Encyclopedia of Geochemistry

1999 Edition
| Editors: Clare P. Marshall, Rhodes W. Fairbridge


  • J. S. Seewald
  • T. I. Eglinton
  • Scott M. McLennan
  • Douglas L. Miles
  • Cynthia E. A. Palmer
  • Martin Mihaljevic
  • Leon E. Long
  • Michel Rohmer
  • Ju-chin Chen
  • G. Calas
  • P. Jonathan Patchett
Reference work entry
DOI: https://doi.org/10.1007/1-4020-4496-8_11

Laboratory simulations of oil and natural gas formation

A major goal for the petroleum geochemist is to understand the origin of petroleum in relation to maturation of organic-rich sediments. Thermal maturation involves numerous complex chemical and physical processes that modify the structure and composition of sedimentaryorganic matter during burial. Owing to the complexity of natural sedimentary basins, however, factors that regulate these processes are difficult to determine from field studies alone. Consequently, a variety of laboratory simulation techniques have been developed to provide information regarding the rates of reactions as a function of temperature and time, the absolute amounts of products generated, reaction mechanisms, and sources and sinks for individual species involved. For example, results of laboratory experiments demonstrating that some ‘biological marker’ compounds are initially attached to kerogen by chemical bonds but are subsequently released to crude...


Fluid Inclusion Continental Crust Sedimentary Organic Matter Rockeval Pyrolysis Source Reservoir 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Burnham, A.K., Braun, R.L. and Gregg, H.R. (1987) Comparison of methods for measuring kerogen pyrolysis rates and fitting kinetic parameters. Energy Fuels, 1, 452–8.CrossRefGoogle Scholar
  2. Eglinton, T.I. and Douglas, A.G. (1988) Quantitative study of biomarker hydrocarbons released during hydrous pyrolysis. Energy Fuels, 2, 81–8.CrossRefGoogle Scholar
  3. Hoering, T.C. (1984) Thermal reaction of kerogen with added water, heavy water, and pure organic substances. Org. Geochem., 5, 267–78.CrossRefGoogle Scholar
  4. Lewan, M.D. (1997) Experiments on the role of water in petroleum formation. Geochim. Cosmochim. Acta, 61, 3691–3723.CrossRefGoogle Scholar
  5. Lewan, M.D. (1993) Laboratory simulation of petroleum formation: hydrous pyrolysis, in Organic Geochemistry: Principles and Applications (eds. M.H. Engel and S.A. Macko). New York: Plenum Press, pp. 419–42.CrossRefGoogle Scholar
  6. Mango, F.D., Hightower, J.W. and James, A.T. (1994) Catalysis in the origin of natural gas, Nature, 368, 536–8.CrossRefGoogle Scholar
  7. Seewald, J.S. (1994) Evidence for metastable equilibrium between hydrocarbons under hydrothermal conditions. Nature, 370, 285–7.CrossRefGoogle Scholar
  8. Saxby, J.O. and Riley, K.W. (1984) Petroleum generation by laboratory-scale pyrolysis over six years simulating conditions in a subsiding basin. Nature, 308, 177–9.CrossRefGoogle Scholar
  9. Tannenbaum, E. and Kaplan, I.R. (1985) Low-M T hydrocarbons generated during hydrous and dry pyrolysis of kerogen. Nature, 317, 708–9.CrossRefGoogle Scholar
  10. Tissot, B.P. and Welte, D.H. (1984) Petroleum Formation and Occurrence, 2nd edn. Berlin: Springer-Verlag, 699 pp.CrossRefGoogle Scholar
  1. Chenery, S. and Cook, J.M. (1993) Determination of rare earth elements in single mineral grains by laser ablation microprobe–inductively coupled plasma mass spectrometry–preliminary study. J. Anal. Atomic Spectrom., 8, 299–303.CrossRefGoogle Scholar
  2. Chenery, S., Cook, J.M., Styles, M. and Cameron, E.M. (1995) Determination of the three dimensional distributions of precious metals in sulphide minerals by laser ablation microprobe–inductively coupled plasma–mass spectrometry (LAMP–ICP–MS). Chem. Geol., 124, 55–65.CrossRefGoogle Scholar
  3. Darke, S.A. and Tyson, J.F. (1993) Interaction of laser radiation with solid materials and its significance to analytical spectrometry. A review. J. Anal. Atomic Spectrom., 8, 145–209.CrossRefGoogle Scholar
  4. Feng, R., Machado, N. and Ludden, J. (1993) Lead geochronology of zircon by laser probe–inductively coupled plasma mass spectrometry (LP–ICPMS). Geochim. Cosmochim. Acta, 57, 3479–86.CrossRefGoogle Scholar
  5. Ferguson, H.I.S., Mentall, J.E. and Nicholls, R.W. (1964) Laser excitation of powdered solids. Nature, 204, 1295.CrossRefGoogle Scholar
  6. Foley, S.F., Jackson, S.E., Fryer, B.J., Greenhough, J.D. and Jenner, G.A. (1996) Trace element partition coefficients for clinopyroxene and phlogopite in an alkaline lamprophyre from Newfoundland by LAM–ICP–MS. Geochim. Cosmochim. Acta, 60, 629–38.CrossRefGoogle Scholar
  7. Fryer, B.J., Jackson, S.E. and Longerich, H.P. (1995) The design, operation and role of the laser-ablation microprobe coupled with an inductively coupled plasma–mass spectrometer (LAM–ICP–MS) in the earth sciences. Can. Mineral., 33, 303–12.Google Scholar
  8. Gray, A.L. (1985) Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry. Analyst, 110, 551–6.CrossRefGoogle Scholar
  9. Huang, Y., Shibata, Y. and Morita, M. (1993) Micro laser ablation-inductively coupled plasma mass spectrometry. 1. Instrumentation and performance of micro laser ablation system. Anal. Chem., 65, 2999–3003.CrossRefGoogle Scholar
  10. Jarvis, K.E. and Williams, J.G. (1993) Laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS): a rapid technique for the direct, quantitative determination of major, trace and rare-earth elements in geologic samples. Chem. Geol., 106, 251–62.CrossRefGoogle Scholar
  11. Jenner, G.A., Foley, S.F., Jackson, S.E., Green, T.H., Fryer, B.J. and Longerich, H.P. (1994) Determination of partition coefficients for trace elements in high pressure–temperature experimental run products by laser ablation microprobe–inductively coupled plasma–mass spectrometry (LAM–ICP–MS). Geochim. Cosmochim. Acta, 58, 5099–103.Google Scholar
  12. Longerich, H.P., Jackson, S.E., Fryer, B.J. and Strong, D.F. (1993) The laser ablation microprobe–inductively coupled plasma–mass spectrometer. Geosci. Can., 20, 21–7.Google Scholar
  13. Maiman, T.H. (1960) Stimulated optical radiation in ruby. Nature, 187, 493–4.CrossRefGoogle Scholar
  14. Poitrasson, F. and Chenery, S. (1995) A high spatial resolution laser inductively coupled plasma mass spectrometer and its application for fluid-accessory mineral interaction studies. TERRA nova, 7, (Suppl. 1), 344.Google Scholar
  15. Querol, X. and Chenery, S. (1995) Determination of trace element affinities in coal by laser ablation microprobe–inductively coupled plasma mass spectrometry. Geol. Soc. Lond. Spec. Publ., 82, 147–55.CrossRefGoogle Scholar
  16. Shepherd, T.J. and Chenery, S.R. (1995) Laser ablation ICP–MS elemental analysis of individual fluid inclusions: An evaluation study. Geochim. Cosmochim. Acta, 59, 3997–4007.CrossRefGoogle Scholar
  17. Thompson, M., Goulter, J.E. and Sieper, F. (1981) Laser ablation for the introduction of solid samples into an inductively coupled plasma for atomic-emission spectrometry. Analyst, 106, 32–39.CrossRefGoogle Scholar
  1. Firestone, R.B. (1996) Table of Isotopes, Volume II: A = 151–272. New York: Wiley-Interscience, 2877 pp.Google Scholar
  2. Ghiorso, A., Sikkeland, T., Larsh, A.E. and Latimer, R.M. (1961) New Element, Lawrencium, Atomic Number 103. Phys. Rev. Lett., 6, 473.CrossRefGoogle Scholar
  3. Seaborg, G.T. and Loveland, W.D. (1990) The Elements Beyond Uranium. New York: Wiley-Interscience, 359 pp.Google Scholar
  1. Jaworski, J. (1987) Lead, in Lead, Mercury, Cadmium and Arsenic in the Environment, Scope 31 (eds T.C. Hutchinson and K.M. Meema). New York: Wiley and Sons, pp. 3–17.Google Scholar
  2. Niragu, J.O. (1978) Lead in soils, sediments and major rock types, in The Geochemistry of Lead in the Environment (ed. J.C. Nriagu). Amsterdam: Elsevier, pp. 15–72.Google Scholar
  1. Albarede, F. and Juteau, M. (1984) Unscrambling the lead model ages. Geochim. Cosmochim. Acta, 48, 207–12.CrossRefGoogle Scholar
  2. Allègre, C.J. (1987) Isotope geodynamics. Earth Planet. Sci. lett., 86, 175–203.CrossRefGoogle Scholar
  3. Allègre, C.J., Lewin, E. and Dupré, B. (1988) A coherent crust–mantle model for the uranium–thorium–lead isotopic system. Chem. Geol., 70, 211–34.CrossRefGoogle Scholar
  4. Allègre, C.J., Manhès, G. and Göpel, C. (1995) The age of the Earth. Geochim. Cosmochim. Acta, 59, 1445–56.CrossRefGoogle Scholar
  5. Dalrymple, G.B. (1991) The Age of the Earth. Stanford: Standord University Press, 474 pp.Google Scholar
  6. Dickin, A.P. (1981) Isotope geochemistry of Tertiary igneous rocks from the Isle of Skye, N.W. Scotland. J. Petrol., 22, 155–89.CrossRefGoogle Scholar
  7. Doe, B.R. and Stacey, J.S. (1974) The application of lead isotopes to the problem of ore genesis and the ore prospect evaluation: a review. Econ Geol., 69, 757–76.CrossRefGoogle Scholar
  8. Gariépy, C. and Dupré, B. (1991) Pb isotopes and crust–mantle evolution. Mineral. Assoc. Canada Short Course Handbook, Applic. Radiogenic Isotope Systems to Problems in Geology, 191–224.Google Scholar
  9. Holmes, A. (1946) An estimate of the age of the Earth. Nature, 157, 680–4.CrossRefGoogle Scholar
  10. Houtermans, F.G. (1946) Die Isotopenhäufigkeiten in natürlichen Blei und das Alter des Urans, Naturwissenschaften, 33, 185–6.CrossRefGoogle Scholar
  11. Moorbath, S., Welke, H. and Gale, N.H. (1969) The significance of lead isotope studies in ancient, high-grade metamorphic basement complexes, as exemplified by the Lewisian rocks of northwest Scotland. Earth Planet. Sci. Lett., 6, 245–56.CrossRefGoogle Scholar
  12. Patterson, C. (1955) The Pb207/Pb206 ages of some stone meteorites. Geochim. Cosmochim. Acta, 7, 151–3.CrossRefGoogle Scholar
  13. Stacey, J.S. and Kramers, J.D. (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett., 26, 207–21.CrossRefGoogle Scholar
  14. Tatsumoto, M., Knight, R.J. and Allègre, C.J. (1973) Time differences in the formation of meteorites as determined from the ratio of lead-207 to lead-206. Science, 180, 1279–83.CrossRefGoogle Scholar
  1. Gambacorta, A., Gliozzi, A. and de Rosa, M. (1995) Archael lipids and their biotechnological applications. World J. Microbiolo. Biotechnol., 11, 115–31.CrossRefGoogle Scholar
  2. Kleemann, G., Poralla, K., Englert, G., et al. (1990) Tetrahymanol from the phototrophic bacterium Rhodopseudomonas palustris: first report of a gammacerane triterpene from a prokaryote. J. Gen. Microbiol., 136, 2251–553.CrossRefGoogle Scholar
  3. Liaaen-Jensen, S. (1979) Carotenoids, a chemosystematic approach. Pure Appl. Chem., 51, 1629–35.CrossRefGoogle Scholar
  4. Ourisson, G., Rohmer, M. and Poralla, K. (1987) Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Annu. Rev. Microbiol., 41, 301–33.CrossRefGoogle Scholar
  5. Ratledge, C. and Wilkinson, S.G. (1989) Microbial Lipids, Vol. 1 and 2. London: Academic Press, 963 and 726 pp.Google Scholar
  6. Rohmer, M. (1993) The biosynthesis of triterpenoids of the hopane series: a mine of new enzyme reactions. Pure Appl. Chem., 65, 1293–8.CrossRefGoogle Scholar
  7. Rohmer, M., Bouvier-Navé, P. and Ourisson, G. (1984) Distribution of hopanoid triterpenes in prokaryotes. J. Gen. Microbiol., 130, 1137–50.Google Scholar
  8. Rohmer, M., Seemann, M., Horbach S., Bringer-Meyer S. and Sahm, H. (1996) Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis. J. Am. Chem. Soc., 118, 2564–6.CrossRefGoogle Scholar
  9. Taylor, R.F. (1984) Bacterial triterpenoids. Microbiol. Rev., 48, 181–98.Google Scholar


  1. Chan, L.H. (1987) Lithium isotope analysis by thermal ionization mass spectrometry of lithium tetraborate. Anal. Chem., 59, 2662–5.CrossRefGoogle Scholar
  2. Chan, L.H. and Edmond, J.M. (1988) Variation of lithium isotope composition in the marine environment: a preliminary report. Geochim. Cosmochim. Acta, 52, 1711–17.CrossRefGoogle Scholar
  3. Chan, L.H., Edmond, J.M. and Thompson, G. (1993) A lithium isotope study of hot springs and metabasalts from mid-ocean ridge hydrothermal systems. J. Geophys. Res., B98, 9653–9.CrossRefGoogle Scholar
  4. Chan, L.H., Edmond, J.M., Thompson, G. and Gillis, K. (1992) Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans. Earth Planet. Sci. Lett., 108, 151–60.CrossRefGoogle Scholar
  5. Faure, G. (1991) Principles and Applications of Inorganic Geochemistry. New York: MacMillan, 626 pp.Google Scholar
  6. Meier, A.L. (1982) Determination of lithium isotopes at natural levels by atomic absorption spectrometry. xsAnal. Chem., 54, 2158–61.Google Scholar
  7. Plyusnin, G.S., Posokhov, V.F. and Sandimirova, G.P. (1979) Magmatic differentiation and relationship of 7Li/6Li ratio to fluorine content. Dokl. Acad. Sci. USSR, Earth Sci. Sect., 248, 223–5.Google Scholar
  8. Shima, M. (1986) A summary of extremes of isotopic variations in extra-terrestrial materials. Geochim. Cosmochim. Acta, 50, 577–84.CrossRefGoogle Scholar
  9. Sun, S.S. and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. J. Geol. Soc. Lond., Spec. Publ., 42, 313–45.CrossRefGoogle Scholar
  10. Taylor, T.I. and Urey, H.C. (1938) Fractionation of the Li and K isotopes by chemical exchange with zeolites. J. Chem. Phys., 6, 429–38.CrossRefGoogle Scholar
  11. You, C.F., Chan, L.H., Spivack, A.J. and Gieskes, J.M. (1995) Lithium, boron and their isotopes in sediments and pore waters of ODP Site 808, Nankai Trough: geochemical implications. Geology, 23, 37–40.CrossRefGoogle Scholar
  1. Calas, G. (1986) Spectroscopies optiques dans les mineraux: absorption, réflectivité et luminescence, in Methodes d'étude Spectroscopiques des Minéraux (ed. G. Calas). Paris: Société Française de Minéralogie et Cristallographie, pp. 141–85.Google Scholar
  2. Mao, H.K. et al. (1978) Specific volume measurements of Cu, Mo, Pd. and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar. J. Appl. Phys., 49, 3276–83.CrossRefGoogle Scholar
  3. Marfunin, A.S. (1979) Spectroscopy, Luminescence and Radiation Centers in Minerals. Berlin: Springer Verlag, 352 pp.CrossRefGoogle Scholar
  4. Walker, G. (1985) Mineralogical applications of luminescence techniques, in Chemical Bonding and Spectroscopy in Mineral Chemistry (eds F.J. Berry and D.J. Vaughan). London: Chapman and Hall, pp. 103–40.CrossRefGoogle Scholar
  5. Waychunas, G.A. (1988) Luminescence, X-ray emission and new spectroscopies. Rev. Mineral., 18, 639–98.Google Scholar
  1. Corfu, F. and Noble, S.R. (1992) Genesis of the southern Abitibi greenstone belt, Superior Province, Canada: evidence from zircon Hf isotope analyses using a single filament technique. Geochim. Cosmochim. Acta., 56, 2081–97.CrossRefGoogle Scholar
  2. Patchett, P.J. (1983) Importance of the Lu–Hf isotopic system in studies of planetary chronology and chemical evolution. Geochim. Cosmochim. Acta., 47, 81–91.CrossRefGoogle Scholar
  3. Patchett, P.J. and Tatsumoto, M. (1980) Lu–Hf isochron for the eucrite meteorites. Nature, 288, 571–4.CrossRefGoogle Scholar
  4. Patchett, P.J., Kouvo, O., Hedge, C.E. and Tatsumoto, M. (1981) Evolution of continental crust and mantle heterogenetly: evidence from Hf isotopes. Contrib. Mineral. Petrol., 78, 279–97.CrossRefGoogle Scholar
  5. Patchett, P.J., White, W.M., Feldmann, H., Kielinczuk, S. and Hofmann, A.W. (1984) Haynium/rare earth element fractionation in the sedimentary system and crystal recycling into the Earth's mantle. Earth Planet. Sci. Lett., 69, 365–78.CrossRefGoogle Scholar
  6. Salters, V.J.M. and Hart, S.R. (1989) The hafnium paradox and the role of garnet in the source of mid-ocean-ridge basalts. Nature, 342, 420–2.CrossRefGoogle Scholar
  7. Sguigna, A.P., Larabee, A.J. and Waddington, J.C. (1982) The half-life of 176Lu by γ-γ coincidence measurement. Can. J. Phys., 60, 361–4.CrossRefGoogle Scholar
  8. Stevenson, R.K. and Patchett, P.J. (1990) Implications for the evolution of continental crust from Hf isotope systematics of Archean detrital zircons. Geochim. Cosmochim. Acta, 54, 1683–97.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • J. S. Seewald
  • T. I. Eglinton
  • Scott M. McLennan
  • Douglas L. Miles
  • Cynthia E. A. Palmer
  • Martin Mihaljevic
  • Leon E. Long
  • Michel Rohmer
  • Ju-chin Chen
  • G. Calas
  • P. Jonathan Patchett

There are no affiliations available