Encyclopedia of Geochemistry

1999 Edition
| Editors: Clare P. Marshall, Rhodes W. Fairbridge


  • Robert L. Cullers
  • David W. Mittlefehldt
  • Guillaume Morin
  • Llyod M. Petrie
  • Ross C. Kerr
  • Cynthia E. A. Palmer
  • Martin Mihaljevic
  • D. R. Bowes
  • J. Koˇler
  • Gregory A. Synder
  • Stephen Roberts
  • Anton P. le Roex
  • Annemarie Meike
  • Alain J. Baronnet
  • William S. Fyfe
  • A. A. Bookstrom
  • D. G. Rancourt
Reference work entry
DOI: https://doi.org/10.1007/1-4020-4496-8_12

Magmatic processes


Magmatic processes comprise any process that affects the melting or crystallization of a magma. This includes partial melting of rocks of different composition under different conditions of temperature and pressure (total and fluid such as H2O) and the processes that modify the composition of the melt after melting. The processes that can potentially modify the melt include evolution of a fluid phase (H2O or CO2), fractional crystallization, assimilation of country rocks, immiscibility of liquids, and flow differentiation. These processes range from equilibrium to various degrees of disequilibrium and may be modeled mathematically as described below.

Partial melting

Mechanisms of melting

A single mineral like ice melts at a constant temperature at constant pressure with the composition of the melt (water) being the same as the solid (ice). In contrast a rock consisting of two or more minerals melts over a range of temperature at a constant pressure, and...


Fluid Inclusion Fractional Crystallization Oxygen Isotopic Composition Porphyry Copper Parent Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Anderson, A.T. (1976) Magma mixing: petrological process and volcanological tool. J. Volcanol. Geothermal Res., 1, 3–33.Google Scholar
  2. Cawthorn, R.G. (1975) Degrees of melting in mantle diapirs and the origin of ultrabasic liquids. Earth Planet. Sci. Lett., 27, 113–20.Google Scholar
  3. Cocherie, A. (1986) Systematic use of trace element distribution patterns in log–log diagrams for plutonic suites. Geochim. Cosmochim. Acta, 50, 2517–22.Google Scholar
  4. Cullers, R.L., Ramakrishnan, S., Berendsen, P. and Griffin, T. (1985) Geochemistry and petrogenesis of lamproites, Late Cretaceous age, Woodsen County, Kansas, USA. Geochim. Cosmochim. Acta, 49, 1383–402.Google Scholar
  5. DePaolo, D.J. (1981) Trace element and isotopic effects of combined wall rock assimilation and fractional crystallization. Earth Planet. Sci. Lett., 53, 189–202.Google Scholar
  6. Green, D.H. and Ringwood A.E. (1967) The genesis of basaltic magmas. Contrib. Mineral. Petrol., 15, 103–90.Google Scholar
  7. Greenland, P. (1970) An equation for trace element distribution during magmatic crystallization. Am. Mineral., 55, 455–65.Google Scholar
  8. Hansen, G.N. (1989) An approach to trace element modeling using a simple igneous system as an example. Rev. Mineral., 21, 79–97.Google Scholar
  9. Hertojen, J. and Gijbels, R. (1976) Calculation of trace element fractionation during partial melting. Geochim. Cosmochim. Acta, 40, 313–22.Google Scholar
  10. Hofmann, A.W. and Hart, S.R. (1978) An assessment of local and regional isotopic equilibrium in the mantle. Earth Planet. Sci. Lett., 38, 44–62.Google Scholar
  11. Iwamori, H. (1993) Dynamic disequilibrium melting model with porous flow and diffusion-controlled chemical equilibration. Earth Planet. Sci. Lett., 114, 301–13.Google Scholar
  12. Langmuir, C.H., Bender, J.F., Bence, A.E., Hanson, G.N. and Taylor, S.R. (1977) Petrogenesis of basalts from the Famous area: mid-Atlantic ridge. Earth Planet. Sci. Lett., 37, 133–56.Google Scholar
  13. Langmuir, C.H., Klein, E.M. and Plank, T. (1992) Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges. Geophys. Monogr., 71, 183–280.Google Scholar
  14. McCarthy, T.S. and Hasty, R.A. (1976) Tarce element distribution patterns and their relationship to the crystallization of granitic melts. Geochim. Cosmochim. Acta, 40, 1351–8.Google Scholar
  15. O'Hara, M.J. and Matthews, R.E. (1981) Geochemical evolution in an advancing periodically replenished, periodically tapped, continuously fractionated magma chamber. J. Geological Soc. Lond., 138, 237–77.Google Scholar
  16. Qin, Z. (1992) Disequilibrium partial melting model and its implications for trace element fractionations during mantle melting. Earth Planet. Sci. Lett., 112, 75–90.Google Scholar
  17. Schiano, P. and Clocchiatti, R. and Shimizu, N., and Weis, D. and Mattielli, N. (1994) Cogenetic silica-rich and carbonate-rich melts trapped in mantle minerals in Kerguelen ultramafic xenoliths: implications for metasomatism in the oceanic upper mantle. Earth Planet. Sci. Lett., 123, 167–78.Google Scholar
  18. Shaw, D.M. (1970) Trace element fractionation during anatexis. Geochim. Cosmochim. Acta, 34, 237–43.Google Scholar
  19. Shaw, D.M. (1978) Trace element behavior during anatexis in the presence of a fluid phase. Geochim. Cosmochim. Acta, 42, 933–43.Google Scholar
  20. Sobolev, A.V. and Shimizu, N. (1993) Ultra-depleted primary melt included in an olivine from the mid-Atlantic ridge. Nature, 363, 151–3.Google Scholar
  21. Wood, B.J. and Fraser, D.G. (1976) Thermodynamics for Geologists. London: Oxford University Press.Google Scholar
  22. Wyllie, P.J. (1981) Plate tectonics and magma genesis. Geol. Rundsch., 70, 128–53.Google Scholar
  23. Yoder, H.S. Jr. (1976) Generation of Basaltic Magma. Washington, DC: National Academy of Sciences, 265 pp.Google Scholar
  1. Abragam, A. and Bleaney, B. (1970) Electron Paramagnetic Resonance of Transition Ions. Oxford: Oxford University Press.Google Scholar
  2. Ashcroft, N.W. and Mermin, D.N. (1976) Solid-State Physics. New York: Holt, Rinehart and Winston.Google Scholar
  3. Calas, G. (1988) Electron paramagnetic resonance. Rev. Mineral., 18, 513–71.Google Scholar
  4. Carmichael, R.S. (1990) Magnetic properties of minerals and rocks, in Physical Properties of Rocks and Minerals (ed. R.S. Carmichael). Boca Raton: CRC Press, pp. 299–358.Google Scholar
  5. Coey, J.M.D. (1988) Magnetic properties of iron in soil iron oxides and clay minerals, in Iron in Soils and Clay Minerals (ed. J.W. Stucki). Dordrecht: Reidel Pub. Cie, pp. 397–466.Google Scholar
  6. Herpin, A. (1968) Théorie d u Magnétisme. Paris: Bibliothèque des Sciences et Techniques Nucléaires (in French).Google Scholar
  7. Hoarau, J. (1968) Diamagnetism, in Encyclopedia Universalis, 5, 540–4.Google Scholar
  8. Ikeya, M. (1993) New Applications of Electron Spin Resonance: Dating, Dosimetry and Microscopy, Singapore: World Scientific.Google Scholar
  9. Kittel, C. (1983) Physique de l'Etat Solide. Paris: Dunod (in French).Google Scholar
  10. Kirkpatrick, R.J. (1988) MAS NMR spectroscopy of minerals and glasses. Rev. Mineral., 18, 341–403.Google Scholar
  11. McElhinny, M.W. (1973) Paleomagnetism and Plate Tectonics. Cambridge: Cambridge University Press.Google Scholar
  12. Morup, S., Dumesic, J.A. and Topsoe, H. (1990) Magnetic microcrystals, in Applications of Mössbauer Spectroscopy, Vol. 2 (ed. R.L. Cohen). New York: Academic Press, pp. 1–53.Google Scholar
  13. Murad, E. and Johnston, J.H. (1987) Iron oxides and oxihydroxides, in Mössbauer Spectroscopy Applied to Inorganic Chemistry (ed. G.J. Long). New York: Plenum Press, pp. 507–601.Google Scholar
  14. Néel, L. (1968) Magnetism, in Encyclopedia Universalis, 10, 308–13.Google Scholar
  15. O'Reilly, W. (1984) Rock and Mineral Magnetism. Glasgow: Blackie.Google Scholar
  16. Putnis, A. (1992) Introduction to Mineral Sciences. Cambridge: Cambridge University Press, pp. 437–57.Google Scholar
  17. Tarling, D.H. (1983) Paleomagnetism. London: Chapman and Hall.Google Scholar
  18. Weil, J.A., Bolton, J.R. and Wertz, J.E. (1994) Electron Paramagnetic Resonance: Elementary Theory and Practical Applications. New York: John Wiley and Sons.Google Scholar
  1. Alexandrov, E.A. (1972) Manganese: element and geochemistry, in Encyclopedia of Geochemistry and Environmental Science, Volume IVA (ed. R.W. Fairbridge). New York: Van Nostrand Reinhold, pp. 670–1.Google Scholar
  2. Bender, M.L. (1972) Manganese nodules, in Encyclopedia of Geochemistry and Environmental Science, Volume IVA (ed. R.W. Fairbridge). New York: Van Nostrand Reinhold, pp. 673–7.Google Scholar
  3. Burns, R.G. and Burns, V.M. (1979) Manganese oxides, in Marine Minerals (ed. R.G. Burns). Chelsea, MI: Mineralogical Society of America, pp. 1–46.Google Scholar
  4. Cotton, F.G. and Wilkinson, G. (1988) Advanced Inorganic Chemistry, 5th edn. New York: Wiley Interscience, 1455 pp.Google Scholar
  5. Davies, S.H.R. and Morgan, J.J. (1989) Manganese (II) oxidation kinetics on oxide surfaces. J. Colloid Interface Sci., 129, 63–77.Google Scholar
  6. Department of the InteriorLlyod M. Petrie (1990) The Mineral Position of the United States–1990. Washington, DC: US Department of the Interior, 120 pp.Google Scholar
  7. Ehrlich, H.L. (1972) Manganese cycle, in Encyclopedia of Geochemistry and Environmental Science, Volume IVA (ed. R.W. Fairbridge). New York: Van Nostrand Reinhold, pp. 671–3.Google Scholar
  8. Ehrlich, H.L. (1988) Recent advances in microbial leaching of ores. Mineral Metall. Proc., May, 57–60.Google Scholar
  9. Electric Power Research Institute (1987) EPRI EA-5176, Inorganic and Organic Constituents in Fossil Fuel Combustion Residues, Vol. 1. Palo Alto: Electric Power Research Institute, 350 pp.Google Scholar
  10. Hoffmann, M.R. (1981) Thermodynamic, kinetic, and extrathermodynamic considerations in the development of equilibrium models for aqueous systems. Environ. Sci. Technol., 15, 345–53.Google Scholar
  11. Luther, G. (1990) The frontier–molecular–orbital theory approach in geochemical processes, in Aquatic Chemical Kinetics (ed. W. Stumm). New York: Wiley-Interscience, pp. 173–98.Google Scholar
  12. Morgan, J.J. (1967) Chemical equilibria and kinetic properties of manganese in natural waters, in Principles and Applications of Water Chemistry (ed. S.D. Faust and J.V. Hunter). New York: Wiley and Sons.Google Scholar
  13. Marozas, D.C., Paulson, S.E. and Petrie, L.M. (1993) Evaluation of the potential for selective in situ leach mining of manganese ores. SME Trans., 292, 1819–28.Google Scholar
  14. Pahlman, J.E. and Khalafalla, S.E. (1988) RI 9150–Leaching of Domestic Manganese Ores and Dissolved SO2. Washington, DC: US Bureau of Mines, 15 pp.Google Scholar
  15. Petrie, L.M. (1995) Molecular interpretation for dissolution kinetics of pyrolusite, manganite and hematite. Appl. Geochem., 10, 253–67.Google Scholar
  16. Roy, S. (1981) Manganese Deposits. New York: Academic Press, 458 pp.Google Scholar
  17. Stone, A.T. and Morgan, J.J. (1984) Reduction and dissolution of manganese(III) and manganese (IV) oxides by organics. Environ. Sci. Technol., 18, 817–24.Google Scholar
  18. Stone, A.T. and Morgan, J.J. (1987) Reductive dissolution of metal oxides, in Aquatic Chemical Kinetics (ed. W. Stumm). New York: Wiley-Interscience, pp. 221–54.Google Scholar
  19. Stumm, W. (ed.) (1987) Aquatic Surface Chemistry. New York: Wiley-Interscience, 520 pp.Google Scholar
  20. Stumm, W. (ed.) (1990) Aquatic Chemical Kinetics. New York: Wiley-Interscience, 545 pp.Google Scholar
  1. Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (1960) Transport Phenomena. New York: John Wiley & Sons, 780 pp.Google Scholar
  2. Carslaw, H.S. and Jaeger, J.C. (1959) Conduction of Heat in Solids, 2nd edn. Oxford: Oxford University Press, 510 pp.Google Scholar
  3. Cathles, L.M. (1981) Fluid flow and genesis of hydrothermal ore deposits. Econ. Geol., 75, 424–57.Google Scholar
  4. Chakraborty, S. (1995) Diffusion in silicate melts. Rev. Mineral., 32, 411–503.Google Scholar
  5. Crank, J. (1975) The Mathematics of Diffusion, 2nd edn. Oxford: Oxford University Press, 414 pp.Google Scholar
  6. Fick, A. (1855) On liquid diffusion. Phil. Mag., 4, 30–9.Google Scholar
  7. Fourier, J.B. (1822) Théorie Analytique de la Chaleur. Oeuvres de Fourier.Google Scholar
  8. Gebhart, B., Jaluria, Y., Mahajan, R.L. and Sammakia, B. (1988) Buoyancy-Induced Flows and Transport. Washington: Hemisphere Publishing Corp., 1001 pp.Google Scholar
  9. Hofmann, A.W. (1980) Diffusion in natural silicate melts: a critical review, in Physics of Magmatic Processes (ed. R.B. Hargraves). Princeton: Princeton University Press, pp. 385–418.Google Scholar
  10. Holman, J.P. (1990) Heat Transfer, 7th edn. New York: McGraw-Hill, 714 pp.Google Scholar
  11. Incropera, F.P. and DeWitt D.P. (1990) Fundamentals of Heat and Mass Transfer, 3rd edn. New York: John Wiley & Sons, 919 pp.Google Scholar
  12. Jaupart, C. and Tait, S. (1995) Dynamics of differentiation in magma chambers. J. Geophys. Res., 100, 17615–36.Google Scholar
  13. Jost, W. (1960) Diffusion in Solids, Liquids, Gases. Revised edn. New York: Academic Press, 558 pp.Google Scholar
  14. Kerr, R.C. (1995) Convective crystal dissolution. Contrib. Mineral. Petrol., 121, 237–46.Google Scholar
  15. Kress, V.C. and Ghiorso, M.S. (1995) Multicomponent diffusion in basaltic melts. Geochim. Cosmochim. Acta, 59, 313–24.Google Scholar
  16. Lowell, R.P., Rona, P.A. and Von Herzen, R.P. (1995) Seafloor hydrothermal systems. J. Geophys. Res., 100, 327–52.Google Scholar
  17. Munk, W.H. and Riley, G.A. (1952) Absorption of nutrients by aquatic plants. J. Mar. Res., 11, 215–40.Google Scholar
  18. Onsager, L. (1945) Theories and problems of liquid diffusion. Ann. NY Acad. Sci., 46, 241–65.Google Scholar
  19. Phillips, O.M. (1991) Flow and Reactions in Permeable Rocks. Cambridge: Cambridge University Press, 285 pp.Google Scholar
  20. Turner, J.S. (1979) Buoyancy Effects in Fluids. Cambridge: Cambridge University Press, 368 pp.Google Scholar
  21. Turner, J.S. and Campbell, I.H. (1986) Convenction and mixing in magma chambers. Earth Sci. Rev., 23, 255–352.Google Scholar
  22. Vargaftik, N.B. (1975) Handbook of Physical Properties of Liquids and Solids. New York: Hemisphere, 758 pp.Google Scholar
  23. Washburn, E.W. (1926) International Critical Tables of Numerical Data: Physics, Chemistry and Technology. New York: McGraw Hill.Google Scholar
  24. Watson, E.B. (1982) Basal contamination by continental crust: some experiments and models. Contrib. Mineral. Petrol., 80, 73–87.Google Scholar
  25. Watson, E.B. (1994) Diffusion in volatile-bearing magmas. Rev. Mineral., 30, 371–411.Google Scholar
  26. Watson, E.B. and Baker, D.R. (1991) Chemical diffusion in magmas: an overview of experimental results and geochemical applications, in Physical Chemistry of Magmas (ed. L.L. Perchuk and I. Kushiro). New York: Springer-Verlag, pp. 120–51.Google Scholar
  27. White, F.M. (1988) Heat and Mass Transfer. Reading: Addison-Wesley, 718 pp.Google Scholar
  28. Wilson, E.N., Hardie, L.A. and Phillips, O.M. (1990) Dolomitization front geometry, fluid flow patterns, and the origin of massive dolomite: the Triassic Latemar buildup, Northern Italy. Am. J. Sci., 290, 741–96.Google Scholar
  29. Zhang, Y. (1993) A modified effective binary diffusion model. J. Geophys. Res., 98, 11901–20.Google Scholar
  30. Zhang, Y., Walker, D. and Lesher, C.E. (1989) Diffusive crystal dissolution. Contrib. Mineral. Petrol., 102, 492–513.Google Scholar
  1. Firestone, R.B. (1996) Table of Isotopes, Volume II: A = 151–272. New York: Wiley-Interscience, 2877 pp.Google Scholar
  2. Ghiorso, A., Harvey, B.G., Choppin, G.R., Thompson, S.G. and Seaborg, G.T. (1955) New element mendelevium, atomic number 101. Phys. Rev., 98, 1518.Google Scholar
  3. Seaborg, G.T. and Loveland, W.D. (1990) The Elements Beyond Uranium. New York: Wiley-Interscience, 359 pp.Google Scholar
  1. Fergusson, J.E. (1989) The Heavy Elements: Chemistry, Environmental Impact and Health Effects. Pergamon Press, 614 pp.Google Scholar
  2. Mason, R.P., Fitzgerald, W.F. and Morel, F.M.M. (1994) The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochim. Cosmochim. Acta, 58, 3191–8.Google Scholar
  3. Von Burg, R. and Greenwood, M.R. (1991) Mercury, in Metals and Their Compounds in the Environment (ed. E. Merian). Weinheim: VCH, pp. 1045–88.Google Scholar
  1. Bowes, D.R. (ed.) (1989a) The Encyclopedia of Igneous and Metamorphic Petrology. New York: Van Nostrand Reinhold, 666 pp.Google Scholar
  2. Bowes, D.R.(1989b)Migmatite, in The Encyclopedia of Igneous and Metamorphic Petrology (ed. D.R. Bowes). New York: Van Nostrand Reinhold, pp. 373–6.Google Scholar
  3. Bowes, D.R. and Hopgood, A.M. (1969) The Lewisian gneiss complex of Mingulay, Outer Hebrides, Scotland. Geol. Soc. Am. Mem., 115, 317–56.Google Scholar
  4. Bowes, D.R. and Park, R.G. (1966) Metamorphic segregation banding in the Loch Kerry basite sheet from the Lewisian of Gairloch, Ross-shire, Scotland. J. Petrol., 7, 306–30.Google Scholar
  5. Chipman, D.W. (1989) Retrograde metamorphism, in The Encyclopedia of Igneous and Metamorphic Petrology. (ed. D.R. Bowes). New York: Van Nostrand Reinhold, pp. 509–11.Google Scholar
  6. Cliff, R.A. (1985) Isotopic dating in metamorphic belts. J. Geol. Soc. Lond., 142, 97–110.Google Scholar
  7. Etheridge, M.A., Wall, W.J. and Vernon, R.H. (1983) The role of fluid phase during regional metamorphism and deformation. J. Metamorphic Geol., 1, 205–26.Google Scholar
  8. Evans, B.W. and Leake, B.E. (1960) The composition and origin of striped amphibolites of Connemara, Ireland. J. Petrol., 1, 337–63.Google Scholar
  9. Ferry, J.M. (1994) Overview of the petrologic record of fluid flow during regional metamorphism in northern England. Am. J. Sci., 294, 905–88.Google Scholar
  10. Freer, R. (1981) Diffusion in silicate minerals and glasses: a data digest and guide to literature. Contrib. Mineral. Petrol., 76, 440–54.Google Scholar
  11. Gresens, R.L. (1967) Composition–volume relationships of metasomatism. Chem. Geol., 2, 47–65.Google Scholar
  12. Harker, A. (1939) Metamorphism, 2nd edn. London: Methuen, 362 pp.Google Scholar
  13. Harley, S.L. and Graham, C.M. (eds) (1994) Stable isotopes as tracers of metamorphic processes. J. Metamorphic Geol., 12, 209–343.Google Scholar
  14. Heier, K.S. (1979) The movement of uranium during higher grade metamorphic processes. Phil. Trans. Roy. Soc. Lond., A291, 413–21.Google Scholar
  15. Hofmann, A.W. (1980) Diffusion in natural silicate melts: a critical review, in Physics of Magmatic Processes (ed. R.B. Hargraves). New Jersey: Princeton University Press, pp. 385–41.Google Scholar
  16. Hopgood, A.M. (1989) Migmatite–structural relationships, in The Encyclopedia of Igneous and Metamorphic Petrology (ed. D.R. Bowes). New York: Van Nostrand Reinhold, pp. 383–8.Google Scholar
  17. Hopgood, A.M. and Bowes, D.R. (1978) Neosomes of polyphase agmatites as time-markers in complexly deformed migmatites. Geol. Rundsch., 67, 313–30.Google Scholar
  18. Joesten, R. (1991) Grain boundary diffusion kinetics in silicate and oxide minerals. Adv. Phys. Geochem., 8, 345–95.Google Scholar
  19. Katz, M.B. (1989) Gneiss, in The Encyclopedia of Igneous and Metamorphic Petrology (ed. D.R. Bowes). New York: Van Nostrand Reinhold, pp. 187–91.Google Scholar
  20. Kretz, R. (1994a) Metamorphic Crystallization. Chichester: Wiley, 507 pp.Google Scholar
  21. Kretz, R. (1994b) Petrology of veined gneisses of the Otter complex, southern Grenville Province. Can. J. Earth Sci., 31, 835–51.Google Scholar
  22. Leake, B.E. (1989) Petrochemical calculations, in The Encyclopedia of Igneous and Metamorphic Petrology (ed. D.R. Bowes). New York: Van Nostrand Reinhold, pp. 438–47.Google Scholar
  23. Manning, J.R. (1974) Diffusion Kinetics and mechanisms in simple crystals. Carnegie Inst. Washington Publ., 634, 13.Google Scholar
  24. Nabelek, P.I. (1987) General equations for modelling fluid/rock interaction using trace elements and isotopes. Geochim. Cosmochim. Acta, 51, 1765–9.Google Scholar
  25. Pitcher, W.S. (1993) The Nature and Origin of Granite. London: Blackie, 321 pp.Google Scholar
  26. Ramberg, H. (1952) The Origin of Metamorphic and Metasomatic Rocks. Chicago: University of Chicago Press, 317 pp.Google Scholar
  27. Read, H.H. (1957) The Granite Controversy. London: Murby, 362 pp.Google Scholar
  28. Schäfer, H. (1964) Chemical Transport Reactions. London: Academic Press, 161 pp.Google Scholar
  29. Schrön, W. (1989) Solid–gas equilibria in geo-and cosmochemistry: I. Geochemistry. Eur. J. Mineral., 1, 739–63.Google Scholar
  30. Spear, F.S. (1993) Metamorphic phase equilibria and temperature–pressure–time paths. Mineral. Soc. Am. Monograph, 799 pp.Google Scholar
  31. Stillwell, F.L. (1918) The metamorphic rocks of Adelie Land. Australasian Antarctic Expedition, 1911–1914. Sci. Rep. Ser. A., 3, 200–9.Google Scholar
  32. Vernon, R.H. (1976) Metamorphic Processes. London: Allen & Unwin, 247 pp.Google Scholar
  33. Walther, J.V. (1994) Fluid–rock reactions during metamorphism at mid-crustal conditions. J. Geol., 102, 559–70.Google Scholar
  34. White, A.J.R. and Chapell, B.W. (1988) Some supracrustal (S-type) granites of the Lachlan Fold Belt. Trans. Roy. Soc. Edinburgh: Earth Sci., 79, 169–81.Google Scholar
  35. Williams, P.F. (1972) Development of metamorphic layering and cleavage in low grade metamorphic rocks at Bermagui, Australia. Am. J. Sci., 272, 1–47.Google Scholar
  36. Williams, P.F. (1990) Differentiated layering and cleavage in metamorphic rocks. Earth Sci. Rev., 29, 267–81.Google Scholar
  37. Wright, A.E. (1989) Metamorphic facies, in The Encyclopedia of Igneous and Metamorphic Petrology (ed. D.R. Bowes). New York: Van Nostrand Reinhold, pp. 324–30.Google Scholar
  38. Wyllie, P.J. (1992) Experimental petrology: earth materials science, in Understanding the Earth (ed. G.C. Brown, C.J. Hawkesworth and R.C.L. Wilson). Cambridge: Cambridge University Press, pp. 67–87.Google Scholar
  39. Yardley, B.W.D. (1989) An Introduction to Metamorphic Petrology. Harlow, Essex: Longman, 248 pp.Google Scholar
  40. Zeitler, P.K. (1989) The geochronology of metamorphic processes. Geol. Soc. Lond. Spec. Publ., 43, 131–47.Google Scholar
  1. Anders, E. and Grevesse, N. (1989) Abundances of the elements: meteoritic and solar. Geochim. Cosmochim. Acta, 53, 197–214.Google Scholar
  2. Buseck, P.R. (1977) Pallasite meteorites–mineralogy, petrology, and geochemistry. Geochim. Cosmochim. Acta, 41, 711–40.Google Scholar
  3. Buseck, P.R. and Hua, X. (1993) Matrices of carbonaceous chondrite meteorites. Annu. Rev. Earth Planet. Sci., 21, 255–305.Google Scholar
  4. Clayton, R.N. (1993) Oxygen isotopes in meteorites. Annu. Rev. Earth Planet. Sci., 21, 115–49.Google Scholar
  5. Clayton, R.N. and Mayeda, T.K. (1996) Oxygen isotope studies of achondrites. Geochim. Cosmochim. Acta, 60, 1999–2017.Google Scholar
  6. Clayton, R.N., Mayeda, T.K., Goswami, J.N. and Olsen, E.J. (1991) Oxygen isotope studies of ordinary chondrites. Geochim. Cosmochim. Acta, 55, 2317–37.Google Scholar
  7. Floss, C. and Crozaz, G. (1993) Heterogeneous REE patterns in old-hamite from aubrites: their nature and origin. Geochim. Cosmochim. Acta, 57, 4039–57.Google Scholar
  8. Haack, H., Scott, E.R.D., Love, S.G., Brearley, A.J. and McCoy, T.J. (1996) Thermal histories of IVA stony-iron and iron meteorites: Evidence for asteroid fragmentation and accretion. Geochim. Cosmochim. Acta, 60, 3103–13.Google Scholar
  9. Hutchison, R. (1983) The Search for Our Beginning. Oxford: Oxford University Press, 164 pp.Google Scholar
  10. Kallemeyn, G.W. and Wasson, J.T. (1981) The compositional classification of chondrites–I. The carbonaceous chondrite groups. Geochim. Cosmochim. Acta, 45, 1217–30.Google Scholar
  11. Kallemeyn, G.W., Rubin, A.E., Wang, D. and Wasson, J.T. (1989) Ordinary chondrites: bulk compositions, classification, lithophile-element fractionations, and composition–petrographic type relationships. Geochim. Cosmochim. Acta, 53, 2747–67.Google Scholar
  12. Kerridge, J.F. and Shapley Matthews, M. (1988) Meteorites and the Early Solar System. Tucson: University of Arizona Press, 1269 pp.Google Scholar
  13. Kimura, M., Tsuchiyama, A., Fukuoka, T. and Iimura, Y. (1992) Antarctitic primitive achondrites, Yamato-74025,-75300, and-75305: their mineralogy, thermal history, and the relevance to winonaite. Proc. Natl Inst. Polar Res. Jpn Symp. Antarctic Meteorites, 5, 165–90.Google Scholar
  14. Lugmair, G.W. and Galer, S.J.G. (1992) Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra dos Reis. Geochim. Cosmochim. Acta, 56, 1673–94.Google Scholar
  15. McSween, H.Y. Jr. (1989) Achondrites and igneous processes on asteroids. Annu. Rev. Earth Planet. Sci., 17, 119–40.Google Scholar
  16. McSween, H.Y. Jr. (1994) What we have learned about Mars from SNC meteorites. Meteoritics, 29, 757–79.Google Scholar
  17. Mittlefehldt, D.W. and Lindstrom, M.M. (1990) Geochemistry and genesis of the angrites. Geochim. Cosmochim. Acta, 54, 3209–18.Google Scholar
  18. Papike, J.J., Spilde, M.N., Fowler, G.W., Layne, G.D. and Shearer, C.K. (1995) The lodran primitive achondrite: Petrogenetic insights from electron and ion microprobe analysis of olivine and orthopyroxene. Geochim. Cosmochim. Acta, 59, 3061–70.Google Scholar
  19. Ruzicka, A., Snyder, G.A. and Taylor, L.A. (1997) Vesta as the howardite, eucrite and diogenite parent body: implications for the size of a core and for large-scale differentiation. Meteoritics Planet Sci., 32, 825–40.Google Scholar
  20. Sears, D.W., Kallemeyn, G.W. and Wasson, J.T. (1982) The compositional classification of chondrites: II. The enstatite chondrite groups. Geochim. Cosmochim. Acta, 46, 597–608.Google Scholar
  21. Taylor, G.J. (1992) Core formation in asteroids. J. Geophys. Res.–Planets, 97, 14717–26.Google Scholar
  22. Taylor, S.R. (1992) Solar System Evolution: A New Perspective. New York: Cambridge University Press, 307 pp.Google Scholar
  23. Warren, P.H. (1994) Lunar and martian meteorite delivery services. Icarus, 111, 338–63.Google Scholar
  24. Warren, P.H. and Kallemeyn, G.W. (1989) Allan Hills 84025: the second brachinite, far more differentiated than Brachina, and an ultramafic achondritic clast from L chondrite Yamato 75097. Proc. 19th Lunar and Planet. Sci. Conf., 475–86.Google Scholar
  25. Wasson, J.T. (1985) Meteorites: Their Record of Early Solar System History. New York: W.H. Freeman Co., 267 pp.Google Scholar
  26. Wolf, R., Ebihara, M., Richter, G.R. and Anders, E. (1983) Aubrites and diogenites: trace element clues to their origin. Geochim. Cosmochim. Acta, 47, 2257–70.Google Scholar
  27. Zhang, Y., Benoit, P.H. and Sears, D.W.G. (1995) The classification and complex thermal history of the enstatite chondrites. J. Geophys. Res., 100, 9417–38.Google Scholar
  28. Zipfel, J., Palme, H., Kennedy, A.K. and Hutcheon, I.D. (1995) Chemical composition of the Acapulco meteorite. Geochim. Cosmochim. Acta, 59, 3607–27.Google Scholar
  1. McMillan, P.F. and Hofmeister, A.M. (1988) Infrared and Raman spectroscopy. Rev. Mineral., 18, 99–159.Google Scholar
  1. Engel, C.G. and Engel, A.E.J. (1963) Basalts dredged from the north-eastern Pacific Ocean. Science, 140, 1321–4.Google Scholar
  2. Grove, T.L., Kinzler, R.J. and Bryan, W.B. (1992) Fractionation of mid-ocean ridge basalt (MORB). Geophys. Monogr., 71, 281–310.Google Scholar
  3. Langmuir, C.H., Klein, E.M. and Plank, T. (1992) Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges. Geophys. Monogr., 71, 183–280.Google Scholar
  4. le Roex, A.P. (1987) Source regions of mid-ocean ridge basalts: evidence for enrichment processes, in Mantle Metasomatism (ed. M.A. Menzies and C.J. Hawkesworth). London: Academic Press, pp. 389–422.Google Scholar
  5. Sun, S.-S. and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes. Geol. Soc. Spec. Publ., 42, 313–45.Google Scholar
  1. Boland, J.N. and Fitzgerald, J.D. (eds) (1993) Defects and Processes in the Solid State: Geoscience Applications. Developments in Petrology Series, Vol. 14. Amsterdam: Elsevier, 470 pp.Google Scholar
  2. Cabrera, N., Levine, M.M. and Plaskett, J.S. (1954) Hollow dislocations and etch pits. Phys. Rev., 96, 1153.Google Scholar
  3. Cottrell, A.H. (1953) Dislocations and Plastic Flow in Crystals. London: Oxford University Press, 223 pp.Google Scholar
  4. Eshelby, J.D., Newly, C.W.A., Pratt, P.L. and Lidiard, A.B. (1958) Charged dislocations and the strength of ionic crystals. Phil. Mag., 3, 75–89.Google Scholar
  5. Frank, F.C. (1951) Capillary equilibria of dislocated crystals. Acta Crystallogr., 4, 497–501.Google Scholar
  6. Frenkel, J.I. (1926) Thermal agitation in solids and liquids. Zeitschr. Phys., 35, 652–99.Google Scholar
  7. Green, H.W. (1980) On the thermodynamics of non-hydrostatically stressed solids. Phil. Mag., A41, 637–47.Google Scholar
  8. Hirth, J.P. and Loathe, J. (1968) Theory of Dislocations. New York: McGraw Hill, 780 pp.Google Scholar
  9. Kerrich, R. (1977) An historical review and synthesis of research on pressure solution. Zentralbl. Geol. Paleontol., 1, 512–50.Google Scholar
  10. Kittel, C. (1971) Introduction to Solid State Physics. 4th edn. New York: Wiley, 766 pp.Google Scholar
  11. Kröger, F.A. (1974) Chemistry of Imperfect Crystals. Amsterdam: North-Holland.Google Scholar
  12. Kulikov, G.S. and Malkovich, R.S. (1995) Interaction of the atomic and electron-hole subsystems and role of point defects in diffusion in semiconductors. Semiconductors, 29, 485–9.Google Scholar
  13. Lasaga, A.C. (1981) The atomistic basis of kinetics: defects in minerals. Rev. Mineral., 8, 261–319.Google Scholar
  14. Lasaga, A.C. and Blum, A. (1986) Surface chemistry, etch pits and mineral–water reactions. Geochim. Cosmochim. Acta, 50, 2363–79.Google Scholar
  15. McLaren, A.C. (1991) Transmission Electron Microscopy of Minerals and Rocks. Cambridge Topics in Mineral Physics and Chemistry Series, Vol. 2. Cambridge: Cambridge University Press, 387 pp.Google Scholar
  16. Meike, A. (1989) Considerations for quantitative determination of the role of dislocations in selective dissolution. Earth Sci. Rev., 29, 309–20.Google Scholar
  17. Meike, A. (1990) Dislocation enhanced selective dissolution: an examination of mechanical aspects using deformation-mechanism maps. J. Struct. Geol., 5/6, 785–94.Google Scholar
  18. Nabarro, F.R.N. (1967) Theory of Crystal Dislocations. London: Oxford University Press, 821 pp.Google Scholar
  19. Nye, J.F. (1985) Physical Properties of Crystals. London: Oxford University Press, 329 pp.Google Scholar
  20. Paterson, M.S. (1973) Nonhydrostatic thermodynamics and its geological applications. Rev. Geophys. Space Phys., 11, 355–89.Google Scholar
  21. Poeppel, R.B. and Blakely, J.M. (1969) Origin of equilibrium space charge potentials in ionic crystals. Surface Sci., 15, 507–23.Google Scholar
  22. Poirier, J.-P. (1985) Creep of Crystals. London: Cambridge University Press, 260 pp.Google Scholar
  23. Porter, D.A. and Easterling, K.E. (1982) Phase Transformations in Metals and Alloys. Wokingham, UK: Van Nostrand Reinhold, 446 pp.Google Scholar
  24. Schmalzried, H. (1981) Solid State Reactions. 2nd edn. Monographs in Modern Chemistry Series. Deerfield Beach, Florida: Verlag Chemie.Google Scholar
  25. Schock, R.N. (ed.) (1985) Point Defects in Minerals, Geophysical Monograph 31, Mineral Physics 1. Washington DC: American Geophysical Union, 232 pp.Google Scholar
  26. Schottky, W. and Wagner, C. (1931) Theory of ordered mixed phases I. Zeitschr. Phys. Chem. B, 11, 163–210.Google Scholar
  27. Smith, E. (1985) Dislocations and fracture, in Dislocations and Properties of Real Materials. London: Institute of Metals, pp. 205–20.Google Scholar
  28. Van der Hoek, B., Van der Eerden, J.P. and Bennema, P. (1982) Thermodynamical stability conditions for the occurrence of hollow cores caused by stress of line and planar defects. J. Crystallogr. Growth, 56, 621–32.Google Scholar
  29. Wuensch, B.J. (1983) Diffusion in stoichiometric close-packed oxides. NATO Advanced Studies Inst. Ser., 97, 353–76.Google Scholar
  1. Baronnet, A. (1982) Ostwald ripening in solution. The case of calcite and mica. Estudios Geol., 38, 185–98.Google Scholar
  2. Baronnet, A. (1984) Growth kinetics of the silicates. A review of basic concepts. Fortschr. Mineral., 62, 187–232.Google Scholar
  3. Bravais, A. (1866) Etudes Cristallographiques. Paris: Gauthier-Villars.Google Scholar
  4. Burton, W.K., Cabrera, N. and Frank, F.C. (1951) the growth of crystals and the equilibrium structure of their surfaces. Phil. Trans. R. Soc. Lond., 243, 299–358.Google Scholar
  5. Dekeyser, W. and Amelinckx, S. (1955) Les Dislocations et la Croissance des Cristaux. Paris: Masson.Google Scholar
  6. Donnay, J.D.H. and Harker, D. (1937) A new law of crystal morphology extending the law of Bravais. Am. Mineral., 22, 446–67.Google Scholar
  7. Grigor'ev, D.P. (1965) Ontogeny of Minerals. Jerusalem: Israel Program for Scientific Translations.Google Scholar
  8. Hartman, P. and Perdok, W.G. (1955) On the relations between structure and morphology of crystals. Acta Crystalloger., 8, 49–52.Google Scholar
  9. Jambon, A. (1980) Isotopic fractionation: a kinetic model for crystals growing from silicate melts. Geochim. Cosmochim, Acta, 44, 1373–80.Google Scholar
  10. Kirkpatrick, R.J. (1983) Theory of nucleation in silicate melts. Am. Mineral., 68, 66–77.Google Scholar
  11. Kirkpatrick, R.J., Kuo, L.C. and Melchior, J. (1981) Crystal growth in incongruently-melting compositions: programmed cooling experiments with diopside. Am. Mineral., 66, 223–41.Google Scholar
  12. Kostov, I. (1965) Crystal habit and mineral genesis. Bull. Strasimir Dimitrov Inst. Geol., 14, 33–49.Google Scholar
  13. Lofgren, G. (1980) Experimental studies on the dynamic crystallization of silicate melts, in Physics of Magmatic Processes (ed. R.B. Hargraves). Princeton. NJ: Princeton University Press, pp. 487–551.Google Scholar
  14. Paquette, J. and Reeder, R.J. (1995) Relationship between surface structure, growth mechanism, and trace element incorporation in calcite. Geochim. Cosmochim. Acta, 59, 735–49.Google Scholar
  15. Stranski, I.N. (1928) Zur theoric der Kristallswachstums. Zeitschr. Phys. Chem. A, 136, 259–78.Google Scholar
  16. Sunagawa, I. (1977) Natural crystallization. J. Crystal Growth, 42, 214–23.Google Scholar
  17. Sunagawa, I. (1984) Growth of crystals in nature, in Materials Science of the Earth's Interior (ed. I. Sunagawa). Tokyo: Terra Scientific Publication Company, pp. 61–103.Google Scholar
  18. Sunagawa, I. (1987) Morphology of Minerals, in Morphology of Crystals: Part B (ed. I. Sunagawa). Tokyo: Terra Scientific Publication Company, pp. 509–87.Google Scholar
  1. Bragg, W.L. (1937) Atomic Structure of Minerals. New York: Cornell University Press, 292 pp.Google Scholar
  2. Dana, E.S. (revised by W.E. Ford) (1945) A Textbook of Minerology. New York: John Wiley & Sons Inc., 851 pp.Google Scholar
  3. Deer, W.A., Howie, R.A. and Zussman, J. (1966) An Introduction to the Rock-forming Minerals. New York: John Wiley & Sons Inc., 528 pp.Google Scholar
  4. Fyfe, W.S. (1964) Geochemistry of Solids. New York: McGraw-Hill, 199 pp.Google Scholar
  5. Geotimes, September 1995. Mineralogy, a special issue of this journal on modern aspects of mineralogy including surface techniques, bio-mineralization, minerals in weathering processes.Google Scholar
  6. Klein, C. and Hurlbut, C. Jr. (1993) Manual of Mineralogy. New York: John Wiley & Sons Inc., 681 pp.Google Scholar
  7. Lowenstam, H.A. and Weiner, S. (1989). On Biomineralization. Oxford: Oxford University Press, 324 pp.Google Scholar
  8. Pedersen, K. (1994) The deep biosphere. Earth Sci. Rev., 34, 243–260.Google Scholar
  1. Berry, L.G. and Mason, B. (1959) Mineralogy. San Francisco: W.H. Freeman Co., 630 pp.Google Scholar
  2. Carten, R.B., Geralty, E.P., Walker, B.M. et al. (1988) Cyclic generation of weakly and strongly mineralizing instructions in the Henderson prophyry molybdenum deposit, Colorado: correlation of igneous features with high-temperature hydrothermal alteration. Econ. Geol., 83, 266–96.Google Scholar
  3. Carten, R.B., White, W.H. and Stein, H.J. (1993) High-grade granite-related molybdenum systems: classification and origin, in Mineral Deposit Modeling (ed. R.V. Kirkham et al.) Toronto: Geological Association of Canada, Special Paper 40, pp. 521–54.Google Scholar
  4. Cox, D.P. and Singer, D.A. (eds) (1986) Mineral Deposit Models. US Geological Survey Bulletin, 1693, 379 pp.Google Scholar
  5. Hansuld, J.A. (1966) Behavior of molybdenum in secondary dispersion media-a new look at an old geochemical puzzle. Mining Eng., 18, 73–7.Google Scholar
  6. Hedenquist, J.W. and Lowenstern, J.B. (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature, 370, 519–27.Google Scholar
  7. King, R.U., Shawe, D.R. and MacKevett, E.M. Jr. (1973) Molybdenum. US Geol. Surv. Prof. Paper, 820, 425–35.Google Scholar
  8. Krauskopf, K.B. (1967) Introduction to Geochemistry. New York: McGraw-Hill, Inc., 721 pp.Google Scholar
  9. Ludington, S., Bookstrom, A.A., Kamilli, R.J., Walker, B.M. and Klein, D.P. (1995) Climax Mo deposits, in Preliminary Compilation of Descriptive Geoenvironmental Mineral Deposit Models (ed. E.A. du Bray). Washington, DC: US Geological Survey Open-File Report 95–831, pp. 70–4.Google Scholar
  10. US Bureau of Mines (1993) Mineral Commodity Summaries 1993, 201 pp.Google Scholar
  11. Uytenbogaardt, W. and Burke, E.A.J. (1971) Tables for Microscopic Identification of Ore Minerals. Amsterdam: Elsevier Publishing Co., 430 pp.Google Scholar
  12. White, W.H., Bookstrom, A.A., Kamilli, R.J. et al. 1981. Character and origin of Climax-type molybdenum deposits. Econ. Geol., 75, pp. 270–316.Google Scholar
  1. Greenwood, N.N. and Gibb, T.C. (1971) Mössbauer Spectroscopy. London: Chapman and Hall, 659 pp.Google Scholar
  2. Rancourt, D.G. (1988) Pervasiveness of cluster excitations as seen in the Mössbauer spectra of magnetic materials. Hyperfine Interactions, 40, 183–94.Google Scholar
  3. Rancourt, D.G. (1989) Accurate site populations from Mössbauer spectroscopy. Nucl. Instrum. Methods Phys. Res., B44, 199–210.Google Scholar
  4. Rancourt, D.G. (1994a) Mössbauer spectroscopy of minerals I. Inadequacy of Lorentzian-line doublets in fitting spectra arising from quadrupole splitting distributions. Phys. Chem. Miner., 21, 244–9.Google Scholar
  5. Rancourt, D.G. (1994b) Mössbauer spectroscopy of mineral II. Problem of resolving cis and trans octahedral Fe2+ sites. Phys. Chem. Miner., 21, 250–7Google Scholar
  6. Rancourt, D.G. and Ping, J.Y. (1991) Voigt-based methods for arbitrary-shape static hyperfine parameter distributions in Mössbauer spectroscopy. Nucl. Instrum. Methods Phys. Res., B58, 85–97.Google Scholar
  7. Rancourt, D.G., Ping, J.Y. and Berman, R.G. (1994) Mössbauer spectroscopy of minerals III. Octahedral-site Fe2+ quadrupole splitting distributions in the phlogopite-annite series. Phys. Chem. Miner., 21, 258–67.Google Scholar
  8. Rancourt, D.G., McDonald, A.M., Lalonde, A.E. and Ping, J.Y. (1993) Mössbauer absorber thicknesses for accurate site populations in iron-bearing minerals. Am. Mineral., 78, 1–7.Google Scholar


Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Robert L. Cullers
  • David W. Mittlefehldt
  • Guillaume Morin
  • Llyod M. Petrie
  • Ross C. Kerr
  • Cynthia E. A. Palmer
  • Martin Mihaljevic
  • D. R. Bowes
  • J. Koˇler
  • Gregory A. Synder
  • Stephen Roberts
  • Anton P. le Roex
  • Annemarie Meike
  • Alain J. Baronnet
  • William S. Fyfe
  • A. A. Bookstrom
  • D. G. Rancourt

There are no affiliations available