Skip to main content

Capping of Contaminated Coastal Areas

The rapid and under-regulated development of industries in the past has left major contamination problems in several coastal and estuarine areas. Such contamination from historical chemical releases (industrial discharges, storm sewers, wastewater, landfill runoff, and leachate) severely impairs the ecological and recreational functions of the estuary/ocean. The discharged contaminants typically adhere to the fine sediments and settle in low-energy zones, which are conducive to deposition. Once settled, such sediments can exert significant oxygen demand, reduce benthic diversity, and result in poor water quality.

Contaminated sediment removal can be expensive because a high degree of efficiency and reliability is required in such operations. Capping is an attractive, nonintrusive and cost-effective method of remediating contaminated sediments in rivers and harbors, where draft restriction is not a major concern. The same physicochemical properties...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Averett, D.E., and Francingues, N.R., 1994. Sediment remediation: an international review. In Proceedings Dredging’ 94 Conference, American Society of Civil Engineers, pp. 596–605.

    Google Scholar 

  2. Fredette, T.J., Germano, J.D., Carey, D.A., Murray, P.M., and Kullberg, P.G., 1992. Chemical stability of capped dredged material disposal mounds in Long Island Sound. Chemistry and Ecology, 7: 173–194.

    Article  Google Scholar 

  3. Hull, J., Jersaka, J., Pochop, P., and Cummings, J., 1998. Evaluating a new in-situ capping technology for mitigating contaminated sediments. In Proceedings Wodcon—XV Conference. World Dredging Association, pp. 555–576.

    Google Scholar 

  4. Laboyrie, H., and Flach, B., 1998. The handling of contaminated dredged material in the Netherlands. In Proceedings Wodcon—XV Conference. World Dredging Association, pp. 513–526.

    Google Scholar 

  5. Lillycrop, L., and Clausner, J., 1998. Numerical design of the 1997 capping project at the Mud Dump Site. In Proceedings Wodcon—XV Conference. World Dredging Association, pp. 937–952.

    Google Scholar 

  6. Mohan, R.K., 1997. Design and construction of subaqueous caps for restoring contaminated coastal areas. In Proceedings, Coastal Zone’ 97 Conference. University of Massachusetts, pp. 763–765.

    Google Scholar 

  7. Mohan, R.K., D’Hollander, R.D., Johnson, A.N., Brozowski, P., D’Ambrosiio, K.T., and Jerome, J., 1999. Remediation of contaminated sediments by in-place capping—a case study of Rahway River, NJ. Journal of Marine Environmental Engineering, 5: 1–34.

    Google Scholar 

  8. Mohan, R.K., 2000. Modeling the physical and chemical stability of underwater caps in rivers and harbors. In Herbich, J.B. (ed.), Handbook of Ocean and Coastal Engineering. New York: McGraw Hill, Inc., pp. 14.1–14.27.

    Google Scholar 

  9. Nelson, E.E., Vanderheiden, A.L., and Schuldt, A.D., 1994. Eagle harbor superfund project. In Proceedings Dredging’ 94 Conference, American Society of Civil Engineers, pp. 1122–1131.

    Google Scholar 

  10. Palermo, M.R., 1991. Design Requirements for Capping. Vicksburg: US Army Waterways Experiment Station.

    Google Scholar 

  11. Shaw, J., Whiteside, P., and Ng, K., 1998. Contaminated mud in Hong Kong: a case study of contained seabed disposal. In Proceedings Wodcon—XV Conference. World Dredging Association, pp. 799–810.

    Google Scholar 

  12. Strugis, T.C., and Gunnison, D., 1985. New Bedford Harbor Superfund Report No. 6. Vicksburg: US Army Waterways Experiment Station.

    Google Scholar 

  13. Wang, X.Q., Thibodeaux, L.J., Valsaraj, K.T., and Reible, D.D., 1991. Efficiency of capping contaminated sediments in-situ: laboratoryscale experiments on diffusion-adsorption in the capping layer. Environmental Science and Technology, 25: 1578–1584.

    Article  Google Scholar 

  14. Zeeman, A.J., 1993. Subaqueous capping of contaminated sediments. Canadian Geotechnical Journal, 31: 570–577.

    Article  Google Scholar 

  15. Bird, E.C.F., and Schwartz, M.L. (eds.), 1985. The World’s Coastline. New York: Van Nostrand Reinhold, 1071 pp.

    Google Scholar 

  16. Boreen, T., James, N., Wilson, C., and Heggie, D., 1993. Surficial cool-water carbonate sediments on the Otway continental margin, southeastern Australia. Marine Geology, 112: 35–56.

    Article  Google Scholar 

  17. Calhoun, R.S., and Field, M.E., 2001. Beach and reef-flat sediments along the south shore of Molakai, Hawaii. In Robbins, L.L., and Magoon, O.T. (eds.), Carbonate Beaches 2000, USGS and ASCE, Key Largo. Reston, VA: ASCE, pp. 163–171.

    Google Scholar 

  18. James, N.P., Collins, L.B., Bone, Y., and Hallock, P., 1999. Subtropical carbonates in a temperate realm: modern sediments on the southwest Australian shelf. Journal of Sedimentary Petrology, 69: 1297–1321.

    Article  Google Scholar 

  19. Knuuti, K., and Knuuti, K., 2001. A high-latitude carbonate beach in midcoastal Maine. In Robbins, L.L., and Magoon, O.T. (eds.), Carbonate Beaches 2000, USGS and ASCE, Key Largo. Reston, VA: ASCE, pp. 172–180.

    Google Scholar 

  20. Rhodes, E.G., 1982. Depositional model for a chenier plain, Gulf of Carpentaria, Australia. Sedimentology, 29: 201–221.

    Article  Google Scholar 

  21. Richmond, B.M., 2001. Overview of Pacific Island carbonate beach systems. In Robbins, L.L., and Magoon, O.T. (eds.), Carbonate Beaches 2000, USGS and ASCE, Key Largo. Reston, VA: ASCE, pp. 218–228.

    Google Scholar 

  22. Robbins, L.L., and Magoon, O.T. (eds.), 2001. Carbonate Beaches 2000, USGS and ASCE, Key Largo. Reston. VA: ASCE.

    Google Scholar 

  23. Scholle, P.A., Bebout, D.G., and Moore, C.H., 1983. Carbonate Depositional Environments. Tulsa: AAPF Memior 33.

    Google Scholar 

  24. Scoffin, T.P., and Stoddart, D.R., 1983. Beachrock and intertidal cements. In Goudie, A.S., and Pye, K. (eds.), Chemical Sediments and Geomorphology. London: Academic Press, pp. 401–425.

    Google Scholar 

  25. Short, A.D., 2001. Distribution and impact of carbonate sands on southern Australian beach-dune systems. In Robbins, L.L., and Magoon, O.T. (eds.), Carbonate Beaches 2000, USGS and ASCE, Key Largo. Reston, VA: ASCE, pp. 236–250.

    Google Scholar 

  26. Short, A.D., Buckley, R.C., and Fotheringham, D.G., 1989. Preliminary investigations of beach ridge progradation on Eyre Peninsula and Kangaroo Island. Transactions of the Royal Society of South Australia, 113: 145–161.

    Google Scholar 

  27. Bacon, P.R., 1978. Flora and Fauna of the Caribbean. An Introduction to the Ecology of the West Indies. Trinidad: Key Caribbean Publications.

    Google Scholar 

  28. Bagnold, R.A., 1954. The Physics of Blown Sand and Desert Dunes. New York: William Morrow and Co.

    Google Scholar 

  29. Blume, H., 1974. The Caribbean Islands. London: Longman Group Ltd.

    Google Scholar 

  30. Bush, D.M., Webb, R.M.T., González Liboy, J., Hyman, L., and Neal, W.J., 1995. Living with the Puerto Rico Shore. Durham: Duke University Press.

    Google Scholar 

  31. Bythell, J.C., and Buchan, K.C., 1996. Impact of Hurricane Luis on the Coastal and Marine Resources of Anguilla: Marine Ecological Survey. Barbados: British Development Division in the Caribbean.

    Google Scholar 

  32. Cambers, G., 1996. The Impact of Hurricane Luis on the Coastal and Marine Resources of Anguilla, Beach Resources Survey. Barbados: British Development Division in the Caribbean.

    Google Scholar 

  33. Cambers, G., 1997a. Beach changes in the Eastern Caribbean Islands: Hurricane impacts and implications for climate change, In Leatherman, S.P. (ed.), Island States at Risk: Global Climate Change, Development and Population. Journal of Coastal Research, Special Issue No. 24, pp. 29–48.

    Google Scholar 

  34. Cambers, G., 1997b. Planning for Coastline Change: Guidelines for Construction Setbacks in the Eastern Caribbean Islands. CSI info 4, Paris: UNESCO.

    Google Scholar 

  35. Cambers, G., 1998. Coping with Beach Erosion. Paris: UNESCO Publishing.

    Google Scholar 

  36. Cambers, G., and James, A., 1994. Sandy coast monitoring: the Dominica example (1987–1992). UNESCO Reports in Marine Sciences, 63: 91 pp.

    Google Scholar 

  37. Clark, J., 1995. Coastal Zone Management Handbook. Boca Raton: CRC Press.

    Google Scholar 

  38. Clarke, N., and Lettsome, B., 1989. Natural Resources of the British Virgin Islands. Caribbean Studies, Laurel Publications International.

    Google Scholar 

  39. Commonwealth Secretariat, 2000. Small States: Meeting Challenges in the Global Economy. Report of the Commonwealth Secretariat/ World Bank Joint Task Force on Small States.

    Google Scholar 

  40. Craig, R.M., 1984. Plants for Coastal Dunes of the Gulf and South Atlantic Coasts and Puerto Rico. Agriculture Information Bulletin, No. 460, Washington, DC: US Department of Agriculture.

    Google Scholar 

  41. Jones, A., and Sefton, N., 1978. Marine Life of the Caribbean. New York: Macmillan Education Ltd.

    Google Scholar 

  42. Nichols, K.E., and Corbin, C., 1997. Community Based Approaches to Beach Management in St. Lucia, In Cambers, G. (ed.), Managing Beach Resources in the Smaller Caribbean Islands, Papers presented at a UNESCO-University of Puerto Rico Workshop, 21–25 October 1996, Mayaguez, Puerto Rico. Coastal regions and small islands papers #1, UNESCO, pp. 182–190.

    Google Scholar 

  43. Patullo, P. 1996. Last Resorts: The Cost of Tourism in the Caribbean. Jamaica: Ian Randlr Publishers.

    Google Scholar 

  44. Sheets, B., and Williams, J., 2001. Hurricane Watch. New York: Vintage Books, Random House Inc.

    Google Scholar 

  45. Arrow, K., Bolin, B., Costanza, R., Dasgupta, P., Folke, C., Holling, C.S., Jansson, B-O., Levin, S., Maler, K.-G., Perrings, C., and Pimentel, D., 1995. Economic growth, carrying capacity, and the Environment. Science, 268: 520–521.

    Article  Google Scholar 

  46. Busby, P.J., Wainwright, T.C., Bryant, G.J., Lierheimer, L.J., Waples, R.S., Waknitz, F.W., and Lagomarsino, I.V., 1996. Status review of West Coast Steelhead from Washington, Idaho, Oregon, and California. NOAA Technical Memorandum NMFS-NWFSC-27.

    Google Scholar 

  47. Carter, R.W.G., 1989. Coastal Environments: An Introduction to the Physical, Ecological and Cultural Systems of Coastlines. London: Academic Press.

    Google Scholar 

  48. De Ruyck, M.C., Soares, A.G., and MacLachlan, A., 1997. Social carrying capacity as a management tool for sandy beaches. Journal of Coastal Research, 13: 822–830.

    Google Scholar 

  49. Johnson, P., and Thomas, B., 1996. Tourism capacity: a critique. In Briguglio, L. (ed.), Sustainable Tourism in Islands and Small States: Issues and Policies, pp. 118–136.

    Google Scholar 

  50. Kay, R., and Alder, J., 1999. Coastal Planning and Management. London: E and FN Spon.

    Google Scholar 

  51. Rees, W., 1992. Ecological footprints and appropriated carrying capacity: what urban economics leaves out. Environment and Urbanization, 4: 121–130.

    Article  Google Scholar 

  52. Sowman, M.R., 1987. A Procedure for assessing recreational carrying capacity of coastal resort areas. Landscape and Urban Planning, 14: 331–344.

    Article  Google Scholar 

  53. UNEP, 1996. Guidelines for Integrated Planning and Management of Coastal and Marine Areas in the Wider Caribbean Region. UNEP Caribbean Environment Programme, Kingston, Jamaica, 1996.

    Google Scholar 

  54. Hopley, D., 1982. Geomorphology of the Great Barrier Reef: Quaternary Development of Coral Reefs. New York: John Wiley—Interscience.

    Google Scholar 

  55. Hopley, D., 1997. Geology of reef islands of the Great Barrier Reef, Australia. In Vacher, H.L. and Quinn, T.M. (eds.), Geology and Hydrogeology of Carbonate Islands, Developments in Sedimentology Vol. 54. Amsterdam: Elsevier, pp. 835–866. (See other papers on coral islands in this volume.)

    Google Scholar 

  56. Oderdorfer, J.A., and Buddemeier, R.W., 1988. Climate change: effect on reef island resources. Proceedings of the 6th International Coral Reef Symposium, 3: 523–528.

    Google Scholar 

  57. Stoddart, D.R., and Steers, J.A., 1977. The nature and origin of coral reef islands. In Jones, O.A. and Endean, R. (eds.), Biology and Geology of Coral Reefs Vol. IV, Geology 2. New York: Academic Press, pp. 60–105.

    Google Scholar 

  58. Tomascik, T., Mah, A.J., Nontji, A., and Moosa, M.K., 1997. The Ecology of the Indonesian Seas. 2 vols. Hong Kong: Periplus, NY: Academic Press.

    Google Scholar 

  59. Briquet, A., 1930. Le littoral du nord de la France, et son évolution morphologique. Orleans: Tessier.

    Google Scholar 

  60. Foote, Y., Moses, C., Robinson, D., Saddleton, P., and Williams, R., 2000. European shore platform erosion dynamics. Oceanology International 2000, Brighton Conference.

    Google Scholar 

  61. Girard, J., 1907. Les falaises de la Manche. Paris: Leroux.

    Google Scholar 

  62. Hancock, J.M., 1976. The petrology of the chalk. Proceedings of the Geological Association, 86: 499–535.

    Article  Google Scholar 

  63. Hutchinson, J.N., 1972. Field and laboratory studies of a fall in Chalk cliffs at Joss Bay, Isle of Thanet. Proceedings of the Roscoe Memorial Symposium, Cambridge, Henley-on-Thames, pp. 692–706.

    Google Scholar 

  64. Hutchinson, J.N., 1980. Various forms of cliff instability arising from coast erosion in the UK. Fjellsprengningsteknikk-Bergmekanikk-Geoteknikk 1979, pp. 19.1–19.32.

    Google Scholar 

  65. Hutchinson, J.N., 1983. Engineering in a landscape. Inaugural lecture, 9th October 1979. Imperial College of Science and Technology, University of London.

    Google Scholar 

  66. Hutchinson, J.N., 1984. Landslides in Britain and their countermeasures. Journal of Japan Landslide Society, 21(1): 1–24.

    Article  Google Scholar 

  67. Hutchinson, J.N., Bromhead, E.N., and Lupini, J.F., 1980. Additional observations on the landslides at Folkestone Warren. Quarterly Journal of Engineering Geology, 13: 1–31.

    Article  Google Scholar 

  68. Jehu, T.J., 1918. Rock-boring organisms as agents in coast erosion. Scottish Geographical Magazine, 34: 1–11.

    Article  Google Scholar 

  69. Leddra, M.J., and Jones, M.E., 1990. Steady-state flow during undrained loading of chalk. In Chalk—Proceedings International Symposium, Brighton 1989. London, pp. 245–252.

    Google Scholar 

  70. May, V.J., 1971. The retreat of chalk cliffs. Geographical Journal, 137: 203–206.

    Article  Google Scholar 

  71. May, V., and Hansom, J., 2003. Coastal Geomorphology of Great Britain. Peterborough: Joint Nature Conservation Committee.

    Google Scholar 

  72. May, V.J., and Heeps, C., 1985. The nature and rates of change on chalk coastlines. Zeitschrift für Geomorphologie NF, Supplementband, 57:81–94.

    Google Scholar 

  73. Perrin, R.M.S., 1971. The Clay Mineralogy of British Sediments. London: Mineralogical Society.

    Google Scholar 

  74. Precheur, C., 1960. Le littoral de la Manche de Ste Adresse à Ault. Poitiers: S.F.I.L..

    Google Scholar 

  75. So, C.L., 1965. Coastal platforms of the Isle of Thanet, Kent. Transactions of the Institute of British Geographers, 37: 147–156.

    Article  Google Scholar 

  76. Steers, J.A., 1946. The Coastline of England and Wales. Cambridge: Cambridge University Press.

    Google Scholar 

  77. Wood, A., 1968. Beach platforms in the Chalk of Kent. Zeitschrift für Geomorphologie NF, 12: 107–113.

    Google Scholar 

  78. Chappell, J., Omura, A., Esat, T., McMulloch, M., Pandelfi, J., Ota, Y., and Pillans, B., 1996. Reconciliation of Late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records. Earth Planetary, Science Letters, 141: 227–236.

    Article  Google Scholar 

  79. Clark, J.A., 1980. A numerical model of worldwide sea-level changes on a viscoelastic Earth. In N.-A. Mörner (ed.), Earth Rheology, Isostasy, and Eustasy. New York: John Wiley & Sons, pp. 525–534.

    Google Scholar 

  80. Daly, R.A., 1934. The Changing World of the Ice Age. New Haven: Yale University Press.

    Google Scholar 

  81. Fairbanks, R.G., 1989. A 17,000-year glacio-eustatic sea-level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 342: 637–642.

    Article  Google Scholar 

  82. Fairbridge, R.W., 1961. Eustatic changes in sea level. Physics and Chemistry of the Earth, 4: 99–185.

    Article  Google Scholar 

  83. Fairbridge, R.W., and Krebs, O.A., 1962. Sea level and the southern oscillation. Geophysical Journal, 6: 532–545.

    Article  Google Scholar 

  84. Gutenberg, B., 1941. Changes in sea level, postglacial uplift and mobility of the Earth’s interior. Bulletin Geological Society of America, 52: 721–772.

    Google Scholar 

  85. IPCC, 2001. Chapter 11. Sea level changes. IPCC WG1 Third Assessment Report, 78 pp.

    Google Scholar 

  86. Jergersma, S., 1961. Holocene sea-level changes in the Netherlands. Mededelingen van de Geologische Stichting, C4: 1–101.

    Google Scholar 

  87. Lambeck, K., Smither, C., and Ekman, M., 1998. Tests of glacial rebound models for Fennoscandinavia based on instrumented sea and lake-level records. Geophysical Journal International, 135:375–387.

    Article  Google Scholar 

  88. Mörner, N.-A., 1969. The Late Quaternary history of the Kattegatt Sea and the Swedish West Coast: deglaciation, shorelevel displacement, chronology, isostasy and eustasy. Sveruges Geologiska Undersökning, C640: 1–487.

    Google Scholar 

  89. Mörner, N.-A., 1973. Eustatic changes during the last 300 years. Palaeogeography Palaeoclimatology Palaeoecology, 13: 1–14.

    Article  Google Scholar 

  90. Mörner, N.-A., 1976. Eustasy and geoid changes. Journal of Geology, 84: 123–151.

    Article  Google Scholar 

  91. Mörner, N.-A., 1986. The concept of eustasy. A redefinition. Journal of Coastal Research (Special Issue), 1: 49–52.

    Google Scholar 

  92. Mörner, N.-A., 1987. Models of global sea level changes. In Tooley, M.J. and Shennan, I. (ed.), Sea level Changes. Oxford: Blackwell, pp. 333–355.

    Google Scholar 

  93. Mörner, N.-A., 1995. Earth rotation, ocean circulation and paleoclimate. GeoJournal, 37: 419–430.

    Article  Google Scholar 

  94. Mörner, N.-A., 1996a. Sea level variability. Zeitschrift fur Geomorphology N.F., Suppl-Bd. 102: 223–232.

    Google Scholar 

  95. Mörner, N.-A., 1996b. Rapid changes in coastal sea level. Journal of Coastal Research, 12: 797–800.

    Google Scholar 

  96. Peltier, 1998. Postglacial variations in the level of the sea: implications for climate dynamics and soild-earth geophysics. Reviews of Geophysics, 36: 603–689.

    Article  Google Scholar 

  97. Pirazzoli, P.A., 1991. World Atlas of Holocene Sea-Level Changes. Elsevier Oceanographic Series 58: 300 pp.

    Google Scholar 

  98. Scholl, D.W., 1964. Recent sedimentary record in mangrove swamps and rise in sea level over the southwestern coast of Florida. Part 1. Marine Geology, 1: 344–366.

    Article  Google Scholar 

  99. Shackleton, N.J., and Opdyke, N.D., 1973. Oxygen isotope and paleomagnetis stratigraphy of equatorial Pacific core V28-238: oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale. Quaternary Research, 3: 39–55.

    Article  Google Scholar 

  100. Shennan, I., and Woodworth, P.L., 1992. A comparison of late Holocene and twentieth-century sea-level trends from the UK and North Sea region. Geophysical Journal International, 109: 96–105.

    Article  Google Scholar 

  101. Shepard, F.P., 1963. Thirty-five thousand years of sea level. In Clements, T. (ed.), Essays in Marine Geology in Honor of K.O. Emery, 1–10. Los Angeles: Univ. S. Cal. Press.

    Google Scholar 

  102. Tooley, M., 1974. Sea-level changes during the last 9000 years in north-west England. Geographical Journal, 140: 18–42.

    Article  Google Scholar 

  103. Augustinus, P.G.E.F., 1978. The changing shoreline of Surinam (South America), Foundation for Scientific Research in Suriname and Netherlands Antilles. Utrecht: The Netherlands.

    Google Scholar 

  104. Augustinus, P.G.E.F., 1980. Actual development of the chenier coast of Suriname (South America). Sedimentary Geology, 26: 91–113.

    Article  Google Scholar 

  105. Byrne, J.V., LeRoy, D.O., and Riley, C.M., 1959. The chenier plain and its stratigraphy, southwestern Louisiana. Transactions Gulf Coast Association of Geological Societies, 9: 237–260.

    Google Scholar 

  106. Chappell, J., and Grindrod, J., 1984. Chenier plain formation in northern Australia. In Thom, B.G. (ed.), Coastal Geomorphology in Australia. Sydney: Academic Press, pp. 197–231.

    Google Scholar 

  107. Cook, P.J., and Polach, H.A., 1973. Sedimentology and Holocene history of a tropical estuary (Broad Sound, Queensland). Bureau of Mineral Resource Bulletin, 170: 260.

    Google Scholar 

  108. Jennings, J.N., and Coventry, R.J., 1973. Structures and texture of a gravelly barrier island in the Fitzroy Estuary, Western Australia, and the role of mangroves in the shore dynamics. Marine Geology, 15:145–167.

    Article  Google Scholar 

  109. Meldahl, K.H., 1993. Geographic gradients in the formation of shell concentrations: Plio-Pleistocene marine deposits, Gulf of California. Paleogeography, Paleoclimatology, Paleoecology, 101: 1–25.

    Article  Google Scholar 

  110. Otvos, E.G., 2000. Beach ridges—definition and significance. Geomorphology, 32: 83–108.

    Article  Google Scholar 

  111. Otvos, E.G., and Price, W.A., 1979. Problems of chenier genesis and terminology—an overview. Marine Geology, 31: 251–263.

    Article  Google Scholar 

  112. Russell, R.J., and Howe, H.V., 1935a. Geology of Cameron and Vermillion Parishes. Baton Rouge: Louisiana Geological Survey Bulletin, 6.

    Google Scholar 

  113. Russell, R.J., and Howe, H.V., 1935b. Cheniers of southwestern Louisiana. Geographical Review, 25: 449–461.

    Article  Google Scholar 

  114. Thomson, R.W., 1968. Tidal flat sedimentation on the Colorado River Delta, northwest Gulf of California. Geological Society of America Memoirs, 107: 133.

    Google Scholar 

  115. Vann, J.H., 1959. The geomorphology of the Guiana coast. Second Coastal Geography Conference. Coastal Studies Institute, Louisiana State University, Washington, D.C., pp. 153–187.

    Google Scholar 

  116. Woodroffe, C.D., Curtis, R.J., and McLean, R.F., 1983. Development of a chenier plain, Firth of Thames, New Zealand. Marine Geology, 53: 1–22.

    Article  Google Scholar 

  117. Woodroffe, C.D., and Grime, D., 1999. Storm impact and evolution of a mangrove-fringed chenier plain, Shoal Bay, Darwin, Australia. Marine Geology, 159: 303–321.

    Article  Google Scholar 

  118. Balazs, G.H., 1985. Impact of ocean debris on marine turtles: entanglement and ingestion. In Shomura, R.S., and Yoshida, H.O. (eds.), Proceedings of the Workshop on the Fate and Impact of Marine Debris, 1985. National Marine Fisheries Service, Washington, DC as cited in OCRM, 1991.

    Google Scholar 

  119. Coe, J.M., Andersson, S., and Rogers, D.B., 1997. Marine debris in the Caribbean Region. In Coe, J.M., and Rogers, D.B. (eds.), Marine Debris: Sources, Impacts and Solutions, New York: Springer Verlag.

    Chapter  Google Scholar 

  120. Eastern Research Group, Inc., 1989. Development of estimates of garbage disposal in the maritime sectors. In Transportations Systems Center, Research and Special Programs Administration, U.S. Department of Transportation, Washington, DC, in OCRM, 1991.

    Google Scholar 

  121. Golik, A., 1997. Debris in the Mediterranean Sea: types, quantities and behavior. In Coe, J.M., and Rogers, D.B. (eds.), Marine Debris: Sources, Impacts and Solutions.

    Google Scholar 

  122. Liffmann, M., Howard, B., O’Hara, K, and Coe, J.M., 1997. Strategies to reduce, control and minimize land-source marine debris. In Coe, J.M., and Rogers, D.B. (eds.), Marine Debris: Sources, Impacts and Solutions.

    Google Scholar 

  123. Matsumura, S., and Nasu, Keiichi, 1997. Distribution of floating debris in the North Pacific Ocean: sighting surveys 1986–1991. In Coe, J.M., and Rogers, D.B. (eds.), Marine Debris: Sources, Impacts and Solutions.

    Google Scholar 

  124. Nollkaemper, A., 1997. Legal regulation of upland discharges of marine debris: from local to global controls and back. In Coe et al. (eds.), OCRM, 1991. Marine Debris: Status Report and Bibliography, Technical Assistance Bulletin # 104, NOAA, Washington, DC.

    Google Scholar 

  125. PL 100-220, 33 USC, Section 1901 et.seq.

    Google Scholar 

  126. PL 102-587, 16 USC, Section 1421.

    Google Scholar 

  127. PL 106-555, 15 USC, Section 1361 note.

    Google Scholar 

  128. Ribic, C.A., Johnson, S.W., and Cole, C.A., 1997. Distribution, type, accumulation, and source of marine debris in the United States, 1989–1993. In Coe, J.M., and Rogers, D.B. (eds.), Marine Debris: Sources, Impacts and Solutions.

    Google Scholar 

  129. Stewart, T.R., 1989. Perspectives on Medical Waste. The Rockefeller Institute of Government, Albany, NY as quoted in OCRM, (1991).

    Google Scholar 

  130. Stratton, J.A. et al., 1969. Science and Environment, Volume 1, Panel Reports of the Commission on Marine Science, Engineering and Resources, U.S.G.P.O., Washington, DC.

    Google Scholar 

  131. Allison, R.J., 1989. Rates and mechanisms of change in hard rock coastal cliffs. Zeitschrift fur Geomorphologie, 73(Supplement Band): 125–138.

    Google Scholar 

  132. Bryant, E.A., Young, R.W., Price, D.M., and Short, S.A., 1990. Thermo-luminescence and uranium-thorium chronologies of Pleistocene coastal landforms of the Illawarra Region, New South Wales. Australian Geographer, 21: 101–111.

    Article  Google Scholar 

  133. Davies, K.H., 1983. Amino acid analysis of Pleistocene marine molluscs from the Gower Peninsula. Nature, 302: 137–139.

    Article  Google Scholar 

  134. Emery, K.O., and Kuhn, G.G., 1980. Erosion of rock coasts at La Jolla, California. Marine Geology, 37: 197–208.

    Article  Google Scholar 

  135. Emery, K.O., and Kuhn, G.G., 1982. Sea cliffs: their processes, profiles, and classification. Geological Society of America Bulletin, 93: 644–654.

    Article  Google Scholar 

  136. Griggs, G.B., and Trenhaile, A.S., 1994. Coastal cliffs and platforms. In Carter, R.W.G., and Woodroffe, C.D. (eds.), Coastal Evolution. Cambridge: Cambridge University Press, pp. 425–450.

    Google Scholar 

  137. Hutchinson, J.N., 1973. The response of London Clay cliffs to differing rates of toe erosion. Geologia Applicata e Idrogeologia, 8:221–239. Reprinted in 1975 as Building Research Establishment (U.K.) Current Paper CP 27/75.

    Google Scholar 

  138. Kirk, R.M., 1977. Rates and forms of erosion on intertidal platforms at Kaikoura Peninsula, South Island, New Zealand. New Zealand Journal of Geology and Geophysics, 20: 571–613.

    Article  Google Scholar 

  139. Prior, D.B., and Renwick, W.H., 1980. Landslide morphology and processes on some coastal slopes in Denmark and France. Zeitschrift fur Geomorphologie, 34(Supplement Band): 63–86.

    Google Scholar 

  140. Quigley, R.M., and Gelinas, P.J., 1976. Soil mechanics aspects of shoreline erosion. Geoscience Canada, 3: 169–173.

    Google Scholar 

  141. Shepard, F.P., and Kuhn, G.G., 1983. History of sea arches and remnant stacks of La Jolla, California, and their bearing on similar features elsewhere. Marine Geology, 51: 139–161.

    Article  Google Scholar 

  142. Sunamura, T., 1992. Geomorphology of Rocky Coasts. Chichester: John Wiley.

    Google Scholar 

  143. Trenhaile, A.S., 1987. The Geomorphology of Rock Coasts. Oxford: Oxford University Press.

    Google Scholar 

  144. Trenhaile, A.S., 1997. Coastal Dynamics and Landforms. Oxford: Oxford University Press.

    Google Scholar 

  145. Trenhaile, A.S., Pepper, D.A., Trenhaile, R.W., and Dalimonte, M., 1998. Stacks and notches at Hopewell Rocks, New Brunswick, Canada. Earth Surface Processes and Landforms, 23: 975–988.

    Article  Google Scholar 

  146. Trenhaile, A.S., Pérez Alberti, A., MartÍnez Cortizas, A., Costa Casais, M., and Blanco Chao, R., 1999. Rock coast inheritance: an example from Galicia, northwestern Spain. Earth Surface Processes and Landforms, 24: 1–17.

    Article  Google Scholar 

  147. Bokuniewicz, H., and Tanski, J., 1980. Managing localized erosion of coastal bluffs. In Proceedings Coastal Zone’ 80. American Society of Civil Engineers, 3, pp. 1883–1898.

    Google Scholar 

  148. Budetta, P., Galietta, G., and Santo, A., 2000. A methodology for the study of the relation between coastal cliff erosion and the mechanical strength of soil and rock masses. Engineering Geology, 56: 243–256.

    Article  Google Scholar 

  149. Carter, C.H., and Guy, D.E., Jr., 1988. Coastal erosion: processes, timing and magnitudes at the bluff toe. Marine Geology, 84: 1–17.

    Article  Google Scholar 

  150. Carter, C.H., Monroe, C.B., and Guy, D.E., Jr., 1986. Lake Erie shore erosion: the effect of beach width and shore protection structures. Journal of Coastal Research, 2: 17–23.

    Google Scholar 

  151. Davies, D.S., Axelrod, E.W., and O’Conner, J.S., 1972. Erosion of the north shore of Long Island, Marine Science Research Center, State University of New York, Stony Brook, Technical Report, 18.

    Google Scholar 

  152. Griggs, G., and Savoy, L., 1985. Sea cliff erosion. In Griggs, G., and Savoy, L. (eds.), Living with the California Coast. Durham: Duke University Press, pp. 27–34.

    Google Scholar 

  153. Komar, P.D., and Shih, S.-M., 1993. Cliff erosion along the Oregon coast: a tectonic-sea level imprint plus local controls by beach processes. Journal of Coastal Research, 9: 747–765.

    Google Scholar 

  154. Lajoie, K.R., and Mathieson, S.A., 1985. San Francisco to Año Nuevo. In Griggs, G., and Savoy, L. (eds.), Living with the California Coast. Durham: Duke University Press, pp. 140–177.

    Google Scholar 

  155. Richards, K.S., and Lorriman, N.R., 1987. Basal erosion and mass movement. In Anderson, M.G., and Richards, K.S. (eds.), Slope Stability. Chichester: John Wiley & Sons, pp. 331–357.

    Google Scholar 

  156. Robinson, A.H.W., 1980. Erosion and accretion along part of the Suffolk coast of East Anglia, England. Marine Geology, 37: 133–146.

    Article  Google Scholar 

  157. Robinson, L.A., 1977. Marine erosive processes at the cliff foot. Marine Geology, 23: 257–271.

    Article  Google Scholar 

  158. Savoy, L., and Rust, D., 1985. The northern California coast: Oregon border to Shelter Cove. In Griggs, G., and Savoy, L. (eds.), Living with the California Coast. Durham: Duke University Press, pp. 81–105.

    Google Scholar 

  159. Sunamura, T., 1973. Coastal cliff erosion due to waves: field investigations and laboratory experiments. Journal of Faculty of Engineering, University of Tokyo, 32: 1–86.

    Google Scholar 

  160. Sunamura, T., 1977. A relationship between wave-induced cliff erosion and erosive force of waves. Journal of Geology, 85: 613–618.

    Article  Google Scholar 

  161. Sunamura, T., 1982. A predictive model for wave-induced cliff erosion, with application to Pacific coasts of Japan. Journal of Geology, 90: 167–178.

    Article  Google Scholar 

  162. Sunamura, T., 1992. Geomorphology of Rocky Coasts. Chichester: John Wiley & Sons.

    Google Scholar 

  163. Williams, W.W., 1960. Coastal Changes. London: Routledge and Kegan Paul.

    Google Scholar 

  164. Budetta, P., Galietta, G., and Santo, A., 2000. A methodology for the study of the relation between coastal cliff erosion and the mechanical strength of soil and rock masses. Engineering Geology, 56: 243–256.

    Article  Google Scholar 

  165. Carter, C.H., and Guy, D.E., Jr., 1988. Coastal erosion: processes, timing and magnitudes at the bluff toe. Marine Geology, 84: 1–17.

    Article  Google Scholar 

  166. Davies, P., Williams, A.T., and Bomboe, P., 1998. Numerical analysis of coastal cliff failure along the Pembrokeshire Coast National Park, Wales, UK. Earth Surface Processes and Landforms, 23: 1123–1134.

    Article  Google Scholar 

  167. Grainger, P., and Kalaugher, P.G., 1987. Intermittent surging movements of a coastal landslide. Earth Surface Processes and Landforms, 12: 597–603.

    Article  Google Scholar 

  168. Healy, T.R., 1968. Bioerosion on shore platforms in the Waitemata formation, Auckland. Earth Science Journal, 2: 26–37.

    Google Scholar 

  169. Hutchinson, J.N., 1986. Cliffs and shores in cohesive materials: geotechnical and engineering geological aspect. In Proceedings Symposium on Cohesive Shores, National Research Council, Canada, pp. 1–44.

    Google Scholar 

  170. Jones, D.G., and Williams, A.T., 1991. Statistical analysis of factors influencing cliff erosion along a section of the West Wales coast, UK. Earth Surface Processes and Landforms, 16: 95–111.

    Article  Google Scholar 

  171. Kamphuis, J.W., 1987. Recession rate of glacial till bluffs. Journal of Waterway, Port, Coastal and Ocean Engineering, 113: 60–73.

    Article  Google Scholar 

  172. McGreal, W.S., 1979. Marine erosion of glacial sediments from a lowenergy cliffline environment near Kilkeel, Northern Ireland. Marine Geology, 32: 89–103.

    Article  Google Scholar 

  173. Mottershead, D.N., 1994. Spatial variations in intensity of alveolar weathering of a dated sandstone structure in a coastal environment, Westonn-spur-Mare, UK. In Robinson, D.A., and Williams, R.B.G. (eds.), Rock Weathering and Landform Evolution. Chichester: John Wiley & Sons, pp. 151–174.

    Google Scholar 

  174. Stephenson, W.J., and Kirk, R.M., 2000a. Development of shore platforms on Kaikoura Peninsula, South Island, New Zealand. Part One: The role of waves. Geomorphology, 32: 21–41.

    Article  Google Scholar 

  175. Stephenson, W.J., and Kirk, R.M., 2000b. Development of shore platforms on Kaikoura Peninsula, South Island, New Zealand. Part II: The role of subaerial weathering. Geomorphology, 32: 43–56.

    Article  Google Scholar 

  176. Sunamura, T., 1983. Processes of sea cliff and platform erosion. In Komar, P.D. (ed.), Handbook of Coastal Processes and Erosion. Boca Raton: CRC Press, pp. 233–265.

    Google Scholar 

  177. Sunamura, T., 1992. Geomorphology of Rocky Coasts. Chichester: John Wiley & Sons.

    Google Scholar 

  178. Sunamura, T., 1994. Rock control in coastal geomorphic processes. Transactions, Japanese Geomorphological Union, 15: 253–272.

    Google Scholar 

  179. Tsujimoto, H., 1987. Dynamic conditions for shore platform initiation. Science Report, Institute of Geoscience, University of Tsukuba, 8A: 45–93.

    Google Scholar 

  180. Yamanouchi, H., 1977. A geomorphological study about the coastal cliff retreat along the southwest coast of the Atsumi peninsula, central Japan. Science Report, Faculty of Education, Gunma University, 26: 95–128.

    Google Scholar 

  181. Zeman, A.J., 1986. Erodibility of Lake Erie undisturbed tills. In Proceedings Symposium on Cohesive Shores, National Research Council, Canada, pp. 150–169.

    Google Scholar 

  182. Cole, J.E., Fairbanks, R.G., and Shen, G.T., 1993. Recent variability in Southern Oscillation: isotopic results from a Tarawa Atoll coral. Science, 260: 1790–1793.

    Article  Google Scholar 

  183. Cole, J.E., Dunbar, R.B., McClanahan, T.R., and Muthiga, N.A., 2000. Tropical Pacific forcing of decadal SST variability in the western Indian Ocean over the past two centuries. Science, 287: 617–619.

    Article  Google Scholar 

  184. Diaz, H.F., and Markgraf, V. (eds.), 1992. El Niño, Historical and Paleoclimatic Aspects of the Southern Oscillation. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  185. Fedorov, A.V., and Philander, S.G., 2000. Is El Niño changing. Science, 288: 1997–2002.

    Article  Google Scholar 

  186. Francis, R.C., and Hare, S.R., 1994. Decadal-scale regime shifts in the large marine ecosystems of the Northeast Pacific: a case for historical science. Fisheries Oceanography, 3: 279–291.

    Article  Google Scholar 

  187. Goddard, L., and Graham, N.E., 1997. El Niño in the 1990’s. Journal of Geophysical Research, 102: 10,423–10,436.

    Article  Google Scholar 

  188. Gupta, A.K., Anderson, D.M., and Overpeck, J.T., 2003. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature, 421: 354–357.

    Article  Google Scholar 

  189. Heusser, L.E., and Sirocko, F., 1997. Millennial pulsing of environmental change in southern California from the past 24 k.y.: a record of Indo-Pacific ENSO events. Geology, 25: 243–246.

    Article  Google Scholar 

  190. Hurrell, J.W., 1995. Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science, 269: 676–679.

    Article  Google Scholar 

  191. Inman, D.L., Jenkins, S.A., and Elwany, M.H.S., 1996. Wave climate cycles and coastal engineering practice. Coastal Engineers, 1996, Proceedings of the 25th International Conference (Orlando), New York: American. Society Civil Engineers, 25: 314–327.

    Google Scholar 

  192. Inman, D.L., and Jenkins, S.A., 1997. Changing wave climate and littoral drift along the California coast. In Magoon, O.T. et al. (eds.), California and the World Ocean’ 97. Reston, VA: American. Society. Civil Engineers, pp. 538–549.

    Google Scholar 

  193. Inman, D.L., and Jenkins, S.A., 1999. Climate change and the episodicity of sediment flux of small California rivers. Journal of Geology, 107: 251–270.

    Article  Google Scholar 

  194. Mantua, N.J., Hare, S.R., Zhang, Y., Wallace, J.M., and Francis, R.C., 1997. A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of American Meteorological Society, 78: 1069–1079.

    Article  Google Scholar 

  195. Meko, D.M., 1992. Spectral properties of tree-ring data in the United States southwest as related to El Nño, Historical and Paleoclimatic Aspects of the Southern Oscillation, Cambridge, UK: Cambridge University Press.

    Google Scholar 

  196. Minobe, S., 1997. A 50–70 year climatic oscillation over the North Pacific and North America. Geophysical Research Letters, 24:683–686.

    Article  Google Scholar 

  197. Pierce, D.W., Barnett, T.P., and Latif, M., 2000. Connections between the Pacific Ocean tropics and midlatitudes on decadal time scales. Journal of Climate, 13: 1173–1194.

    Article  Google Scholar 

  198. Redmond, K.T., and Cayan, D.R., 1994. El Niño/Southern Oscillation and western climate variability. Nashville, TN: 6th AMS Conference on Climate Variations.

    Google Scholar 

  199. Somerville, R.C.J., 1996. The Forgiving Air, Understanding Environmental Change. Berkeley, CA: University of California Press.

    Google Scholar 

  200. Soutar, A., and Isaacs, J.D., 1974. Abundance of pelagic fish during the 19th and 20th centuries as recorded in anaerobic sediment off the Californias. Fishery Bulletin, 72: 257–294.

    Google Scholar 

  201. Timmermann, A., Oberhuber, J., Bacher, A., Esch, M., Latif, M., and Roeckner, E., 1999. Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature, 398: 694–697.

    Article  Google Scholar 

  202. Walker, G.T., 1928. World weather. Quarterly Journal of Royal Meteorological Society, 54: 79–88.

    Article  Google Scholar 

  203. Wallace, J.M., and Gutzler, D.L., 1981. Teleconnections in the geopotential height field during Northern Hemisphere winter. Monthly Weather Review, 109: 784–812.

    Article  Google Scholar 

  204. Attorney-General v. Chambers, 4 De G.M. &G. 206, 43 Eng. Rep. 486 (1854).

    Google Scholar 

  205. Borax, Ltd. v. Los Angeles, 296 U.S. 10 (1935).

    Google Scholar 

  206. California v. United States, 457 U.S. 273 (1982).

    Google Scholar 

  207. Cole, G.M., 1983. Water Boundaries. Rancho Cordova, CA: Landmark Enterprises.

    Google Scholar 

  208. Convention on the Territorial Sea and the Contiguous Zone, 15 U.S.T. 1606, T.I.A.S. 5639 (1958).

    Google Scholar 

  209. County of St. Clair v. Lovingston, 90 U.S. (23 Wall.) 46, 66 2-69 (1874).

    Google Scholar 

  210. Fishery Conservation and Management Act of 1976, 90 Stat. 331 (1976).

    Google Scholar 

  211. Graber, P.H.F., 1980. The Law of the Coast in a Clamshell (overview and first in series of 26 articles). Shore and Beach, 48(4): 14–20.

    Google Scholar 

  212. Graber, P.H.F., 1981a. The Law of the Coast in a Clamshell (federal), Shore and Beach, 49(1): 16–20.

    Google Scholar 

  213. Graber, P.H.F., 1981b through 1989. The Law of the Coast in a Clamshell, Shore and Beach. Remaining articles in series discuss state laws, including coastal boundaries, on state-by-state basis. They are as follows, by states, with years of publication, volume numbers, issue numbers and page numbers: Alabama, 1988, 56(2): 12–17; Alaska, 1985b, 53(2): 3–8; California, 1981b, 49(2): 20–25; Connecticut, 1984d, 52(4): 15–18; Delaware, 1985c, 53(3): 9–14; Florida, 1981c, 49(3): 13–20; Georgia, 1986b, 54(3): 3–7; Hawaii, 1983d, 51(4): 9–18; Louisiana, 1982d, 50(4): 16–23; Maine, 1984c, 52(3): 17–20; Maryland, 1984a, 52(1): 3–10; Massachusetts, 1982a, 50(1): 13–18;Mississippi, 1986a, 54(1): 3–7; New Hampshire, 1987a, 55(1): 12–17; New Jersey, 1982b, 50(2): 9–14; New York, 1983c, 51(3): 10–16; North Carolina, 1983a, 51(1): 18–23; Oregon, 1982c, 50(3): 16–23; Pennsylvania, 1987b, 55(2): 9–11; Rhode Island, 1989, 57(2): 20–23; South Carolina, 1984b, 52(2): 18–25; Texas, 1981d, 49(4): 24–31; Virginia, 1985a, 53(1): 8–14; Washington, 1983b, 51(2): 16–21.

    Google Scholar 

  214. Guth, J.E., 1974. Will the real mean high water line please stand up. In Proceedings, American Congress of Surveying and Mapping, and American Society of Photogrammetry.

    Google Scholar 

  215. Guth, J.E., 1976. Survey procedures for determining mean high water. In Proceedings, American Congress on Surveying and Mapping.

    Google Scholar 

  216. Hicks, S.D., 1975. Tide and Current Glossary. Washington: National Ocean Survey.

    Google Scholar 

  217. Hughes v. Washington, 389 U.S. 290 (1967).

    Google Scholar 

  218. Hull, W.V., and Thurlow, C.I., 1975. Tidal Datums and Mapping Tidal Boundaries. Washington: National Ocean Survey.

    Google Scholar 

  219. Law of the Sea Convention, 21 I.L.M. 1261 (1982); U.N. Pub. E.83.V.5 (1983).

    Google Scholar 

  220. Maloney, F.E., and Ausness, R.C., 1974. The use and legal significance of the mean high water line in coastal boundary mapping. North Carolina L.Review, 53: 185–273.

    Google Scholar 

  221. O’Hargan, P.T., 1975. The Three Generations of Sovereign Boundary Line Location. Coastal Zone Surveying and Mapping Symposium, American Congress on Surveying and Mapping.

    Google Scholar 

  222. Outer Continental Shelf Lands Act, 67 Stat. 462 (1953).

    Google Scholar 

  223. People v. Wm. Kent Estate Co.., 242 Cal.App.2d 156, 51 Cal.Rptr. 215 (1966).

    Google Scholar 

  224. Proclamation No. 5030, 1983.

    Google Scholar 

  225. Proclamation No. 5928, 1988.

    Google Scholar 

  226. Shalowitz, A., 1962. Shore and Sea Boundaries, Vol. 1. Washington: U.S. Government Printing Office.

    Google Scholar 

  227. Shalowitz, A., 1964. Shore and Sea Boundaries, Vol. 2. Washington: U.S. Government Printing Office.

    Google Scholar 

  228. Submerged Lands Act, 67 Stat. 29 (1953).

    Google Scholar 

  229. Teschemacher v. Thompson, 18 Cal. 11 (1861).

    Google Scholar 

  230. United States v. California, 332 U.S. 19 (1947).

    Google Scholar 

  231. Carter, R.W.G., and Woodroffe, C.D. (eds.), 1994. Coastal Evolution. Late Quaternary Shoreline Morphodynamics. Cambridge: Cambridge University Press.

    Google Scholar 

  232. Chappell, J., and Shackleton, N., 1986. Oxygen isotopes and sea level. Nature, 324: 137–140.

    Article  Google Scholar 

  233. Cowell, P.J., and Thom, B.G., 1994. Morphodynamics of coastal evolution. In Carter, R.W.G., and Woodroffe, C.D. (eds.), Coastal Evolution. Cambridge: Cambridge University Press, pp. 33–86.

    Google Scholar 

  234. Cowell, P.J., Roy, P.S., and Jones, R.A., 1995. Simulation of large-scale coastal change using a morphological behaviour model. Marine Geology, 126: 45–61.

    Article  Google Scholar 

  235. Cowell, P.J., Roy, P.S., Cleveringa, J., and de Boer, P.L., 1999. Simulating coastal systems tracts using the shoreface translation model. SEPM Special Publication No., 62: 165–175.

    Google Scholar 

  236. Hopley, D., 1994. Continental shelf reef systems. In Carter R.W.G., and Woodroffe, C.D. (eds.), Coastal Evolution. Cambridge: Cambridge University Press, pp. 303–340.

    Google Scholar 

  237. Johnson, D.W., 1919. Shore Processes and Shoreline Development. New York: John Wiley and Sons [facsimile edition; New York: Hafner, 1965].

    Google Scholar 

  238. Komar, P.D., 1998. Beach Processes and Sedimentation. New Jersey: Prentice Hall.

    Google Scholar 

  239. Roy, P.S., Cowell, P.J., Ferland, M.A., and Thom, B.G., 1994. Wave-dominated coasts. In Carter, R.W.G., and Woodroofe, C.W. (eds.), Coastal Evolution. Cambridge: Cambridge University Press, pp. 121–186.

    Google Scholar 

  240. Thom, B.G., 1975. Modification of coastal and deltaic terrain subsequent to deposition. Zeitschrift für Geomorphologie, 22(Supp.): 145–170.

    Google Scholar 

  241. Thom, B.G., and Bowman, G.M., 1981. Beach erosion-accretion at two time scales. Proceedings 17th International Conference Coastal Engineering, Sydney, pp. 934–945.

    Google Scholar 

  242. Thom, B.G., and Hall, W., 1991. Behaviour of beach profiles during accretion and erosion dominated periods. Earth Surface Processes and Landforms, 16: 113–127.

    Article  Google Scholar 

  243. Titus, J.G., 1998. Rising seas, coastal erosion, and the takings clause: how to save wetlands and beaches without hurting property owners. Maryland Law Review, 57: 1279–1399.

    Google Scholar 

  244. Atwater, B.F., 1987. Evidence for great Holocene earthquakes along the outer coast of Washington State. Science, 236: 942–944.

    Article  Google Scholar 

  245. Atwater, B.F., Nelson, A.R., Clague, J.J., Carver, G.A., Yamaguchi, D.K., Bobrowsky, P.T., Borgois, J., Darienzo, M.E., Grant, W.C., Hemphill-Haley, E., Kelsey, H.M., Jacoby, G.C., Nishenko, S.P., Palmer, S.P., Peterson, C.D., and Reinhardt, M.A., 1995. Summary of coastal geologic evidence for past great earthquakes at the Cascadia subduction zone. Earthquake Spectra, 11: 1–18.

    Article  Google Scholar 

  246. Collins, E.S., Scott, D.B., and Gayes, P.T., 1999. Hurricane records on the South Carolina coast: can they be detected in the sediment record. Quaternary International, 56: 15–26.

    Article  Google Scholar 

  247. Dawson, A.G., Shi, S., Dawson, S., Takahashi, T., and Shuto, N., 1996. Coastal sedimentation associated with the June 2nd and 3rd, 1994 Tsunami in Rajegwesi, Java. Quaternary Science Reviews, 15(8–9): 901–912.

    Article  Google Scholar 

  248. Liu, K.-B., and Fearn, M.L., 1993. Lake-sediment record of late Holocene hurricane activities from coastal Alabama. Geology, 21: 793–796.

    Article  Google Scholar 

  249. McSaveney, M.J., Goff, J.R., Darby, D.J., Goldsmith, P., Barnett, A., Elliot, S., and Nongkas, M., 2000. The 17th July 1998 Tsunami, Papua New Guinea: evidence and initial interpretation. Marine tGeology, 170: 81–92.

    Article  Google Scholar 

  250. Murray-Wallace, C.V., and Scott, D.B. (eds.), 1999. Late Quaternary coastal records of rapid change: applications to present and future conditions (IGCP Project 367). Quaternary International, 56: 1–154.

    Google Scholar 

  251. Ortlieb, L., Barrientos, S., Guzman, N., 1996. Coseismic Coastal Uplift and Coralline Algae record in Northern Chile; the 1995 Antofagasta Earth quake case: Quaternary Science Reviews, 15,nos. 8–9, pp. 949–960.

    Google Scholar 

  252. Pirazzoli, P.A., 1991. World Atlas of Sea-level Changes. Amsterdam: Elsevier Oceanographic series 58.

    Google Scholar 

  253. Scott, D.B. (ed.), 1999. Records of Rapid Change in the Late Quaternary (IGCP 367). Quaternary International, 60: 1–126.

    Google Scholar 

  254. Scott, D.B., and Medioli, F.S., 1986. Foraminifera as sea-level indicators. In Plassche O. van de (ed.), Sea-level Research: A Manual for the Collection and Evaluation of Data. Norwich, U.K., Geo Books, pp. 435–456.

    Google Scholar 

  255. Scott, D.B., and Ortlieb, L. (eds.), 1996. Records of rapid events in Late Quaternary shorelines. Quaternary Science Reviews, 15(8,9): 761–960.

    Google Scholar 

  256. Scott, D.B., Shennan, I.A., and Combellick, R.A., 1998. Evidence for pre-cursor events prior to the 1964 Great Alaska earthquake from buried forest deposits in Girdwood, Alaska: abstract in Annual Geological Society of America Meeting, Toronto, Canada, pp. A–226.

    Google Scholar 

  257. Shennan, I.A., and Gehrels, R. (eds.), 1996. An introduction to IGCP Project 367 Late Quaternary coastal records of rapid change: Application to present and future conditions. Journal of Coastal Research, 12(4): 795–797.

    Google Scholar 

  258. Shennan, I.A., Long, A.J., Rutherford, M.M., Innes, J.B., Green, F.M., and Walker, K.J., 1998. Tidal marsh stratigraphy, sea-level change and large earthquakes II. submergence events during the last 3500 years at Netarts Bay, Oregon, USA. Quaternary Science Reviews, 17: 365–393.

    Article  Google Scholar 

  259. Shennan, I.A., Scott, D.B., Rutherford, M.R., and Zong, Y., 1999. Microfossil analysis of sediments representing the 1964 earthquake, exposed at Girdwood Flats, Alaska, USA. Quaternary International, 60: 55–74.

    Article  Google Scholar 

  260. Stathis, C., Stiros, S., and Scott, D.B. (eds.), 2000. Records of Rapid coastal change in Late Quaternary coastal sediments and landforms. Marine Geology (special issue), 170: 249 p., thematic issue.

    Google Scholar 

  261. Allard, R.A., and Siquig, R.A., 1998. The master environmental library: a source for environmental data for coastal modeling applications. In Second Conference on Coastal Atmospheric tand Oceanic Prediction and Processes. Boston: American Meteorological Society.

    Google Scholar 

  262. Bigg, G.R., 1996. The Oceans and Climate. Cambridge: Cambridge University Press.

    Google Scholar 

  263. Burton, B.J., 2000. Passage of a well-marked sea-breeze front at Wokinham. Weather, 55: 281–286.

    Article  Google Scholar 

  264. Cayan, D.R., and Webb, R.H., 1992. El Niño/Southern Oscillation and streamflow in the western United States. In Diaz, H.F., and Markgraf, V. (eds.), El Niño: Historical and paleoclimatic aspects of the Southern Oscillation. Cambridge: Cambridge University Press. pp. 29–68.

    Google Scholar 

  265. Chapman, D.C., 1999. Dense water formation beneath a timedependent coastal polynyas. Journal of Physical Oceanography, 29(4): 807–820.

    Article  Google Scholar 

  266. Curry, J.A., and Webster, P.J., 1999. Thermodynamics of Atmospheres and Oceans. San Diego: Academic Press.

    Google Scholar 

  267. Dolan, R., Lins, H., and Hayden, B., 1988. Mid-Atlantic coastal storms. Journal of Coastal Research, 4(3): 417–433.

    Google Scholar 

  268. Hayden, B.P., 1981. Secular variation in Atlantic Coast extratropical cyclones. Monthly Weather Review, 109(1): 159–167.

    Article  Google Scholar 

  269. Kahya, E., and Dracup, J.A., 1993. Streamflow and La Niña event relationships in the ENSO-Streamflow core areas. In Redmond, K.T., and Tharp, V.L. (eds.), Proceedings of the Ninth Annual Pacific Climate (PACLIM) Workshop, April 21–24, 1992. California Department of Water Resources, Interagency Ecological Studies Program, Technical Report 34, pp. 89–96.

    Google Scholar 

  270. Kingsmill, D.E., 1995. Convection initiation associated with a seabreeze front, a gust front, and their collision. Monthly weather Review, 123: 2913–2933.

    Article  Google Scholar 

  271. Laird, N.F., and Kristovich, D.A.R., 1998. Climatology of lake and land breezes for the coastal region of Lake Michigan. In Second Conference on Coastal Atmospheric and Oceanic Prediction and Processes. Boston, MA: American Meteorological Society.

    Google Scholar 

  272. Liljequist, G.H., 1970. Klimatologi. Stockholm: Generalstabens Litografiska Anstalt.

    Google Scholar 

  273. Lohrenz, S., 1998. Wind effects on freshwater plumes. In Henrichs, S. et al. (eds.), Coastal Ocean Processes (CoOP): Transport and Transformation Processes Over Continental Shelves with Substantial Freshwater Inflows. University of Maryland Center for Environmental Science Technical Report TS-237-00, pp. 122–127.

    Google Scholar 

  274. Mantua, N.J., Hare, S.R., Zhang, Y., Wallace, J.M., and Francis, R.C., 1996. A Pacific interdecadal oscillation with impacts on salmon production. Bulletin of the American Meteorological Society. 78: 1069–1079.

    Article  Google Scholar 

  275. Michael, P., Miller, M., and Tongue, J.S., 1998. Sea breeze regimes in the New York City region-Modeling and Radar observations. Second Conference on Coastal Oceanic and Atmospheric Prediction. Phoenix, Arizona: American Meteorological Society.

    Google Scholar 

  276. Oke, T.R., 1987. Boundary Layer Climates, 2nd edn. New York: Routledge.

    Google Scholar 

  277. Pilkey, O.H., Neal, W.J., Riggs, S.R., Webb, C.A., Bush, D.M., Pilkey, D.F., Bullock, J., and Cowan, B.A., 1998. The North Carolina Shore and its Barrier Islands. Durham: Duke University Press.

    Google Scholar 

  278. Purdom, J.F.W., 1976. Some uses of high-resolution GOES imagery in the mesoscale forecasting of convection and its behavior. Monthly Weather Review, 104: 1474–1483.

    Article  Google Scholar 

  279. Redmond, K., and R. Koch., 1991. ENSO v surface climate variability in the western United States. Water Resources Research. 27: 2381–2399.

    Article  Google Scholar 

  280. Riehl, H., 1987. Hurricanes. In Oliver, J.E., and Fairbridge, R.W. (eds.), The Encyclopedia of Climatology. New York: Van Nostrand Reinhold. pp. 483–496.

    Chapter  Google Scholar 

  281. Rotunno, R., 1994. Coastal meteorology. In Coastal Ocean Processes: Wind-driven transport processes on the U.S. West Coast. Woods Hole Oceanographic Institute Technical Report WHOI-94-20, pp. 87–90.

    Google Scholar 

  282. Strahler, A.H., and Strahler, A.N., 1992. Modern Physical Geography. 4th ed., New York: Wiley.

    Google Scholar 

  283. Trenberth, K.E., 1993. Northern hemisphere climate change: physical processes and observed changes. In Mooney, H.A., Fuentes, E.R., and Kronberg, B. (eds.), Earth System Response to Global Change: Contrasts between North and South America. New York: Academic Press, pp. 35–59.

    Google Scholar 

  284. Trenberth, K.E., 1995. Atmospheric circulation climate changes. Climatic Change, 31: 427–453.

    Article  Google Scholar 

  285. U.S.GLOBEC, 1994. Eastern Boundary Current Program: A science plan for the California Current. U.S. Global Ecosystems Dynamics. Report Number 11, 134 pp.

    Google Scholar 

  286. Walker, H.J., Hsu, S.A., and Muller, R.A., 1987. Coastal Climate. In Oliver, J.E., and Fairbridge, R.W. (eds.), The Encyclopedia of Climatology. New York: Van Nostrand Reinhold, pp. 356–362.

    Chapter  Google Scholar 

  287. Ware, D.M., and R.E. Thompson, 1991. Link between long-term variability in upwelling and fish production in the Northeast Pacific Ocean. Canadian Journal of Fisheries and Aquatic Science, 49: 2296–2306.

    Article  Google Scholar 

  288. Warona, M.A., and Whitlock, C., 1995. Late Quaternary vegetation and climate history near Little Lake, central Coast Range, Oregon. Geological Society of America Bulletin, 107(7): 867–876.

    Article  Google Scholar 

  289. Bowden, K.F., 1983. Physical Oceanography of Coastal Waters. Chichester: Ellis Horwood Limited.

    Google Scholar 

  290. Garvine, R.W., 1987. Estuarine plumes and fronts in shelf waters: a layer model. Journal of Physical Oceanography, 17: 1877–1896.

    Article  Google Scholar 

  291. Komar, P.D, 1998. Beach Processes and Sedimentation, 2nd edn. Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

  292. Korso, P.M., Barth, J.A., and Strub, P.T., 1997. The coastal jet: observations of surface currents over the Oregon continental shelf from HF Radar. Oceanography, 10(2): 53–56.

    Google Scholar 

  293. Mofjeld, H.O., 1976. Tidal currents. In Stanley, D.J., and Swift, D.J.P. (eds.), Marine Sediment Transport and Environmental Management. New York: Wiley.

    Google Scholar 

  294. Stumpf, R.P., Gelfenbaum, G., and Pennock, J.R., 1993. Wind and Tidal Forcing of a Buoyant Plume, Mobile Bay, Alabama. Continental Shelf Research, 13(11): 1281–1301.

    Article  Google Scholar 

  295. Wright, L.D., 1995. Morphodynamics of Inner Continental Shelves. Boca Raton, FL: CRC Press, Inc.

    Google Scholar 

  296. Bartrum, J.A., and Turner, F.J., 1928. Pillow lavas, peridotites and associated rocks from northern most New Zealand. Transactions of New Zealand Institute, 59: 98–138.

    Google Scholar 

  297. Bryan, K., 1925. The Papago Country, Arizona. USGS Water Supply Paper, 499: 90–93.

    Google Scholar 

  298. Evans, I.S., 1970. Salt crystallization and rock weathering. Revue de Geomorphologie Dynamique, 19: 153–177.

    Google Scholar 

  299. Gill, E.D., Segnit, E.R., and McNeill, N.H., 1981. Rate of formation of honeycomb weathering features (small scale tafoni) on the Otway coast, SE Australia. Proceedings of the Royal Society of Victoria, 92: 149–154.

    Google Scholar 

  300. Gauri, K.L., 1978. The preservation of stone. Scientific American, 238(6): 126–136.

    Article  Google Scholar 

  301. Goudi, A.S., l993. Salt weathering simulation using a singleimmersion technique. Earth Surface Processes and Landforms, 18(4): 369–376.

    Article  Google Scholar 

  302. Hills, E.S., 1971. A study of cliffy coastal profiles based on examples in Victoria, Australia. Zeitschrift fur Geomorphologie, 15: 137–180.

    Google Scholar 

  303. Hong, E., and Huang, E., 2001. Formation of the pedestal rocks in the Taliao formation, northern coast of Taiwan. Western Pacific Earth Sciences, 1(1): 99–106.

    Google Scholar 

  304. Hsu, M.L., 1988. A study of the cavernous rocks in Yehliu (in Chinese). Department of Geography, National Taiwan University, Science Report 13, pp. 141–155.

    Google Scholar 

  305. Hsu, T.L., 1964. Hoodoo rocks at Yehliu, northern coast of Taiwan (in Chinese). Bulletin Geological Survey of Taiwan, 5: 29–45.

    Google Scholar 

  306. Lu, S.R., 1978. Re-survey of the genesis of mushroom rocks from Yehliu, northern Taiwan (in Chinese). Bulletin Geographical Society of China (Taiwan), 6: 40–45.

    Google Scholar 

  307. Mustoe, G.E., 1982. The origin of honeycomb weathering. Geological Society of America, Bulletin, 93: 108–115.

    Article  Google Scholar 

  308. Ollier, C., l974. Weathering and Landforms. London: Macmillan Education.

    Google Scholar 

  309. Ollier, C., l984. Weathering, 2nd ed. London and New York: Longman.

    Google Scholar 

  310. Thornbury, W.D., l969. Principles of Geomorphology, 2nd ed. New York: John Wiley and Sons, Inc.

    Google Scholar 

  311. Trenhaile, A.S., l987. The Geomorphology of Rock Coast. Oxford: Oxford University Press.

    Google Scholar 

  312. Wang, S., and Lee, G.H., 1984. Origin of the pedestal rocks in the Yehliu area of northern coast of Taiwan (in Chinese). Special Publication of the Central Geological Survey No. 3, pp. 257–272.

    Google Scholar 

  313. Wang, S., and Lee, G.H., 1994. Origin of the pedestal rocks in the Yehliu area of the northern coast of Taiwan. Chinese Environment and Development, 5(1): 47–60.

    Google Scholar 

  314. Wellman, H.W., and Wilson, A.T., Wilson, l965. Salt weathering, a neglected erosive agent in coastal and arid environments. Nature, 204: 1097–1098.

    Article  Google Scholar 

  315. de Beaumont, E., 1845. Lecons de geologie pratique. Paris: Bertrand, P.

    Google Scholar 

  316. Fisher, J.J., 1967. Origin of barrier island chain shoreline, middle Atlantic States. Geolological Society of American, 115(Special Paper): 66–67.

    Google Scholar 

  317. Gilbert, G.K., 1885. Lake Bonneville. U.S. Geological Survey, Monograph, 1, 438 pp.

    Google Scholar 

  318. Lucke, J.B., 1934. A theory of lagoon deposits on shoreline of emergence. Journal of Geology, 42: 561–584.

    Article  Google Scholar 

  319. McGee, W.D. 1890. Encroachments of the sea. Forum, 9: 437–449.

    Google Scholar 

  320. Nichols, M.M., 1989. Sediment accumulation rates and relative sealevel rise in lagoons. In Ward, L.G. and Ashley, G.M. (eds.), Physical processes and sedimentology of siliciclastic-dominated lagoonal systems. Marine Geology, 63: 201–220.

    Google Scholar 

  321. Oertel, G.F., 1985. The barrier island system. In Oertel, G.F. and Leatherman, S.P. (eds.), Barrier Islands. Marine Geology, 63: 1–18.

    Google Scholar 

  322. Oertel, G.F., and Kraft, J.C., 1994. New Jersey and Delmarva barrier islands. In Davis, R.A. (ed.), Geology of Holocene Barrier Island Systems. pp. 207–232.

    Google Scholar 

  323. Oertel, G.F., Kearney, M.S., Leatherman, S.P., and Woo, H.J., 1989. Anatomy of a barrier island platform, outer barrier lagoon, southern Delmarva Peninsula, Virginia. Marine Geology, 88: 303–318.

    Article  Google Scholar 

  324. Oertel, G.F., Kraft, J.C., Kearney, M.S., and Woo, H.J., 1992. A rational theory for barrier lagoon development. In Fletcher, C.H. and Wehmiller, J.F. (eds.), Quaternary coasts of the United States: marine and lacustrine systems. Soc. Econ. Paleont. and Min., Special Publication 48: 77–87.

    Google Scholar 

  325. Oertel, G.F., Overman, K., Allen, T.R., Carlson, C.R., and Porter, J.H. 2000. Hypsographic analysis of coastal bay environments using integrated remote sensing techniques, Great Machipongo Bay, Virginia, U.S.A. Proceeding Volume, Sixth International Conference on Remote Sensing for Marine and Coastal Environments, Charleston, SC.

    Google Scholar 

  326. Abdel-Aal, F.M., 1992. Shoreline change modeling. In Partridge, P.W. (ed.), Computer Modelling of Seas and Coastal Regions. Boston, MA: Computational Mechanics Publications, pp. 379–396.

    Chapter  Google Scholar 

  327. Adkins, G., and Pooch, U.W., 1977. Computer simulation: a tutorial. Computer, 10: 12–17.

    Article  Google Scholar 

  328. Balci, O., 1997. Principles of simulation model validation, verification, and testing. Transactions of the Society for Computer Simulation International, 14(1): 3–12.

    Google Scholar 

  329. Balci, O., and Sargent, R.G., 1984. A bibliography on the credibility assessment and validation of simulation and mathematical models. Simuletter, 15: 15–27.

    Google Scholar 

  330. Banks, J., Gerstein, D.M., and Searles, S.P., 1986a. The verification and validation of simulation models: a methodology. Technical Report, School of Industrial and Systems Engineering Atlanta, GA: Georgia Tech.

    Google Scholar 

  331. Banks, J., Gerstein, D.M., and Searles, S.P., 1986b. The verification and validation of simulation models: unresolved issues. Technical Report, School of Industrial and Systems Engineering Atlanta, GA: Georgia Tech.

    Google Scholar 

  332. Bekey, G.A., 1977. Models and reality: some reflections on the art and science of simulation. Simulation, 29: 161–164.

    Article  Google Scholar 

  333. Black, K.P., 1995. The numerical hydrodynamic model 3DD and support software. Occasional Report No. 19, Waikato, NZ: Department of Earth Sciences, University of Waikato, 69 p.

    Google Scholar 

  334. Black, K., Green, M., Healy, T., Bell, R., Oldman, J., and Hume, T., 1999. Lagrangian modeling techniques simulating wave and sediment dynamics determining sand-body equilibria. In Harff, J., Lemke, W., and Stattegger, K. (eds.), Computerized Modeling of Sedimentary Systems. New York: Springer-Verlag, pp. 3–22.

    Google Scholar 

  335. Bossel, H., 1994. Modeling and Simulation. Wellesley, MA: A.K. Peters, Ltd.

    Google Scholar 

  336. Bratley, P., Fox, B.L., and Schrage, L.E., 1987. A Guide to Simulation, 3rd edn. New York: Springer-Verlag.

    Book  Google Scholar 

  337. Briand, M.H.G., and Kamphuis, J.W., 1990. A micro-computer based QUASI 3-D sediment transport model. In Proceedings of the 22nd Coastal Engineering Conference. American Society of Civil Engineers, pp. 2159–2172.

    Google Scholar 

  338. Checkland, P., 1981. Systems Thinking, Systems Practice. New York: John Wiley and Sons.

    Google Scholar 

  339. Cloud, D., and Rainey, L. (eds.), 1998. Applied Modeling and Simulation: An Integrated Approach to Development and Operation. New York: McGraw-Hill.

    Google Scholar 

  340. Dessouky, Y., and Roberts, C.A., 1997. A review and classification of combined simulation. Computers and Industrial Engineering, 32(2): 251–264.

    Article  Google Scholar 

  341. de Vriend, H.J., 1991. Modelling in marine morphodynamics. In Arcilla, A.S., Pastor, M., Zienkiewicz, O.C., and Schrefler, B.A. (eds.), Computer Modelling in Ocean Engineering 91, Rotterdam, The Netherlands: A.A. Balkema, pp. 247–260.

    Google Scholar 

  342. de Vriend, H.J., and Ribberink, J.S., 1996. Mathematical modelling of meso-tidal barrier island coasts. Part II: Process-based simulation models. In Lui, P.L.-F. (ed.), Advances in Coastal and Ocean Engineering, Vol. 2. Singapore: World Scientific Publishing Co., pp. 151–197.

    Chapter  Google Scholar 

  343. Dutton, J.M., and Starbuck, W.H., 1971. Computer Simulation of Human Behavior. New York: Academic Press, Inc.

    Google Scholar 

  344. Fürbringer, J.-M., and Roulet, C.-A., 1999. Confidence of simulation results: put a sensitivity analysis module in your model. The IEAECBCS annex 23 experience of model evaluation. Energy and Buildings, 30: 61–71.

    Article  Google Scholar 

  345. Holmes, P., and Samarawickrama, S.P., 1997. Tide and wave-induced changes at a coastal lagoon entrance. In Arcinas, J.R., and Brebbia, C.A. (eds.), Computer Modelling of Seas and Coastal Regions III. Coastal 97. Boston, MA: Computational Mechanics Publications, pp. 75–84.

    Google Scholar 

  346. Horn, D.P., 1992. A numerical model for shore-normal sediment size variation on a macrotidal beach. Earth Surface Processes and Landforms, 17: 755–773.

    Article  Google Scholar 

  347. Kleijnen, J.P.C., 1995. Verification and validation of simulation models. European Journal of Operational Research, 82(1): 145–162.

    Article  Google Scholar 

  348. Lakhan, V.C., 1981. Generating autocorrelated pseudo-random numbers with specific distributions. Journal of Statistical Computation and Simulation, 12: 303–309.

    Article  Google Scholar 

  349. Lakhan, V.C., 1984. A FORTRAN’ 77 Goodness-of-Fit Program: testing the goodness-of-fit of probability distribution functions to frequency distributions. Technical Publication No. 2, Toronto, ON: International Computing Labs, Inc.

    Google Scholar 

  350. Lakhan, V.C., 1986. Modelling and simulating the morphological variability of the coastal system. Presented at the International Congress on Applied Systems Research and Cybernetics on August 18, 1986 in Baden-Baden, West Germany.

    Google Scholar 

  351. Lakhan, V.C., 1989. Modeling and simulation of the coastal system. In Lakhan, V.C., and Trenhaile, A.S. (eds.), Applications in Coastal Modeling. Amsterdam, The Netherlands: Elsevier Science Publishers, pp. 17–42.

    Chapter  Google Scholar 

  352. Lakhan, V.C., 1991. Simulating the interactions of changing nearshore water levels, morphology and vegetation growth on Guyana’s coastal environment. In McLeod, J. (ed.), Toward Understanding Our Environment. Simulation Councils, Inc, USA, pp. 13–20.

    Google Scholar 

  353. Lakhan, V.C., and Jopling, A., 1987. Simulating the effects of random waves on concave-shaped nearshore profiles. Geografiska Annaler, 69A: 251–269.

    Article  Google Scholar 

  354. Lakhan, V.C., and LaValle, P.D., 1987. Development and testing of a simulation model for nearshore profile changes. Presented at the Canadian Association of Geographers, Marine Studies Group, May 28, 1987, Hamilton, Ontario.

    Google Scholar 

  355. Lakhan, V.C., and LaValle, P.D., 1990. Development and testing of a simulation model for nearshore profile changes. In Ricketts, P.J. (ed.), Studies in Marine and Coastal Geography, Halifax, NS: St. Mary’s University, pp. 61–73.

    Google Scholar 

  356. Lakhan, V.C., and LaValle, P.D., 1992. Simulating the onshore-offshore movement of sediment in the coastal environment. Environmental Software. An International Journal, 7: 165–173.

    Article  Google Scholar 

  357. Lakhan, V.C., and Trenhaile, A.S., 1989. Models and the coastal system. In Lakhan, V.C., and Trenhaile, A.S. (eds), Applications in Coastal Modeling. Amsterdam, The Netherlands: Elsevier Science Publishers, pp. 1–16.

    Chapter  Google Scholar 

  358. Lakhan, V.C., Trenhaile, A.S., and LaValle, P.D., 1993. Modelling and simulating morphological changes in the nearshore system. Third International Geomorphological Conference. Program with Abstracts. The International Association of Geomorphologists, p. 176.

    Google Scholar 

  359. Larson, M., Kraus, N.C., and Hanson, H., 1990. Decoupled numerical model of three-dimensional beach changes. Proceedings of the 22nd Coastal Engineering Conference, American Society of Civil Engineers, pp. 2173–2185.

    Google Scholar 

  360. LaValle, P.D., and Lakhan, V.C., 1993. Comparison between simulated and empirical results on nearshore morphological changes. Third International Geomorphological Conference. Program with Abstracts. The International Association of Geomorphologists, p. 175.

    Google Scholar 

  361. LaValle, P.D., and Lakhan, V.C., 1997. Utilizing microcomputer-based models to simulate changes in the nearshore environment. Environment Modelling & Software, 12(1): 19–26.

    Article  Google Scholar 

  362. Law, A.M., and Kelton, W.D., 1982. Simulation Modeling and Analysis. New York: McGraw-Hill Co.

    Google Scholar 

  363. Law, A.M., and Kelton, W.D., 1991. Simulation Modeling and Analysis, 2nd edn., Singapore: McGraw-Hill.

    Google Scholar 

  364. McHaney, R., 1991. Computer Simulation. New York: Academic Press, Inc.

    Google Scholar 

  365. Miller, J.A., Sheth, A.P., and Kochut, K.J., 1999. Perspectives in modeling: Simulation, database, and workflow. In Chen, P.P., Akoka, J., Kangassalo, H., and Thalheim, B. (eds.), Conceptual Modeling. Current Issues and Future Directions. Berlin and New York: Springer-Verlag, pp. 154–167.

    Chapter  Google Scholar 

  366. Nikoukaran, J., and Paul, R.J., 1999. Software selection for simulation in manufacturing: A review. Simulation Practice and Theory, 7: 1–14.

    Article  Google Scholar 

  367. Oelerich, J., 1991. Modelling of time dependent longshore sediment transport. In Arcilla, A.S., Pastor, M., Zienkiewicz, O.C., and Schrefler, B.A. (eds.), Computer Modelling in Ocean Engineering 91. Rotterdam, The Netherlands: A.A. Balkema, pp. 271–282.

    Google Scholar 

  368. Pooch, U.W., and Wall, J.A., 1993. Discrete Event Simulation. Boca Raton, LA: CRC Press.

    Google Scholar 

  369. Popper, K.R., 1968. The Logic of Scientific Discovery. New York: Harper Torchbooks.

    Google Scholar 

  370. Rodriguez-Molina, J.J., and Garcia-Martinez, R., 1998. HydroTrack: A graphical software system for the simulation of pollutant discharges in water. Environmental Modelling and Software, 13(2): 211–223.

    Article  Google Scholar 

  371. Sargent, R.G., 1982. Verification and validation of simulation models. In Cellier, F.E. (ed.), Progress in Modelling and Simulation. London: Academic Press Inc., pp. 159–172.

    Google Scholar 

  372. Sargent, R.G., 1988. A tutorial on validation and verification of simulation models. In Proceedings of the 1988 Winter Simulation Conference. CA: San Diego, pp. 33–39.

    Chapter  Google Scholar 

  373. Sargent, R.G., 1992. Validation and verification of simulation models. In Proceedings of the 1992 Winter Simulation Conference, Piscataway, NJ: IEEE, December, pp. 104–114.

    Google Scholar 

  374. Shannon, R.E., 1975. Systems Simulation: The Art and the Science. Englewood Cliffs, NJ: Prentice-Hall, Inc.

    Google Scholar 

  375. Sierra, J.P., Azuz, I., Rivero, F., Sánchez-Arcilla, A., and Rodriguez, A., 1997. Morphodynamic modelling in the nearshore area. In Arcinas, J.R., and Brebbia C.A. (eds.), Computer Modelling of Seas and Coastal Regions III. Coastal 97. Boston, MA: Computational Mechanics Publications, pp. 433–442.

    Google Scholar 

  376. Stive, M.J.F., and de Vriend, H.J., 1995. Modelling shoreface profile evolution. Marine Geology, 126: 235–248.

    Article  Google Scholar 

  377. US Army Engineer Waterways Experiment Station, Coastal Engineering Research Center, 1984. Shore Protection Manual, Vol. 1, Washington, DC: US Government Printing Office.

    Google Scholar 

  378. Warren, R., 1993. Development and application of a generic modelling system for coastal processes. In List, J.H. (ed.), Large-Scale Coastal Behavior’ 93. US Geological Survey Open-File Report 93-381, pp. 22–223.

    Google Scholar 

  379. Weiner, R., and Sincovec, R., 1984. Software Engineering with Modula-2 and Ada. New York: John Wiley and Sons.

    Google Scholar 

  380. Win-Juinn, C., and Ching-Ton, K., 1991. Numerical model of beach profile changes. In Arcilla, A.S., Pastor, M., Zienkiewicz, O.C., and Schrefler B.A. (eds.), Computer Modelling in Ocean Engineering 91. Rotterdam, The Netherlands: A.A. Balkema, pp. 219–225.

    Google Scholar 

  381. Yu, C.S., Berlamont, J., Embrechts, H., and Roose, D., 1998. Modelling coastal sediment transport on a parallel computer. Physics and Chemistry of the Earth, 23(6): 497–504.

    Article  Google Scholar 

  382. Zeigler, B.P., 1984. Mulifacetted Modelling and Discrete Event Simulation. London: Academic Press Inc.

    Google Scholar 

  383. Zeigler, B.P., Praehofer, H., and Kim, T.G., 2000. Theory of Modeling and Simulation. 2nd edn. New York: Academic Press.

    Google Scholar 

  384. Augustinius, P.G.E.F., 1989. Cheniers and chenier plains: a general introduction. Marine Geology, 90: 219–229.

    Article  Google Scholar 

  385. Boothroyd, J.C., 1985. Tidal inlets and tidal deltas. In R.A. Davis, Jr. (ed.), Coastal Sedimentary Environments, 2nd edn. New York, Springer-Verlag, pp. 445–532.

    Chapter  Google Scholar 

  386. Bruun, P., 1962. Sea level rise as a cause of shore erosion. A.S.C.E. Proceedings, Journal Waterways and Harbors Div., 88: 117–130.

    Google Scholar 

  387. Clifton, H.E., and Hunter, R.E., 1982. Coastal sedimentary facies. In M.L. Schwartz (ed.), The encyclopedia of Beaches and Coastal Environments. Stroudsburg: Hutchinson Ross Publishing Company, pp. 314–322.

    Google Scholar 

  388. Cobb, J.C., and Cecil, C.B., 1993. Modern and Ancient Coal-forming Environments. Denver: Geological Society of America Special Publication 286.

    Google Scholar 

  389. Curray, J.R., Emmel, F.J., and Crampton, P.J.S., 1969. Holocene history of a strand plain, lagoonal coast, Nayarit, Mexico. In A.A. Castanares, and F.B. Phleger (eds.), Coastal Lagoons, A Sym-posium. Mexico City, Universidad Nacional Autonoma, pp. 63–100.

    Google Scholar 

  390. Dalrymple, R.W., and Rhodes, R.N., 1995. Estuarine dunes and bars. In G.M.E. Perillo (ed.), Geomorphology and Sedimentology of Estuaries, Developments in Sedimentology, Vol. 53, Elsevier, pp. 359–422.

    Google Scholar 

  391. Dalrymple, R.W., Knight, J.R., Zaitlin, B.A., and Middleton, G.V., 1990. Dynamics and facies model of a macrotidal sand-bar complex, Cobequid Bay-Salmon River estuary (Bay of Fundy). Sedimentology, 37: 577–612.

    Article  Google Scholar 

  392. Dalrymple, R.W., Zaitlin, B.A., and Boyd, R., 1992. Estuarine facies models: conceptual basis and stratigraphic implications. Journal of Sedimentary Petrology, 62: 1130–1146.

    Google Scholar 

  393. Davis, R.A., Jr., 1985. Coastal sedimentary environments, 2nd edn. New York: Springer-Verlag.

    Book  Google Scholar 

  394. Demicco, R.V., and Hardie, L.A., 1995. Sedimentary structures and early diagenetic features of shallow marine carbonate deposits Atlas Series No. 1. Tulsa: SEPM (Society for Sedimentary Geology).

    Google Scholar 

  395. Frey, R.W., and Basan, P.B., 1985. Coastal salt marshes. in R.A. Davis, Jr. (ed.), Coastal sedimentary environments, 2nd edn. New York: Springer-Verlag, pp. 225–301.

    Chapter  Google Scholar 

  396. Galloway, W.E., and Hobday, D.K., 1996. Terrigenous clastic depositional systems: applications to fossil fuel and groundwater resources, 2nd edn. New York: Springer-Verlag.

    Book  Google Scholar 

  397. Hill, P.R., Barnes, P.W., Héquette, A., and Ruz, M.-H., 1995. Arctic coastal plain shorelines. In R.W.G. Carter, and C.D. Woodroffe (eds.), Coastal Evolution: Late Quaternary Shoreline Morphodynamics, Cambridge: Cambridge University Press.

    Google Scholar 

  398. Hine, A.C., 1975. Bedform distribution and migration patterns on tidal deltas in the Chatham Harbor estuary, Cape Cod, Massachusetts. In L.E. Cronin (ed.), Estuarine Research, Vol. II, Geology and Engineering. London: Academic Press.

    Google Scholar 

  399. Houbolt, J.J.H.C., 1968. Recent sediments in the Southern Bight of the North Sea. Geologie Mijnbouw, 47: 245–273.

    Google Scholar 

  400. Komar, P.D., 1976. Beach Processes and Sedimentation. Englewood Cliffs: Prentice-Hall Inc.

    Google Scholar 

  401. Leatherman, S.P., Williams, A.T., and Fisher, J.S., 1977. Overwash sedimentation associated with a large-scale northeaster. Marine Geology, 24: 109–121.

    Article  Google Scholar 

  402. MacEachern, J.A., Raychandhuri, R., and S.G. Pemberton, 1992. Stratigraphic applications of the Glossifungites ichnofacies: delineating discontinuities in the rock record. In S.G. Pemberton (ed.), Applications of Ichnology to Petroleum Exploration. SEPM Core Workshop No. 17, pp. 169–198.

    Google Scholar 

  403. McBride, R.A., and Moslow, T.F., 1991. Origin, evolution, and distribution of shore face sand ridges, Atlantic inner shelf, U.S.A. Marine Geology, 97: 57–85.

    Article  Google Scholar 

  404. Niederoda, A.W., and Swift, D.J.P., 1981. Maintenance of the shoreface by wave orbital currents and mean flow. Geophysical Research Letters, 8: 337–348.

    Article  Google Scholar 

  405. Pemberton, S.G., and Wightman, D.M., 1992. Ichnologic characteristics of brackish water deposits. In S.G. Pemberton (ed.), Applications of Ichnology to Petroleum Exploration, SEPM Core Workshop No. 17, pp. 141–167.

    Google Scholar 

  406. Pemberton, S.G., Van Waggoner, J.C., and Wach, G.D., 1992. Ichnofacies of a wave-dominated shoreline. In S.G. Pemberton (ed.), Applications of Ichnology to Petroleum Exploration, SEPMx Core Workshop No. 17, pp. 339–382.

    Google Scholar 

  407. Reading, H.G., 1996. Sedimentary environments: processes, facies, and stratigraphy (third edition). Oxford: Blackwell Scientific Ltd.

    Google Scholar 

  408. Reineck, H.-E., and Singh, I.B, 1973. Depositional sedimentary environments-with reference to terrigenous clastics. Berlin: Springer-Verlag.

    Book  Google Scholar 

  409. Rine, J.M., Tillman, R.W., Stubblefeld, W.L., and Swift, D.J.P., 1991. Lithostratigraphy of Holocene sand ridges from the nearshore and middle continental shelf of New Jersey, USA. In T.F. Moslow, and E.G. Rhodes (eds.), Modern and Ancient Shelf Clastics: a core Workshop. SEPM Core Workshop No. 9, pp. 1–72.

    Google Scholar 

  410. Walker, R.G., and James, N.P., 1992. Facies Models Response to Sea Level Change. St. John’s: Geological Association of Canada.

    Google Scholar 

  411. AFES (Association Française pour l’Etude du sol), 1992. Référentiel pédologique, principaux sols d’Europe. Paris: INRA.

    Google Scholar 

  412. Allard, M., 2001. Late-Holocene climatic changes as detected by the growth and decay of ice wedges on the southern shore of Hudson Strait, northern Québec, Canada. Holocene, 11(5): 563–578.

    Article  Google Scholar 

  413. Amador, J.A., and Jones, R.D., 1995. Carbon mineralization in pristine and phosphorus-enriched peat soils of the Florida Everglades. Soil Science, 159(2): 129–135.

    Article  Google Scholar 

  414. Arbogast, A.F., and Loope, W.L., 1999. Maximum-limiting ages of Lake-Michigan coastal dunes: their correlation with Holocene lake level history. The Journal of Great Lakes Research, 29: 372–382.

    Article  Google Scholar 

  415. Ballarini, M., Wallinga, J., Murray, A.S., van Heteren, S., Oost, A.P., Bos, A.J.J., and van Eijk, C.W.E., 2003. Optical dating of young coastal dunes on a decadal timescale. Quaternary Science Reviews, 22(10–13): 1011–1018.

    Article  Google Scholar 

  416. Beach, D.K., 1982. Depositional and Diagenetic History of Pliocene-Pleistocene Carbonates, Northwestern Great Bahama Bank: Evolution of a Carbonate Platform. Doctoral dissertation, Miami, FL: University of Miami.

    Google Scholar 

  417. Berger, G.W., Murray, A.S., and Havholm, K.G., 2003. Photonic dating of Holocene back-barrier coastal dunes, northern North Carolina, USA. Quaternary Science Reviews, 22(10–13): 1043–1051.

    Article  Google Scholar 

  418. Beyer, L., Knicker, H., Blume, H-P., Bölter, M., Vogt, B., and Schneider, D., 1997. Soil organic matter of suggested spodic horizons in relic ornithogenic soils of coastal continental Antarctica (Casey Station,Wilkes Land) in comparison with that of spodic soil horizons in Germany. Soil Science, 162(7): 518–527.

    Article  Google Scholar 

  419. Black, R.F., 1964. Gubik formation of Quaternary age in northern Alaska. U.S. Geological Survey Professional Paper, 302-C, pp. 59–91.

    Google Scholar 

  420. Blackburn, G., Bond, R.D., and Clarke, A.R.P., 1965. Soil Development Associated with Stranded Beach Ridges in South-East South Australia. Melbourne, Victoria: CSIRO, Soil Publication No. 22.

    Google Scholar 

  421. Bloom, A.L., and Stuvier, M., 1963. Submergence of the Connecticut coast. Science, 139: 333–334.

    Article  Google Scholar 

  422. Bloom, A.L., and Yonekura, N., 1985. Coastal terraces generated by sea-level change and tectonic uplift. In Woldenberg, M.J. (ed.), Models in Geomorphology. Boston: Allen & Unwin: Symposium on Geomorphology International Series No. 14, Binghamton pp. 139–154.

    Google Scholar 

  423. Blum, M.D., Carter, A.E., Zayac, T., and Goble, R., 2001. Middle Holocene sea-level and evolution of the Gulf of Mexico Coast (USA). Journal of Coastal Research, 36(Special issue): pp. 65–80.

    Google Scholar 

  424. Boardman, M.R., McCartney, R.F., and Eaton, M.R., 1995. Bahamian paleosols: origin, relation to paleoclimate, and stratigraphic significance. In Curran, A., and White, B. (eds.), Terrestrial and Shallow Marine Geology of the Bahamas and Bermuda. Boulder, CO: Geological Society of America Special Paper 300, pp. 33–49.

    Google Scholar 

  425. Boesch, D.F., Josselyn, M.N., Mehta, A.J., Morris, J.T., Nuttle, W.K. Simenstad, C.A., and Swift, D.J.P., 1994. Scientific assessment of coastal wetland loss, restoration and management in Louisiana. Journal of Coastal Research, 20(Special issue).

    Google Scholar 

  426. Bowman, S., 1990. Radiocarbon Dating. Berkeley, CA: University of California Press and the British Museum.

    Google Scholar 

  427. Bretz, J.H., 1960. Bermuda: a partially drowned late mature Pleistocene karst. Geological Society of America Bulletin, 71: 1729–1754.

    Article  Google Scholar 

  428. Brown, R.B., Stone, E.L., and Carlisle, V.W., 1990. Soils. In Myers, R.L., and Ewel, J.J. (eds.), Ecosystems of Florida. Orlando: University of Central Florida Press, pp. 35–69.

    Google Scholar 

  429. Brown, T.W., 1986. The Formation of Pedogenic Calcrete: Its Stratigraphic and Diagenetic Significance in the Quaternary Limestones on San Salvador Island, Bahamas. Master’s thesis, Bloomington, IN: Indiana University.

    Google Scholar 

  430. Buol, S.W., Hole, F.D., and McCracken, R.J., 1980. Soil Genesis and Classification. Ames: University of Iowa Press.

    Google Scholar 

  431. Burges, A., and Drover, D.P., 1953. The rate of Podzol development in sands of the Woy Woy District, N.S.W. Australian Journal of Botany, 1: 83–94.

    Article  Google Scholar 

  432. Butler, B.E., 1959. Periodic phenomena in landscapes as a basis for soil studies. C.S.I.R.O. (Australia) Soil Publication No. 14.

    Google Scholar 

  433. Butler, B.E., 1967. Soil periodicity in relation to landform development in southeastern Australia. In Jennings, J.N., and Mabbutt, J.A. (eds.), Landform Studies from Australia and New Guinea. Canberra: Australian National University Press, pp. 231–255.

    Google Scholar 

  434. Callaway, J.C., DeLaune, R.D., and Patrick, W.H., Jr., 1997. Sediment accretion rates from four coastal wetlands along the Gulf of Mexico. Journal of Coastal Research, 13(1): 181–191.

    Google Scholar 

  435. Carew, J.L., and Mylroie, J.E., 1994. Discussion of Hearty, P.J., and Kindler, P., 1993. New perspectives on Bahamian geology: San Salvador Island, Bahamas. Journal of Coastal Research, 10(4): 1087–1094.

    Google Scholar 

  436. Clague, J.J., Hutchinson, I., Mathews, R.W., and Patterson, R.T., 1999. Evidence for late Holocene tsunamis at Catala Lake, British Columbia. Journal of Coastal Research, 15(1): 45–60.

    Google Scholar 

  437. Clayton, J.S., Ehrlich, W.A., Cann, D.B., Day, J.H., and Marshall, I.B., 1977. Soils of Canada, Volume 1: Soil Report; Volume II: Soil Inventory. Ottawa: Supply and Services Canada.

    Google Scholar 

  438. Cook, P.J., Colwell, J.B., Firman, J.B., Lindsay, J.M., Schwebel, D.A., and Von Der Borsch, C.C., 1977. Late Cainozoic sequence of South East Australia and sea level changes. BMR Journal of Geology and Geophysics, 2: 81–88.

    Google Scholar 

  439. Cooper, W.S., 1966. Coastal Sand Dunes of Oregon and Washington. Boulder, CO: Geological Society of America Memoir, 72.

    Google Scholar 

  440. CPCS, 1967. Classification des sols. Grignon, France: ENSA, 87p.

    Google Scholar 

  441. Curray, J.R., 1978. Transgressions and regressions. Reprint of Original 1964 paper. In Swift, J.P., and Palmer, H.D. (eds.), Coastal Sedimentation. Stroudsburg, PA: Dowden, Hutchinson & Ross, Benchmark Papers in Geology No. 42, pp. 97–203.

    Google Scholar 

  442. Daniels, R.B., and Hammer, R.D., 1992. Soil Geomorphology. New York: Wiley.

    Google Scholar 

  443. Daniels, R.B., Perkins, H.F., Hajek, B.F., and Gamble, E.E., 1978. Morphology of discontinuous phase plinthite and criteria for its field identification in the southeastern United States. Soil Science Society of America Journal, 42: 944–949.

    Article  Google Scholar 

  444. Darmody, R.G., and Foss, J.E., 1979. Soil-landscape relationships of the tidal marshes of Maryland. Soil Science Society of America Journal, 43: 534–541.

    Article  Google Scholar 

  445. Davis, R.A., 1978. Coastal Sedimentary Environments. New York: Springer-Verlag.

    Book  Google Scholar 

  446. Delaney, P.J.V., 1966. Geology and Geomorphology of the Coastal Plain of Rio Grande do Sul, Brazil and Northern Uruguay. Baton Rouge, LA: Louisiana State University Press, Coastal Studies Series No. 15.

    Google Scholar 

  447. DeLaune, R.D., Smith, C.J., Patrick, W.H., and Roberts, H.H., 1987. Rejuvenated marsh and bay-bottom accretion on the rapidly subsiding coastal plain of the U.A. Gulf Coast: a second-order effect of the emerging Atchafalaya Delta. Estuarine, Coastal and Shelf Science, 25(4): 381–389.

    Google Scholar 

  448. DeLaune, R.D., Pezeshki, S.R., Pardue, J.H., Whitcomb, J.H., and Patrick, W.H., 1990. Some influences of sediment addition to deteriorating marshes in the Mississippi River deltaic plain: a pilot study. Journal of Coastal Research, 6(1): 181–188.

    Google Scholar 

  449. Dent, D.L., 1986. Acid sulfate soils: a baseline for research and development. Wageningen, The Netherlands: International Institute for Land Reclamation and Improvement (ILRI), ILRI Publication No. 39.

    Google Scholar 

  450. Dent, D.L., and Pons, L.J., 1995. Acid sulphate soils: a world view. Geoderma, 67: 263–276.

    Article  Google Scholar 

  451. Denny, C., and Owens, J.P., 1979. Sand dunes on the central Delmarva Peninsula, Maryland and Delaware. Washington, DC: U.S. Government Printing Office, Geological Survey Professional Paper 1067-C.

    Google Scholar 

  452. Dreissen, P.M., and Dudal, R. (eds.), 1989. The Major Soils of the World. Lecture Notes on their Geography, Formation, Properties and Use. Wageningen: Agricultural University and Belgium; Katholieke Universiteit Leuven.

    Google Scholar 

  453. Enos, P., and Perkins, R.D., 1977. Quaternary Sedimentation in South Florida. Boulder, CO: Geological Society of America Memoir, 147.

    Google Scholar 

  454. Fairbridge, R.W., 1950. The geology and geomorphology of Point Peron, Western Australia. Journal of the Royal Society of Western Australia, 34: 35–72.

    Google Scholar 

  455. Fairbridge, R.W., 1961. Eustatic changes in sea level. In Ahrens, L.H., Press, L., Rankema, K., and Runcorn, S.K. (eds.), Physics and Chemistry of the Earth, Volume 4. Oxford: Pergamon, pp. 99–185.

    Google Scholar 

  456. Fairbridge, R.W., and Finkl, C.W., 1980. Cratonic erosional unconformities and peneplains. Journal of Geology, 88: 69–86.

    Article  Google Scholar 

  457. FAO, 1991. World Soil Resources. An Explanatory Note on the FAO World Soil Resources Map at 1:25,000,000 Scale. Rome: Food and Agriculture Organization of the United Nations, Report No. 66.

    Google Scholar 

  458. FAO-UNESCO-ISRIC, 1988. Soil Map of the World. Revised Legend. Rome: Food and Agricultural Organization of the United Nations, World Soil Resources, Report No. 60.

    Google Scholar 

  459. Finkl, C.W., 1979. Stripped (etched) landsurfaces in southern Western Australia. Australian Geographical Studies, 17(1): 33–52.

    Article  Google Scholar 

  460. Finkl, C.W., 1980. Stratigraphic principles and practices as related to soil mantles. Catena, 7(2/3): 169–194.

    Google Scholar 

  461. Finkl, C.W. (ed.), 1981. Soil Classification, Volume 1. Stroudsburg, PA: Hutchinson Ross, Benchmark Papers in Soil Science.

    Google Scholar 

  462. Finkl, C.W., 1982a. The geography of soil classification. Quaestiones Geographicae, 8: 55–59.

    Google Scholar 

  463. Finkl, C.W., 1982b. Toward a comprehensive soil classification system. Geographical Bulletin, 21: 41–47.

    Google Scholar 

  464. Finkl, C.W., 1984. Chronology of weathered materials and soil age determinations in pedostratigraphic sequences. Chemical Geology, 44(1/3): 311–335.

    Article  Google Scholar 

  465. Finkl, C.W., Jr. (ed.), 1994. Disaster mitigation in the South Atlantic Coastal Zone (SACZ): A prodrome for mapping hazards and coastal land systems using the example of urban subtropical southeastern. In Finkl, C.W. (ed.), Coastal Hazards: Perception, Susceptibility and Mitigation. Charlottesville, VA: Coastal Education and Research Foundation, pp. 339–366.

    Google Scholar 

  466. Finkl, C.W., 1995. Water resources management in the Florida Everglades: are ‘lessons from experience’ a prognosis for conservation in the future? Journal of Soil and Water Conservation, 50: 592–600.

    Google Scholar 

  467. Finkl, C.W., 2000. Identification of unseen flood hazard impacts in southeast Florida through interpretation of remote sensing and geographic information system techniques. Environmental Geosciences, 7(3): 119–136.

    Article  Google Scholar 

  468. Finkl, C.W., and Churchward, H.M., 1973. The etched landsurfaces of southwestern Australia. Journal of the Geological Society of Australia, 20(3): 295–307.

    Article  Google Scholar 

  469. Fletcher, C.H., and Sherman, C.E., 1995. Submerged shorelines on Oahu, Hawaii: Archive of episodic transgression during the deglaciation? InFinkl, C.W. (ed.), Holocene Cycles: Climate, Sea Level, and Sedimentation. West Palm Beach: Coastal Education and Research Foundation, Journal of Coastal Research, 17 (Special issue): 141–152.

    Google Scholar 

  470. Frechen, M., Neber, A., Dermann, B., Tsatskin, A., Boenigk, W., and Ronen, A., 2002. Chronostratigraphy of aeolianites from the Sharon Coastal Plain of Israel. Quaternary International, 89(1): 31–45.

    Article  Google Scholar 

  471. Gerrard, A.J., 1981. Soils and Landforms: An Integration of Geomorphology and Pedology. London: Allen and Unwin.

    Google Scholar 

  472. Gleason, P.J., Cohen, A.D., Smith, W.G., Brooks, H.K., Stone, P.A., Goodrick, R.L., and Spackman, W., Jr., 1984. The environmental significance of Holocene sediments from the Everglades and saline tidal plain. In Gleason, P.J. (ed.), Environments of South Florida: Past and Present, Volume II. Coral Gables: Miami Geological Society, pp. 297–351.

    Google Scholar 

  473. Goodwin, R.A., 1987. Soil Survey of Pamlico County, North Carolina. Washington, DC: U.S. Department of Agriculture, Soil Conservation Service.

    Google Scholar 

  474. Goudie, A., 1973. Duricrusts in Tropical and Subtropical Landscapes. Oxford: Clarendon.

    Google Scholar 

  475. Haq, B.U. (ed.), 1995. Sequence Stratigraphy and Depositional Response to Eustatic, Tectonic and Climatic Forcing. Dordrecht: Kluwer.

    Google Scholar 

  476. Harvey, J.W., Krupa, S.L., Gefvert, C., Mooney, R.H., Choi, J., King, S.A., and Giddings, J.B., 2002. Interactions between surface water and ground water and effects on mercury transport in the north-central Everglades. Reston, VA: U.S. Geological Survey, Water-Resources Investigations Report 02-4050.

    Google Scholar 

  477. Hays, J., 1967. Land surfaces and laterite sin the north of the Northern Territory. In Jennings, J.N., and Mabbutt, J.A. (eds.), Landform Studies from Australia and New Guinea. Canberra: Australian National University Press, pp. 182–210.

    Google Scholar 

  478. Hearty, P.J., and Kindler, P., 1997. The stratigraphy and surficial geology of New Providence Island and surrounding islands, Bahamas. Journal of Coastal Research, 13(3): 798–812.

    Google Scholar 

  479. Hearty, P.J., Vacher, H.L., and Mitterer, R.M., 1992. Aminostratigraphy and ages of Pleistocene limestones of Bermuda. Geological Society of America Bulletin, 104: 471–480.

    Article  Google Scholar 

  480. Herwitz, S.R., and Muhs, D., 1995. Bermuda solution pipe soils: a geochemical evaluation of eolian parent materials. In Curran, H.A., and White, B. (eds.), Terrestrial and Shallow Marine Geology of the Bahamas and Bermuda. Geological Society of America, Bahamas-Bermuda Special Paper 300, pp. 311–323.

    Google Scholar 

  481. Herwitz, S.R., Muhs, D., Prospero, J., and Vaughn, B., 1996. Origin of Bermuda’s clay-rich paleosols and their climatic signify-cance. Journal of Geophysical Research-Atmospheres, 101: 23,389–23,400.

    Google Scholar 

  482. Huggett, R.J., 1975. Soil landscape systems: a model of soil genesis. Geoderma, 13(1): 1–22.

    Article  Google Scholar 

  483. Huiskes, A.H.L., 1990. Possible effects of sea level changes on saltmarsh vegetation. In Beukema, J.J. et al. (eds.), Expected Effects of Climatic Change on Marine Coastal Ecosystems. Dordrecht: Kluwer, pp. 167–172.

    Chapter  Google Scholar 

  484. Hussein, A.H., and Rabenhorst, M.C., 2001. Tidal inundation of transgressive coastal areas: Pedogenesis of salinization and alkalization. Soil Science Society of America Journal, 65(2): 536–545.

    Article  Google Scholar 

  485. Inman, D.L., and Nordstrom, C.E., 1971. On the tectonic and morphologic classification of coasts. Journal of Geology, 79(1): 1–21.

    Article  Google Scholar 

  486. Inubushi, K., Furukawa, Y., Hadi, A., Purnomo, E., and Tsuruta, H., 2003. Seasonal changes of CO2, CH4 and N2/O fluxes in relation to land-use change in tropical peatlands located in coastal area of South Kalimantan. Chemosphere, 52(3): 603–609.

    Article  Google Scholar 

  487. Jelgersma, S., De Jong, J., Zagwijn, W.H., and Van Regteren Altena, J.F., 1970. The coastal dunes of the western Netherlands; geology, vegetational history and archaeology. Mededelingen Rijks Geologische Dienst, Nieuwe Serie No. 21.

    Google Scholar 

  488. Jenny, H., 1941. Factors of Soil Formation. A System of Quantitative Pedology. New York: McGraw Hill.

    Google Scholar 

  489. Jenny, H., Arkley, R.J., and Schultz, A.M., 1969. The pygmy forest-Podzol ecosystem and its dune associates in the Mendocina coast. Madrono, 20: 60–74.

    Google Scholar 

  490. Johnson, M.E., 1992. Ancient rocky shores: a brief history and annotated bibliography. Journal of Coastal Research, 8: 797–812.

    Google Scholar 

  491. Karpytchev, Yu, A., 1993. Reconstruction of Caspian sea-level fluctuations: Radiocarbon dating coastal and bottom deposits. Radiocarbon, 35(3): 400–420.

    Google Scholar 

  492. Karunakaran, C., and Sinha Roy, S., 1981. Laterite profile development linked with polycyclic geomorphic surfaces in south Kerala. In Krishnaswamy, V.S. (ed.), Lateritisation Processes (Proceedings of the International Seminar on Lateritisation Processes, 11–14 December 1979, Trivandrum, India). Rotterdam: Balkema, pp. 221–231.

    Google Scholar 

  493. Kelletat, D.H., 1995. Atlas of Coastal Geomorphology and Zonality. West Palm Beach, FL: Coastal Education and Research Foundation.

    Google Scholar 

  494. Kukla, G.J., 1977. Pleistocene land—sea correlations. I. Europe. Earth Science Reviews, 13: 307–374.

    Article  Google Scholar 

  495. Krupa, S.L., 1999. Recognition and Analysis of Secondary Depositional Crusts in the Surficial Aquifer System of Southeast Florida. Master’s thesis, Boca Raton: Florida Atlantic University.

    Google Scholar 

  496. Leatherman, S.P., 1979. Barrier Islands: From the Gulf of St. Lawrence to the Gulf of Mexico. New York: Academic.

    Google Scholar 

  497. Less, B.G., and Lu, Y., 1992. A preliminary study on formation of the sand dune systems in the northern Australian coastal zone. Chinese Science Bulletin, 37(7): 587–592.

    Google Scholar 

  498. Li, C., and Wang, P., 1991. Stratigraphy of the late Quaternary barrier—lagoon depositional systems along the coast of China. Sedimentary Geology, 72: 189–200.

    Article  Google Scholar 

  499. Libbey, L.K., and Johnson, M.E., 1997. Upper Pleistocene rocky shores and intertidal biotas at Playa La Palmita (Baja California Sur, Mexico). Journal of Coastal Research, 13(1): 216–225.

    Google Scholar 

  500. Lissman, J.C., and Oxenford, R.J., 1975. Eneabba rutile-zircon-ilmenite sand deposit, WA. In Knight, C.L. (ed.), Economic Geology of Australia and Papua New Guinea, Volume 1 Metals. Melbourne, Victoria: Australian Institute of Mining and Metallurgy, Monograph No. 5, pp. 1062–1088.

    Google Scholar 

  501. Liu, C., and Walker, H.J., 1989. Sedimentary characteristics of cheniers and the formation of the chenier plains of east China. Journal of Coastal Research, 5: 353–368.

    Google Scholar 

  502. Lodge, T.E., 1994. The Everglades Handbook: Understanding the Ecosystem. Delray Beach, FL: St. Lucie Press.

    Google Scholar 

  503. Loope, W.L., and Arbogast, A.F., 2002. Dominance of an ∼150-year cycle of sand-supply change in late Holocene dune-building along the Eastern Shore of Lake Michigan. Quaternary Research, 54: 414–422.

    Article  Google Scholar 

  504. Markewich, H.W. et al., 1986. Soil Development and its Relation to the Ages of Morphostratigraphic Units in Horry County, South Carolina. Reston, VA: U.S. Geological Survey Bulletin No. 1589.

    Google Scholar 

  505. Maroukian, H., Gaki-Papanastassiou, K., Papanastassiou, D., and Palyvos, N., 2000. Geomorphological observations in the coastal zone of Kyllini Peninsula, NW Peloponnesus-Greece, and their relation to the seismotectonic regime of the area. Journal of Coastal Research, 16(3): 853–863.

    Google Scholar 

  506. McArthur, W.M., and Bettenay, E., 1956. The Soils and Irrigation Potential of the Capel-Boyanup Area,Western Australia. Melbourne, Victoria: CSIRO Soils and Land Use Series No. 16.

    Google Scholar 

  507. McArthur, W.M., and Bettenay, E., 1960. The development and distribution of the soils of the Swan coastal plain, Western Australia. CSIRO Australia Soil Publication No. 16.

    Google Scholar 

  508. McArthur, W.M., and Bettenay, E., 1979. The land. In O’Brien, B.J. (ed.), Environment and Science. Nedlands: University of Western Australia Press, pp. 22–52.

    Google Scholar 

  509. McCollum, S.H., Cruz, O.E., Stem, L.T., Wittstruck, W.H., Ford, R.D., and Watts, F.C., 1978. Soil Survey of Palm Beach County Area, Florida. Washington, DC: U.S. Department of Agriculture, Soil Conservation Service.

    Google Scholar 

  510. McFarlane, M.J., 1976. Laterite and Landscape. London: Academic.

    Google Scholar 

  511. McFarlane, M.J., Ringrose, S., Giusti, L., and Shaw, P.A., 1995. The origin and age of karstic depressions in the Darwin-Koolpinyah area, N.T. In Brown, A.G. (ed.), Geomorphology and Groundwater. New York: Wiley, pp. 93–120.

    Google Scholar 

  512. McNally, G.H., Clarke, G., and Weber, B.W., 2000. Porcellanite and the urban geology of Darwin, Northern Territory. Australian Journal of Earth Sciences, 47: 35–44.

    Article  Google Scholar 

  513. Mendelssohn, I.A., and McKee, K.L., 1988. Spartina alterniflora dieback in Louisiana: time-course investigation of soil waterlogging effects. Journal of Ecology, 76: 509–521.

    Article  Google Scholar 

  514. Milliman, J.D., and Meade, R.H., 1983. World-wide delivery of river sediment to the oceans. Journal of Geology, 91: 1–21.

    Article  Google Scholar 

  515. Milnes, A.R., and Thierry, M., 1992. Silcretes. In Martin, I.P., and Chesworth, W. (eds.), Soils and Paleosols. Amsterdam: Elsevier, pp. 349–377.

    Google Scholar 

  516. Mook, W.G., and van de Plassche O., 1986. Radiocarbon dating. In van de Plassche, O. (ed.), Sea-Level Research: A Manual for the Collection and Evaluation of Data. Norwich: Geo Books, pp. 525–560.

    Google Scholar 

  517. Nelson, A.R., and Kashima, K., 1993. Diatom zonation in southern Oregon tidal marshes relative to vascular plants, foraminifera, and sea level. Journal of Coastal Research, 9(3): 673–697.

    Google Scholar 

  518. Nordstrom, K., Psuty, N., and Carter, W., 1990. Coastal Dunes: Form and Process. Chichester: Wiley.

    Google Scholar 

  519. Nyman, J.A., Delaune, R.D., Roberts, H.H., and Patrick, W.H., Jr., 1993. Relationship between vegetation and soil formation in a rapidly submerging coastal marsh. Marine Ecology Progress Series, 96: 269–279.

    Article  Google Scholar 

  520. Ollier, C., and Pain, C., 1996. Regolith, Soils and Landforms. Chichester: Wiley.

    Google Scholar 

  521. Otvos, E.G., and Price, W.A., 1979. Problems of chenier genesis and terminology—an overview. Marine Geology, 31: 251–263.

    Article  Google Scholar 

  522. Petit, M., 1985. A provisional world map of duricrust. In Douglas, I., and Spencer, T. (eds.), Environmental Change and Tropical Geomorphology. London: Allen & Unwin, pp. 269–279.

    Google Scholar 

  523. Playford, P.E., and Leech, R.E.J., 1977. Geology and hydrology of Rottnest Island. Geological Survey of Western Australia Report No. 6.

    Google Scholar 

  524. Pons, L.J., and van Breeman, N., 1982. Factors influencing the formation of potential acidity in tidal swmaps. In Dost, H., and van Breeman, N. (eds.), Proceedings of the Bangkok Symposium on Acid Sulphate Soils. Wageningen, The Netherlands: International Institute for Land Reclamation and Improvement (ILRI), ILRI Publication No. 31, pp. 37–51.

    Google Scholar 

  525. Quarto, A., and Cissna, K., 1997. The mangrove action project. In Peck, D. (ed.), Ramsar Convention on Wetlands, 2p. [ramsar@ramsar.org; Ramsar Convention Bureau, Rue Mauverney 28, CH-1196 Gland, Switzerla nd].

    Google Scholar 

  526. Rabenhorst, M.C., 1997. The chrono-continuum: an approach to modeling pedogenesis in marsh soils along transgressive coastlines. Soil Science, 167: 2–9.

    Article  Google Scholar 

  527. Rabenhorst, M.C., and Swanson, D., 2000. Histosols. In Sumner, M.E. (ed.), Handbook of Soil Science. Boca Raton, FL: CRC Press, pp. E183–E209.

    Google Scholar 

  528. Radtke, U., 1989. Marine Terrassen und Korallenriffe—Das Problem der quartären Meerespiegelschwankungen erläutert an Fallstudien aus Chile, Argentinien und Barbados. Düsseldorfer Geographische Schriften, 27 (Düsseldorf ).

    Google Scholar 

  529. Redfield, A.C., 1972. Development of a New England salt marsh. Ecological Monographs, 42: 201–237.

    Article  Google Scholar 

  530. Retallack, G.J., 1990. Soils of Past: An Introduction to Paleopedology. London: Harper Collins Academic.

    Google Scholar 

  531. Rieger, S., 1983. The Genesis and Classification of Cold Soils. New York: Academic.

    Google Scholar 

  532. Rink, W.J., and Forrest, B., 2004. Dating evidence for the accretion history of beach ridges on Cape Canaveral and Merritt Island, Florida, USA. Journal of Coastal Research, 20(3).

    Google Scholar 

  533. Ritsema, C.J., van Memsvoort, M.E.F., Dent, D.L., van den Bosch, H., and van Wijk, A.L.M., 2000. Acid sulfate soils. In Sumner, M.E. (ed.), Handbook of Soil Science. Boca Raton, FL: CRC Press, pp. G121–G154.

    Google Scholar 

  534. Roberts, H.H., and Coleman, J.M., 1996. Holocene evolution of the deltaic plain: a perspective—from Fisk to present. Engineering Geology, 45(1996): 113–138.

    Article  Google Scholar 

  535. Ruhe, R.V., 1965. Quaternary paleopedology. In Wright, H.E., and Frey, D.E. (eds.), The Quaternary of the United States. Princeton, NJ: Princeton University Press, pp. 755–764.

    Google Scholar 

  536. Runge, E.C.A., 1973. Soil development sequences and energy models. Soil Science, 115: 183–193.

    Article  Google Scholar 

  537. Rutter, H., Schnack, E.J., Fasano, J.L., Isla, F.I., Del Rio, J., and Radtke, U., 1989. Correlation and dating of Quaternary littoral zones along the coast of Patagonia and Tierra del Fuego. Quaternary Science Reviews, 8: 213–234.

    Article  Google Scholar 

  538. Saito, Y., Wei, H., Zhou, Y., Nishimura, A., Sato, Y., and Yokota, S., 2000. Delta progradation and chenier formation in the Huanghe (Yellow River) delta, China. Journal of Asian Earth Sciences, 18(2000): 489–497.

    Article  Google Scholar 

  539. Sayles, R.W., 1931. Bermuda during the Ice Age. American Academy of Arts and Sciences, 66: 183–190.

    Google Scholar 

  540. Schellmann, G., and Radtke, U., 2001. Neue Ergebnisse zur Verbreitung und Altersstellung gehobener Korallenriffterrassen im Süden von Barbados. In Schellmann, G. (ed.), Von de Nordseeküste bis Neuseeland—Beiträge zur 19 Jahrestagung des Arbeitskreises “Geographie der Meer und Küsten” vom 24–27 Mai 2001 in Bamberg. Bamberger Geographische Schriften, 20: 201–224.

    Google Scholar 

  541. Schellmann, G., and Radtke, U., 2003. Coastal terraces and Holocene sea-level changes along the Patagonian Atlantic coast. Journal of Coastal Research, 19(4): 983–1010.

    Google Scholar 

  542. Schirrmeister, L., Siegert, C., Kunitzky, V.V., Grootes, P.M., and Erlenkeuser, H., 2002. Late Quaternary ice-rich permafrost sequences as a paleoenvironmental archive for the Laptev Sea Region in northern Siberia. International Journal of Earth Science, 91: 154–167.

    Article  Google Scholar 

  543. Schlichting, E., 1973. Pseudogleye und Gleye—Genese und Nutzung hydromorpher Böden. In Schlichting, E. and Schwertmann, U. (eds.), Pseudogley and Gley (Transactions of Commissions V and VI of the International Society of Soil Science). Weinheim, Germany: Verlag Chemie, pp. 1–6.

    Google Scholar 

  544. Searle, D.J., and Woods, P., 1986. Detailed documentation of Holocene sea-level record in the Perth region, South Western Australia. Quaternary Research, 26: 299–308.

    Article  Google Scholar 

  545. Searle, D.J., Semeniuk, V., and Woods, P.J., 1988. Geomorphology, stratigraphy and Holocene history of the Rockingham-Becher Plain, South-western Australia. Journal of the Royal Society of Western Australia, 70(4): 89–109.

    Google Scholar 

  546. Sevink, J., 1991. Soil development in the coastal dunes and its relation to climate. Landscape Ecology, 6(1/2): 49–56.

    Article  Google Scholar 

  547. Shaw, J.N., West, L.T., Truman, C.C., and Radcliffe, D.E., 1997. Morphologic and hydraulic properties of soil with water restrictive horizons in the Georgia Coastal Plain. Soil Science, 162(12): 875–885.

    Article  Google Scholar 

  548. Short, A.D., 2003. Cross-shore sediment transport around Australia—sources, mechanisms, rates, and barrier forms. ASCE International Conference on Coastal Sediments (Clearwater Beach, FL, 18–23 May 2003), Coastal Sediments Book of Abstracts, pp. 216–217.

    Google Scholar 

  549. Sibirtzev, N.M., 1901. Russian soil investigations. In Finkl, C.W. (ed.), Benchmark Papers in Soil Science, Volume 1. Soil Classification. Stroudsburg, PA: Hutchinson Ross Publishing Company, pp. 15–35.

    Google Scholar 

  550. Soil Survey Staff, 1975. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Washington, DC: U.S. Department of Agriculture, Agriculture Handbook No. 436.

    Google Scholar 

  551. Soil Survey Staff, 1992. Keys to Soil Taxonomy. U.S. Department of Agriculture, Soil Management Support Services, Technical Monograph No. 19.

    Google Scholar 

  552. Spaargaren, O.C. (compiler and ed.), 1994. World Reference Base for Soil Resources. Rome: FAO, Land and Water Development Division, 161p.

    Google Scholar 

  553. Spaargaren, O.C., 2000. Other systems of soil classification. In Sumner, M.E. (ed.), Handbook of Soil Science. Boca Raton, FL: CRC Press, pp. E137–E174.

    Google Scholar 

  554. Spackman, W., Dolsen, C.P., and Riegel, W., 1966. Phytogenic organic sediments and sedimentary environments in the Everglades—Mangrove complex. Part I: evidence of a transgressing sea and its effects on environments of the Shark River area of Southeastern Florida. Paleontographica, 117(B), 135–152.

    Google Scholar 

  555. Stevens, J.C., Allen, L.H., Jr., and Chen, E.C., 1984. Organic soil subsidence. Geological Society of America Reviews in Engineering, 6: 107–122.

    Google Scholar 

  556. Stiles, C.A., Mora, C.I., Driese, S.G., and Robinson, A.C., 2003. Distinguishing climate and time in the soil record: mass-balance trends in Vertisols from the Texas coastal prairie. Geology, 31(4): 331–335.

    Article  Google Scholar 

  557. Tanner, W.F., 1995. Origin of beach ridges and swales. Marine Geology, 129: 149–161.

    Article  Google Scholar 

  558. Tatur, A., 1989. Ornithogenic soils of maritime Antacrtica. Polar Research, 10: 481–532.

    Google Scholar 

  559. Tedrow, J.C.F., 1977. Soils of the Polar Landscapes. New Brunswick, NJ: Rutgers University Press.

    Google Scholar 

  560. Thorp, J., and Smith, G., 1949. Higher categories of soil classification: order, suborder and great group. Soil Science, 67: 117–126.

    Article  Google Scholar 

  561. Ugolini, F.C., 1972. Ornithogenic soils of Antacrtica. In Liano, G.A. (ed.), Antarctic terrestrial biology. American Geophysical Union Antarctic Research Series, 20: 181–193.

    Google Scholar 

  562. Vacher, H.L., and Hearty, P., 1989. History of Stage 5 sea level in Bermuda: review with new evidence of a brief rise to present sea level during Substage 5A. Quaternary Science Reviews, 8: 159–168.

    Article  Google Scholar 

  563. Valeton, I., 1981. Bauxites on peneplained metamorphic and magmatic rocks, on detrital sediments and on karst topography, their similarities and contrasts of genesis. In Krishnaswamy, V.S. (ed.), Lateritisation Processes (Proceedings of the International Seminar on Lateritisation Processes, 11–14 December 1979, Trivandrum, India). Rotterdam: Balkema, pp. 15–23.

    Google Scholar 

  564. Valeton, I., 1983. Palaeoenvironment of lateritic bauxites with vertical and lateral differentiation. In Wilson, R.C.L. (ed.), Residual Deposits: Surface Related Weathering Processes and Materials. London: Blackwell, pp. 77–90.

    Google Scholar 

  565. van Ghent, P.A.M., and Ukkerman, R., 1993. The Balanta rice farming system in Guinea Bissau. In Dent, D.L., and van Mensvoort, M.E.F. (eds.), Selected Papers of the Ho Chi Minh City Symposium on Acid Sulfate Soils. Wageningen, The Netherlands: ILRI Publication No. 53, pp. 103–112.

    Google Scholar 

  566. van Mensvoort, M.E.F., and Dent, D.L., 1997. Acid sulfate soils. In Lal, R. et al. (eds.), Methods for Assessment of Soil Degradation. Boca Raton, FL: CRC Press, pp. 301–333.

    Google Scholar 

  567. Vogel, J.C., 1980. Accuracy of the radiocarbon time-scale beyond 15000 B.P. Radiocarbon, 22(2): 210–218.

    Google Scholar 

  568. Wang, Y., 2003. Coastal laterite profiles at Po Chue Tam, Lantau Island, Hong Kong: the origin and implication. Geomorphology, 52(3/4): 335–347.

    Article  Google Scholar 

  569. Wang, J., and Luo, S., 2002. Sulfur and its acidity in acid sulfate soil of Taishan coastal plain in southern China. Communications in Soil Science and Plant Analysis, 33(3/4): 579–586.

    Article  Google Scholar 

  570. Wanless, H.R., Parkinson, R.W., and Tedesco, L.P., 1994. Sea level control on stability of wetlands. In Davis, S.M., and Ogden, J.C. (eds.), Everglades: The Ecosystem and its Restoration. Delray beach, FL: St. Lucie Press, pp. 199–223.

    Google Scholar 

  571. Ward, W.T, 1977. Geomorphology and Soils of the Stratford-Bairnsdale Area, East Gippsland, Victoria. CSIRO Australia Division of Soils, Soils and Land Use Series No. 57.

    Google Scholar 

  572. Ward, W.T., and Grimes, K.G., 1987. History of coastal dunes at Triangle Cliff, Fraser Island, Queensland. Australian Journal of Earth Sciences, 34: 325–333.

    Article  Google Scholar 

  573. Ward, W.T., and McArthur, W.M., 1983. Soil formation on coastal lands and the effects of sea-level changes. In Division of Soils, CSIRO, Soils: An Australian Viewpoint. London: Academic, pp. 101–105.

    Google Scholar 

  574. Washburn, A.L., 1969. Weathering, frost action, and patterned Ground in the Mesters Vig District, northeast Greenland. Meddel. Om Gronland, 176(4): 303 p.

    Google Scholar 

  575. Washburn, A.L., 1973. Periglacial Processes and Environments. London: Arnold.

    Google Scholar 

  576. Yaalon, D.H., 1971. Soil-forming processes in time and space. In Yaalon, D.H. (ed.), Paleopedology. Jerusalem: Israel University Press, pp. 29–40.

    Google Scholar 

  577. Yan, Q. Xu, S., and Shao, X., 1989. Holocene cheniers in the Yangtze Delta, China. Marine Geology, 90: 337–343.

    Article  Google Scholar 

  578. Yatsko, A., 2000. Of marine terraces and sand dunes: the landscape of San Clemente Island. Pacific Coast Archaeological Society Quarterly, 36(1): 26–30.

    Google Scholar 

  579. Cahoon, D.R., Reed, D.J., and Day, J.W., 1995. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited. Marine Geology, 128: 1–9.

    Article  Google Scholar 

  580. Cencini, D., 1998. Physical processes and human activities. Journal of Coastal Research, 14: 774–793.

    Google Scholar 

  581. Chen, X.Q., 1998. Changjiang (Yangtze) River delta, China. Journal of Coastal Research, 14: 838–858.

    Google Scholar 

  582. Chen, Z., and Stanley, D.J., 1995. Quaternary subsidence and river channel migration in the Yangtze Delta plain, Eastern China. Journal of Coastal Research, 11: 927–945.

    Google Scholar 

  583. Chen, Z., Song, B.P., Wang, Z., and Cai, Y.L., 2000. Late Quaternary evolution of the subaqueous Yangtze Delta, China: stratigraphy, sedimentation, palynology and deformation. Marine Geology, 162: 423–441.

    Article  Google Scholar 

  584. Church, J.A., Gregory, J.M., Huybrechts, P., Kuhn, M., Lambeck, K., Nhuan, M.T., Qin, D., and Woodworth, P.L., 2001. Changes in sea level. In Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., and Johnson, C.A. (eds.), Climate Change 2001: The Scientific Basis. Cambridge: Cambridge University Press, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, pp. 639–693.

    Google Scholar 

  585. Coleman, J.M., 1982. Deltas: Processes of Deposition and Models for exploration, 2nd edn. Boston: International Human Resources Development Corp.

    Google Scholar 

  586. Emery, K.O., and Aubrey, D.G., 1991. Sea Levels, Land Levels and Tide Gauges. New York: Springer.

    Book  Google Scholar 

  587. Penland, S., Ramsey, K.E., McBride, R.A., Mestayer, J.T., and Westphal, K.A., 1988. Relative sea level rise and delta-plain development in the Terrebonne Parish region. Coastal Geology Technical Report. Baton Rouge: Louisiana Geological Survey.

    Google Scholar 

  588. Stanely, D.J., 1988. Subsidence in the Northeastern Nile Delta: rapid rates, possible causes, and consequences. Science, 240: 497–500.

    Article  Google Scholar 

  589. Maul, G.A., Davis, A.M., and Simmons, J.W., 2001. Seawater temperature trends at USA tide gauge sites. Geophysical Research Letters, 28(20): 3935–3937.

    Article  Google Scholar 

  590. U.S. Coast and Geodetic Survey, 1929. Instructions, Primary Tide Stations. Special Publication No. 154, Washington: United States Government Printing Office.

    Google Scholar 

  591. Allen, J.S., 1973. Upwelling and coastal jets in a continuously stratified ocean. Journal of Physical Oceanography, 3: 245–257.

    Article  Google Scholar 

  592. Bakun, A., 1973. NOAA Technical Report NMFS SSRF-G71.

    Google Scholar 

  593. Bowden, K.F., 1983. Physical Oceanography of Coastal Waters. Chichester: Ellis Horwood Ltd.

    Google Scholar 

  594. Chase, R.R.P., 1981. NASA’s potential remote sensing capabilities that could be applied to upwelling studies. In Richards, F.A. (ed.), Coastal Upwelling.Washington, DC: American Geophysical Union.

    Google Scholar 

  595. Ekman, V.W., 1905. On the influence of the earth’s rotation on ocean currents. Arkiv foer Matematik Astronomi Och Fysik (Swedish), 2: 1–52.

    Google Scholar 

  596. Field, J.G., Griffiths, C.L., Linley, E.A.S., Zoutendyk, P., and Carter, R.A., 1981. Wind-induced water movements in a Benguela kelp bed. In Richards, F.A. (ed.), Coastal Upwelling. Washington, DC: American Geophysical Union, pp. 507–513.

    Chapter  Google Scholar 

  597. Garvine, R.W., 1971. A simple model of coastal upwelling systems. Journal of Physical Oceanography, 1: 169–179.

    Article  Google Scholar 

  598. Hamilton, P., and Rattray, M., 1978. A numerical model of the depth dependent wind-driven upwelling circulation on a continental shelf. Journal of Physical Oceanography, 8: 437–457.

    Article  Google Scholar 

  599. Henry, R.F., and Murty, T.S., 1972. Three-dimensional circulation in a stratified bay under variable wind stress. In Nihoul, J.C.J. (ed.), 4th Liege Colloguim on Ocean Hydrodynamics, Mémoires de la société Royale des Science de Liège.

    Google Scholar 

  600. Hidaka, K., 1954. A contribution to the theory of upwelling and coastal currents. Transactions of the American Geophysical Union, 35: 431–444.

    Article  Google Scholar 

  601. McEwen, G.F., 1912. The distribution of ocean temperature along the west coast of North America deduced from Ekman’s theory of the upwelling of cold water from adjacent ocean depths. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 5: 243–286.

    Article  Google Scholar 

  602. Petrie, B., Topliss, B.J., and Wright, D.G., 1987. Coastal upwelling and eddy development off Nova Scotia. Journal of Geophysical Research, 92(12): 12979–12991.

    Article  Google Scholar 

  603. Pond, S., and Pickard, G., 1978. Introductory Dynamic Oceanography. Oxford: Pergamon Press.

    Google Scholar 

  604. Richards, F.A. (ed.), 1981. Coastal upwelling. Washington, DC: American Geophysical Union.

    Google Scholar 

  605. Smith, R.L., 1983. Physical Features of Coastal Upwelling Systems. Seattle: Washington Sea Grant Communications WSG 83–2.

    Google Scholar 

  606. Thomson, R.E., 1981. Oceanography of British Columbia Coast. Sidney, BC: Department of Fisheries and Oceans.

    Google Scholar 

  607. Yoshida, K., 1967. Circulation in the eastern tropical oceans with special reference to upwelling and undercurrents. Japanese Journal of Geophysics, 4: 1–75.

    Google Scholar 

  608. Bartlett, M.L. (ed.), 1983. Assault From the Sea: Essays on the History of Amphibious Warfare. Annapolis, MD: United States Naval Institute.

    Google Scholar 

  609. Clapp, M., and Southby-Tailyour, E., 1996. Amphibious Assault Falklands. Annapolis, MD: United States Naval Institute.

    Google Scholar 

  610. Foster, S., 1995. Hit the Beach: Amphibious Warfare from the Plains of Abraham to San Carlos Water. London: Arms & Armor Press, Cassell Group.

    Google Scholar 

  611. Gatchel, T.L., 1996. At the Water’s Edge: Defending Against the Modern Amphibious Assault. Annapolis, MD: United States Naval Institute.

    Google Scholar 

  612. United States Navy, 1993. …From the Sea: Preparing the Naval Service for the 21st Century. Washington, DC: Navy White Paper.

    Google Scholar 

  613. Winters, H.A., and Galloway, G.E., Jr., Reynolds, W.J., and Rhyne, D.W., 1998. Battling the Elements: Weather and Terrain in the Conduct of War. Baltimore, MD: Johns Hopkins University Press.

    Google Scholar 

  614. Forbes, R.J., 1955. Water supply. In Forbes, R.J. (ed.), Studies in Ancient Technology. Leiden: E.J. Brill Publishing House, pp. 145–148.

    Google Scholar 

  615. Galili, E., Kaufman, D., and Weinstein-Evron, M., 1988. Eight thousand years under the sea. Archaeology, 41: 66–67.

    Google Scholar 

  616. Galili, E., and Nir, Y., 1993. The submerged Pre-Pottery Neolithic water-well of Atlit-Yam, northern Israel, and its palaeoenvironmental implications. The Holocene, 3(3): 265–270.

    Article  Google Scholar 

  617. Hübener, R., 1999. The evolution of irrigated farming. Natural Resources and Development, 49(50): 143–150.

    Google Scholar 

  618. Kafri, U., and Arad, A., 1978. Paleohydrology and migration of the ground-water divide in regions of tectonic stability in Israel. Geological Society of America Bulletin, 89: 1723–1732.

    Article  Google Scholar 

  619. Nir, Y., 1997. Middle and Late Holocene sea-levels along the Israel Mediterranean coast—evidence from ancient water wells. Journal of Quaternary Science, 12: 143–151.

    Article  Google Scholar 

  620. Nir, Y., and Eldar-Nir, I., 1987. Ancient wells and their geoarchaeological significance in detecting tectonics of the Israel Mediterranean coastal region. Geology, 15: 3–6.

    Article  Google Scholar 

  621. Nir, Y., and Eldar-Nir, I., 1988. Construction techniques and building materials used in the ancient water wells along the coastal plain of Israel. In Marinos, P.G., and Koukis, G.C. (eds.), Engineering Geology of Ancient Works, Monuments and Historical Sites. Rotterdam: Balkema, pp. 1765–1771.

    Google Scholar 

  622. Oren, E., 1992. Sinai. In The New Encyclopedia of Archaeological Excavations in the Holy Land. Published for The Society for Antiquities Research in Israel, by Carta, and The Ministry of Defence Publishing House (in Hebrew), pp. 1104–1116.

    Google Scholar 

  623. Komar, P.D., 1976. Beach Processes and Sedimentation. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  624. Masselink, G., and Pattiaratchi, C.B., 1998. The effect of sea breeze on beach morphology, surf zone hydrodynamics and sediment resuspension. Marine Geology, 146: 115–135.

    Article  Google Scholar 

  625. Arthurton, R., 1995, Implications of physical environmental change for coastal zone management. Coastal Change’ 95. Proceedings of the International Conference on Coastal Change. Bordeaux, pp. 761–764.

    Google Scholar 

  626. Barston, R.P., 1994, International dimensions of coastal zone management. Ocean and Coastal Management, 23: 93–116.

    Article  Google Scholar 

  627. Boorman, L.A., 1976, Dune management: a progress report. Cambridge: Institute of Terrestrial Ecology, Unpublished Report.

    Google Scholar 

  628. French, P.W., 1997. Coastal and Estuarine Management. New York & London: Routledge.

    Google Scholar 

  629. French, P.W., 2001. Coastal Defences: Processes, Problems and Solutions. New York & London: Routledge.

    Google Scholar 

  630. IPCC, 1990, Climate Change: The IPCC Scientific Assessment. Intergrovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  631. Jokiel, P.L, Hunter, C.L., Taguchi, S, and Watorai, L., 1993. Ecological impact of a fresh water ‘reef-kill’ in Kanehoe Bay, Oahu, Hawaii. Coral Reefs, 12: 177–184.

    Article  Google Scholar 

  632. Kay, R., and Alder, J., 1999. Coastal Planning and Management. New York: Routledge.

    Google Scholar 

  633. Ly, C.K., 1980. The role of the Akosombo Dam in the Volta River in causing coastal erosion in central and eastern Ghana (west Africa). Marine Geology, 37: 323–332.

    Article  Google Scholar 

  634. Quarry, J., (ed.) 1992, Earth Summit 1992. The UN Conference on Environment and Development. Rio de Janeiro: The Regency Press Corporation.

    Google Scholar 

  635. Stanley, D.J., and Warne, A.G., 1993, Nile delta: recent geological evolution and human impact. Science, 260: 628–634.

    Article  Google Scholar 

  636. U.N.E.P., 1995, Guidelines for integrated management of coastal and marine areas. U.N.E.P. Regional Seas reports and Studies No. 161. United Nations Environment Programme.

    Google Scholar 

  637. Allison, R.J., and Brunsden, D., 1990. Some mudslide movement patterns. Earth Surface Processes and Landforms, 15: 297–312.

    Google Scholar 

  638. Bird, E.C.F., 1985. Coastline Changes. Chichester: Wiley.

    Google Scholar 

  639. Bird, E.C.F., 1993. Submerging Coasts. Chichester: Wiley.

    Google Scholar 

  640. Bird, E.C.F., 1996. Beach Management. Chichester: Wiley.

    Google Scholar 

  641. Edelman, T., 1977. Systematic measurements along the Dutch coast. Proceedings of the 10th Conference, Coastal Engineering, pp. 489–501.

    Google Scholar 

  642. Ignatov, Y.I., Kaplin, P.A., Lukyanova, S.A., and Solovieva, G.D., 1993. Evolution of Caspian Sea coasts under conditions of sea level rise. Journal of Coastal Research, 9: 104–111.

    Google Scholar 

  643. Kamaludin, B.H., 1993. The changing mangrove shorelines in Kuala Kuran, Peninsular Malaysia. Sedimentary Geology, 83: 187–193.

    Article  Google Scholar 

  644. Royal Commission on Coastal Erosion, 1907–11. Reports (3 Volumes) London: His Majesty’s Stationery Office.

    Google Scholar 

  645. Sunamura, T., 1992. Geomorphology of Rocky Coasts. Chichester: Wiley.

    Google Scholar 

  646. U.S. Corps of Engineers, 1971. National Shoreline Survey. Washington, DC.

    Google Scholar 

  647. Valentin, H., 1952. Die Küsten der Erde. Petermanns Geogr. Mitteilungen.

    Google Scholar 

  648. Walker, H.J., and Mossa, J., 1986. Human modification of the shoreline of Japan. Physical Geography, 7: 116–139.

    Google Scholar 

  649. Betteridge, H.T., 1965. The New Cassell’s German Dictionary. New York: Funk and Wagnalls.

    Google Scholar 

  650. McKechnie, J.L., (ed.), 1979. Webster’s New Unabridged Dictionary. New York: Simon and Schuster.

    Google Scholar 

  651. Oertel, G.F., Ludwick, J.C., and Oertel, D.L.S., 1989. Sand accounting methodology for barrier island sediment budget analysis. Proceedings of the Sixth Symposium on Coastal and Ocean Management. Charleston, SC, pp. 43–61.

    Google Scholar 

  652. Amos, C.L., Grant, J., Daborn, G.R., and Black, K., 1992. Sea carousel—a benthic, annular flume. Estuarine, Coastal and Shelf Science, 34: 557–577.

    Article  Google Scholar 

  653. Ariathurai, C.R., Macarthur, R.C., and Krone, R.B., 1977. Mathematical model of estuarine sediment transport. Dredged Material Research Program, Technical Report D-77-12.

    Google Scholar 

  654. Ariathurai, R., and Krone, R.B., 1976. Finite element model for cohesive sediment transport. ASCE, Journal of Hydraulic Engineering, 102: 323–338.

    Google Scholar 

  655. Blumberg, A.F., Khan, L.A., and St. John, J.P., 1999. Three-dimensional hydrodynamic model of New York Harbor region. ASCE, Journal of Hydraulic Engineering, 125(8): 799–816.

    Article  Google Scholar 

  656. Booij, N., and Holthuijsen, L.H., 1995. HISWA User Manual, Prediction of Stationary, Short-Crested Waves in Shallow Water with Ambient Currents. Department of Civil Engineering, Delft, The Netherlands: Delft University of Technology.

    Google Scholar 

  657. Cole, P., and Miles, G.V., 1983. Two-dimensional model of mud transport. ASCE, Journal of Hydraulic Engineering, 109(1): 1–12.

    Article  Google Scholar 

  658. Hayter, E.J., and Pakala, C.V., 1989. Transport of inorganic contaminants in estuarial waters. Journal of Coastal Research, 5: 217–230.

    Google Scholar 

  659. Holthuijsen, L.H., Booij N., and Ris, R.C., 1993, A spectral wave model for the coastal zone. In Proceedings of the 2nd International Conference on Ocean Wave Measurement and Analysis, pp. 630–641.

    Google Scholar 

  660. Krone, R.B., 1963. A Study of Rheologic Properties of Estuarial Sediments. Hydraulic Engineering Laboratory and Sanitary Engineering Research Laboratory, University of California, Berkeley, SERL Report No. 63-8.

    Google Scholar 

  661. Krone, R.B., 1985. Simulation of marsh growth under rising sea levels. In Waldrop, W.R. (ed.), Proceedings of the Conference on Hydraulics and Hydrology in the Small Computer Age, ASCE, 1, pp. 106–115.

    Google Scholar 

  662. Leenknecht, D.A., Szuwalski, A., and Sherlock, A.R., 1992. Automated coastal engineering system. Coastal Engineering Research Center, Vicksburg: U.S. Army Engineer Waterways Experiment Station.

    Google Scholar 

  663. Lick, W., Lick, J., and Ziegler, C.K., 1994. The resuspension and transport of fine-grained sediments in lake erie. Journal of Great Lakes Research, 20(4): 599–612.

    Article  Google Scholar 

  664. Lin, P., Huan, J., and Li, X., 1983. Unsteady transport of suspended load at small concentrations. ASCE, Journal of Hydraulic Engineering, 109(1): 86–98.

    Article  Google Scholar 

  665. Lou, Jing, Schwab, D.J., Beletsky, D., and Hawley, N., 2000. A model of sediment resuspension and transport dynamics in southern lake michigan. Journal of Geophysical Research, 105(C3): 6591–6610.

    Article  Google Scholar 

  666. Martin, J.L., and McCutcheon, S.C., 1998. Hydrodynamics and Transport for Water Quality Modeling. Boca Raton: Lewis Publishers.

    Google Scholar 

  667. Mehta, A.J., Hayter, E.J., Parker, W.R., Krone, R.B., and Teeter, A.M., 1989. Cohesive Sediment Transport. I: Process Description. ASCE, Journal of Hydraulic Engineering, 115(8): 1076–1093.

    Article  Google Scholar 

  668. Odd, N.V.M., and Owen, M.W., 1972. A two-layer model for mud transport in the Thames estuary. In Proceedings of the Institution of Civil Engineers. London, England, Supplementary Paper 75175.

    Google Scholar 

  669. Onishi, Y., 1981. Sediment-contaminant transport model. ASCE, Journal of Hydraulic Engineering, 107(9): 1089–1107.

    Google Scholar 

  670. Onishi, Y., and Wise, S.E., 1982. Mathematical model, SERATRA, for sediment-contaminant transport in rivers and its application to pesticide transport in four mile and Wolf Creeks in Iowa. Athens, GA: USEPA Report No. EPA/600/3-82-045.

    Google Scholar 

  671. Onishi, Y., Graber, H.C., and Trent, D.S., 1993. Preliminary modeling of wave-enhanced sediment and contaminant transport in new bedford harbor. In Metha, A.J. (ed.), Nearshore and Estuarine Cohesive Sediment Transport, pp. 541–557.

    Google Scholar 

  672. Parchure, T.M. and Mehta, A.J., 1985. Erosion of soft cohesive sediment deposits. ASCE Journal Hydraulic Engineering, 111(10): 1308–1326.

    Article  Google Scholar 

  673. Resio, D.T., and Perrie, W., 1989. Implication of an f−4 equilibrium range for wind-generated waves. Journal Physical Oceanography, 19: 193–204.

    Article  Google Scholar 

  674. Schwab, D.J., Bennett, J.R., Liu, P.C., and Donelan, M.A., 1984. Application of a simple numerical wave prediction model to Lake Erie. Journal of Geophysical Research, 89(C3): 3586–3592.

    Article  Google Scholar 

  675. Sheng Y.P., 1991. Three-dimensional modeling of transport of fine sediments and contaminant in lakes and estuaries. In Proceedings of the ASCE Conference, Hydraulic Engineering, Nashville, TN, July 29–August 2, pp. 166–171.

    Google Scholar 

  676. Shrestha, P.L., 1996. An integrated model suite for sediment and pollutant transport in shallow lakes. Advances in Engineering Software, 27: 201–212.

    Article  Google Scholar 

  677. Shrestha, P.L., and Orlob, G.T., 1996. Multiphase distribution of cohesive sediments and heavy metals in estuarine systems. ASCE, Journal of Environmental Engineering, 122(8): 730–740.

    Article  Google Scholar 

  678. Shrestha, P.L., Blumberg, A.F., DiToro, D.M., and Hellweger, F.L., 2000. A three-dimensional model for cohesive sediment transport in shallow bays. Minneapolis: ASCE Proceedings, Joint Conference on Water Resources Engineering and Water Resources Planning and Management.

    Google Scholar 

  679. Tsai, C.H., and Lick, W., 1987. Resuspension of sediments from Long Island Sound. Water Science Technology, 21(6/7): 155–184.

    Google Scholar 

  680. United States Army Corps of Engineers (USACE), 1984, Shore Protection Manual, Volume I. Coastal Engineering Research Center. Vicksburg, MS: Waterways Experiment Station.

    Google Scholar 

  681. van Rijn, L.C., 1993. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas. Amsterdam: Aqua Publications.

    Google Scholar 

  682. Barragan, J.M., 1997, Medio ambiente y desarrollo en las areas litorales, Barcelona: Oikos-tau.

    Google Scholar 

  683. California Coastal Commission, 1987. California Coastal Resource Guide. Berkeley: University of California Press.

    Google Scholar 

  684. Cicin-Sain, B., and Knecht, R.W., 1998. Integrated Coastal and Ocean Management: Concepts and Practices. Washington, DC: Island Press.

    Google Scholar 

  685. de Jong, F. et al., 1999. Wadden Sea Quality Status Report.Wadden Sea Ecosystem No. 9. Germany: Petra Potel.

    Google Scholar 

  686. Ehrenfeld, D.W., 1976. The conservation of non-resources, American Scientist, 64: 648–656.

    Google Scholar 

  687. European Commission, 1979. Council Directive on the conservation of wild birds 79/409/EEC.

    Google Scholar 

  688. European Commission, 1997. Council Directive 92/43/EEC on the conservation of natural habitats and of wild fauna and flora as amended by the Act of Accession to the European Union of Austria, Finland and Sweden and by Council Directive 97/62/EEC.

    Google Scholar 

  689. European Union for Coastal Conservation (EUCC), 1995. Conservatoire de l’Espace Littoral et des Rivages Lacustres. Coastline, 4(1): 13–20.

    Google Scholar 

  690. Favennec, J., 2000. The Office National des Forêts, actively involved in managing and protecting the French coast. Coastline, 9(2): 7–19.

    Google Scholar 

  691. IUCN 1994 Guidelines for Protected Area Management Categories, Gland: IUCN Commission on National Parks and Protected Areas with the assistance of the World Conservation Monitoring Centre, Gland.

    Google Scholar 

  692. May, V., and Hansom, J., 2003. Coastal Geomorphology of Great Britain, Peterborough: Joint Nature Conservation Committee Geological Conservation Review.

    Google Scholar 

  693. May, V.J., and Schwartz, M.L., 1981. Worldwide sites of special scientific interest. In Bird, E.C.F., and Koike, K. (eds.), Coastal Dynamics and Scientific sites, Tokyo: Komazawa University, pp. 91–118.

    Google Scholar 

  694. Meur-Férec, C., 1997. A comparative review of coastal conservation policies in France, and England and Wales. Journal of Coastal Conservation, 3: 121–132.

    Article  Google Scholar 

  695. PHARE, 1996. Karavasta Lagoon-Wetland Management Project: Ramsar Site Management Plan, Volume 32. France: Station Biologique de la Tour du Valat.

    Google Scholar 

  696. RAMSAR, 1996. Albania’s Karavasta Lagoon. Ramsar Archives.

    Google Scholar 

  697. RAMSAR, 2001. The List of Wetlands of International Importance. Ramsar Archives.

    Google Scholar 

  698. Ratcliffe, D.W., 1977. A Nature Conservation Review. Cambridge: Cambridge University Press.

    Google Scholar 

  699. World Conservation Monitoring Centre (WCMC), 1992. Protected Areas of the World: A Review of National Systems. Barcelona, Spain.

    Google Scholar 

  700. Caballeria, M., Falques, A., Coco, G., and Huntley, D., 2001. A morphodynamic mechanism for transverse bars in the nearshore. In Procedings of the Coastal Dynamic’ 01. American Society of Civil Engineers, pp. 1058–1067.

    Google Scholar 

  701. Calvete, D., Falques, A., deSwart, H.E., and Walgreen, M., 2001. Modeling the formation of shoreface-connected sand ridges on the storm-dominated inner shelves. Fluid Mechanics, 441: 169–193.

    Google Scholar 

  702. Donoghue, J.F., Niedoroda, A.W., Hatchett, L., Locker, S., Clark, R., Koch, J., and Butler, K., 2003. Model for identifying and characterizing offshore sand resources using an interactive GIS. In Proceedings of the Coastal Sediments’ 03. American Society of Civil Engineers.

    Google Scholar 

  703. Duane, D.B., Field, M.E., Meisberger, E.P., Swift, D.J.P., and Williams, S.J., 1972. Linear shoals on the Atlantic continental shelf, Florida to Long Island. In Swift, D.J.P., Duane, D.B., and Pilkey, O.H. (eds.), Shelf Sediment Transport: Process and Pattern. Stroudsburg: Dowden Hutchinson & Ross, pp. 447–498.

    Google Scholar 

  704. Nemeth, A., Hulscher, S.J.M.H., and van Damme, R.M.J., 2001. Numerical simulation of sand wave evolution in shallow shelf seas. In Proceedings of the Coastal Dynamics’ 01, American Society of Civil Engineers, pp. 1048–1057.

    Google Scholar 

  705. Nittrouer, C.A., and DeMaster, D.J., 1996. The Amazon shelf settingtropical, energetic and influenced by a large river. Continental Shelf Research, 16: 553–574.

    Article  Google Scholar 

  706. Swift, D.J.P., 1973. Delaware shelf valley: estuary retreat path, not drowned river valley. Geological Society American Bulletin, 84:2743–2748.

    Article  Google Scholar 

  707. Swift, D.J.P., and Field, M.E., 1981. Evolution of a classic ridge field, Maryland sector, North American inner shelf. Sedimentology, 28:461–482.

    Article  Google Scholar 

  708. Swift, D.J.P., Koefoed, J.W., Saulsbury, F.P., and Sears, P., 1972. Holocene evolution of the shelf surface, central and southern Atlantic shelf of North America. In Swift, D.J.P., Duane, D.B., and Pilkey, O.H. (eds.), Shelf Sediment Transport: Process and Pattern. Stroudsburg: Dowden Hutchinson & Ross, pp. 100–148.

    Google Scholar 

  709. Swift, D.J.P., Duane, D.B., and McKenny, T.F., 1973. Ridge and swale topography of the middle Atlantic Bight: secular response to the Holocene hydraulic regime. Marine Geology, 15: 227–247.

    Article  Google Scholar 

  710. Trincardi, F., Asioli, A., Cattaneo, A., Correggiari, A., Vigliotti, L., and Accorsi, C.A., 1996. Transgressive offshore deposits on the Central Adriatic shelf: architecture complexity and the record of the Younger Dryas short-term event. Il Quaternario, 9(2): 753–762.

    Google Scholar 

  711. Bryant, D., Burke, L., McManus, J., and Spalding, M., 1998. Reefs at Risk. A Map-Based Indicator of Threats to the World’s Coral Reefs. Washington, DC: World Resources Institute.

    Google Scholar 

  712. Leclercq, N., Gattuso, J-P., and Jaubert, J., 2000. CO2 partial pressure controls the calcification rate of a coral community. Global Change Biology, 6: 329–334.

    Article  Google Scholar 

  713. Sheppard, C.R.C., 1995. Biological communities of tropical oceans. In Nierenberg, W.A. (ed.), Environmental Biology. London: Academic Press, pp. 277–289.

    Google Scholar 

  714. Sheppard, C.R.C., 2000. Coral Reefs of the western Indian Ocean: an overview. In McClanahan, T., Sheppard, C.R.C., and Obura, D. (eds.), Coral Reefs of the Western Indian Ocean: Ecology and Conservation. Oxford: Oxford University Press.

    Google Scholar 

  715. Sheppard, C.R.C., Price, A.R.G., and Roberts, C.J., 1992. Marine Ecology of the Arabian Area. Patterns and Processes in Extreme Tropical Environments. London: Academic Press.

    Google Scholar 

  716. Birkeland, C.R., 1997. Introduction. In Birkeland, C.R. (ed.), Life and Death of Coral Reefs. New York: Chapman and Hall, pp. 1–12.

    Chapter  Google Scholar 

  717. Dana, J.D., 1872. Corals and Coral Islands. New York: Dodd and Mead.

    Book  Google Scholar 

  718. Darwin, C.R., 1842. The Structure and Distribution of Coral Reefs. Reprinted 1984 by the University of Arizona Press, Tucson: Arizona.

    Google Scholar 

  719. Fosberg, F.R., 1976. Coral island vegetation. In Jones, O.A., and Endean, R. (eds.), Biology and Geology of Coral Reefs, Volume 3. New York: Academic Press, pp. 255–277.

    Chapter  Google Scholar 

  720. Grigg, R.W., and Epp, D., 1989. Critical depth for the survival of coral islands: effects on the Hawaiian archipelago. Science, 243: 638–641.

    Article  Google Scholar 

  721. Guilcher, A., 1988. Coral Reef Geomorphology. New York: Wiley.

    Google Scholar 

  722. Heatwole, H., 1976. The ecology and biogeography of coral cays. In Jones, O.A., and Endean, R. (eds.), Biology and Geology of Coral Reefs, Volume 3. New York: Academic Press, pp. 369–387.

    Chapter  Google Scholar 

  723. Hopley, D., 1982. The Geomorphology of the Great Barrier Reef. New York: Wiley.

    Google Scholar 

  724. Milliman, J.D., 1973. Caribbean coral reefs. In Jones, O.A., and Endean, R. (eds.), Biology and Geology of Coral Reefs, Volume 1. New York: Academic Press, pp. 1–50.

    Chapter  Google Scholar 

  725. Stoddart, D.R., and Steers, J.A., 1977. The nature and origin of coral reef islands. In Jones, O.A., and Endean, R. (eds.), Biology and Geology of Coral Reefs, Volume 4. New York: Academic Press, pp. 59–105.

    Chapter  Google Scholar 

  726. Brown, B.E., 1997, Coral bleaching: causes and consequences. Coral Reefs, 16: 129–138.

    Article  Google Scholar 

  727. Buddemeier, R.W., 1993. Corals, climate and conservation. Proceedings of the 7th International Coral Reef Symposium, 1: 3–10.

    Google Scholar 

  728. Connell, J.H., 1997. Disturbance and recovery of coral assemblages. Coral Reefs, 16: 101–113.

    Article  Google Scholar 

  729. Davies, P.J., and Hopley, D., 1983. Growth fabrics and growth rates of Holocene reefs in the Great Barrier Reef. B.M.R. Journal Australian Geology and Geophysics, 8: 237–251.

    Google Scholar 

  730. Dubinsky, Z. (ed.), 1990. Coral Reefs, Volume 25. Ecosystems of the World. Amsterdam: Elsevier.

    Google Scholar 

  731. Guilcher, A., 1988. Coral Reef Geomorphology. New York John Wiley.

    Google Scholar 

  732. Hoegh-Guldberg, O., 1999, Climate change, coral bleaching and the future of the world’s coral reefs. Journal of Marine and Freshwater Research, 50: 839–966.

    Article  Google Scholar 

  733. Hopley, D., 1982. Geomorphology of the Great Barrier Reef: Quaternary Development of Coral reefs. New York: John Wiley-Interscience.

    Google Scholar 

  734. Hopley, D., 1995. Continental shelf reef systems. In Carter R.W.G., and Woodroffe, C.D. (eds.), Coastal Evolution: Late Quaternary Shoreline Morphodynamics, Cambridge: Cambridge University Press, pp. 303–340.

    Chapter  Google Scholar 

  735. Kinsey, D.W., 1985. Metabolism, calcification and carbon production I. Systems level studies. Proceedings of the 5th International Coral Reef Congress, 4: 505–526.

    Google Scholar 

  736. Macintyre, I.G., 1988. Modern coral reefs of the western Atlantic: new geological perspectives. American Association of Petroleum Geologists Bulletin, 72: 1360–1369.

    Google Scholar 

  737. Neumann, C., and Macintyre I.G., 1985. Reef response to sea level rise: keep-up, catch-up or give-up. Proceedings of the 5th International Coral Reef Congress, 3: 105–110.

    Google Scholar 

  738. Purdy, E.G., 1974. Reef configurations, cause and effect. In Laporte, L.F. (ed.), Reefs in Time and Space, Tulsa, SEPM Special Publication, 18: pp. 9–76.

    Google Scholar 

  739. Veron, J.E.N., 1995. Corals in Space and Time: The Biogeography and Evolution of the Scleractinia. Sydney: University of New South Wales Press.

    Google Scholar 

  740. Wilkinson, C.R., 1993. Coral reefs of the world are facing widespread devastation: can we prevent this through sustainable management practices? Proceedings of the 7th International Coral Reef Symposium, 1: 11–21.

    Google Scholar 

  741. Bloom, A.L., 1974. Geomorphology of reef complexes. In Laporte, L.F. (ed.), Reefs in Time and Space: Selected Examples from the Recent and Ancient. Society of Economic Paleontologists and Mineralogists, Special Publication 18, pp. 1–8.

    Google Scholar 

  742. Bloom, A.L., Broeker, W.S., Chappell, J., Matthews, R.K., and Mesollela, K.J., 1974. Quaternary sea level fluctuations on a tectonic coast: new 230Th/234U dates from the Huon Peninsula, New Guinea. Quaternary Research, 4: 185–205.

    Article  Google Scholar 

  743. Broeker, W.S., Thurber, D.L., Goddard, J., Ku, T.-L., Matthews, R.K., and Mesolella, K.J., 1968. Milankovitch hypothesis supported by precise dating of coral reefs and deep-sea sediments. Science, 159: 297–30.

    Article  Google Scholar 

  744. Budd, A.F., 2000. Diversity and extinction in the Cenozoic history of Caribbean reefs. Coral Reefs, 19: 25–35.

    Article  Google Scholar 

  745. Chappell, J., 1974. Geology of coral terraces, Huon Peninsula, New Guinea: a study of Quaternary tectonic movements and sea level changes. Geological Society of America, Bulletin, 85: 553–570.

    Article  Google Scholar 

  746. Chappell, J., Chivas, A., Wallensky, E., Polach, H.A., and Aharon, P., 1983. Holocene palaeoenvironmental changes, central to north Great Barrier Reef, inner zone. Bureau of Mineral Resources Journal of Australian and Geological Geophysics, 8: 223–236.

    Google Scholar 

  747. Cortes, J., 1993. Recently uplifted Caribbean reef. Coral Reefs, 12: 76.

    Article  Google Scholar 

  748. Grün, R., Radkte, U., and Omura, A., 1992. ESR and U-series analyses on corals from Huon Peninsula, New Guinea. Quaternary Science Reviews, 11: 197–202.

    Article  Google Scholar 

  749. Hopley, D., 1982 Geomorphology of the Great Barrier Reef: Quaternary Development of Coral Reefs. New York: John Wiley — Interscience.

    Google Scholar 

  750. Hopley, D., 1987. Holocene sea level changes in Australia and the southern Pacific. In Devoy, R.J.N. (ed.), Sea Surface Studies, London: Croom Helm.

    Google Scholar 

  751. Matthews, R.K., 1974. A process approach to diagenesis in reefs and reef associated limestones. In Laporte, L.F. (ed.), Reefs in Time and Space Selected Examples from the Recent and Ancient. Society of Economic Paleontologists and Mineralogists, Special Publication 18, pp. 234–256.

    Google Scholar 

  752. McNutt, M., and Menard, H.W., 1978. Lithosphere flexure and uplifted atolls. Journal of Geophysical Research, 83: 1206–1212.

    Article  Google Scholar 

  753. Mesollela, K.J., Matthews, R.K., Broeker, W.S., and Thurber, D.L., 1969. The astronomical theory of climatic change: the Barbados data. Journal of Geology, 77: 250–274.

    Article  Google Scholar 

  754. Ota, Y., Chappell, J., Kelley, R., Yonekura, N., Matsumoto, E., and Nishimura, T. 1993. Holocene coral reef terraces and coseismic uplift of Huon Peninsula, New Guinea. Quaternary Research, 40: 177–188.

    Article  Google Scholar 

  755. Purdy, E.G., 1974. Reef configurations, cause and effect. In Laporte, L.F. (ed.), Reefs in Time and Space: Selected Examples from the Recent and Ancient. Society of Economic Paleontologists and Mineralogists, Special Publication 18, pp. 9–76.

    Google Scholar 

  756. Scott, A.J., and Rotondo, G.M., 1983. A model to explain the differences between Pacific plate island-atoll types. Coral Reefs, 1: 139–150.

    Article  Google Scholar 

  757. Tomascik, T., Mah, A.J., Nontji, A., and Moosa, M.K., 1997. The Ecology of the Indonesian Seas. Hong Kong: Periplus.

    Google Scholar 

  758. Vacher, H.L., and Quinn, T.M., 1997. Geology and Hydrogeology of Carbonate Islands. Amsterdam: Elsevier.

    Google Scholar 

  759. Veron, J.E.N., 1995. Corals in Space and Time: The Biography and Evolution of the Scleractinia. Sydney: UNSW Press.

    Google Scholar 

  760. Veron, J.E.N., and Kelley, R., 1988. Species stability in reef corals of Papua New Guinea and the Indo Pacific. Memoir Association of Australasian Palaeontologists, 6: 69 pp.

    Google Scholar 

  761. Bailard, J.A., and Inman, D.L., 1981. An energetics bedload model for a plane sloping beach: local transport. Journal of Geophysical Research, 86(C3): 2035–2043.

    Article  Google Scholar 

  762. Cornish, V., 1898. On sea beaches and sand banks. Geography Journal, 11: 528–647.

    Article  Google Scholar 

  763. Dean, R.G., 1991. Equilibrium beach profiles: characteristics and applications. Journal of Coastal Research, 7(1): 53–84.

    Google Scholar 

  764. Ippen, A.T., and Eagleson, P.S., 1955. A study of sediment sorting by waves shoaling on a plane beach. U.S. Army Corps of Engineers, Beach Erosion Board Technical Memorandum, 63: p. 83.

    Google Scholar 

  765. Iwagaki, Y., and Noda, H., 1963. Laboratory study of scale effects in two-dimensional beach processes. Proceedings of the 8th Conference on Coastal Engineering, 8: 194–210.

    Google Scholar 

  766. Johnson, J.W., 1949. Scale effects in hydraulic models involving wave motion. Transactions of the American Geophysical Union, 30: 517–525.

    Article  Google Scholar 

  767. Larson, M., and Kraus, N.C., 1990. SBEACH: numerical model for simulated storm-induced beach change. U.S. Army Corps of Engineers, Waterways Experiment Station, Technical Report CERC-89-9.

    Google Scholar 

  768. Seymour, R.J., and Castel, D., 1989. Modeling cross-shore transport. In Seymour, R.J. (ed.), Nearshore Sediment Tranport, New York: Plenum Press, pp. 387–401.

    Google Scholar 

  769. Ahrens, J.P., and Hands, E.B., 2000. A simple perspective on cross-shore sediment movement. Shore and Beach, 68(4): 3–14.

    Google Scholar 

  770. Bagnold, R.A., 1940. Beach formation by waves: some model experiments in a wave tank. Journal of Institution of Civil Engineering, 15: 27–52.

    Google Scholar 

  771. Bagnold, R.A., 1954. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proceedings of the Royal Society, London, Series A, 225: 49.

    Article  Google Scholar 

  772. Bagnold, R.A., 1966. An approach to the sediment transport problem from general physics. U.S. Geological Survey Professional Paper 422–I.

    Google Scholar 

  773. Bailard, J.A., 1981. An energetics total load sediment transport model for a plane sloping beach. Journal of Geophysical Research, 86(C11): 10,398–10,954.

    Article  Google Scholar 

  774. Bascom, W.N., 1951. The relationship between sand-size and beach-face slope. Transactions of the American Geophysical Union, 32: 866–874.

    Article  Google Scholar 

  775. Bowen, A.J., 1980. Simple models of nearshore sedimentation; beach profiles and longshore bars. In McCann, S.B. (ed.), The Coastline of Canada. Geological Survey of Canada, pp. 1–11.

    Google Scholar 

  776. Clifton, H.E., 1969. Beach lamination: nature and origin. Marine Geology, 7: 553.

    Article  Google Scholar 

  777. Cornaglia, P., 1889. On beaches, Accademia Nazionale dei Lincei, Atti. Classe di Scienze Fisiche, Matematiche e Naturali, Mem. 5, ser. 4:284–304. Reproduced in translation. In Fisher, J.S., and Dolan, R. (eds.), Beach Processes and Coastal Hydrodynamics, Volume 39. Stroudsberg, PA: Benchmark Papers in Geology, pp. 11–26.

    Google Scholar 

  778. Cornish, V., 1898. On sea beaches and sand banks. Geography Journal 11: 528–559 (see also pages 628–647).

    Article  Google Scholar 

  779. Dean, R.G., 1973. Heuristic models of sand transport in the surf zone. Proceedings of the 1st Australian Conference on Coastal Engineering, Conference on Engineering Dynamics of the Coastal Zone, Sydney, Australia, pp. 209–214.

    Google Scholar 

  780. Fox, W.T., Ladd, J.W., and Martin, M.K., 1966. A profile of the four moment measures perpendicular to a shore line, South Haven, Michigan. Journal of Sedimentary Petrology, 36: 1126–1130.

    Google Scholar 

  781. Greenwood, B., and Davidson-Arnott, R.G., 1972. Textural variation in the sub environments of the shallow water wave zone Kouchibouguac Bay, New Brunswick, Canadian Journal of Earth Science, 9(9): 679–688.

    Article  Google Scholar 

  782. Greenwood, B., and Xu, Z., 2001. Size fractionation by suspension transport: a large scale flume experiment with shoaling waves. Marine Geology, 176: 157–174.

    Article  Google Scholar 

  783. Guillén, J., and Hoekstra, P., 1996. The “equilibrium” distribution of grain size fractions and its implications for cross-shore sediment transport: a conceptual model. Marine Geology, 135: 15–33.

    Article  Google Scholar 

  784. Horn, D.P., 1992. A numerical model for shore-normal sediment size variation on a macro-tidal beach. Earth Surface Processes and Landforms, 17: 755–773.

    Article  Google Scholar 

  785. Hughes, M.G., Keene, J.B., and Joseph, R.G., 2000. Hydraulic sorting of heavy-mineral grains by swash on a medium-sand beach. Journal of Sedimentary Research, 70(5): 994–1004.

    Article  Google Scholar 

  786. Komar, P.D., 1989. Physical processes of waves and currents and the formation of marine placers. CRC Critical Reviews in Aquatic Sciences. 1(3): 393–423.

    Google Scholar 

  787. Komar, P.D., and Wang, C., 1984. Processes of selective grain transport and the formation of placers on beaches. Journal of Geology, 92: 637.

    Article  Google Scholar 

  788. Krumbein, W.C., and Graybill, F.A., 1965. An Introduction to Statistical Models in Geology. New York: McGraw-Hill.

    Google Scholar 

  789. McLean, R.F., and Kirk, R.M., 1969. Relationship between grain size, sorting, foreshore slope on mixed sand shingle beaches. New Zealand Journal of Geology and Geophysics, 12: 138–155.

    Article  Google Scholar 

  790. Nielsen, P., 1983. Entrainment and distribution of different sand sizes under waves. Journal of Sedimentary Petrology, 53: 423–428.

    Google Scholar 

  791. Osborne, P.D., and Vincent, C.E., 1996. Vertical and horizontal structure in suspended sand concentrations and wave-induced fluxes over bedforms. Marine Geology, 131: 195–208.

    Article  Google Scholar 

  792. Rubey, W.W., 1933. The size distribution of heavy minerals within a waterlaid sandstone. Journal of Sedimentary Petrology, 3: 3–29.

    Google Scholar 

  793. Zenkovitch, V.P., 1946. On the Study of Shore Dynamics. Volume 1. Akademia nauk SSSR, Institut Okeandogi, Trudy, pp. 99–112.

    Google Scholar 

  794. Bird, E.C., 1984. Coasts An Introduction To Coastal Geomorphology, Canberra: ANU Press.

    Google Scholar 

  795. Hardy, J.R., 1966. An edd-flood channel system and coastal changes near winterton, norfolk. East Midland Geographer 4(1): 24–30.

    Google Scholar 

  796. King, C.M., 1972. Beaches and Coasts, London: Edward Arnold.

    Google Scholar 

  797. Lewis, W.V., and Balchin, W.G., 1940. Post Sea Level at Dungeness. Geography Journal, 96: 258–310.

    Google Scholar 

  798. Robinson, A.H.W., 1964. The inshore waters, sediment supply and coastal changes of Port of Lincolnshire. East Midland Geographer, 3(6): 307–321.

    Google Scholar 

  799. Robinson, A.H.W., 1965. Residual currents in relation to shoreline evolution to the East Anglican Coast. Marine Geology, 4: 57–84.

    Google Scholar 

  800. Russell, R.C., 1958. Long straight beaches, Eclogae Geologicae Helvetiae, 51: 591–598.

    Google Scholar 

  801. Steers, J.A., 1964. The Coastline of England and Wales, Cambridge: Cambridge University Press.

    Google Scholar 

Cross-references

  1. Environmental Quality

    Google Scholar 

  2. Geotextile Applications

    Google Scholar 

  3. Human Impact on Coasts

    Google Scholar 

  4. Marine Debris—Onshore, Offshore, Seafloor Litter

    Google Scholar 

  5. Numerical Modeling

    Google Scholar 

  6. Water Quality

    Google Scholar 

Cross-references

  1. Beachrock

    Google Scholar 

  2. Beach Sediment Characteristics

    Google Scholar 

  3. Cays

    Google Scholar 

  4. Cheniers

    Google Scholar 

  5. Coral Reefs

    Google Scholar 

  6. Coral Reef Coasts

    Google Scholar 

  7. Dune Calcarenite (see Eolianite)

    Google Scholar 

  8. Sandy Coasts

    Google Scholar 

  9. Tidal Flats

    Google Scholar 

Cross references

  1. Coastal Climate

    Google Scholar 

  2. Coral Reefs

    Google Scholar 

  3. Mangroves, Coastal Ecology

    Google Scholar 

  4. Mangroves, Coastal Geomorphology

    Google Scholar 

  5. Meterorologic Effects on Coasts

    Google Scholar 

  6. Mining of Coastal Materials

    Google Scholar 

  7. Small Islands

    Google Scholar 

  8. Tourism and Coastal Development

    Google Scholar 

  9. Tourism, Criteria for Coastal Sites

    Google Scholar 

Cross-references

  1. Coastal Zone Management

    Google Scholar 

  2. Economic Value of Beaches

    Google Scholar 

  3. Environmental Quality

    Google Scholar 

  4. Human Impact on Coasts

    Google Scholar 

  5. Tourism and Coastal Development

    Google Scholar 

  6. Tourism, Criteria for Coastal Sites

    Google Scholar 

1._Cross-references

  1. Atolls

    Google Scholar 

  2. Beachrock

    Google Scholar 

  3. Coral Reef Islands

    Google Scholar 

  4. Coral Reefs

    Google Scholar 

  5. Hydrology of Coastal Zone

    Google Scholar 

Cross-references

  1. Bioerosion

    Google Scholar 

  2. Cliffed Coasts

    Google Scholar 

  3. Cliffs, Erosion Rates

    Google Scholar 

  4. Cliffs, Lithology versus Erosion Rates

    Google Scholar 

  5. Coastline Changes

    Google Scholar 

  6. Europe, Coastal Geomorphology

    Google Scholar 

  7. Shore Platforms

    Google Scholar 

Cross-references

  1. Coastal Changes, Gradual

    Google Scholar 

  2. El Niño-Southern Oscillation

    Google Scholar 

  3. Eustasy

    Google Scholar 

  4. Geodesy

    Google Scholar 

  5. Late Quaternary Marine Transgression

    Google Scholar 

  6. Sea-Level Changes During the Last Millennium

    Google Scholar 

  7. Sea-Level Datum

    Google Scholar 

  8. Tide-Gauges

    Google Scholar 

1._Cross-references

  1. Beach Features

    Google Scholar 

  2. Beach Ridges

    Google Scholar 

  3. Cross-Shore Sediment Transport

    Google Scholar 

  4. Deltas

    Google Scholar 

  5. Muddy Coasts

    Google Scholar 

  6. Sandy Coasts

    Google Scholar 

  7. Storm Surge

    Google Scholar 

Cross-references

  1. Beach Use and Behaviors

    Google Scholar 

  2. Conservation of Coastal Sites

    Google Scholar 

  3. Environmental Quality

    Google Scholar 

  4. Human Impact on Coasts

    Google Scholar 

  5. Lifesaving and Beach Safety

    Google Scholar 

  6. Marine Debris—Onshore, Offshore, Seafloor Litter

    Google Scholar 

  7. Rating Beaches

    Google Scholar 

  8. Tourism and Coastal Development

    Google Scholar 

Cross-references

  1. Cliffs, Erosion Rates

    Google Scholar 

  2. Cliffs, Lithology versus Erosion Rates

    Google Scholar 

  3. Faulted Coasts

    Google Scholar 

  4. Mass Wasting

    Google Scholar 

  5. Notches

    Google Scholar 

  6. Paraglacial Coasts

    Google Scholar 

  7. Rock Coast Processes

    Google Scholar 

  8. Shore Platforms

    Google Scholar 

Cross-references

  1. Cliffed Coasts

    Google Scholar 

  2. Cliff, Lithology versus Erosion Rate

    Google Scholar 

  3. Coastline Changes

    Google Scholar 

  4. Dams, Effect on Coasts

    Google Scholar 

  5. Human Impact

    Google Scholar 

  6. Rock Coast Processes on Coasts

    Google Scholar 

  7. Storm Surges

    Google Scholar 

Cross-references

  1. Bioerosion

    Google Scholar 

  2. Cliffed Coasts

    Google Scholar 

  3. Cliffs, Erosion Rates

    Google Scholar 

  4. Coastline Changes

    Google Scholar 

  5. Rock Coast Processes

    Google Scholar 

  6. Shore Platforms

    Google Scholar 

  7. Weathering in the Coastal Zone

    Google Scholar 

Cross-references

  1. Coastal Climate

    Google Scholar 

  2. Coastal Currents

    Google Scholar 

  3. Coastal Temperature Trends

    Google Scholar 

  4. Coastal Upwelling and Downwelling

    Google Scholar 

  5. Databases (see Appendix 4)

    Google Scholar 

  6. El Niño-Southern Oscillation

    Google Scholar 

  7. Global Vulnerability Analysis

    Google Scholar 

  8. Meteorologic Effects on Coasts

    Google Scholar 

Cross-references

  1. Beach Erosion

    Google Scholar 

  2. Beach Processes

    Google Scholar 

  3. Coastal Changes, Gradual

    Google Scholar 

  4. Coastal Changes, Rapid

    Google Scholar 

  5. Coastline Changes

    Google Scholar 

  6. Coasts, Coastlines, Shores and Shorelines

    Google Scholar 

  7. Continental Shelves

    Google Scholar 

  8. Erosion Processes

    Google Scholar 

  9. Mapping Shores and Coastal Terrain

    Google Scholar 

  10. Tidal Datums

    Google Scholar 

  11. Tide Gauges

    Google Scholar 

  12. Tides

    Google Scholar 

Cross-references

  1. Changing Sea Levels

    Google Scholar 

  2. Coastal Changes, Rapid

    Google Scholar 

  3. Coral Reefs, Emerged

    Google Scholar 

  4. El Niño-Southern Oscillation

    Google Scholar 

  5. Holocene Coastal Geomorphology

    Google Scholar 

  6. Sea-Level Changes During the Last Millennium

    Google Scholar 

  7. Submerging Coasts

    Google Scholar 

  8. Uplift Coasts

    Google Scholar 

Cross-references

  1. Barrier Islands

    Google Scholar 

  2. Changing Sea Levels

    Google Scholar 

  3. Coastal Changes, Gradual

    Google Scholar 

  4. Coastal Lakes and Lagoons

    Google Scholar 

  5. Deltas

    Google Scholar 

  6. Greenhouse Effect and Global Warming

    Google Scholar 

  7. Meteorological Effects on Coasts

    Google Scholar 

  8. Sediment transport (see Cross-Shore Sediment Transport and Longshore Sediment Transport)

    Google Scholar 

  9. Storm Surge

    Google Scholar 

  10. Tide Gauges

    Google Scholar 

  11. Tsunami

    Google Scholar 

Cross-references

  1. Climate Patterns in the Coastal Zone

    Google Scholar 

  2. Coastal Temperature Trends

    Google Scholar 

  3. Desert Coasts

    Google Scholar 

  4. El Niño-Southern Oscillation

    Google Scholar 

  5. Geographical Coastal Zonality

    Google Scholar 

  6. Ice-Bordered Coasts

    Google Scholar 

  7. Meteorological Effects on Coasts

    Google Scholar 

  8. Sea Breeze Effects

    Google Scholar 

  9. Storm Surge

    Google Scholar 

Cross-references

  1. Pressure Gradient Force

    Google Scholar 

  2. Rip Currents

    Google Scholar 

  3. Shelf Processes

    Google Scholar 

  4. Surf Zone Processes

    Google Scholar 

  5. Tides

    Google Scholar 

  6. Vorticity

    Google Scholar 

  7. Wave-Current Interaction

    Google Scholar 

  8. Waves

    Google Scholar 

Cross-references

  1. Honeycomb Weathering

    Google Scholar 

  2. Rock Coast Processes

    Google Scholar 

  3. Shore Platforms

    Google Scholar 

  4. Tafoni

    Google Scholar 

  5. Weathering in the Coastal Zone

    Google Scholar 

Cross-references

  1. Barrier

    Google Scholar 

  2. Beach Processes

    Google Scholar 

  3. Changing Sea Levels

    Google Scholar 

  4. Holocene Epoch

    Google Scholar 

  5. Longshore Sediment Transport

    Google Scholar 

  6. Spits

    Google Scholar 

  7. Tidal Prism

    Google Scholar 

Cross-references

  1. Numerical Modeling

    Google Scholar 

  2. Surf Modeling

    Google Scholar 

  3. Time Series Modeling

    Google Scholar 

  4. Wave Climate Modeling

    Google Scholar 

  5. Wave Refraction Diagrams

    Google Scholar 

Cross-references

  1. Barrier Islands

    Google Scholar 

  2. Bars

    Google Scholar 

  3. Beach Sediment Characteristics

    Google Scholar 

  4. Beach Stratigraphy

    Google Scholar 

  5. Cheniers

    Google Scholar 

  6. Deltas

    Google Scholar 

  7. Dynamic Equilibrium of Beaches

    Google Scholar 

  8. Estuary

    Google Scholar 

  9. Offshore Sand Banks and Linear Sand Ridges

    Google Scholar 

  10. Offshore Sand Sheets

    Google Scholar 

  11. Surf Zone Processes

    Google Scholar 

  12. Tidal Flats

    Google Scholar 

  13. Tidal Flats, Open Ocean Coasts

    Google Scholar 

  14. Tides

    Google Scholar 

  15. Waves

    Google Scholar 

Cross-references

  1. Alluvial Plain Coasts

    Google Scholar 

  2. Barrier Islands

    Google Scholar 

  3. Beach Ridges

    Google Scholar 

  4. Beachrock

    Google Scholar 

  5. Bogs

    Google Scholar 

  6. Changing Sea Levels

    Google Scholar 

  7. Cheniers

    Google Scholar 

  8. Coastal Sedimentary Facies

    Google Scholar 

  9. Deltaic Ecology

    Google Scholar 

  10. Dune Ridges

    Google Scholar 

  11. Hydrology of Coastal Zone

    Google Scholar 

  12. Mangroves, Ecology

    Google Scholar 

  13. Mangroves, Geomorphology

    Google Scholar 

  14. Muddy Coasts

    Google Scholar 

  15. Peat

    Google Scholar 

  16. Salt Marsh

    Google Scholar 

  17. Sandy Coasts

    Google Scholar 

  18. Submerged Coasts

    Google Scholar 

  19. Vegetated Coasts

    Google Scholar 

  20. Weathering in the Coastal Zone

    Google Scholar 

  21. Wetlands

    Google Scholar 

Cross-references

  1. Coastal Sedimentary Facies

    Google Scholar 

  2. Dams, Effect on Coasts

    Google Scholar 

  3. Deltas

    Google Scholar 

  4. Eustasy

    Google Scholar 

  5. Greenhouse Effect and Global Warming

    Google Scholar 

  6. Isostasy

    Google Scholar 

  7. Sea-Level Rise, Effect

    Google Scholar 

  8. Sedimentary Basins

    Google Scholar 

  9. Submerged Coasts

    Google Scholar 

  10. Submerging Coasts

    Google Scholar 

  11. Tide Gauges

    Google Scholar 

Cross-references

  1. Climate Patterns in the Coastal Zone

    Google Scholar 

  2. Coastal Climate

    Google Scholar 

  3. Environmental Quality

    Google Scholar 

  4. Greenhouse Effect and Global Warming

    Google Scholar 

  5. Meteorological Effects on Coasts

    Google Scholar 

  6. Water Quality

    Google Scholar 

Cross-references

  1. Coastal Climate

    Google Scholar 

  2. Coastal Currents

    Google Scholar 

  3. Coastal Modeling and Simulation

    Google Scholar 

  4. Coastal Wind Effects

    Google Scholar 

  5. El Niñ-Southern Oscillation

    Google Scholar 

  6. Meteorologic Effects on Coasts

    Google Scholar 

  7. Numerical Modeling

    Google Scholar 

  8. Shelf Processes

    Google Scholar 

  9. Time Series Modeling

    Google Scholar 

  10. Vorticity

    Google Scholar 

Cross-references

  1. Coastal Climate

    Google Scholar 

  2. Coral Reefs

    Google Scholar 

  3. Human Impact on Coasts

    Google Scholar 

  4. Pacific Ocean Islands, Coastal Geomorphology

    Google Scholar 

  5. Scour and Burial of Objects in Shallow Water

    Google Scholar 

  6. Tidal Environments

    Google Scholar 

  7. Tides

    Google Scholar 

  8. Wave Environments

    Google Scholar 

Cross-references

  1. Archaeology

    Google Scholar 

  2. Archaeological Site Location, Effect of Sea-Level Changes

    Google Scholar 

  3. Changing Sea Levels

    Google Scholar 

  4. Desert Coasts

    Google Scholar 

  5. Hydrology of Coastal Zone

    Google Scholar 

Cross-references

  1. Beach Erosion

    Google Scholar 

  2. Coastal Upwelling and Downwelling

    Google Scholar 

  3. Cross-Shore Sediment Transport

    Google Scholar 

  4. Storm Surge

    Google Scholar 

  5. Tides

    Google Scholar 

  6. Waves

    Google Scholar 

Cross-references

  1. Beach Erosion

    Google Scholar 

  2. Beach Nourishment

    Google Scholar 

  3. Changing Sea Levels

    Google Scholar 

  4. Coastal Boundaries

    Google Scholar 

  5. Coastal Changes, Gradual

    Google Scholar 

  6. Coastal Changes, Rapid

    Google Scholar 

  7. Conservation of Coastal Sites

    Google Scholar 

  8. Cross-Shore Sediment Transport

    Google Scholar 

  9. Dams, Effect on Coasts

    Google Scholar 

  10. Dredging of Coastal Environments

    Google Scholar 

  11. Economic Value of Beaches

    Google Scholar 

  12. Estuary

    Google Scholar 

  13. Geographical Coastal Zonality

    Google Scholar 

  14. Human Impact on Coasts

    Google Scholar 

  15. Longshore Sediment Transport

    Google Scholar 

  16. Mapping Shores and Coastal Terrain

    Google Scholar 

  17. Marine Debris

    Google Scholar 

  18. Marine Parks

    Google Scholar 

  19. Monitoring, Coastal Ecology

    Google Scholar 

  20. Monitoring, Coastal Geomorphology

    Google Scholar 

  21. Rating Beaches

    Google Scholar 

  22. Sea Level Change (see Changing Sea Levels)

    Google Scholar 

  23. Sea-Level Rise, Effect

    Google Scholar 

  24. Sediment Budget

    Google Scholar 

  25. Shore Protection Structures

    Google Scholar 

  26. Tourism and Coastal Development

    Google Scholar 

  27. Waves

    Google Scholar 

Cross-references

  1. Changing Sea Levels

    Google Scholar 

  2. Coastal Changes, Gradual

    Google Scholar 

  3. Coastal Changes, Rapid

    Google Scholar 

  4. Cliffs, Erosion Rates

    Google Scholar 

  5. Coastal Subsidence

    Google Scholar 

  6. Deltas

    Google Scholar 

  7. Glaciated Coasts

    Google Scholar 

  8. Greenhouse Effect and Global Warming

    Google Scholar 

  9. Mapping Shores and Coastal Terrain

    Google Scholar 

  10. Volcanic Coasts

    Google Scholar 

Cross-references

  1. Beach Processes

    Google Scholar 

  2. Coastal Changes, Rapia

    Google Scholar 

  3. Changing Sea Levels

    Google Scholar 

  4. Littoral Cells

    Google Scholar 

  5. Mapping Shores and Coastal Terrain

    Google Scholar 

  6. Remote Sensing of Coastal Environments

    Google Scholar 

  7. Sediment Transport (see Cross-Shore Sediment Transport and Longshore Sediment Transport)

    Google Scholar 

  8. Tides

    Google Scholar 

Cross-references

  1. Beach Sediment Characteristics

    Google Scholar 

  2. Cross-Shore Sediment Transport

    Google Scholar 

  3. Erosion Processes

    Google Scholar 

  4. Estuaries

    Google Scholar 

  5. Longshore Sediment Transport

    Google Scholar 

  6. Nearshore Sediment Transport Measurement

    Google Scholar 

  7. Numerical Modeling

    Google Scholar 

  8. Sediment Budget

    Google Scholar 

  9. Tidal Environments

    Google Scholar 

  10. Wave Climate

    Google Scholar 

  11. Wave-Current Interaction

    Google Scholar 

Cross-references

  1. Archaeology

    Google Scholar 

  2. Environmental Quality

    Google Scholar 

  3. Human Impact on Coasts

    Google Scholar 

  4. Marine Parks

    Google Scholar 

  5. Organizations

    Google Scholar 

  6. Rating Beaches

    Google Scholar 

  7. Tourism and Coastal Development

    Google Scholar 

  8. Tourism, Criteria for Coastal Sites

    Google Scholar 

Cross-references

  1. Barrier Islands

    Google Scholar 

  2. Coral Reefs

    Google Scholar 

  3. Deltas

    Google Scholar 

  4. Offshore Sand Banks and Linear Sand Ridges

    Google Scholar 

  5. Offshore Sand Sheets

    Google Scholar 

  6. Reefs, Non-Coral

    Google Scholar 

  7. Shelf Processes

    Google Scholar 

Cross-references

  1. Algal Rims

    Google Scholar 

  2. Beachrock

    Google Scholar 

  3. Biohermes and Biostromes

    Google Scholar 

  4. Coral Reef Islands

    Google Scholar 

  5. Coral Reefs

    Google Scholar 

  6. Coral Reefs, Emerged

    Google Scholar 

  7. Demography of Coastal Populations

    Google Scholar 

  8. Environmental Quality

    Google Scholar 

  9. Human Impact on Coasts

    Google Scholar 

  10. Mangrove, Ecology

    Google Scholar 

  11. Water Quality

    Google Scholar 

Cross-references

  1. Atolls

    Google Scholar 

  2. Cays

    Google Scholar 

  3. Coral Reefs

    Google Scholar 

  4. Coral Reefs, Emerged

    Google Scholar 

  5. Small islands

    Google Scholar 

Cross-references

  1. Atolls

    Google Scholar 

  2. Cays

    Google Scholar 

  3. Coral Reef Coasts

    Google Scholar 

  4. Coral Reef Islands

    Google Scholar 

  5. Coral Reefs, Emerged

    Google Scholar 

  6. Karst Coasts

    Google Scholar 

Cross-references

  1. Atolls

    Google Scholar 

  2. Coral Reefs

    Google Scholar 

  3. Notches

    Google Scholar 

  4. Seismic Displacement

    Google Scholar 

  5. Tectonics and Neotectonics

    Google Scholar 

  6. Uplift Coasts

    Google Scholar 

Cross-references

  1. Beach Erosion

    Google Scholar 

  2. Coastal Processes (see Beach Processes)

    Google Scholar 

  3. Cross-Shore Variation in Sediment Size Distribution

    Google Scholar 

  4. Depth of Closure on Sandy Coasts

    Google Scholar 

  5. Dynamic Equilibrium of Beaches

    Google Scholar 

  6. Erosion Processes

    Google Scholar 

  7. Numerical Modeling

    Google Scholar 

  8. Profiling, Beach

    Google Scholar 

  9. Waves

    Google Scholar 

Cross-references

  1. Beach Processes

    Google Scholar 

  2. Cross-Shore Sediment Transport

    Google Scholar 

  3. Dynamic Equilibrium of Beaches

    Google Scholar 

  4. Sandy Coasts

    Google Scholar 

  5. Sediment Suspension by Waves

    Google Scholar 

  6. Surf Zone Processes

    Google Scholar 

Cross-references

  1. Barrier

    Google Scholar 

  2. Beach Ridges

    Google Scholar 

  3. Gravel Barriers

    Google Scholar 

  4. Gravel Beaches

    Google Scholar 

  5. Offshore Sand Banks and Linear Sand Ridges

    Google Scholar 

  6. Spits

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this entry

Cite this entry

Mohan, R.K. et al. (2005). C. In: Schwartz, M.L. (eds) Encyclopedia of Coastal Science. Encyclopedia of Earth Science Series. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3880-1_3

Download citation

Publish with us

Policies and ethics