lee, C. (1993) Production, transport, and alteration of particulate organic matter in the marine water column, in Organic Geochemistry (eds M.H. Engel and S.A. Macko). New York: Plenum Press, pp. 145–69.Google Scholar
  9. Westrich, J.T. and Berner, R.A. (1984) The role of sedimentary organic matter in bacterial sulfate reduction: the G model tested, Limnol. Oceanogr., 29, 236–49.Google Scholar

Cross-references

  1.  Biopolymers and macromolecules;  Earth's atmosphere;  Geochemistry of sediments; Organic geochemistry; Organic matter in fossils; Organics: sources and depositional environments;  Paleoenvironments;  Precambrian atmosphere;  Sedimentary fluids
  1. Calvert, S.E. and Pedersen, T.F. (1992) Organic carbon accumulation and preservation in marine sediments: How important is anoxia? In Organic Matter: Productivity, Accumulation, and Preservation in Recent and Ancient Sediments (eds J. Whelan and J.W. Farrington). New York: Columbia University Press, pp. 231–63.Google Scholar
  2. de Leeuw, J.W. and Largeau, C. (1993) A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal, and petroleum formation, in Organic Geochemistry (eds M.H. Engel and S.A. Macko). New York: Plenum Press, pp. 23–72.Google Scholar
  3. Henrichs, S.M. (1993) Early diagenesis of organic matter: the dynamics (rates) of cycling of organic compounds, in Organic Geochemistry (eds M.H. Engel and S.A. Macko). New York: Plenum Press, pp. 101–17.Google Scholar
  4. Lee, C. and Wakeham, S.G. (1988) Organic matter in seawater: Biogeochemical processes, in Chemical Oceanography, Vol. 9 (ed. J.P. Riley). New York: Academic Press, pp. 1–57.Google Scholar
  5. Meyers, P.A. and Ishiwatari, R. (1993) The early diagenesis of organic matter in lacustrine sediments, in Organic Geochemistry (eds M.H. Engel and S.A. Macko). New York: Plenum Press, pp. 185–209.Google Scholar
  6. Repeta, D.J. and Frew, N.M. (1988) Carotenoid dehydrates in recent marine sediments. The structure and synthesis of fucoxanthin dehydrate. Org. Geochem., 12, 469–77.Google Scholar
  7. Tissot, B.P. and Welte, D.H. (1984) Petroleum Formation and Occurrence. Berlin: Springer-Verlag, 699 pp.Google Scholar
  8. Wakeham, S.G. and Lee, C. (1993) Production, transport, and alteration of particulate organic matter in the marine water column, in Organic Geochemistry (eds M.H. Engel and S.A. Macko). New York: Plenum Press, pp. 145–69.Google Scholar

Cross-references

  1.  Biomarker: aliphatic;  Biomarker: aromatic;  Biomarker: assessment of thermal maturity;  Biomarker: lipid;  Biopolymers and macromolecules; oil–oil and Oil–source correlation; Organic geochemistry; Organic matter in fossils; Organics: contemporary degradation and preservation;  Paleoenvironments;  Precambrian organic matter;  Sedimentary fluids
  1. Esser, B.K. and Turekian, K.K. (1993) The osmium isotopic composition of the continental crust. Geochim. Cosmochim. Acta, 57, 3093–104.Google Scholar
  2. Horan, M.F., Morgan, J.W., Grauch, R.I., Coveney, R.M., Murowchick, J.B. and Hulbert, L.J. (1994) Rhenium and osmium isotopes in black shales and Ni–Mo–PGE-rich sulfide layers, Yukon territory, Canada, and Hunan and Guizhou provinces, China. Geochim. Cosmochim. Acta, 58, 257–65.Google Scholar
  3. Morgan, J.W. (1986) Ultramafic xenoliths: clues to the Earth's late accretionary history. J. Geophys. Res., 91, 12375–87.Google Scholar
  4. Pernicka, E. and Wasson, J.T. (1987) Ru, Re, Os, Pt and Au In iron meteorites. Geochim. Cosmochim. Acta, 51, 1717–26.Google Scholar
  5. Walker, R.J., Morgan, J.W., Horan, M.F. et al. (1994). Re–Os isotopic evidence for an enriched-mantle source for the Noril'sk-type, ore-bearing intrusions, Siberia. Geochim. Cosmochim. Acta, 58, 4179–97.Google Scholar
  1. Bard, A.J., Parsons, R. and Jordan, J. (1985) Standard Potentials in Aqueous Solution. New York: Marcel Dekker, 834 pp.Google Scholar
  2. Butler, J.N. (1964) Ionic Equilibrium, A Mathematical Approach. New York: Addison Wesley, 547 pp.Google Scholar
  3. Chemical Rubber Corporation (1995) Handbook of Chemistry and Physics. Palo Alto: CRC Press.Google Scholar
  4. Drever, J.I. (1988) The Geochemistry of Natural Waters, 2nd edn. Englewood Cliffs, NJ: Prentice-Hall, 437 pp.Google Scholar
  5. Eary, L.E. and Schramke, J.A. (1990) Rates of inorganic oxidation reactions involving dissolved oxygen, in Chemical Modeling of Aqueous Systems II (eds. D.C. Melchior and R.L. Bassett). Am. Chem. Soc. Symposium Series, 416, pp. 379–96.Google Scholar
  6. Garrells, R.M. and Christ, C.L. (1965) Solutions, Minerals, and Equilibria. San Francisco: Harper, 450 pp.Google Scholar
  7. Hostetler, J.D. (1984) Electrode electrons, aqueous electrons, and redox potentials in natural waters. Am. J. Sci., 284, 734–59.Google Scholar
  8. Langmuir, D. (1972) Eh–pH determinations, in Proceedings in Sedimentary Petrology (ed. R.E. Carver). New York: Wiley Interscience, pp. 597–635.Google Scholar
  9. Lindberg, R.E. and Runnells, D.D. (1984) Ground water redox reactions: an analysis of equilibrium state applied to Eh measurements and geochemical modelling. Science, 225, 925–7.Google Scholar
  10. McKnight, D.M., Kimball, B.A. and Bencala, K.E. (1988) Iron photo-reduction and oxidation in an acidic mountain stream. Science, 40, 637–40.Google Scholar
  11. Morel, F.M.M. and Hering, J.G. (1993) Principles and Applications of Aquatic Chemistry. New York: John Wiley & Sons, 588 pp.Google Scholar
  12. Patterson, C.G. (1996) The Electrochemistry of Ground Water: Redox Gases and Electromigration, unpublished Ph.D. Dissertation, Univ. of Colorado, 201 pp.Google Scholar
  13. Stumm, W. and Morgan, J.J. (1981) Aquatic Chemistry, 2nd Edn. Wiley Interscience, 780 pp.Google Scholar
  1. Brady, J.B. (1995) Diffusion data for silicate minerals, glasses, and liquids, in Mineral Physics and Crystallography: A Handbook of Physical Constants, American Geophysical Union Reference Shelf 2 (ed. T.J. Ahrens). Washington, DC: American Geophysical Union, pp. 269–90.Google Scholar
  2. Brown, T.L., LeMay, H.E. Jr. and Bursten, B.E. (1997) Chemistry, the Central Science, 7th edn. Upper Saddle River, NJ: Prentice Hall, 1050 pp.Google Scholar
  3. Ebbing, D.D. (1996) General Chemistry, 5th edn. Boston: Houghton Mifflin Company, 1120 pp.Google Scholar
  4. Emiliani, C. (1992) Planet Earth: Cosmology, Geology, and the Evolution of Life and Environment. New York: Cambridge University Press, 719 pp.Google Scholar
  5. Friedlander, G., Kennedy, J.W. and Miller, J.M. (1964) Nuclear and Radiochemistry, 2nd edn. New York: John Wiley & Sons, 585 pp.Google Scholar
  6. Holland, H.D. (1978) The Chemistry of the Atmosphere and Oceans. New York: John Wiley and Sons, 352 pp.Google Scholar
  7. Klein, C. and Hurlbut, C.S. Jr. (1985) Manual of Mineralogy, after J.D. Dana, 20th edn. New York: John Wiley and Sons, 596 pp.Google Scholar
  8. Lewis, J.S. (1995) Physics and Chemistry of the Solar System. San Diego: Academic Press, 556 pp.Google Scholar
  9. Muehlenbachs, K. and Connolly, C. (1991) Oxygen diffusion in leucite: structural controls, in Stable Isotope Geochemistry: A Tribute to Samuel Epstein (eds H.P. Taylor, Jr., J.R. O'Neill and I.R. Kaplan). Washington, DC: The Geochemical Society, pp. 27–34.Google Scholar
  10. Newsom, H.E. (1995) Composition of the Solar System, planets, meteorites, and major terrestrial reservoirs, in Global Earth Physics: A Handbook of Physical Constants, American Geophysical Union Reference Shelf 1 (ed. T.J. Ahrens). Washington, DC: American Geophysical Union, pp. 159–89.Google Scholar
  11. Okuchi, T. (1997) Hydrogen partitioning into molten iron at high pressure: implications for Earth's core. Science, 278, 1781–3.Google Scholar
  12. Schlesinger, W.H. (1991) Biogeochemistry: an Analysis of Global Change. San Diego: Academic Press, 443 pp.Google Scholar
  13. Shannon, R.D. and Prewitt, C.T. (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr., 925–46.Google Scholar
  14. Stumm, W. and Morgan, J.J. (1996) Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd edn. New York: John Wiley and Sons, 1022 pp.Google Scholar
  15. Walker, J.C.G. (1980) The oxygen cycle, in Handbook of Environmental Chemistry, Volume 1, Part A, The Natural Environment and the Biogeochemical Cycles (ed. O. Huntzinger). New York: Springer-Verlag, pp. 87–104.Google Scholar
  16. Wood, B.J. (1997) Hydrogen: an important constituent of the core? Science, 278, 1727.Google Scholar
  17. Wuensch, B.J., Semken, S.C., Uchikoba, F. and Yoo, H.I. (1991) The mechanisms for self-diffusion in magnesium oxide. Ceramic Trans., 24, 79–89.Google Scholar
  1. Anderson, T.F. and Arthur, M.A. (1983) Stable isotopes of carbon and oxygen and their application to sedimentologic and paleoenvironmental studies, in Stable Isotopes in Sedimentary Geology (eds M.A. Arthur et al.). SEPM Short Course 10:1-1–1-151, Tulsa, SEPM.Google Scholar
  2. Clayton, R.N. (1993) Oxygen isotopes in meteorites. Annu. Rev. Earth Planet. Sci., 21, 115–49.Google Scholar
  3. Clayton, R.N. and Humayun, M. (1994) Stable isotope evidence for Earth's raw materials. Mineral. Mag., 58a, 177–8.Google Scholar
  4. Clayton, R.N., Friedman, I., Graf, D.L., Mayeda, T.K., Meents, W.F. and Shimp, N.F. (1966) The origin of saline formation waters, I. Isotopic composition. J. Geophys. Res., 71, 3869–82.Google Scholar
  5. Craig, H. (1961) Isotopic variations in meteoric waters. Science, 133, 1702–3.Google Scholar
  6. Criss, R.E. and Taylor, H.P. Jr. (1986) Meteoric–hydrothermal systems. Rev. Mineral., 16, 373–424.Google Scholar
  7. Dansgaard, W. (1964) Stable isotopes in precipitation. Tellus, 16, 436–68.Google Scholar
  8. Dansgaard, W., Johnsen, S.J., Moller, J. and Langway, C.C. Jr. (1969) One thousand centuries of climatic record from Camp Century on the Greenland Ice Sheet. Science, 166, 377–81.Google Scholar
  9. Dickson, J.A.D. and Coleman, M.L. (1980) Changes in carbon and oxygen isotope composition during limestone diagenesis. Sedimentology, 27, 107–18.Google Scholar
  10. Eicher, U., Siegenthaler, U. and Wegmüller, S. (1981) Pollen and oxygen isotope analyses of late-post-glacial sediments of the Toubiére de Chirens (Dauphiné, France). Quaternary Res., 15, 160–70.Google Scholar
  11. Emiliani, C. (1955) Pleistocene temperatures. J. Geol., 63, 538–78.Google Scholar
  12. Epstein, S., Buchsbaum, R., Lowenstam, H. and Urey, H.C. (1953) Revised carbonate–water isotopic temperature scale. Geol. Soc. Am. Bull., 64, 1315–26.Google Scholar
  13. Friedman, I. and O'Neil, J.R. (1977) Data of geochemistry, in Compilation of Stable Isotope Fractionation Factors of Geochemical Interest, 6th edn. US Geological Survey Professional, Paper 440-KK. Washington, DC: US Government Printing Office, pp. KK1–KK12.Google Scholar
  14. Garlick, G.D. (1966) Oxygen isotope fractionation in igneous rocks. Earth Planet. Sci. Lett., 1, 361–8.Google Scholar
  15. Garlick, G.D. (1972) Oxygen isotope geochemistry, in The Encyclopedia of Geochemistry and Environmental Sciences (ed. R.W. Fairbridge). New York: Van Nostrand Reinhold, pp. 864–74.Google Scholar
  16. Gat, J.R. and Gonfiantini, R. (1981) Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle. Technical Report Series No. 210, Vienna: International Atomic Energy Agency, 337 pp.Google Scholar
  17. Giletti, B.J. and Shimizu, N. (1989) Use of the ion microprobe to measure natural abundances of oxygen isotopes in minerals. US Geol. Surv. Bull., 1890, 129–36.Google Scholar
  18. Gregory, R.T. (1991) Oxygen isotope history of seawater revisited: timescales for boundary event changes in the oxygen isotope composition of seawater. Geochem. Soc. Special Publ., 3, 65–76.Google Scholar
  19. Gregory, R.T. and Taylor, H.P. (1981) An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail ophiolite, Oman: Evidence for δ18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges. J. Geophys. Res., 86, 2737–55.Google Scholar
  20. Grossman, E.L. (1994) The carbon and oxygen isotope record during the evolution of Pangea: Carboniferous to Triassic. Geol. Soc. Am. Special Paper, 288, 207–28.Google Scholar
  21. Hays, J.D., Imbrie, J. and Shackleton, N.J. (1976) Variations in the Earth's orbit: Pacemaker of the Ice Ages. Science, 194, 1121–32.Google Scholar
  22. Hays, P.D. and Grossman, E.L. (1991) Oxygen isotopes in meteoric calcite cements as indicators of continental climate. Geology, 19, 441–4.Google Scholar
  23. Hoefs, J. (1987) Stable Isotope Geochemistry, 3rd edn. Berlin: Springer-Verlag, 241 pp.Google Scholar
  24. Hudson, J.D. and Anderson, T.F. (1989) Ocean temperatures and isotopic compositions through time. Trans. R. Soc. Edinburgh: Earth Sci., 80, 183–92.Google Scholar
  25. Lohmann, K.C. and Walker, J.C.G. (1989) The δ18O record of Phanerozoic abiotic marine calcite cements. Geophys. Res. Lett., 16, 319–22.Google Scholar
  26. Magaritz, M., Whitford, D.J. and James, D.E. (1978) Oxygen isotopes and the origin of high−87Sr/86SR andesites. Earth Planet. Sci. Lett., 40, 220–30.Google Scholar
  27. Matsuhisa, Y., Goldsmith, J.R. and Clayton, R.N. (1979) Oxygen isotopic fractionation in the system quartz–albite–anorthite–water. Geochim. Cosmochim. Acta, 43, 1131–40.Google Scholar
  28. Miller, K.G., Fairbanks, R.G. and Mountain, G.S. (1987) Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography, 2, 1–19.Google Scholar
  29. Muehlenbachs, K. and Clayton, R.N. (1976) Oxygen isotope composition of the oceanic crust and its bearing on seawater. J. Geophys. Res., 81, 4365–69.Google Scholar
  30. Nier, A.O. (1940) A mass spectrometer for routine isotope abundance measurements. Rev. Sci. Instruments, 11, 212–16.Google Scholar
  31. O'Neil, J.R. (1979) Stable isotope geochemistry of rocks and minerals, in Lectures in Isotope Geology (eds E. Jäger and J. Hunzike). Berlin: Springer, pp. 283–312.Google Scholar
  32. O'Neil, J.R., Clayton, R.N. and Mayeda, T.K. (1969) Oxygen isotopic fractionation in divalent metal carbonates. J. Chem. Phys., 51, 5547–8.Google Scholar
  33. Perry, E.C. (1967) The oxygen isotope chemistry of ancient cherts. Earth Planet. Sci. Lett., 3, 62–6.Google Scholar
  34. Popp, B.N., Anderson, T.F. and Sandberg, P.A. (1986) Brachiopods as indicators of original isotopic compositions in some Paleozoic limestones. Geol. Soc. Am. Bull., 97, 1262–9.Google Scholar
  35. Ricci, M.P., Merritt, D.A., Freeman, K.H. and Hayes, J.M. (1994) Acquisition and processing of data for isotope-ratio-monitoring mass spectrometry. Org. Geochem., 21, 561–71.Google Scholar
  36. Rozanski, K., Araguás-Araguás, L. and Gonfiantini, R. (1993) Isotopic patterns in modern global precipitation. Geophys. Monogr., 78, 1–36.Google Scholar
  37. Savin, S.M. (1977) The history of the Earth's surface temperature during the past 100 million years. Annu. Rev. Earth Planet. Sci., 5, 319–55.Google Scholar
  38. Schwartz, H.P. (1986) Geochronology and isotopic geochemistry of speleothems, in Handbook of Environmental Isotope Geochemistry; Vol. 2, The Terrestrial Environment B (eds P. Fritz and J. Ch. Fontes). Amsterdam: Elsevier, pp. 271–303.Google Scholar
  39. Shackleton, N.J. and Opdyke, N.D. (1973) Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific core V28–238: Oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale. Quaternary Res., 3, 39–55.Google Scholar
  40. Swart, P.K., Lohmann, K.C., McKenzie, J. and Savin, S. (1993) Climate Change in continental isotopic records. Geophys. Monogr., 78, 374 pp.Google Scholar
  41. Taylor, H.P. Jr. (1977) Water/rock interactions and the origin of H2O in granitic batholiths. J. Geol. Soc. London, 133, 509–58.Google Scholar
  42. Taylor, H.P. Jr. and Sheppard, S.M.F. (1986) Igneous rocks: I. Processes of isotopic fractionation and isotope systematics. Rev. Mineral., 16, 227–71.Google Scholar
  43. Urey, H.C., Lowenstam, H.A., Epstein, S. and McKinney, C.R. (1951) Measurement of paleotemperatures and temperatures of the upper Cretaceous of England, Denmark, and the southeastern United States. Geol. Soc. Am. Bull., 62, 399–416.Google Scholar
  44. Valley, J.W. (1986) Stables isotope geochemistry of metamorphic rocks. Rev. Mineral., 16, 445–89.Google Scholar
  45. Veizer, J. and Hoefs, J. (1976) The nature of O18/O16 and C13/C12 secular trends in sedimentary carbonate rocks: Geochim. Cosmochim. Acta, 40, 1387–95.Google Scholar
  46. Veizer, J., Fritz, P. and Jones, B. (1986) Geochemistry of brachiopods: oxygen and carbon isotopic records of Paleozoic oceans. Ceochim. Gosmochim. Acta, 50, 1679–96.Google Scholar
  47. Wefer, G. and Berger, W. (1991) Isotope paleontology: growth and composition of extant calcareous species. Man. Geol., 100, 207–48.Google Scholar
  48. Williams, D.F. (1984) Correlation of Pleistocene marine sediments of the Gulf of Mexico and other basins using oxygen isotope stratigraphy, in Principles of Pleistocene Stratigraphy Applied to the Gulf of Mexico (ed. N. Healy-Williams). Boston: International Human Resources Development Corporation, pp. 65–118.Google Scholar
  49. Winograd, I.J., Coplen, T.B., Landwehr, J.M. et al. (1992) Continuous 500,000-year climate record from vein calcite in Devils Hole, Nevada. Sciences, 258, 255–60.Google Scholar
  50. Winograd, I.J., Szabo, B.J., Coplen, T.B. and Riggs, A.C. (1988) A 250,000-year climatic record from Great Basin vein calcite: Implications for Milankovitch theory. Science, 242, 1275–80.Google Scholar
  51. Yeh, H. and Savin, S. (1976) The extent of oxygen isotope exchange between clay minerals and sea water. Geochim. Cosmochim. Acta, 40, 743–8.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • R. Basil Johns
  • Andrew T. Revill
  • Clifford C. Walters
  • Mark J. Rigali
  • Bartholomew Nagy
  • Jean M. Richardson
  • Martin Hale
  • John K. Volkman
  • Stephen A. Macko
  • Michael H. Engel
  • Scott Messenger
  • Stuart G. Wakeham
  • John W. Morgan
  • Charles G. Patterson
  • Steven C. Semken
  • Ethan L. Grossman

There are no affiliations available