Skip to main content

L

  • Reference work entry
  • 594 Accesses

Part of the book series: Encyclopedia of Earth Science Series ((EESS))

Lagoons

See Coastal Lakes and Lagoons See Indian Ocean Coasts

Landslides

See Mass Wasting See Indian Ocean Coasts

Late Quaternary Marine Transgression

The total volume of water in the world’s oceans exhibits a nearly perfect negative correlation with global ice volume; when one increases the other decreases. This is known as glacial eustasy (first proposed by Maclaren, 1842). The balance between global ice volume and ocean water volume is controlled by climate. At the last glaciation maximum some 20,000 radiocarbon years BP large quantities of water were withdrawn from the oceans and accumulated in the form of extensive continental ice caps. We may try to reconstruct past glacial volume changes by the following three means:

  1. (1)

    the recording of corresponding sea-level positions, which are affected by numerous other variables;

  2. (2)

    the recording of corresponding oxygen isotope variations, which are affected by other factors, too, not least temperature;

  3. (3)...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   499.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  1. Chappell, J., Omura, A., Esat, T., McCulloch, M., Pandelfi, J., Ota, Y., and Pillans, B., 1996. Reconsiliation of Late Quaternary sea level derived from coral terraces ot Huon Peninsula with deep sea oxygen isotope records. Earth and Planetary Science Letters, 141: 227–236.

    Article  Google Scholar 

  2. Fairbanks, R.G., 1989. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 342: 637–641.

    Article  Google Scholar 

  3. Flint, R.F., 1969. Glacial and Quaternary Geology. New York: John Wiley & Sons.

    Google Scholar 

  4. Maclaren, C., 1842. The glacial theory of Professor Agassiz of Neuchatel. American Journal of Science, 42: 346–365.

    Google Scholar 

  5. Mörner, N.-A., 1993. Global change: the high-amplitude changes 13-10 ka ago-novel aspects. Global Planetary Changes, 7: 243–250.

    Article  Google Scholar 

  6. Mörner, N.-A., 2000. Sea level changes and coastal dynamics in the Indian Ocean. Integrated Coastal Zone Management, Spring-Ed., 17–20. ICG Publ. Ltd.

    Google Scholar 

  7. Peltier, W.R., 1998. Postglacial variations in the level of the sea: implications for climate dynamics and solid-earth geophysics. Reviews of Geophysics, 36: 603–689.

    Article  Google Scholar 

  8. Pirazzoli, P.A., and Pluet, J., 1991. World Atlas of Holocene Sea-Level Changes. Amsterdam: Elsevier Oceanographic Series, 58, pp. 1–300.

    Google Scholar 

  9. Shackleton, N.J., 1987. Oxygen isotopes, ice volume and sea level. Quaternary Science Review, 6: 183–190.

    Article  Google Scholar 

  10. Brewster, B. Chris (ed.), 1995. The United States Lifesaving Association Manual of Open Water Lifesaving. Englewood Cliffs, NJ: Brady/Prentice Hall.

    Google Scholar 

  11. Center for Marine Conservation, 2000. Report on the Health of the Oceans. Washington, DC: Center for Marine Conservation.

    Google Scholar 

  12. D’Arnall, Douglas et al., 1981. Lifesaving and Marine Safety. Piscataway, NJ: New Century Publishers.

    Google Scholar 

  13. National Center for Health Statistics (NCHS), 1997. National Mortality Data, 1997. Hyattsville, MD: NCHS.

    Google Scholar 

  14. Shanks, Ralph et al., 1996. The US Life-Saving Service. Petaluma, CA: Costano Books.

    Google Scholar 

  15. Short, Andrew D., 1997. Australian Beach Safety and Management Program, International Medical-Rescue Conference. Leuven, Belgium, International Life Saving Federation.

    Google Scholar 

  16. Wintemute, G.J. et al., 1998. The epidemiology of drowning in adulthood: implications for prevention. American Journal of Preventive Medicine, 4: 343–348.

    Google Scholar 

  17. American Geological Institute, 1960. Dictionary of Geological Terms. Garden City, NY: Anchor Press Doubleday.

    Google Scholar 

  18. Eisma, D., 1997. Intertidal Deposits, River Mouth, Tidal Flats and Coastal Lagoons. Boca Raton, FL: CRC Press.

    Google Scholar 

  19. Ekman, S., 1935. Tiergeagraphie des Meeres. Leipzip: Akad. Verlagsgesellsch.

    Google Scholar 

  20. Fairbridge, R.W. (ed.), 1968. Encyclopedia of Geomorphology. New York: Reinhold Book Corporation.

    Google Scholar 

  21. Forbes, E., and Hanley, S., 1853. A History of British Mollusca and Their Shells. London: John van Voorst.

    Google Scholar 

  22. Hedgpeth, J.W., 1957. Classification of marine environments. Geological Society of American Memoir, 67(1): 17–28.

    Google Scholar 

  23. Jackson, J., 1997. Glossary of Geology, 4th edn. Alexandria, VA: American Geological Institute.

    Google Scholar 

  24. Johnson, D.W., 1919. Shore Processes and Shoreline Development (1965 facsimile). New York: Hefner Publishing Co.

    Google Scholar 

  25. Kuenen, Ph.H., 1950. Marine Geology. New York: John Wiley.

    Google Scholar 

  26. Lorenz, J.R., 1863. Physikalische Verhaltnisse und Vertheilung der organismen in Quarnerischen Golfe. Vienna: Kais. Kon. Hof. und Statdtsdr.

    Google Scholar 

  27. Nybakken, J.W., 1993. Marine Biology: An Ecological Approach. 3rd edn. New York: Harper Collins.

    Google Scholar 

  28. Pillsbury, R.W., 1970. The Encyclopedia of Biological Sciences, 2nd edn. In Peter Grey (ed.), New York: Van Nostrand Reinhold Co., pp. 507–508.

    Google Scholar 

  29. Sverdrup, H.V., Johnson, M.W., and Fleming, R.H., 1942. The Ocean. Englewood Cliffs, NT: Prentice-Hall.

    Google Scholar 

  30. Visser, W.A., 1980. Geological Nomenclature. Gorinchem: Royal Geological and Mining Society of the Netherlands.

    Google Scholar 

  31. Barnes, P.W., Reimnitz, E., and Schell, D.M. (eds.), 1984. The Alaskan Beaufort Sea—Ecosystems and Environments. Orlando, FL: Academic Press.

    Google Scholar 

  32. Barnes, P.W., Asbury, J.L., Rearic, D.M., and Ross, C.R., 1987. Ice erosion of a sea-floor knickpoint at the inner edge of the stamukhi zone, Beaufort Sea, Alaska. Marine Geology, 76: 207–222.

    Article  Google Scholar 

  33. Bowen, A.J., and Inman, D.L., 1966. Budget of littoral sands in the vicinity of Point Arguello. US Army Corps of Engineers, Coastal Engineering Research Center, 19, 41.

    Google Scholar 

  34. Davis, R.A., Jr., 1996. Coasts. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  35. Inman, D. L., 1994. Types of coastal zones: similarities and differences. In K.F. Turekian and D.F. Boesch, chairmen. Environmental Science in the Coastal Zone, National Research Council, pp. 67–84.

    Google Scholar 

  36. Inman, D.L., and Brush, B.M., 1973. The Coastal Challenge. Science, 181, 20–32.

    Article  Google Scholar 

  37. Inman, D. L., and Chamberlain, T.K., 1960. Littoral sand budget along the southern California coast. In Volume of Abstracts, Report of the 21st International Geological Congress, Copenhagen, Denmark, pp. 245–246.

    Google Scholar 

  38. Inman, D.L., and Dolan, R., 1989. The Outer Banks of North Carolina: budget of sediment and inlet dynamics along a migrating barrier system. Journal of Coastal Research 5: 193–237.

    Google Scholar 

  39. Inman, D.L., and Frautschy, J.D., 1965. Littoral processes and the development of shorelines. In Coastal Engineering (Santa Barbara Specialty Conference). American Society of Civil Engineers, p. 1006.

    Google Scholar 

  40. Inman, D.L., and Jenkins, S.A., 1984. The Nile littoral cell and man’s impact on the coastal zone of the southeastern Mediterranean. In Proceedings 19th Coastal Engineering Conference. American Society of Civil Engineers, Vol. 2, pp. 1600–1617.

    Google Scholar 

  41. Inman, D.L., and Masters, P.M., 1991. Budget of sediment and prediction of the future state of the coast. In State of the Coast Report, San Diego Region, Coast of California Storm and Tidal Waves Study. U S Army Corps of Engineers, 5, p. 43.

    Google Scholar 

  42. Inman, D.L., and Masters, P.M., 1994. Status of research on the nearshore. Shore & Beach, 62: 11–20.

    Google Scholar 

  43. Inman, D.L., and Nordstrom, C.E., 1971. On the tectonic and morphologic classification of coasts. Journal of Geology, 79: 1–21.

    Article  Google Scholar 

  44. Inman, D.L., Elwany, M.H.S., Khafagy, A.A., and Golik, A., 1992. Nile Delta profiles and migrating sand blankets. In Proceedings 23rd Coastal Engineering Conference. American Society of Civil Engineers, Vol. 3, pp. 3273–3284.

    Google Scholar 

  45. Inman, D.L., Gayman, W.R., and Cox, D.C., 1963. Littoral sedimentary processes on Kauai, a subtropical high island. Pacific Science, 17: 106–130.

    Google Scholar 

  46. LaBelle, J.C., Wise, J.L., Voelker, R.P., Schulze, R.H., and Wohl, G.M., 1983. Alaska Marine Ice Atlas. University of Alaska, Arctic Environmental Information and Data Center, Anchorage, Alaska 99501, 302.

    Google Scholar 

  47. Murray, S., Coleman, J.M., Roberts, H.H., and Salama, M., 1981. Accelerated currents and sediment transport off the Damietta Nile promontory. Nature, 293: 51–54.

    Article  Google Scholar 

  48. Naidu, A.S., Mowatt, T.C., Rawlinson, S.E., and Weiss, H.V., 1984. Sediment characteristics of the lagoons of the Alaskan Beaufort Sea coast and evolution of Simpson Lagoon. In Barnes, P.W. et al. (eds.), The Alaskan Beaufort Sea, Ecosystems and Environments. Orlando, FL: Academic Press, pp. 275–292.

    Google Scholar 

  49. Reimnitz, E., and Kempema, E., 1983. High rates of bedload transport measured from infilling rate of large strudel-scour craters in the Beaufort Sea, Alaska. Continental Shelf Research, 1: 237–251.

    Article  Google Scholar 

  50. Reimnitz, E., and Kempema, E.W., 1987. Thirty-four-year shoreface evolution at a rapidly retreating Arctic coastal site. In Hamilton, T.D., and Galloway, J.P. (eds.), Geologic Studies in Alaska by the U.S. Geological Survey during 1986. U.S Geological Survey Circular, Vol. 998, pp. 161–164.

    Google Scholar 

  51. US Army Corps of Engineers Engineering and Design—Coastal Littoral Transport (www.usace.army.mil/inet/usace-docs/eng-manuals/ http://www.usace.army.mil/inet/usace-docs/eng-manuals/em1110-2-1502/toc.htm).

    Google Scholar 

  52. Wiseman, W.J., Jr., Coleman, J.M., Gregory, A., Hsu, S.A., Short, A.D., Suhayda, J.N., Walters, C.D., and Wright, L.D., 1973. Alaskan arctic coastal processes and morphology. Louisiana State University, Technical Report 145, 171.

    Google Scholar 

  53. Komar, P.D., 1998. Beach Processes and Sedimentation, 2nd edn. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  54. Van de Graaff, J., and Bjiker, E.W., 1988. Seawalls and shoreline protection. Proceedings 21st International Conference on Coastal Engineering. Reston, VA: American Society of Civil Engineers, pp. 2090–2101.

    Google Scholar 

  55. Eaton, R.O., 1951. Littoral processes on sandy coasts. Proceedings. First Conference on Coastal Engineering, American Society of Civil Engineers, Long Beach, CA, October 1950, pp. 140–154.

    Google Scholar 

  56. Hanson, H., and Kraus, N.C., 1989. GENESIS: generalized model for simulating shoreline change. US Army Corps of Engineers, Waterways Experiment Station, Technical Report CERC-89-19.

    Google Scholar 

  57. Inman, D.L., and Bagnold, R.A., 1963. Littoral Processes. In Hill, M.N. (ed.), The Sea, Vol. 3. New York: Interscience, pp. 529–533.

    Google Scholar 

  58. Komar, P.D., 1976. Beach Processes and Sedimentation. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  59. Watts, G.M., 1953. A study of sand movement at South Lake Worth Inlet, Florida. US Army Corps of Engineers, Beach Erosion Board Technical Memo 42.

    Google Scholar 

Cross-references

  1. Changing Sea Levels

    Google Scholar 

  2. Coastal Changes, Gradual

    Google Scholar 

  3. Coastal Changes, Rapid

    Google Scholar 

  4. Coastline Changes

    Google Scholar 

  5. Geodesy

    Google Scholar 

  6. Holocene Epoch

    Google Scholar 

  7. Sea-Level Changes During the Last Millennium

    Google Scholar 

  8. Sea-Level Rise, Effect

    Google Scholar 

Cross-references

  1. Beach Use and Behaviors

    Google Scholar 

  2. Coastal Currents

    Google Scholar 

  3. Environmental Quality

    Google Scholar 

  4. Rating Beaches

    Google Scholar 

  5. Rip Currents

    Google Scholar 

  6. Sandy Coasts

    Google Scholar 

  7. Surf Zone Processes

    Google Scholar 

  8. Surfing

    Google Scholar 

  9. Water Quality

    Google Scholar 

Cross-references

  1. Beach Features

    Google Scholar 

  2. Coastal Boundaries

    Google Scholar 

  3. Hydrology of Coastal Zone

    Google Scholar 

  4. Tidal Environments

    Google Scholar 

  5. Tides

    Google Scholar 

Cross-references

  1. Arctic, Coastal Geomorphology

    Google Scholar 

  2. Barrier Islands

    Google Scholar 

  3. Classification of Coasts (see Holocene Coastal Geomorphology)

    Google Scholar 

  4. Climate Patterns in the Coastal Zone

    Google Scholar 

  5. Coasts, Coastlines, Shores, and Shorelines

    Google Scholar 

  6. Coral Reefs

    Google Scholar 

  7. Deltas

    Google Scholar 

  8. El Niñn-Southern Oscillation

    Google Scholar 

  9. Energy and Sediment Budgets of the Global Coastal Zone

    Google Scholar 

  10. Littoral Drift Gradient

    Google Scholar 

  11. Sediment Budget

    Google Scholar 

  12. Tectonics and Neotectonics

    Google Scholar 

Cross-references

  1. Beach Erosion

    Google Scholar 

  2. Littoral Cells

    Google Scholar 

  3. Longshore Sediment Transport

    Google Scholar 

  4. Wave Focusing

    Google Scholar 

Cross-references

  1. Beach Processes

    Google Scholar 

  2. Coastal Currents

    Google Scholar 

  3. Energy and Sediment Budgets of the Global Coastal Zone

    Google Scholar 

  4. Gross Transport

    Google Scholar 

  5. Littoral Drift Gradient

    Google Scholar 

  6. Net Transport

    Google Scholar 

  7. Numerical Modeling

    Google Scholar 

  8. Tides

    Google Scholar 

  9. Waves

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this entry

Cite this entry

Mörner, NA., Brewster, B.C., Bokuniewicz, H., Inman, D.L., Healy, T.R., Seymour, R.J. (2005). L. In: Schwartz, M.L. (eds) Encyclopedia of Coastal Science. Encyclopedia of Earth Science Series. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3880-1_12

Download citation

Publish with us

Policies and ethics