Encyclopedia of Geochemistry

1999 Edition
| Editors: Clare P. Marshall, Rhodes W. Fairbridge


  • Martin Mihaljevic
  • Carl O. Moses
  • Cynthia E. A. Palmer
  • Thomas J. Wolery
  • Philippe Ildefonse
  • David R. Janecky
  • Wolfgang H. Runde
  • Mary P. Neu
  • R. R. Barefoot
  • Joaquin Ruiz
  • Philip J. Potts
  • Virgil W. Lueth
  • Elizabeth A. Burton
  • Thomas Staudacher
  • T. Mark Harrison
  • Jenny G. Webster
  • Ronald S. Kaufmann
  • Philip J. Potts
  • Cesare Emiliani
  • Russell S. Harmon
  • Rhodes W. Fairbridge
Reference work entry
DOI: https://doi.org/10.1007/1-4020-4496-8_1

Acid Deposition

The interaction of H+, acids and acid-forming substances in ecosystems is called acid deposition. The following acids can be deposited transported, or accumulated in ecosystems (Ulrich, 1991):

In gas phase: SO2, NOx and H2S (negligible)

In solution phase: H3O+, CO2 · H2O, NH+4, cations forming weak hydroxides: Mn, Al, Fe, heavy metals, organic acids

In solid phase: sulfides, undissociated acidic groups on clay minerals and organic matter, exchangeable and fixed NH+4. Metal cations (bound ± exchangeable on acidic groups of minerals and organic matter), aluminum hydroxosulfates and sulfate adsorbed on aluminum hydroxides, organically bound N (Norg → HNO3, organically bound S (Sorg → H2SO4.

Acid deposition can occur as wet deposition (rain, fog, dew, snow, hail) or by dry deposition of gases and particles. While wet deposition is rapid and depends on precipitation, dry deposition is a slow but continuous process. Oxides of sulfur and nitrogen, products of fuel combustion,...


Atomic Number Activity Coefficient Acid Deposition Thermal Ionization Mass Spectrometry Authigenic Mineral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Hendrey, G.R. (1985) Acid deposition: a national problem, in Acid Deposition, Environmental, Economic and Policy Issues (eds D.D. Adams, W.P. Page). New York: Plenum Press, pp. 1–15.Google Scholar
  2. Pačes, T. (1985) Sources of acidification in Central Europe estimated from elemental budgets in small basins. Nature, 315, 31–6.Google Scholar
  3. Tingey, D.T. (1986) The impact of ozone on agriculture and its consequences, in Acidification and its Policy Implications (ed. T. Schneider). Amsterdam: Elsevier Science Publishers, pp. 53–63.Google Scholar
  4. Ulrich, B. (1991) Deposition of acids and metal compounds, in Metals and their Compounds in the Environment (ed. E. Merian), Weinheim: VCH, pp. 367–78.Google Scholar
  1. Butler, J.N. (1964) Ionic Equilibrium: A Mathematical Approach. Reading, MA: Addison-Wesley, 547 pp.Google Scholar
  2. Davis, J.A. and Kent, D.B. (1990) Surface complexation modeling in aqueous geochemistry, in Mineral-Water Interface Geochemistry, Reviews in Mineralogy, Vol. 23 (Eds M.F. Hochella Jr. and A.F. White). Washington: Mineralogical Society of America, pp. 177–260.Google Scholar
  3. Drago, R.S. and Wayland, B.B. (1965) A double-scale equation for correlating enthalpies of Lewis acid-bases interactions. J. Am. Chem. Soc., 87, 3571–7.Google Scholar
  4. Dzombak, D.A. and Morel, F.M.M. (1990) Surface Complexation Modeling: Hydrous Ferric Oxide. New York: Wiley, 393 pp.Google Scholar
  5. Edwards, J.O. (1954) Correlation of relative rates and equilibria with a double basicity scale. J. Am. Chem. Soc., 76, 1540–7.Google Scholar
  6. Huang, C.P. (1981) The surface acidity of hydrous solids, in Adsorption of Inorganics at Solid-Liquid Interfaces (eds M.A. Anderson and A.J. Rubin). Ann Arbor: Ann Arbor Science, pp. 183–217.Google Scholar
  7. Jensen, W.B. (1980) The Lewis Acid-Base Concept. New York: Wiley, 364 pp.Google Scholar
  8. Pearson, R.G. (ed.) (1973) Hard and Soft Acids and Bases. Benchmark Papers in Inorganic Chemistry. Stroudsburg, PA: Dowden, Hutchinson and Ross, 480 pp.Google Scholar
  9. Schindler, P.W. (1981) Surface complexes at oxide-water interfaces, in Adsorption of Inorganics at Solid-Liquid Interfaces (eds M.A. Anderson and A.J. Rubin). Ann Arbor: Ann Arbor Science. pp. 1–49.Google Scholar
  10. Stumm, W. (1992) Chemistry of the Solid–Water Interface. New York: Wiley, 428 pp.Google Scholar
  1. Cotton, F.A. and Wilkinson, G. (1980) Advanced Inorganic Chemistry. New York: Wiley-Interscience, 1396 pp.Google Scholar
  2. Firestone, R.B. (1996) Table of Isotopes, Volume II: A = 151–272. New York: Wiley-Interscience, 2877 pp.Google Scholar
  3. Ghiorso, A., Sikkeland, T., Larsh, A.E. and Latimer, R.M. (1961) New element, lawrencium, atomic number 103. Phys. Rev. Lett., 6, 473.Google Scholar
  4. Seaborg, G.T. (1963) Man-Made Transuranium Elements. New Jersey: Prentice-Hall, 120 pp.Google Scholar
  5. Seaborg, G.T. and Loveland, W.D. (1990) The Elements Beyond Uranium. New York: Wiley-Interscience, 359 pp.Google Scholar


  1. Glasstone, S., Laidler, K. and Eyring, H. (1951) The Theory of Rate Processes. New York: McGraw-Hill, 600 pp.Google Scholar
  2. Lasaga, A.C. (1981) Rate laws of chemical reactions, in Kinetics of Geochemical Processes, Reviews in Mineralogy, Vol. 8 (eds A.C. Lasaga, R.J. Kirkpatrick). Washington, DC: Mineralogical Society of America, pp. 1–68.Google Scholar


  1. Bates, R.G. (1964) Determination of pH. New York: Wiley and Sons, 425 pp.Google Scholar
  2. Davies, C.W. (1962) Ion Association. London: Butterworths, 190 pp.Google Scholar
  3. Grenthe, I., Fuger, J., Konings, R.J.M. et al. (1992) Chemical Thermodynamics of Uranium, in Chemical Thermodynamics 1 (eds H. Wanner, and I. Forest). Amsterdam: North-Holland, 715 pp.Google Scholar
  4. Guggenheim, E.A. (1935) The specific thermodynamic properties of aqueous solutions of strong electrolytes. Philos. Mag., 19, 588–643.Google Scholar
  5. Harvie, C.E., Möller, N. and Weare, J.H. (1984) The prediction of mineral solubilities in natural waters: the Na–K–Mg–Ca–H–Cl–SO4–OH–HCO3–CO3–CO2–H2O system to high ionic strengths at 25°C. Geochim. Cosmochim. Acta. 48, 723–51.Google Scholar
  6. Helgeson, H.C., Kirkham, D.H. and Flowers, G.C. (1981) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600°C and 5 Kb. Am. J. Sci., 281, 1249–516.Google Scholar
  7. Mesmer, R.E. (1991) Comments on ‘A new approach to measuring pH in brines and other concentrated electrolytes’ by K.G. Knauss, T.J. Wolery and K.J. Jackson. Geochim. Cosmochim. Acta, 55, 1175–6.Google Scholar
  8. Nordstrom, D.K. and Munoz, J.L. (1985) Geochemical Thermodynamics. Menlo Park, California: The Benjamin/Cummings Publishing Co., 477 pp.Google Scholar
  9. Pitzer, K.S. (1973) Thermodynamics of electrolytes–I. Theoretical basis and general equations. J. Phys. Chem., 77, 268–77.Google Scholar
  10. Pitzer, K.S. (1991) Ion interaction approach: theory and data correlation, in Activity Coefficients in Electrolyte Solutions, 2nd edn (ed. K.S. Pitzer). Boca Raton, FL: CRC Press, pp. 75–153.Google Scholar
  11. Robinson, R. A. and Stokes, R.H. (1965) Electrolyte Solutions (2nd edn, revised). London: Butterworths, 571 pp.Google Scholar
  12. Stokes, R.H. and Robinson, R.A. (1948) Ionic hydration and activity in electrolyte solutions. J. Am. Chem. Soc., 70, 1870–8.Google Scholar
  13. Triolo, R., Grigera, J.R. and Blum, L. (1976) Simple electrolytes in the mean spherical approximation. J. Phys. Chem., 80, 1858–61.Google Scholar
  14. Wolery, T.J. (1990) On the thermodynamic framework of solutions (with special reference to aqueous electrolyte solutions). Am. J. Sci., 290, 296–320.Google Scholar
  15. Wolery, T.J. and Jackson, K.J. (1990) Activity coefficients in aqueous salt solutions. Hydration theory equations, in Chemical Modeling of Aqueous Systems II, ACS Symposium Series 416 (eds Melchior, D.C. and Bassett, R.L.). Washington, DC: American Chemical Society, pp. 16–29.Google Scholar


  1. Activation energy, Activation enthalpy, Activation volume;  Chemical kinetics;  Free energy;  Fugacity;  Geochemical thermodynamics;  Gibbs-Duhem equation;  Henry's law;  Standard states
  1. Baker, J.P. and Schofield, C.L. (1982). Aluminium toxicity to fish in acidic waters. Water Air Soil Pollution, 18, 289–309.Google Scholar
  2. Brown, E.T., Bourles, D.L., Colin, F., Sanfo, Z., Raisbeck, G.M. and Yiou, F. (1994). The development of iron crust lateritic systems in Burkina Faso, West Africa examined with in-situ-produced cosmogenic nuclides. Earth Planetary Sci. Lett., 124, 19–33.Google Scholar
  3. Faust, B.C., Labiosa, W., Dai, K.H. et al. (1995). Speciation of aqueous mononuclear Al(III)-hydroxo and other Al(III) complexes at concentration of geochemical relevance by aluminium-27 nuclear magnetic resonance spectroscopy. Geochim. Cosmochim. Acta, 59, 2651–65.Google Scholar
  4. Ildefonse, P., Kirkpatrick, R.J., Montez, B., Calas, G., Flank, A.M. and Lagarde, P. (1994). Clays Clay Min., 42, 276–87.Google Scholar
  5. Irifune, T. (1993). Phase transformation in the earth's mantle and subducting slabs: Implications for their compositions, seismic velocity and density structures and dynamics. Island Arc, 2, 55–71.Google Scholar
  6. McKeown, D.A., Waychunas, G.A. and Brown, G.E. (1985). EXAFS study of the coordination environment of aluminium in a series of silica-rich glasses and selected minerals within the Na2O–Al2O3–SiO2 system. J. Non-Crystalline Solids, 74, 349–71.Google Scholar
  7. Nishiizumi, K., Kohl, C.P., Arnold, J.R., Klein, J., Fink, D. and Middleton, R. (1991). Cosmic ray produced 10 Be and 26Al in antarctic rocks: exposure and erosion history. Earth Planetary Sci. Lett., 104, 440–54.Google Scholar
  1. Allard, B., Olofsson, U., Torstenfeldt, B. and Kipatski, H. (1983). Sorption Behavior of Actinides in Well-defined Oxidation States. Göteborg: Chalmers University of Technology, Dept. Nuclear Chemistry, 1983–05–15.Google Scholar
  2. Choppin, G. (1983). Solution chemistry of the actinides. Radiochim. Acta, 32, 43–53.Google Scholar
  3. Choppin, G.R. (1992). The role of natural organics in radionuclide migration in natural aquifer systems. Radiochim. Acta, 58/59, 113–120.Google Scholar
  4. Katz, J.J. and Seaborg, G.T. (1957). The Chemistry of the Actinide Elements. New York; John Wiley & Sons, 331 pp.Google Scholar
  5. Lederer, C.M. and Shirley, V.S. (1978). Table of Radioactive Isotopes. New York: John Wiley & Sons.Google Scholar
  6. Schulz, W.W. (1976). The Chemistry of Americium. Techn. Information Center Oak Ridge: ERDA Crit. Rev. Series, TID-26971.Google Scholar


  1. Barefoot, R.R., Van Loon, J.C. and Hall, G.E.M. (1993). Analytical methods: field and remote locations, in Analysis of Geological Materials (ed. C. Riddle). New York: Marcel Dekker, pp. 221–61.Google Scholar
  2. Jungreis, E. (1985). Spot Test Analysis. New York: John Wiley & Sons. 315 pp.Google Scholar
  3. McCarthy, J.H., Jr. and Bigelow, R.C. (1990). Multiple gas analyses using a mobile mass spectrometer. J. Geochem. Expl., 38, 233–45.Google Scholar
  4. Parduhn, N.L. (1991). A microbial method of mineral exploration: a case history at the Mesquite deposit. J. Geochem. Expl., 41, 137–49.Google Scholar
  5. Van Loon, J.C. and Barefoot, R.R. (1989). Analytical Methods for Geochemical Exploration. New York: Academic Press. 344 pp.Google Scholar


  1. Alvarez, L.W., Alvarez, W., Asaro, F. and Michel, H.V. (1980). Extraterrestrial cause for the Cretaceous–Tertiary extinctions. Science, 208, 1095–108.Google Scholar
  2. Brown, L., Klein, R., Middleton, I., Sacks, S. and Tera, F. (1980). 10Be in island-arc volcanoes and implications for subduction. Nature, 299, 718–20.Google Scholar
  3. Compston, W. and Williams, I.S. (1984). U–Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass resolution ion microprobe. J. Geophys. Res., 89 (Suppl.) B525–34.Google Scholar
  4. DePaolo, D.J. and Ingram, B.L. (1985). High resolution stratigraphy with strontium isotopes. Science, 227, 938–41.Google Scholar
  5. Der-Chuen Lee and Halliday, A. (1997). Core formation on Mars and differentiated asteroids. Nature, 388, 854–7.Google Scholar
  6. Faure, G. (1986). Principles of Isotope Geology, 2nd edn. New York: John Wiley & Sons, 589 pp.Google Scholar
  7. Harvey, P.K. (1989). Automated X-ray fluorescence in geochemical exploration, in X-ray Fluorescence Analysis in the Geological Sciences (ed. Ahmedali), Short Course 7, Geological Association of Canada Annual Meeting, Montreal, Quebec.Google Scholar
  8. Jarvis, K.E. and Williams, J.G. (1993). Laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS): a rapid technique for the direct quantitative determination of major, trace and rare earth elements in geological samples. Chem. Geol., 106, 251–62.Google Scholar
  9. Libby, F.W. (1982). Nuclear dating. An historical perspective, 1–4, in Nuclear and Chemical Dating Techniques. American Chemical Society Symposium Series 176 (ed. L.A. Currie), Washington DC.Google Scholar
  10. McCandless, T. and Ruiz, J. (1993). Re–Os evidence for regional mineralization in southwestern North America. Science, 261, 1282–6.Google Scholar
  11. Nier, A.O. (1940). A mass spectrometer for routine isotope abundance measurements. Rev. Sci. Instrum., 11, 212–16.Google Scholar
  12. Nier, A.O. (1981). Some reminiscences of isotopes, geochronology and mass spectrometry. Annu. Rev. Earth Planet. Sci., 9, 1–17.Google Scholar
  13. Nockolds, S.R. (1954). Average chemical compositions of some igneous rocks. Bull. Geol. Soc. Am., 65, 1007–32.Google Scholar
  14. Roberts, S.J. and Ruiz, J. (1989). Geochemistry of exposed granulite facies terrains and lower crustal exenoliths in Mexico. J. Geophys. Res., 94, 7961–74.Google Scholar
  15. Rousseau, R.M. (1989). Painless XRF analysis using new generation computer programs, in X-ray Fluorescence Analysis in the Geological Sciences (ed. Ahmedali), Short Course 7, Geological Association of Canada Annual Meeting, Montreal, Quebec.Google Scholar
  16. Walder, A.J. and Freedman, P.A. (1992). Isotopic ratio measurement using a double focusing magnetic sector mass analyser with an inductively coupled plasma ion source. J. Anal. Atomic Spectrosc., 7, 571–5.Google Scholar
  1. Jeffery, P.G. (1975). Chemical Methods of Rock Analysis. Oxford: Pergamon.Google Scholar
  2. Potts, P.J. (1987). A Handbook of Silicate Rock Analysis. Glasgow: Blackie, 622 pp.Google Scholar
  3. Riddle, C. (ed.) (1993). Analysis of Geological Materials. New York: Dekker, 463 pp.Google Scholar
  1. Boyle, R.W. and Jonasson, I.R. (1984). The geochemistry of antimony and its use as an indicator element in geochemical prospecting. J. Geochem. Expl., 20, 223–302.Google Scholar
  2. Fergusson, J.E. (1990). The Heavy Elements: Chemistry, Environmental Impact and Health Effects. New York: Pergamon Press, 614 pp.Google Scholar
  3. Onishi, H. (1969). Antimony, in Handbook of Geochemistry (ed. K.H. Wedepohl). New York: Springer-Verlag, pp. 51–A–1–51–O–1.Google Scholar
  1. Baas Becking, L.G.M., Kaplan, I.R. and Moore, D. (1960). Limits of the natural environments in terms of pH and oxidation-reduction potentials. J. Geol., 68, 243–84.Google Scholar
  2. Berner, E.K. and Berner, R.A. (1987). The Global Water Cycle: Geochemistry and Environment. Englewood Cliffs, NJ: Prentice-Hall, 397 pp.Google Scholar
  3. Boggs, S. Jr. (1992). Petrology of Sedimentary Rocks. New York: Macmillan, 707 pp.Google Scholar
  4. Collins, A.G. (1975). Geochemistry of Oilfield Brines. Amsterdam: Elsevier, 496 pp.Google Scholar
  5. Drever, J.I. (1982). The Geochemistry of Natural Waters. Englewood Cliffs, NJ: Prentice-Hall, 388 pp.Google Scholar
  6. Faure, G. (1991). Principles and Applications of Inorganic Geochemistry. New York: Macmillan, 626 pp.Google Scholar
  7. Helgeson, H.C., Brown, T.H., Nigrini, A. and Jones, T.A. (1970). Calculations of mass transfer in geochemical processes involving aqueous solutions. Geochim. Cosmochim. Acta, 32, 569–92.Google Scholar
  8. Kharaka, Y.K. and Barnes, I. (1973). SOLMINEQ: Solution–Mineral Equilibrium Computations. National Technical Information Service Technical Report PB214–899. 82 pp.Google Scholar
  9. Millero, F.T. and Schreiber, D.R. (1982). Use of the ion pairing model to estimate activity coefficients of the ionic components of natural waters. Am. J. Sci., 282, 1508–40.Google Scholar
  10. Morel, F.M.M. and Hering, J.G. (1993). Principles and Applications of Aquatic Chemistry. New York: Wiley-Interscience, 588 pp.Google Scholar
  11. Morel, F.M.M. and Morgan, J.J. (1972). A numericl method for computing equilibria in aqueous systems. Environ. Sci. Technol., 6, 58–67.Google Scholar
  12. Morse, J.W. and Mackenzie, F.T. (1990). Geochemistry of Sedimentary Carbonaes. Amsterdam: Elsevier, 707 pp.Google Scholar
  13. Pankow, J.F. (1991). Aquatic Chemistry Concepts. Chelsea, MI: Lewis Publishers, 683 pp.Google Scholar
  14. Stumm, W. and Morgan, J.J. (1970). Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters. New York: Wiley-Interscience, 583 pp.Google Scholar
  15. Truesdell, A.H. and Jones, B.F. (1974). WATEQ: A computer program for calculating chemical equilibria of natural water. J. Res. US Geol. Surv., 2, 233–48.Google Scholar
  1. Cook, G.A. (1961). Argon, helium and the rare gases, in The Elements of the Helium Group, Vol. 1. New York, London: Interscience Publishers.Google Scholar
  2. Dalrymple, G.B. and Lanphere, M.A. (1969). Potassium Argon Dating. San Francisco: W.H. Freeman Co., 257 pp.Google Scholar
  3. Gillot, P.-Y. and Cornette, Y. (1986). The Cassignol technique for potassium-argon dating precision and accuracy: examples from the late Pleistocene to recent volcanics from southern Italy. Chem. Geol., 59, 205–22.Google Scholar
  4. Merrihue, C.M. and Turner, G. (1966). Potassium-argon dating by activation with fast neutrons. J. Geophys. Res., 71, 2852–7.Google Scholar
  5. Nier, A.O. (1950). A redetermination of the relative abundance of the isotopes of carbon, nitrogen, oxygen, argon and potassium. Phys. Rev., 77, 789–93.Google Scholar
  6. Sarda, P., Staudacher, T. and Allegre, C.J. (1985). 40Ar–36Ar in MORB glasses: constraints on atmosphere and mantle evolution. Earth Planet. Sci. Lett., 72, 357–75.Google Scholar
  7. Staudacher, T., Sarda, P., Richardson, S.H., Allègre, C.J., Sagna, I. and Dmitriev, L.V. (1989). Noble gases in basalt glasses from a mid-Atlantic ridge topographic high at 14°N: geodynamic consequences. Earth Planet. Sci. Lett., 96, 119–33.Google Scholar
  8. Valbracht, P.J., Staudacher, T., Malahoff, A. and Allègre, C.J. (1995). Noble gas systematics of deep riftzone glasses from Loihi Seamount, Hawaii. Earth Planet. Sci. Lett. (submitted).Google Scholar
  1. Dalrymple, G.B. and Lanphere, M.A. (1969). Potassium–Argon Dating. San Francisco: Freeman Co., 258pp.Google Scholar
  2. Friedlander, G., Kennedy, J.W., Macias, E.S. and Miller, J.M. (1981). Nuclear and Radiochemistry, 3rd edn. New York: Wiley.Google Scholar
  3. Garner, E.L., Murphy, T.J., Gramlich, J.W., Paulsen, P.J. and Barnes, I.L. (1975). Absolute isotopic abundance ratios and the atomic weight of a reference sample of potassium. J. Res. Natl. Bur. Stand., 79A, 713–25.Google Scholar
  4. Humayun, M. and Clayton, R.N. (1995). Precise determination of the isotopic composition of potassium: application to terrestrial rocks and soils. Geochem. Cosmochim. Acta, 59, 2115–30.Google Scholar
  5. McDougall, I. and Harrison, T.M. (1988). Geochronology and Thermochronology by the 40Ar/39Ar Method. New York: Oxford University Press, 212pp.Google Scholar
  1. Cullen, W.R., and Reimer, K.J. (1989). Arsenic speciation in the environment. Chem. Rev., 89, 713–64.Google Scholar
  2. Nriagu, J.O. (1994). Arsenic in the Environment, Advances in Environmental Sciences, Vol. 26. New York: John Wiley & Sons, 430 pp.Google Scholar
  1. Buckley, D.E. and Cranston, R.E. (1971) Atomic absorption analyses of 18 elements from a single decomposition of aluminosilicate. Chem. Geol., 7, 273–84.Google Scholar
  2. Van Loon, J.C. (1980) Analytical Atomic Absorption Spectroscopy. New York: Academic Press.Google Scholar
  3. Ebdon, L. (1982) An Introduction to Atomic Absorption Spectroscopy. London: Heydon.Google Scholar
  4. Potts, P.J. (1987) Atomic absorption spectrometry, in A Handbook of Silicate Rock Analysis. Glasgow: Blackie, pp. 106–52.Google Scholar


  1. Emiliani, C. (1990) Avogadro's number. Chem. Eng. News, 68, 3, 34.Google Scholar
  2. Emiliani, C. (1991) Avogadro's number and mole: a royal confusion. J. Geol. Educ., 39, 31–3.Google Scholar
  3. Emiliani, C. (1992) Planet Earth. Cambridge: Cambridge University Press, 718 pp.Google Scholar


  1. Atomic number;  Periodic Table;  Stoichiometry
  1. Faure, G. (1986) Principles of Isotope Geology, 2nd edn. New York: Wiley, 589 pp.Google Scholar
  2. Harvey, B.G. (1965) Nuclear Chemistry. Englewood Cliffs: Prentice-Hall, 120 pp.Google Scholar
  3. Mason, B. and Moore, C.B. (1982) Principles of Geochemistry, 4th edn. New York: wiley, 344 pp.Google Scholar
  1. Bonatti, E. (1972) Authigenesis of minerals–marine, in Encyclopedia of Geochemistry and Environmental Sciences (ed. R. W. Fairbridge). New York: Van Nostrand Reinhold Co., pp. 48–56.Google Scholar
  2. Briskin, M. and Schreiber, B.S. (1973) Authigenic gypsum in marine sediments. Mar. Geol., 28, 37–49.Google Scholar
  3. Dunoyer de Segonzac, C. (1968) The birth and development of the concept of diagenesis. Earth Sci. Rev., 4, 153–201.Google Scholar
  4. Fairbridge, R.W. (ed.) (1972) The Encyclopedia of Geochemistry and Environmental Sciences. New York: Van Nostrand Reinhold Co., 1321 pp.Google Scholar
  5. Fairbridge, R.W. (1981) In Encyclopedia of Mineralogy (ed. K. Frye). Stroudsburg, PA: Hutchinson and Ross, pp. 31–3.Google Scholar
  6. Fairbridge, R.W. (1983) Syndiagenesis-anadiagenesis-epidiagenesis: phases in lithogenesis, in Diagenesis in Sediments and Sedimentary Rocks, 2 (eds G. Larsen and G.V. Chilinger). Amsterdam: Elsevier, pp. 17–113.Google Scholar
  7. Fairbridge, R.W. and Bourgeois, J. (eds) (1978) Encyclopedia of Sedimentology. Stroudsburg, PA: Dowden, Hutchinson and Ross, 901 pp.Google Scholar
  8. Friedman, G.M., Sanders, J.E. and Kopaska-Merkel, D.C. (1992) Principles of Sedimentary Deposits: Stratigraphy and Sedimentology. New York: Macmillan, 717 pp.Google Scholar
  9. Frye, K. (ed.) (1981) Encyclopedia of Mineralogy. Stroudsburg, PA: Hutchinson and Ross, 794 pp.Google Scholar
  10. Garrels, R.M. and Christ, C.L. (1965) Solutions, Minerals and Equilibria. New York: Harper and Row, 450 pp. (Re-issued by Freeman, Cooper and Co. 1975.)Google Scholar
  11. Kalkowsky, F. (1880) Ueber die Erforschung der archaeischen Formationen. Neues Jahrb Mineral., 1, 1–22.Google Scholar
  12. Kastner, M. (1971) Authigenic feldspars in carbonate rocks. Am. Mineral., 56, 1403–42.Google Scholar
  13. MacFadyen, W.A. (1950) Sandy gypsum crystals from Berbera, British Somaliland. Geol. Mag., 87, 409–20.Google Scholar
  14. Milton, X.X. (1981) In Encyclopedia of Mineralogy (ed. K. Frye). Stroudsburg, PA: Hutchinson and Ross, pp. 195–9.Google Scholar
  15. Revelle, R.R. and Fairbridge, R.W. (1957) Carbonates and carbon dioxide. Treatise on Marine Ecology and Paleoecology. Geol. Soc. Am. Mem., 67, 129–296.Google Scholar
  16. Shelton, J.W. (1964) Authigenic kaolinite in sandstone. J. Sediment. Petrol., 34, 102–111.Google Scholar
  17. Sheppard, R.A. and Gude, A.J., III (1973) Zeolites and associated authigenic silicate minerals in tuffaceous rocks of the Big Sandy Formation, Mohave County, Arizona. US Geol. Surv., Prof. Pap., 830, 36 pp.Google Scholar
  18. Spencer, E. (1925) Albite and other authigenic minerals in limestone from Bengal. Mineral. Mag., 20, 365–81.Google Scholar
  19. Stephens, C.G. (1971) Laterite and silcrete in Australia. Geoderma, 5, 5–52.Google Scholar
  20. Teodorovich, G.I. (1961) Authigenic Minerals in Sedimentary Rocks. New York: Consultants Bureau, 120 pp.Google Scholar
  21. Tucker, M.E. and Wright, V.P. (1990) Carbonate Sedimentology. Oxford: Blackwell, 482 pp.Google Scholar
  22. White, D.E. (1957) Magmatic, connate and metamorphic waters. Bull. Geol. Soc. Am., 68, 1659–82.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Martin Mihaljevic
  • Carl O. Moses
  • Cynthia E. A. Palmer
  • Thomas J. Wolery
  • Philippe Ildefonse
  • David R. Janecky
  • Wolfgang H. Runde
  • Mary P. Neu
  • R. R. Barefoot
  • Joaquin Ruiz
  • Philip J. Potts
  • Virgil W. Lueth
  • Elizabeth A. Burton
  • Thomas Staudacher
  • T. Mark Harrison
  • Jenny G. Webster
  • Ronald S. Kaufmann
  • Philip J. Potts
  • Cesare Emiliani
  • Russell S. Harmon
  • Rhodes W. Fairbridge

There are no affiliations available