Encyclopedia of Geochemistry

1999 Edition
| Editors: Clare P. Marshall, Rhodes W. Fairbridge

N

  • Alain Prinzhofer
  • Martin Hale
  • Scott M. McLennan
  • J. Koŝler
  • Carol D. Frost
  • Thomas Staudacher
  • Wolfgang H. Runde
  • David R. Janecky
  • Mary P. Neu
  • James R. Budahn
  • Laurence Galoisy
  • A. M. R. Neiva
  • Elisabeth A. Holland
  • Nathaniel E. Ostrom
  • Peggy H. Ostrom
  • Cyanthia E. A. Palmer
  • J. N. Goswami
  • J. Faganeli
Reference work entry
DOI: https://doi.org/10.1007/1-4020-4496-8_13
  • 2.3k Downloads

Natural gas

Sedimentary accumulations of gas contain a limited number of compounds: saturated light hydrocarbons from methane to pentane, CO2, H2S, N2 (Durand, 1993) and traces of noble gases, mercury and hydrogen (Sokolov, 1974). All of these gases, except mercury and the noble gases, may come from organic matter, either from bacterial activity, or by thermal degradation. Inert gases may also have mineral origins: N2 from ammonium of shales or from the deeper crust, H2S from thermo-reduction of sulfates (with hydrocarbon as a reducing agent), and CO2 from thermal alteration of carbonates or mantle contamination. Nevertheless, they are clearly identified in some fields as generated from organic matter.

Hydrocarbon gas generation and accumulation

Part of the organic matter buried during sedimentation undergoes several transformations. In the shallower sediments, organic diagenesis induces biochemical changes, transforming the organic matter into kerogen, with the possible production of...

Keywords

Nitric Oxide Isotopic Composition Neutron Activation Analysis Neutron Capture Platinum Group Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

  1. Durand, B. (1993) Formation of natural gas, in Natural Gas (ed. A. Rojey). Technip Inc.Google Scholar
  2. Galimov, E.M. (1985) The Biological Fractionation of Isotopes. New York: Academic Press, 261 pp.Google Scholar
  3. Krooss, B.M., Littke, R., Müller, B., Frielingsdorf, J., Schwochau, K. and Idiz, E.(1995)Generation of nitrogen and methane from sedimentary organic matter: implications on the dynamics of natural gas accumulations. Chem. Geol., 126, 291–318.Google Scholar
  4. Sokolov, V.A.(1974) Geochemistry of Natural Gas. Moscow: Mir edn..Google Scholar
  5. Whiticar, M.J., Faber, E. and Schoell, M. (1986) Biogenic methane formation in marine and freshwater environments: CO2 reduction vs acetate fermentation; isotope evidence. Geochim. Cosmochim. Acta, 50, 693–709.Google Scholar
  1. Bardossy, G. and Aleva, G.J.J.(1990) Lateritic Bauxites. Amsterdam: Elsevier, 624 pp.Google Scholar
  2. Craig, J.R., Vaughan, D.J. and Skinner, B.J.(1988) Resources of the Earth. New York: Prentice Hall, 395 pp.Google Scholar
  3. Crowson, P. (1995) Minerals Handbook 1994–95. London, Stockton, 320 pp.Google Scholar
  4. Harris, D.P.(1990) Mineral Exploration Decisions. New York: John Wiley, 436 pp.Google Scholar
  5. McKelvey, V.E.(1973)Mineral resource estimates and public policy. US Geol. Surv. Prof. Paper, 820, 9–19.Google Scholar
  6. Meadows, D.L., Meadows, D.H. and Randers, J. (1992) Beyond the Limits. London: Earthscan, 300 pp.Google Scholar
  7. Miskelly, N.(1994) A comparison of international definitions for reporting mineral resources and reserves. Miner. Ind. Int., 1019, 28–36.Google Scholar
  8. Simon, J.L., Weinrauch, G. Moore, S.(1994)The reserves of extracted resources: historical data. Nonrenewable Resources, 3, 325–40.Google Scholar
  9. Sutphin, M.D.(1992) The international strategic minerals inventory–keeping up with a changing world mineral situation. Nonrenewable Resources,1, 189–200.Google Scholar
  10. Taylor, H.K.(1989) Definition of ore and reserves. Miner. Ind. Int., 990, 5–12.Google Scholar
  11. US Bureau of Mines (1986) Mineral Facts and Problems 1985. Washington: US Govt Printing Office, 956 pp.Google Scholar
  1. Aitcheson, S.J. and Forrest, A.H.(1994) Quantification of crustal contamination in open magmatic systems. J. Petrol., 35, 461–88.Google Scholar
  2. Arndt, N.T. and Goldstein, S.L.(1987),Use and abuse of crust-formation ages. Geology, 15, 893–5.Google Scholar
  3. Burt, D.M.(1989) Compositional and phase relations among rare earth element minerals. Rev. Mineral., 21, 259–l302.Google Scholar
  4. Chappell, B.W. and White A.J.R.(1992) I-and S-type granites in the Lachlan Fold Belt. Trans. R. Soc. Edinburgh: Earth Sci.,83, 1–26.Google Scholar
  5. Clark, A.M.(1984)Mineralogy of the rare earth elements, in Rare Earth Element Geochemistry (ed. P. Henderson). Amsterdam: Elsevier, pp.33–62.Google Scholar
  6. Cox, K.G., Bell, J.D. and Pankhurst, R.J.(1979) The Interpretation of Igneous Rocks. London: Unwin Hyman, 450 pp.Google Scholar
  7. DePaolo, D.J.(1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet. Sci. Lett., 53, 189–202.Google Scholar
  8. DePaolo, D.J.(1988) Neodymium Isotope Geochemistry. Berlin: Springer Verlag, 187 pp.Google Scholar
  9. DePaolo, D.J. and Wasserburg, G.J.(1976) Nd isotopic variations and petrogenetic models. Geophys. Res. Lett., 3, 249–52.Google Scholar
  10. DePaolo, D.J., Linn, A.M. and Schubert, G. (1991) The continental crustal age distribution: Methods of determining mantle separation ages from Sm–Nd isotopic data and application to the southwestern United States. J. Geophys. Res., 96(B2), 2071–88.Google Scholar
  11. Faure, G. (1986) Principles of Isotope Geology, 2nd edn. New York: John Wiley and Sons, 589 pp.Google Scholar
  12. Gromet, L.P. and Silver, L.T.(1983)Rare earth element distribution among minerals in a grandodiorite and their petrogenetic implications. Geochim. Cosmochim. Acta, 47, 925–39.Google Scholar
  13. Hawkesworth, C.J., Hergt, J.M., Ellam, R.M. and McDermott, F.(1991) Element fluxes associated with subduction related magmatism, in The Behaviour and Influence of Fluids in subduction Zones (ed. J. Tarney). London: The Royal Society, pp. 167–79.Google Scholar
  14. Jacobsen, S.B. and Wasserburg, G.J.(1980) Sm–Nd evolution of chondrites. Earth Planet. Sci. Lett., 50, 139–55.Google Scholar
  15. Liew, T.C. and Hofmann, A.W.(1988) Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: Indications from Nd and Sr isotopic study. Contrib. Mineral. Petrol., 98, 129–38.Google Scholar
  16. McCulloch, M.T. and Chappell, B.W.(1982) Nd isotopic characteristics of S-and I-type granites. Earth Planet. Sci. Lett., 58, 51–64.Google Scholar
  17. Michard, A., Gurriet, P., Soudnt, M. and Albarede, F.(1985) Nd isotopes in French Phanerozoic shales: external vs internal aspects of crustal evolution. Geochim. Cosmochim. Acta, 49, 601–10.Google Scholar
  18. Paterson, B.A., Rogers, G. and Stephens, W.E.(1992) Evidence for inherited Sm–Nd isotopes in granitoid rocks. Contrib. Mineral. Petrol., 111, 378–90.Google Scholar
  19. Saunders, A.D., Norry, M.J. and Tarney, J. (1991) Fluid influence on the trace element compositions of subduction zone magmas, in The Behaviour and Influence of Fluids in Subduction Zones (ed. J. Tarney). London: The Royal Society, pp. 151–66.Google Scholar
  20. Wilson, M. (1989) Igneous Petrogenesis. London: Unwin Hyman, 466 pp.Google Scholar
  1. All`gre, C.J. and Rousseau, D. (1984) The growth of the continent through geologic time studies by Nd isotope analysis of shales. Earth Planet. Sci. Lett., 67, 19–34.Google Scholar
  2. Frost, C.D. and Combs, D.S. (1989) Nd isotope character of New Zealand sediments: implications for terrane concepts and crustal evolution. Am. J. Sci., 289, 744–70.Google Scholar
  3. Goldstein, S.L., O'Nions, R.K. and Hamilton, P.J. (1984) A Sm–Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth Planet. Sci. Lett., 70, 221–36.Google Scholar
  4. McLennan, S.M., Taylor, S.R., McCulloch, M.T. and Maynard, J.B. (1990) Geochemical and Nd–Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochim. Cosmochim. Acta, 54, 2015–50.Google Scholar
  5. Shaw, H.F. and Wasserburg, G.J. (1985) Sm–Nd in marine carbonates and phosphates: implications for Nd isotopes in seawater and crustal ages. Geochim. Cosmochim. Acta, 49, 503–18.Google Scholar
  6. Taylor, S.R. and McLennan, S.M. (1985) The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications, 312 pp.Google Scholar
  1. All`gre, C.J., Staudacher, T. and Sarda, P. (1986/87) Rare gas systematics: formation of the atmosphere, evolution and structure of the Earth's mantle. Earth Planet. Sci. Lett., 81, 127–50.Google Scholar
  2. Benkert, J.P., Baur, H., Signer, P. and Wieler, R.J. (1993) He, Ne and Ar from the solar wind and solar energetic particles in lunar ilmenites and pyroxenes. J. Geophys. Res., 98, 13147–62.Google Scholar
  3. Cook, G.A. (1961) Argon, helium and the rare gases. The Elements of the Helium Group, Volume1,New York: Interscience Publishers.Google Scholar
  4. Craig, H. and Lupton, J. (1976) Primordial neon and helium, and hydrogen in oceanic basalts. Earth Planet. Sci. Lett., 31, 369–85.Google Scholar
  5. Honda, M., Dougall, I.M., Patterson, D.B., Doulgeris, A. and Clague, D.A. (1991) Possible solar noble-gas component in Hawaiian basalts. Nature, 349, 149–51.Google Scholar
  6. Sarda, P., Staudacher, T., All`gre, C.J. and Lecomte, A. (1993) Cosmogenic helium and neon at Réunion Island: measurement of erosion rate. Earth Planet. Sci. Lett., 119, 405–17.Google Scholar
  7. Sarda, P., Staudacher, T. and All`gre, C.J. (1988) Neon isotopes in submarine basalts. Earth Planet. Sci. Lett., 91, 73–88.Google Scholar
  8. Staudacher, T. and All`gre, C.J. (1993) Age of the second caldeira of Piton de la Fournaise volcano, Réunion Island, determined by cosmic ray produced 3He and 21Ne. Earth Planet. Sci. Lett., 119, 395–404.Google Scholar
  9. Valbracht, P.J., Staudacher, T., Malahoff, A. and All`gre, C.J. (1997) Noble gas systematics of deep riftzone glasses from Loihi Seamount, Hawaii. Earth Planet. Sci. Lett., 150, 399–411.Google Scholar

Cross-reference

  1. Allard, B., Olofsson, U., Torstenfeldt, B. and Kipatski, H. (1983) Sorption Behavior of Actinides in Well-Defined Oxidation States. Göteborg: Chalmers University of Technology, Dept. Nuclear Chemistry, 1983–05–15.Google Scholar
  2. Choppin, G.R. (1983) Solution chemistry of the actinides. Radiochim. Acta, 32, 43–53.Google Scholar
  3. Choppin, G.R. (1992) The role of natural organics in radinuclide migration in natural aquifer systems. Radiochim. Acta, 58/59, 113–20.Google Scholar
  4. Fuger, J. (1992) Thermodynamic properties of actinide aqueous species relevant to geochemical problems. Radiochim. Acta, 58/59, 81–91.Google Scholar
  5. Katz, J.J. and Seaborg, G.T. (1957) The Chemistry of the Actinide Elements. New York: John Wiley & Sons, 204 pp.Google Scholar
  6. Lederer, C.M. and Shirley, V.S. (1978) Table of Radioactive Isotopes. New York: John Wiley & Sons.Google Scholar
  1. Amiel, S. (ed.) (1981) Non destructive activation analysis. Stud. Anal. Chem., 3, 385 pp.Google Scholar
  2. De Soete, D., Gijbels, R. and Hoste, J. (1972) Neutron Activation Analysis. New York: Wiley, 836 pp.Google Scholar
  3. Hoffman, E.L. (1992) Instrumental neutron activation analysis. J Geochem. Expl., Spec. Issue: Geoanalysis, 44, 297–320.Google Scholar
  4. Reeves, R.D. and Brooks, R.R. (1978)Trace Element Analysis of Geologic Materials. New York: Wiley, 421 pp.Google Scholar
  1. Anderson, D.L. (1989) Theory of the Earth. Boston: Blackwell Scientific Publications.Google Scholar
  2. Henderson, P. (1982) Inorganic Geochemistry. Oxford: Pergamon Press.Google Scholar
  3. Sclater, F.R. Boyle, E. and Edmond, J.M. (1976) On the marine geochemistry of nickel. Earth Planet. Sci. Lett., 31, 119.Google Scholar
  1. Černý, P. and Ercit, T.S. (1989) Mineralogy of niobium and tantalum: crystal chemical relationship, paragenetic aspects and their economic implications, in Lanthanides, Tantalum and Niobium (eds P. Möller, P. Černý and F. Saupé). Berlin: Springer-Verlage, pp. 27–79.Google Scholar
  2. Möller, P. (1989) REE (Y), Nb and Ta enrichment in pegmatites and carbonatite-alkalic rock complexes, in Lanthanides, Tantalum and Niobium (eds P. Möller, P. Černý and F. Saupé). Berlin: Springer-Verlag, pp. 103–44.Google Scholar
  3. Morteani, G. (1989) Prospection for niobium-rich alkaline rocks, in Lanthanides, Tantalum and Niobium (eds P. Möller, P. Černý and F. Saupé). Berlin: Springer-Verlag, pp. 311–20.Google Scholar
  4. Pollard, P.J. (1989a) Geochemistry of granites associated with tantalum and niobium mineralization, in Lanthanides, Tantalum and Niobium (eds P. Möller, P. Černý and F. Saupé.) Berlin: Springer-Verlag, pp. 145–70.Google Scholar
  5. Pollard, P.J. (1989b) Geologic characteristics and genetic problems associated with the development of granite-hosted deposits of tantalum and niobium, in Lanthanides, Tantalum and Niobium (eds P. Möller, P. Černý and F. Saupé.) Berlin: Springer-Verlag, pp. 240–56.Google Scholar
  1. Compton, J.S., Williams, L.B. and Ferrell, R.E. (1992). Mineralization of organogenic ammonium in the Monterey Formation, Santa Maria and San Joaquin basins, California, USA. Geochim. Cosmochim. Acta, 56, 1979–91.Google Scholar
  2. Hall, A., Bencini, A. and Poli, G. (1991). Magmatic and hydrothermal ammonium in granites of the Tuscan magmatic province, Italy. Geochim. Cosmochim. Acta, 55, 3657–64.Google Scholar
  3. Ridgway, J., Appleton, J.D. and Levinson, A.A. (1990). Ammonium geochemistry in mineral exploration–a comparison of results from the American cordilleras and the southwest Pacific. Appl. Geochem., 5, 475–89.Google Scholar
  4. Von Damm, K.L., Edmond, J.M., Measures, C.I. and Grant, B. (1985). Chemistry of submarine hydrothermal solutions at Guaymas Basin, Gulf of California. Geohim. Cosmochim. Acta, 49, 2221–37.Google Scholar

Cross-references

  1.  Biogeochemistry;  Earth's atmosphere; Natural gas; Nitrogen cycle; Nitrogen isotopes;  Precambrian atmosphere;  Stable isotopes
  1. Dentener, F.J. and Crutzen, P.J. (1994) A three-dimensional model of the global ammonia cycle. J. Atmos. Chem., 19, 331–69.Google Scholar
  2. Galloway, J.N., Schlesinger, W.H., Levy, H.II, Michaels, A. and Schnoor, J.L. (1995) Nitrogen fixation: anthropogenic enhancement-environmental response. Global Biogeochem. Cycles, 9, 235–52.Google Scholar
  3. Holland, E.A., Braswell, B.H., Lamarque, J.-F. et al. (1997) Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems. J. Geophys. Res., 102, 15849.Google Scholar
  4. Howarth, R.W., Billen, G., Swaney, D. et al. (1996) Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. Biogeochemistry, 35, 75.Google Scholar
  5. Matthews, E. (1994) Nitrogenous fertilizers: global distribution of consumption and associated emissions of nitrous oxide and ammonia. Global Biogeochem. Cycles, 8, 411–39.Google Scholar
  6. Nevison, C. and Holland, E.A. (1997) A reexamination of the impact of anthropogenically fixed nitrogen on atmospheric N2O and the stratospheric O3 layer. J. Geophys. Res., 102, 25519–36.Google Scholar
  7. Paul, E.A. and Clark, F.E. (1997) Soil Biology and Biochemistry. San Diego: Academic Press.Google Scholar
  8. Prather, M. Derwent, R., Enhalt, D., Fraser, P., Sanhueza, E. and Zhou, X. (1995) Other trace gases and atmospheric chemistry, in Climate Change 1994, Radioactive Foray of Climate Change (ed. IPCC). Cambridge: Cambridge University Press, pp. 73–126.Google Scholar
  9. Sylvia, D.M., Fuhrmann, J., Hartel, P.G. and Zuberer, D.A. (eds) (1998) Principles and Applications of Soil Microbiology. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  10. Vitousek, P.M. Aber, J., Howarth, R.W. et al. (1997) Human alteration of the global nitrogen cycle: causes and consequences. Ecol. Appl., 7, 737–50.Google Scholar
  1. Boyd, S.R. Hall, A. and Pillinger, C.T. (1993) The measurement of δ15N in crustal rocks by static vacuum mass spectrometry: application to the origin of the ammonium in the Cornubian batholith, southwest England. Geochim. Cosmochim. Acta, 57, 1339–47.Google Scholar
  2. Durka, W., Schulze, E.-D., Gebauer, G. and Voerkelius, S. (1994) Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements. Nature, 372, 765–7.Google Scholar
  3. Feigin, A., Kohl, D.H., Shearer, G. and Commoner, B.(1974a) Variation in the natural nitrogen-15 abundance in nitrate mineralized during incubation of several Illinois soils. Soil Sci. Soc. Am. Proc., 38, 90–5.Google Scholar
  4. Feigin, A., Shearer, G., Kohl, D.H. and Commoner, B. (1974b) The amount and nitrogen-15 content of nitrate in soil profiles from two central Illinois fields in a corn-soybean rotation. Soil Sci. Soc. Am. Proc., 37, 465–71.Google Scholar
  5. Geiss, J. and Bochsler, P. (1982) Nitrogen isotopes in the solar system. Geochim. Cosmochim. Acta, 46, 529–48.Google Scholar
  6. Gormly, J.R. and Spaulding, R.F. (1979) Sources and concentrations of nitrate-nitrogen in ground water of the Central Platte Region, Nebraska. Ground Water, 3, 291–301.Google Scholar
  7. Haendel, D, Muhle, K., Nitzsche, H.-M., Stiehl, G. and Wand, U. (1986) Isotopic variations of the fixed nitrogen in metamorphic rocks. Geochim. Cosmochim. Acta, 50, 749–58.Google Scholar
  8. Kerridge, J.F. (1989) What has caused the secular increase in solar nitrogen-15? Science, 245, 480–6.Google Scholar
  9. Kirschenbaum, I., Smith, J.S., Crowell, T., Graff, J. and McKee, R. (1947) Separation of the nitrogen isotopes by the exchange reaction between ammonia and solutions of ammonium nitrate. J. Chem. Phys., 15, 440–6.Google Scholar
  10. Kreitler, C.W. and Jones, D.C. (1975) Natural soil nitrate: the cause of the nitrate contamination of ground water in Runnels Country, Texas. Ground Water, 13, 53–61.Google Scholar
  11. Kung, C.-C. and Clayton, R.N. (1978) Nitrogen abundances and isotopic compositions in stony meteorites. Earth Planet. Sci. Lett., 38, 421–35.Google Scholar
  12. Macko, S.A. and Ostrom, N.E. (1994) Molecular and pollution studies using stable isotopes, in Stable Isotopes in Ecology and Environmental Science (eds K. Lajtha and R. Michner). London: Blackwell Scientific Publications, pp. 45–62.Google Scholar
  13. Macko, S.A., Fogel (Estep), M.L., Hare, P.E. and Hoering, T.C. (1987) Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms. Chem. Geol., 65, 79–92.Google Scholar
  14. Montoya, J.P. (1994) Nitrogen isotope fractionation in the modern ocean: implications for the sedimentary record, in Carbon Cycling in the Glacial Ocean: Constraints on the Ocean's Role in Global Change (eds R. Zahn et al.). Berlin: Springer-Verlag, pp. 259–79.Google Scholar
  15. Nadelhoffer, K.J. and Fry, B. (1994) Nitrogen isotope studies in forest ecosystems, in Stable Isotopes in Ecology and Environmental Science (eds K. Lajtha and R.H. Michner). London: Blackwell Scientific Publications, pp. 22–45.Google Scholar
  16. Nier, A.O. and McElroy, M.B. (1977) Composition and structure of Mars upper atmosphere: Results from the neutral mass spectrometers on Viking 1 and 2. J. Geophys. Res., 82, 4341–9.Google Scholar
  17. Ostrom, P.H. and Fry, B. (1993) Sources and cycling of organic matter in modern and prehistoric food webs, in Organic Geochemistry (eds M.H. Engel and S.A. Macko). New York: Plenum Press, pp. 785–98.Google Scholar
  18. Peters, K.E., Sweeney, R.E. and Kaplan, I.R. (1978) Correlation of carbon and nitrogen stable isotope ratios in sedimentary organic matter. Limnol. Oceanogr., 23, 598–604.Google Scholar
  19. Richards, F.A. and Benson, B.B. (1961) Nitrogen/argon and nitrogen isotope ratios in two anaerobic environments, the Cariaco Trench in the Caribbean Sea and Dramsfjord, Norway. Deep-Sea Res., 7, 254–64.Google Scholar
  20. Sakai, H., DesMarais, D.J., Ueda, A. and Moore, J.G. (1984) Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts. Geochim. Cosmochim. Acta, 48, 2433–41.Google Scholar
  21. Shuval, H.I. and Gruener N. (1974) Effects on man and animals of ingesting nitrates and nitrites in water and food, in Effects of Agricultural Production on Nitrates in Food and Water with Particular Reference to Isotope Studies. Vienna: IAEA, pp. 117–30.Google Scholar
  22. Sweeney, R.E., Kalil, E.K. and Kaplan, I.R. (1980) Characterization of domestic and industrial sewage in southern California coastal sediments using nitrogen, carbon, sulfure and uranium tracers. Mar. Environ. Res., 3, 225–43.Google Scholar
  23. Wlotzka, F. (1972) Geochemistry of nitrogen, in Handbook of Geochemistry (ed. K.H. Wedepohl). New York: Springer-Verlag, pp. 7–B–1–9.Google Scholar
  24. Young, C.P. (1983) Data acquisition and evaluation of ground water pollution by nitrates, pesticides and disease-producing bacteria. Environ, Geol., 5, 11–18.Google Scholar
  1. Firestone, R.B. (1996) Table of Isotopes, Volume II: A = 151–272. New York: Wiley-Interscience, 2877 pp.Google Scholar
  2. Ghiorso, A., Sikkeland, T., Walton, J.R. and Seaborg, G.T. (1958) Element 102. Phys. Rev. Lett., 1, 18.Google Scholar
  3. Seaborg, G.T. and Loveland, W.D. (1990) The Elements Beyond Uranium. New York: Wiley-Interscience, 359 pp.Google Scholar
  1. Alpher, R.A. and Herman, R.C. (1950) Theory of the origin and relative abundance distribution of the elements. Rev. Mod. Phys., 22, 153–212.Google Scholar
  2. Anders, E. and Grevesse, N. (1989) Abundances of the elements: meteoritic and solar. Geochim. Cosmochim. Acta, 53, 197–214.Google Scholar
  3. Anders, E. and Zinner, E. (1993) Interstellar grains in primitive meteorites. Meteoritics, 28, 490–514.Google Scholar
  4. Burbridge, E.M., Burbridge, G.R., Fowler, W.A. and Hoyle, F. (1957) Synthesis of the elements in stars. Rev. Mod. Phys., 29, 547–650.Google Scholar
  5. Cameron, A.G.W. (1957) Stellar evolution, nuclear astrophysics and nucleogenesis, Chalk River Report AECL (Atomic Energy of Canada Ltd.) CRL-41; see also Publ. Astron. Soc. Pacific, 69, 201–22.Google Scholar
  6. Clayton, D.D. (1988) Stellar nucleosynthesis and chemical evolution of the solar neighbourhood, in Meteorites and the Early Solar System. (eds J.F. Kerridge and M.S. Matthews) Tucson: Arizona University Press, pp. 1021–62.Google Scholar
  7. Cox, P.A. (1989) The Elements: Their Origin, Abundances and Distribution. Oxford: Oxford University Press, 207 pp.Google Scholar
  8. Fowler, W.A. (1984) The quest for the origin of the elements. Science, 226, 922–35.Google Scholar
  9. Merrill, P.W. (1952) Spectroscopic observations of stars of class S. Astrophys. J., 116, 21–6.Google Scholar
  10. Pebbles, P.J. (1971) Physical Cosmology. Princeton, NJ: Princeton University Press.Google Scholar
  11. Penzias, A.A. (1979) The origin of the elements. Science, 205, 549–54.Google Scholar
  12. Reeves, H. (1994) On the origin of the light elements (Z < 6). Rev. Mod. Phys., 66, 193–216.Google Scholar
  13. Suess, H.E. and Urey, H.C. (1956) Abundances of the elements. Rev. Mod. Phys., 28, 53–74.Google Scholar
  14. Symbalisty, E.M.D. and Schramm, D.N. (1981) Nucleocosmochronology. Rep. Prog. Phys., 44, 293–328.Google Scholar
  15. Timmes, F.X., Wooseley, S.E. and Weaver, T.A. (1995) Galactic chemical evolution: helium through zinc. Astrophys. J., 98 (Supplement), 617–58.Google Scholar
  16. Trimble, V. (1991) The origin and abundances of elements revisited. Astron. Astrophys. Rev., 3, 1–46.Google Scholar
  17. Weinberg, S. (1977) The First Three Minutes. New York: Basic Books, (1993 edn), 203 pp.Google Scholar
  18. Woolum, D.S. (1988) Solar system abundances and processes of nucleosynthesis, in Meteorites and the Early Solar System (eds J.F. Kerridge and M.S. Matthews). Tucson: Arizona University Press, pp. 995–1020.Google Scholar
  1. Broecker, W. and Peng, T.-H. (1982) Tracers in the Sea. Palisades, NY: Eldigio Press, 690 pp.Google Scholar
  2. Spencer, C.P. (1975) The micronutrient elements, in Chemical Oceanography, Vol. 2 2nd edn (eds J.P. Riley and G. Skirrow). New York: Academic Press, pp. 245–300.Google Scholar
  3. Stumm, W. (1985) Chemical Processes in Lakes. New York: Wiley, 435 pp.Google Scholar
  4. Stumm, W. and Morgan, J.J. (1996) Aquatic Chemistry. New York: Wiley, 1022 pp.Google Scholar
  5. Wetzel, R.G. (1983) Limnology, 2nd edn. Philadelphia: Saunders, 767 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Alain Prinzhofer
  • Martin Hale
  • Scott M. McLennan
  • J. Koŝler
  • Carol D. Frost
  • Thomas Staudacher
  • Wolfgang H. Runde
  • David R. Janecky
  • Mary P. Neu
  • James R. Budahn
  • Laurence Galoisy
  • A. M. R. Neiva
  • Elisabeth A. Holland
  • Nathaniel E. Ostrom
  • Peggy H. Ostrom
  • Cyanthia E. A. Palmer
  • J. N. Goswami
  • J. Faganeli

There are no affiliations available