Skip to main content

Clay, engineering geology

  • Reference work entry
Applied Geology

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS,volume 3))

  • 1556 Accesses

The engineering geologist is primarily concerned that the effects of geological factors on the “location, planning, design, construction, operation and maintenance of engineering structures and the development of ground-water resources” are adequately provided for and recognized (Bates and Jackson, 1980, p. 204). The history, origins, and composition of earth materials are of importance insofar as they affect the applied objectives (Quigley, 1980) (see Geotechnical Engineering). It is well known that clay significantly affects the behavior of earth materials including the important property of cohesion in soils.

The term clay as used today carries with it three implications: (1) a natural material with plastic properties; (2) an essential composition of particles of very fine size grades; and (3) an essential composition of crystalline fragments of minerals that are essentially hydrous aluminum silicates or occasionally hydrous magnesium silicates. (Howell, 1966, p. 52)

The upper limit...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed, S.; Lovell, C. W.; and Diamond, S., 1974. Pore sizes and strength of compacted clay, Am. Soc. Civil Engineers Proc., Jour. Geotech. Eng. Div., 100, 407–425.

    Google Scholar 

  • Alhashimi, K., and Chaplin, T. K., 1973. An experimental study of deformation and fracture of soil cement, Géotechnique, 23, 541–550.

    Google Scholar 

  • American Association of State Highway and Transportation Officials, 1978. Appendix B, Soil Classification, Manual on Foundation Investigations, 146p.

    Google Scholar 

  • American Association of State Highway and Transportation Officials, 1982. Classification of soils and soil aggregate mixtures for highway construction purposes, Standard Specification for Transportation Materials and Methods of Sampling and Testing, Standard Spec., M145, Vol. 1.

    Google Scholar 

  • American Society for Testing and Materials, 1982a. Standard test methods for moisture-density relations of soils and soil-aggregate mixtures using 5.5-lb (2.49-kg) rammer and 12-in. (305-mm) drop, Ann. Book ASTM Standards, ASTM D698-78, 202–208.

    Google Scholar 

  • American Society for Testing and Materials, 1982b. Standard test methods for moisture-density relations of soils and soil-aggregate mixtures using 10-lb (4.54 kg) rammer and 18-in. (457-mm) drop, Ann. Book ASTM Standards, ASTM D698-78, 278–284.

    Google Scholar 

  • American Society for Testing and Materials, 1982c. Standard test methods for moisture-density relations of soil-cement mixtures, Ann. Book ASTM Standards, ASTM D558-57, 146–151.

    Google Scholar 

  • American Society for Testing and Materials, 1982d. Standard methods for wetting-and-drying tests of compacted soil-cement mixtures, Ann. Book ASTM Standards ASTM D559-57, 152–157.

    Google Scholar 

  • American Society for Testing and Materials, 1982e. Standard methods for freezing-and-thawing tests of compacted soil-cement mixtures, Ann. Book ASTM Standards, ASTM D560-57, 158–163.

    Google Scholar 

  • Arora, H. S., and Scott, J. B., 1974. Landslides by ion exchange, California Geology, 27, 99–107.

    Google Scholar 

  • Ballantine, R. W., and Rossouw, A. J., 1972. Lime Stabilization of Soils. Johannesburg, South Africa: Northern Lime Co. Ltd., 109p.

    Google Scholar 

  • Barden, L., 1974. Consolidation of clays compacted “dry” and “wet” of optimum water content, Géotechnique, 24, 605–625.

    Google Scholar 

  • Barden, L.; McGown, A.; and Collins, K., 1973. The collapse mechanism in partly saturated soil, Eng. Geology, 7, 49–60.

    Google Scholar 

  • Bates, R. L. and Jackson, J. A. eds. 1980. Glossary of Geology, 2nd ed. Falls Church, Virginia: American Geological Institute, 751p.

    Google Scholar 

  • Bazant, X. P.; Ozaydin, I. K.; and Krizek, R. J., 1975. Micromechanics model for creep of anisotropic clay, Am. Soc. Civil Engineers Proc., Jour. Eng. Mechanics Div., 101, 57–78.

    Google Scholar 

  • Bjerrum, L.; Moum, J.; and Eide, O., 1967. Application of electro-osmosis to a foundation problem in a Norwegian quick clay, Géotechnique, 17, 214–235.

    Google Scholar 

  • Bochko, R., 1973. Types of microtextural elements and microporosity in clays, International Symposium on Soil Structure Proceedings. Gothenburg: Swedish Geotechnical Society, 97–101.

    Google Scholar 

  • Borodkina, M. M., and Osipov, V. I., 1973. Automatic X-ray analysis of clay microfabrics, International Symposium on Soil Structure Proceedings. Gothenburg: Swedish Geotechnical Society, 15–20.

    Google Scholar 

  • Borst, R. L., 1972. Authigenic kaolinite crystals within microfossils of the Danian Limestone, North Sea, International Clay Conference, Kaolin Symposium, Madrid, 41–48.

    Google Scholar 

  • Boyes, R. G. H., 1972. Uses of bentonite in civil engineering, Inst. Civil Engineers Proc., 52, 25–37.

    Google Scholar 

  • British Standards Institution, 1982. Methods of Test for Stabilized Soils. London, 96p.

    Google Scholar 

  • Casagrande, A., 1940. The structure of clay and its importance in foundation engineering, Contributions to Soil Mechanics, 1925 to 1940. Boston, Mass.: Boston Society of Civil Engineers, 72–125.

    Google Scholar 

  • Catton, M. D., 1937. Basic principles of soil-cement mixtures and exploratory laboratory results, Highway Research Board Proc. 17, 7–31.

    Google Scholar 

  • Catton, M. D., 1940. Research on the physical relations of soil and soil-cement mixtures, Highway Research Board Proc., 20, 821–855.

    Google Scholar 

  • Chandler, R. J., 1973. A study of structural discontinuities in stiff clays using a polarizing microscope, International Symposium on Soil Structure Proceedings. Gothenburg: Swedish Geotechnical Society, 78–85.

    Google Scholar 

  • Cole, W. F., 1961. Terracota roofing tile deterioration in Australia, British Clay-worker, 70, 249–259.

    Google Scholar 

  • Croft, J. B., 1967. The influence of soil mineralogical composition on cement stabilization, Géotechnique, 17, 119–135.

    Google Scholar 

  • Dolar-Mantuani, L. L. M., and Laakso, R., 1974. Results of ethylene glycol swelling test on argillaceous limestone, Canadian Jour. Earth Sci., 11 (3), 430–436.

    Google Scholar 

  • Dudley, J. H., 1970. Review of collapsing soils, Am. Soc. Civil Engineers Proc., Jour. Soil Mechanics and Found. Div., 96, 925–947.

    Google Scholar 

  • Dumbleton, M. J., 1968. The Classification and Description of Soils for Engineering Purposes: A Suggested Revision of the British System. Great Britain Road Research Laboratory, RRL Rept. LR182, 41p.

    Google Scholar 

  • Eden, W. J., and Mitchell, J. K., 1970. The mechanics of landslides in Leda clay, Canadian Geotech. Jour., 7, 285–296.

    Google Scholar 

  • Fookes, P. G., 1969. Geotechnical mapping of soils and sedimentary rock for engineering purposes with examples of practice from the Mangla dam project, Géotechnique, 19, 52–74.

    Google Scholar 

  • Gillott, J. E., 1963. Clay mineralogy in building research, Clays and Clay Minerals, 11, 296.

    Google Scholar 

  • Gillott, J. E., 1968. Clay in Engineering Geology. Amsterdam: Elsevier, 296p.

    Google Scholar 

  • Gillott, J. E., 1969. Study of the fabric of fine-grained sediments with the scanning electron microscope, Jour. Sed. Petrology, 39, 90–105.

    Google Scholar 

  • Gillott, J. E., 1970. Fabric of Leda clay investigated by optical, electron-optical and X-ray diffraction methods, Jour. Eng. Geology, 4, 133–153.

    Google Scholar 

  • Gillott, J. E., 1971. Mineralogy of a Leda clay, Canadian Mineralogist, 10, 797–811.

    Google Scholar 

  • Gillott, J. E., 1976. Importance of specimen preparation in microscopy, Soil Specimen Preparation STP 599. American Society for Testing and Materials, 289–307.

    Google Scholar 

  • Gillott, J. E., and Swenson, E. G., 1969. Mechanism of the alkali-carbonate rock reaction, Quart. Jour. Eng. Geology, 2, 7–23.

    Google Scholar 

  • Gillott, J. E.; Penner, E.; and Eden, W. J., 1974. Microstructure of billings, Shale and biochemical alteration products, Ottawa, Ontario, Canadian Geotech. Jour., 11, 484–489.

    Google Scholar 

  • Gray, D. H., 1970. Electrochemical hardening of clay soils, Géotechnique, 20, 81–93.

    Google Scholar 

  • Gromko, G. J., 1974. Review of expansive soils, Am. Soc. Civil Engineers Proc., Jour. Geotech. Eng. Div. 100, 667–687.

    Google Scholar 

  • Hall, J. W., 1968. Soil compaction investigation: evaluation of vibratory rollers on three types of soils, U.S. Army Corps Engineers Waterways Expt. Sta. (Vicksburg, Miss.) Tech. Mem. 3-271, Report 10, 32p.

    Google Scholar 

  • Hammond, C.; Moon, C. F.; and Smalley, I. J., 1973. High voltage electron microscopy of quartz particles from post-glacial clay soils, Jour. Materials Sci., 8, 509–513.

    Google Scholar 

  • Hansbo, S., 1973. Influence of mobile particles in soft clay on permeability, International Symposium on Soil Structure Proceedings. Gothenburg: Swedish Geotechnical Society: 132–135.

    Google Scholar 

  • Herzog, A., and Mitchell, J. K., 1963. Reactions accompanying stabilization of clay with cement, Highway Research Board Proc., 36, 146–171.

    Google Scholar 

  • Highway Research Board, 1961. Soil stabilization with Portland cement, Highway Research Board Bull., 292.

    Google Scholar 

  • Howell, J. V. (ed.), 1966. Glossary of Geology and Related Sciences, Washington, D.C.: American Geological Institute, 72p.

    Google Scholar 

  • Ingles, O. G., 1970. Mechanisms of clay stabilization with inorganic acids and alkalis. Australian Jour. Soil Research, 8, 81–95.

    Google Scholar 

  • Jessberger, H. L. (ed.), 1979. Ground Freezing—Developments in Geotechnical Engineering, vol. 26. Amsterdam: Elsevier, 558p.

    Google Scholar 

  • Kenney, T. C., and Drury, P., 1973. Case record of the slope failure that initiated the retrogressive quick-clay landslide at Ullensaker, Norway, Géotechnique, 23, 33–47.

    Google Scholar 

  • Krizek, R. J., and Fernandez, J. I., 1971. Vibratory densification of damp clayey sands, Am. Soc. Civil Engineers Proc., Jour. Soil Mechanics and Found. Div., 97, 1069–1079.

    Google Scholar 

  • Lafeber, D., 1965. The graphical representation of planar pore patterns in soils. Australian Jour. Soil Research. 3, 143–164.

    Google Scholar 

  • Lafeber, D., 1967. The optical determination of the spatial orientation of platy clay minerals in soil thin sections, Geoderma, 1, 359–369.

    Google Scholar 

  • Lambe, T. W., 1953. The structure of inorganic soil, Am. Soc. Civil Engineers Proc., Jour. Soil Mechanics and Found. Div., 79, 1–49.

    Google Scholar 

  • Lambe, T. W.; 1958. The structure of compacted clay, Am. Soc. Civil Engineers Proc., Jour. Soil Mechanics and Found. Div., 84, 1654–1–1654–34.

    Google Scholar 

  • Lambe, T. W. and Whitman, R. V., 1969. Soil Mechanics. New York: Wiley. 553p.

    Google Scholar 

  • Lambe, T. W.; Kaplan, C. W.; Lambie, T. J., 1971. Additives for modifying the frost susceptibility of soils, U.S. Army Corps. Engineers Tech. Rep. 123, Parts 1 and 2, 80p.

    Google Scholar 

  • Lloret, A., and Alonso, E. E., 1980. Consolidation of unsaturated soils including swelling and collapse behavior, Géotechnique, 30, 449–477.

    Google Scholar 

  • Lowe, J., 1974. New concepts in consolidation and settlement analysis, Am. Soc. Civil Engineers Proc., Jour. Geotech. Eng. Div., 100, 574–612.

    Google Scholar 

  • Lytton, R. L., and Meyer, K. T., 1971. Stiffened mats on expansive clay, Am. Soc. Civil Engineers Proc., Jour. Soil Mech. Found. Div., 97, 999–1019.

    Google Scholar 

  • McCaustland, D. E. J., 1925. Lime dirt in roads, Natl. Lime Assoc. Proc., 7, 12–17.

    Google Scholar 

  • McGown, A., 1973. The nature of the matrix in glacial ablation tills, International Symposium on Soil Structure Proceedings. Gothenburg: Swedish Geotechnical Society, 87–95.

    Google Scholar 

  • Mesri, G., and Rokhsar, A., 1974. Theory of consolidation for clays, Am. Soc. Civil Engineers Proc., Jour. Geotech. Eng. Div., 100, 889–904.

    Google Scholar 

  • Millot, G. M., 1970. Geology of Clays. New York: Springer-Verlag, 429p.

    Google Scholar 

  • Mitchell, J. K., and Houston, W. N., 1969. Causes of clay sensitivity, Am. Soc. Civil Engineers Proc., Jour. Soil Mechanics and Found. Div., 95 (SM3), 845–871.

    Google Scholar 

  • Mitchell, R.J., and Markell, A. R., 1974. Flowsliding in sensitive soils, Canadian Geotech. Jour. 11, 11–31.

    Google Scholar 

  • Morgenstern, N. R., and Eigenbrod, K. D., 1974. Classification of argillaceous soils and rocks, Am. Soc. Civil Engineers Proc., Jour. Geotech. Eng. Div., 100, 1137–1156.

    Google Scholar 

  • Moum, J.; Løken, T.; and Torrance, J. K., 1971. A geochemical investigation of the sensitivity of a normally consolidated clay from Drammen, Norway, Géotechnique, 21, (4), 329–340.

    Google Scholar 

  • National Lime Association, 1982. Lime Stabilization Construction Manual. Bull. 326. Arlington, Va., 48p.

    Google Scholar 

  • Olson, R. E., 1974. Shearing strengths of kaolinite, illite, and montmorillonite, Am. Soc. Civil Engineers Proc., Jour. Geotech. Eng. Div., 100, 1215–1229.

    Google Scholar 

  • Osipov, J. B., and Sokolov, B. A., 1973. On the texture of clay soils of different genesis investigated by magnetic anisotropy method, International Symposium on Soil Structure Proceedings. Gothenburg: Swedish Geotechnical Society. 21–28.

    Google Scholar 

  • Penner, E., 1965. A study of sensitivity of Leda clay, Canadian Jour. Earth Sci., 2, 425–441.

    Google Scholar 

  • Penner, E., 1970. Frost-heaving forces in Leda clay, Canadian Geotech. Jour., 7, 8–16.

    Google Scholar 

  • Penner, E., 1974. Uplift forces on foundations in frost-heaving soils, Canadian Geotech. Jour. 11 (3), 323–328.

    Google Scholar 

  • Poskitt, T. J., 1971. Consolidation of clay and peat with variable properties, Am. Soc. Civil Engineers Proc., Jour. Soil Mechanics and Found. Div., 97, 841–879.

    Google Scholar 

  • Pusch, R., 1970. Microstructural changes in soft quick clay at failure, Canadian Geotech. Jour., 7, 1–7.

    Google Scholar 

  • Pusch, R., 1973. Structural variations in boulder clay, International Symposium on Soil Structure Proceedings. Gothenburg: Swedish Geotechnical Society, 113–121.

    Google Scholar 

  • Quigley, R. M., 1980. Geology, mineralogy, and geochemistry of Canadian soft soils: a geotechnical perspective, Canadian Geotech. Jour. 17, 261–285.

    Google Scholar 

  • Quigley, R. M.; Zajic, J. E.; McKyes, E.; and Yong, R. N., 1973. Biochemical alteration and heave of black shale; detailed observations and interpretations, Canadian Jour. Earth Sci., 10, 1005–1015.

    Google Scholar 

  • Robinson, D. E., 1975. Successful electroshock therapy for deteriorated bridges, Transportation Research News, 58, 3–4.

    Google Scholar 

  • Rosenquiet, I. T., 1966. Norwegian research into the properties of Quick clay — a review, Eng. Geology. 1, 445–450.

    Google Scholar 

  • Sandhu, R. S., and Wilson, E. L., 1969. Finite element analysis of land subsidence, Land Subsidence, I.A.S.H. — Unesco, Publ. No. 89, 2, 393–400.

    Google Scholar 

  • Sangrey, D. A., 1972. Naturally cemented sensitive soils, Géotechnique, 22, 139–152.

    Google Scholar 

  • Sankaran, K. S., and Rao, D. V., 1974. Mechanistic response of expansive clays, Soil Sci., 118, 289–298.

    Google Scholar 

  • Sergeyev, Y. M.; Budin, D. Y.; Osipov, V. I.; and Shibakova, V. S., 1973. The importance of the fabric of clays in estimating their engineering-geological properties, International Symposium on Soil Structure Proceedings. Gothenburg: Swedish Geotechnical Society, 243–251.

    Google Scholar 

  • Shepard, F. P., 1954. Nomenclature based on sand-silt-clay ratios, Jour. Sed. Petrology, 24, 151–158.

    Google Scholar 

  • Shibakova, V. S., 1965. Textural Changes in Argillaceous Rocks by Hydrostatic Compression. Moscow State University Geology Series, No. 2.

    Google Scholar 

  • Skempton, A. W.; Schuster, R. L.; and Petley, D. J., 1969. Joints and fissures in the London clay at Wraysbury and Edgeware, Géotechnique, 19, 205–217.

    Google Scholar 

  • Smalley, I. J. (ed.), 1979. Sensitive soils and quick clays, Eng. Geology, 14, 81–217.

    Google Scholar 

  • Smart, P., 1966. Particle arrangements in kaolin, Clays and Clay Minerals, Natl. Conference, Pittsburgh, Proc., 15, 241–254.

    Google Scholar 

  • Söderblom, R., 1966. Chemical aspects of quick-clay formation, Eng. Geology. 1, 415–431.

    Google Scholar 

  • Suh, N. P., and Lee, R. S., 1974. Centrifugal method of mixing soil with stabilizer, Am. Soc. Civil Engineers Proc., Jour. Geotech. Eng. Div., 100, 295–307.

    Google Scholar 

  • Symons, I. F., 1970. The effect of size and shape of specimen upon the unconfined compressive strength of cement stabilized materials, Mag. of Concrete Research, 22, 45–50.

    Google Scholar 

  • Taylor, D. W., and Merchant, W., 1940. A theory of clay consolidation accounting for secondary compressions, Jour. Math. and Phys., 19.

    Google Scholar 

  • Terzaghi, K., 1925, Erdbaumechanik auf bodenphysikalischer Grundlage. Vienna: Deuticke, 399p.

    Google Scholar 

  • Terzaghi, K., 1927. Soil classification for foundation purposes, Internat. Congr. Soil Sci. Trans. 4, 127–157.

    Google Scholar 

  • Titkov, N. I.; Petrov, V. P.; and Neretina, A. Y., 1965. Mineral Formation and Structure in the Electrochemical Induration of Weak Rocks. New York: Consultants Bureau, 74p.

    Google Scholar 

  • Tovey, N. K., 1973, Quantitative analysis of electron micrographs of soil structure. International Symposium on Soil Structure Proceedings. Gothenburg: Swedish Geotechnical Society, 50–57.

    Google Scholar 

  • Transportation Research Circular, 1976. State of the art: lime stabilization, reactions, properties, design, construction, Transportation Res. Circ., 180, 31p.

    Google Scholar 

  • U.S. Waterways Experiment Station, 1953. The unified soil classification system, U.S. Army Corps Engineers Waterways Expt. Sta. (Vicksburg, Miss.) Tech. Mem. 3-357, 50p.

    Google Scholar 

  • Wagner, A. A., 1957. The use of the unified soil classification system by the Bureau of Reclamation, Proceedings of the Fourth International Conference of the Soil Mechanics Foundation of Engineers, 125–134.

    Google Scholar 

  • Williams, A. A. B., and Donaldson, G. W., 1980. Developments relating to building on expansive soils in South Africa: 1973–1980, Fourth Internat. Conf. on Expansive Soils, Denver.

    Google Scholar 

  • Wilson, M. D., and Pittman, E. D., 1977. Authigenic clays in sandstones: recognition and influence on reservoir properties and paleoenvironmental analysis, Jour. Sed. Petrology, 47, 3–31.

    Google Scholar 

  • Wilson, S. D., 1970. Observational data on ground movements related to slope instability, Am. Soc. Civil Engineers Proc., Jour. Soil Mechanics and Found. Div., 1521–1544.

    Google Scholar 

  • Yong, R. N., and Sheeran, D. E., 1973. Fabric unit interaction and soil behavior, International Symposium on Soil Structure Proceedings. Gothenburg: Swedish Geotechnical Society. 176–183.

    Google Scholar 

Cross-references

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Van Nostrand Reinhold Company Inc.

About this entry

Cite this entry

Gillott, J.E. (1984). Clay, engineering geology . In: Finkl, C. (eds) Applied Geology. Encyclopedia of Earth Sciences Series, vol 3. Springer, Boston, MA. https://doi.org/10.1007/0-387-30842-3_9

Download citation

  • DOI: https://doi.org/10.1007/0-387-30842-3_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-442-22537-7

  • Online ISBN: 978-0-387-30842-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics