Skip to main content

Boundary Layer Climatology

  • Reference work entry
Encyclopedia of World Climatology

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Near the Earth’s surface the wind interacts with an endless variety of ground covers, each of which has distinctive surface properties that condition the air above, imparting to it distinctive characteristics. As the wind moves the air across the edge of a new area of ground, characteristics that were acquired upwind of the edge begin to change in response to new surface properties. The modified air grows in thickness as the distance downwind of the edge, or fetch, increases. The process continues until a boundary layer a few meters thick is established, its climate clearly linked to the nature of the surface boundary (Figure B4).

Figure B4
figure 1_1-4020-3266-8_32

Boundary layer development over an instrumented wheat field, Simcoe, Southern Ontario, Canada. A new boundary layer begins where the wind (dotted arrows) encounters the wheat, after passing over upwind surfaces. The top of the boundary layer (broken line) marks the transition between upwind air and boundary layer air, where the degree of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Andreas, E.L., 2002. Parameterizing scaler transfer over snow and ice: a review. Journal of Hydrometeorology, 3: 417–432.

    Article  Google Scholar 

  2. Arnfield, A.J., 1975. A note on the diurnal, latitudinal and seasonal variation of the surface reflection coefficient. Journal of Applied Meteorology, 14: 1603–1608.

    Article  Google Scholar 

  3. Bailey, W.G., Oke, T.R., and Rouse, W.R., eds. 1997. The Surface Climates of Canada. Montreal and Kingston: McGill-Queen’.

    Google Scholar 

  4. Black, T.A., and McNaughton, K.G., 1971. Psychrometric apparatus for Bowen ratio determination over forests, Boundary Layer Meteorology, 1: 246–254.

    Google Scholar 

  5. Bradley, E.F., 1968. A micrometeorological study of velocity profiles and surface drag in the region modified by a change in surface roughness, Quarterly Journal of the Royal Meteorological Society, 94: 361–379.

    Google Scholar 

  6. Buettner, K.J.K., and Kern, C.D., 1965. The determination of infrared emissivities of terrestrial surfaces. Journal of Geophysical Research, 70: 1329–1337.

    Google Scholar 

  7. Campbell, G.S., and Unsworth, M.H., 1979. An inexpensive sonic anemometer for eddy correlation. Journal of Applied Meteorology, 18: 1072–1077.

    Article  Google Scholar 

  8. Davies, J.A., and Allen, C.D., 1973. Equilibrium, potential and actual evapotranspiration from cropped surfaces in Southern Ontario. Journal of Applied Meteorology, 12: 649–657.

    Article  Google Scholar 

  9. Davies, J.A., Robinson, P.J., and Nunez, M., 1971. Field determinations of surface emissivity and temperature for Lake Ontario. Journal of Applied Meteorology, 10: 811–819.

    Article  Google Scholar 

  10. Deacon, E.L., and Webb, E.K., 1962. Small-scale interactions. In Hill, M., ed., The Sea, vol. 1. New York: Wiley, pp. 43–87.

    Google Scholar 

  11. Dutton, J.A., and Bryson, R.A., 1962. Heat flux in Lake Mendota. Limnology and Oceanography, 7: 80–97.

    Article  Google Scholar 

  12. Dyer, A.J., 1961. Measurement of evaporation and heat transfer in the lower atmosphere by an automatic eddy correlation technique. Quarterly Journal of the Royal Meteorological Society, 87: 401–412.

    Google Scholar 

  13. Dyer, A.J., 1974. A review of flux-profile relationships. Boundary Layer Meteorology, 7: 363–372.

    Article  Google Scholar 

  14. Dyer, A.J., and Hicks, B.B., 1970. Flux-gradient relationships in the constant flux layer, Quarterly Journal of the Royal Meteorological Society, 96: 715–721.

    Google Scholar 

  15. Elliott, W.P., 1958. The growth of the atmospheric internal boundary layer. American Geophysics Union Transactions, 39: 1048–1054.

    Google Scholar 

  16. Fuchs, M., and Tanner, C.B., 1968. Calibration and field test of soil heat flux plates. Soil Science Society of America Proceedings, 32: 326–328.

    Article  Google Scholar 

  17. Funk, J.P., 1959. Improved polyetheylene-shielded net radiometer. Journal of Scientific Instruments, 36: 267–270.

    Article  Google Scholar 

  18. Garratt, J.R., and Hicks, B.B., 1973. Momentum, heat and water vapour transfer to and from natural and artificial surfaces, Quarterly Journal of the Royal Meteorological Society, 99: 680–687.

    Article  Google Scholar 

  19. Geiger, R., 1966. The Climate Near the Ground. Cambridge, MA: Harvard University Press.

    Google Scholar 

  20. Infante, J.M., Rambal, S., and Joffre, R., 1997. Modelling transpiration in holm-oak savannah: scaling up from leaf to the tree scale. Agricultural and Forestry Meteorology, 187: 273–289.

    Article  Google Scholar 

  21. Jarvis, P.G., and McNaughton, K.G., 1986. Stomatal control of transpiration: scaling up from leaf to region. In Ford, E.D., and Macfadyen, A., eds., Advances in Ecological Research, vol. 15, pp. 1–45.

    Google Scholar 

  22. Lafleur, P.M., and Rouse, W.R., 1990. Application of an energy combination model for evaporation from sparse canopies. Agricultural and Forestry Meteorology, 49: 135–153.

    Article  Google Scholar 

  23. Lettau, H., 1969. Note on aerodynamic roughness-parameter estimation on the basis of roughness element description. Journal of Applied Meteorology, 8: 828–832.

    Article  Google Scholar 

  24. Lettau, H.H., and Davidson, B., 1957. Exploring the Atmosphere’s First Mile. London: Pergamon.

    Google Scholar 

  25. McKay, D.C., and Thurtell, G.W., 1978. Measurements of the energy fluxes involved in the energy budget of a snow cover. Journal of Applied Meteorology, 17: 339–349.

    Article  Google Scholar 

  26. McNeil, D.D., and Shuttleworth, W.J., 1975. Comparative measurements of the energy fluxes over a pine forest. Boundary Layer Meteorology, 9: 297–313.

    Article  Google Scholar 

  27. Mölder, M., Grelle, A., Lindroth, A., and Halldin, S., 1999. Flux-profile relationships over a boreal forest — roughness sublayer corrections. Agricultural and Forestry Meteorology, 98–99: 645–658.

    Article  Google Scholar 

  28. Monteith, J.L., 1963. Gas Exchange in Plant Communities. In Evans, L. T., ed., Environmental Control of Plant Growth. New York: Academic Press, pp. 95–110.

    Google Scholar 

  29. Monteith, J.L., 1981. Evaporation and surface temperature, Quarterly Journal of the Royal Meteorological Society, 107: 1–27.

    Article  Google Scholar 

  30. Monteith, J.L., and Szeicz, G., 1961. The radiation balance of bare soil and vegetation. Quarterly Journal of the Royal Meteorological Society, 87: 159–170.

    Google Scholar 

  31. Monteith, J.L., and Unsworth, M.H., 1990. Principles of Environmental Physics. London: Edward Arnold.

    Google Scholar 

  32. Morgan, D.L., Pruitt, W.O., and Lourence, F.J., 1971. Analyses of Energy, Momentum and Mass Transfers Above Vegetative Surfaces, Research and Development Technical Report ECOM 68-G10-F. Fort Huachuca, AZ: US Army Electronics Command Atmospheric Sciences Laboratory.

    Google Scholar 

  33. Munro, D.S., 1990. Comparison of melt energy computations and ablatometer measurements on melting ice and snow. Arctic and Alpine Resarch, 22: 153–162.

    Article  Google Scholar 

  34. Munro, D.S., 1989. Surface roughness and bulk heat transfer on a glacier: comparison with eddy correlation. Journal of Glaciology, 35: 343–348.

    Google Scholar 

  35. Munro, D.S., Bellisario, L.M., and Verseghy, D.L., 2000. Measuring and modeling the seasonal climatic regime of a temperate wooded wetland. Atmosphere-Ocean, 38: 227–249.

    Google Scholar 

  36. Nunez, M., Davies, J.A., and Robinson, P.J., 1972. Surface albedo at a tower site in Lake Ontario. Boundary Layer Meteorology, 3: 77–86.

    Article  Google Scholar 

  37. Obukhov, A.M., 1971. Turbulence in an atmosphere with a non-uniform temperature. Boundary Layer Meteorology, 2: 7–29.

    Article  Google Scholar 

  38. Oerlemans, J., 2000. Analysis of a 3 year record from the ablation zone of Morteratschgletscher, Switzerland: energy and mass balance. Journal of Glaciology, 46: 571–579.

    Google Scholar 

  39. Oerlemans, J., and Grisogono, B., 2002. Glacier winds and parameterization of the related surface heat fluxes. Tellus, 54A: 440–452.

    Google Scholar 

  40. Oke, T.R., 1987. Boundary Layer Climates. London: Methuen.

    Google Scholar 

  41. Penman, H.L., 1948. Natural evaporation from open water, bare soil and grass, Royal Society of London Proceedings, Ser. A, 193: 120–145.

    Google Scholar 

  42. Priestley, C.H.B., 1959. Turbulent Transfer in the Lower Atmosphere. Chicago: University of Chicago Press.

    Google Scholar 

  43. Priestley, C.H.B., and Taylor, R.J., 1972. On the assessment of surface heat flux and evaporation using large scale parameters, Monthly Weather Review, 100: 81–92.

    Google Scholar 

  44. Raupach, M.R., 1992. Drag and drag partition on rough surfaces. Boundary Layer Meteorology, 60: 375–395.

    Article  Google Scholar 

  45. Rider, N.E., Philip, J.R., and Bradley, E.F., 1963. The horizontal transport of heat and moisture-a micro-meteorological study. Quarterly Journal of the Royal Meteorological Society, 89: 507–531.

    Google Scholar 

  46. Schwerdtfeger, P., and Weller, G., 1967. The measurement of radiative and conductive heat transfer in ice and snow, Archiv für Meteorologie, Geophysik, und Bioklimatologie, B15: 24–38.

    Article  Google Scholar 

  47. Sellers, P.J., and Lockwood, J.G., 1981. A computer simulation of the effects of differing crop types on the water balance of small catchments over long time periods. Quarterly Journal of the Royal Meteorological Society, 107: 395–414.

    Article  Google Scholar 

  48. Sellers, W.D., 1965. Physical Climatology. Chicago: University of Chicago Press.

    Google Scholar 

  49. Shuttleworth, W.J., and Wallace, J.S., 1985. Evaporation from sparse cropsan energy combination theory. Quarterly Journal of the Royal Meteorological Society, 111: 839–855.

    Article  Google Scholar 

  50. Smeets, C.J.P.P., Duynkerke, P.G., and Vugts, H.F., 1999. Observed wind profiles and turbulence fluxes over an ice surface with changing surface roughness. Boundary Layer Meteorology, 92: 101–123.

    Article  Google Scholar 

  51. Soegaard, H., 1999. Fluxes of carbon dioxide, water vapor and sensible heat in a boreal agricultural area of Sweden — scaled from canopy to landscape level. Agricultural and Forestry Meteorology, 98–99: 463–478.

    Article  Google Scholar 

  52. Stewart, J.B., 1977. Evaporation from the wet canopy of a pine forest. Water Resources Research, 13: 915–921.

    Article  Google Scholar 

  53. Swinbank, W.C., and Dyer, A.J. 1967. An experimental study in micrometeorology. Quarterly Journal of the Royal Meteorological Society, 93: 494–500.

    Google Scholar 

  54. Szeicz, G., and Long, I.F., 1969. Surface resistance of crop canopies. Water Resources Research, 5: 622–633.

    Google Scholar 

  55. Tan, A.S., and Black, T.A., 1976. Factors affecting the canopy resistance of a Douglas-fir forest. Boundary Layer Meteorology, 10: 475–488.

    Article  Google Scholar 

  56. Tanner, C.B., and Fuchs, M., 1968. Evaporation from unsaturated surfaces: a generalized combination method. Journal of Geophysical Research, 73: 1299–1303.

    Google Scholar 

  57. Thom, A.S., 1975. Momentum, mass and heat exchange of plant communities. In Montieth, J.L. ed., Principles, vol. 1: Vegetation and the Atmosphere. London: Academic Press, pp. 57–109.

    Google Scholar 

  58. Thom, A.S., and Oliver, H.R., 1977. On Penman’s equation for estimating regional evaporation, Quarterly Journal of the Royal Meteorological Society, 103: 345–358.

    Article  Google Scholar 

  59. Thornthwaite, C.W., and Holzman, B., 1939. The determination of evaporation from land and water surfaces, Monthly Weather Review, 67: 4–11.

    Article  Google Scholar 

  60. Wallace, J.S., 1995. Calculating evaporation: resistance to factors. Agricultural and Forestry Meteorology, 73: 353–366.

    Article  Google Scholar 

  61. Webb, E.K., 1970. Profile relationships: the log-linear range, and extension to strong stability, Quarterly Journal of the Royal Meteorological Society, 96: 67–90.

    Google Scholar 

  62. Wesley, M.L., Thurtell, G.W., and Tanner, C.B., 1970. Eddy correlation measurements of sensible heat flux near the earth’s surface. Journal of Applied Meteorology, 9: 45–50.

    Article  Google Scholar 

  63. Yap, D., and Oke, T.R., 1974. Sensible heat fluxes over an urban area — Vancouver, B.C., Journal of Applied Meteorology, 13: 880–890.

    Article  Google Scholar 

Cross-references

  1. Albedo and Reflectivity

    Google Scholar 

  2. Energy Budget Climatology

    Google Scholar 

  3. Microclimatology

    Google Scholar 

  4. Radiation Climatology

    Google Scholar 

  5. Urban Climatology

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this entry

Cite this entry

Munro, D.S. (2005). Boundary Layer Climatology. In: Oliver, J.E. (eds) Encyclopedia of World Climatology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht . https://doi.org/10.1007/1-4020-3266-8_32

Download citation

Publish with us

Policies and ethics