Skip to main content

Boundary layer climatology

  • Reference work entry
Climatology

Part of the book series: Encyclopedia of Earth Science ((EESS))

Near the Earth's surface, the atmosphere interacts with an endless variety of ground surface types, each of which conditions the air above it in a distinctive manner. As the wind moves the air across the edge of a new area of ground, characteristics that were acquired upwind of the edge begin to change in response to new influences. The modified air grows in thickness as the distance downwind of the edge, or fetch, increases. The process continues until a boundary layer a few meters thick is established—the climatology is clearly linked to the nature of adjacent ground (Fig. 1).

FIGURE 1
figure 1_0-387-30749-4_29

Boundary layer development over a field of wheat near Simcoe. Southern Ontario, Canada. The top of the boundary layer begins where the instrument mast in the foreground intersects the zero plane. It marks the transition between air that has been conditioned upwind (solid lines and arrows) and air that has become modified by the wheat (dashed lines). Anemometers may be seen on the left side of each...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 589.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnfield, A. J., 1975. A note on the diurnal, latitudinal and seasonal variation of the surface reflection coefficient, Jour. Appl. Meteorol. 14, 1603–1608.

    Article  Google Scholar 

  • Black, T. A., and K. G. McNaughton, 1971. Psychrometric apparatus for Bowen ratio determination over forests, Boundary Layer Meteorol. 1, 246–254.

    Google Scholar 

  • Bradley, E. F., 1968. A micrometeorological study of velocity profiles and surface drag in the region modified by a change in surface roughness, Q. Jour. Royal Meteorol. Soc. 94, 361–379.

    Google Scholar 

  • Buettner, K. J. K., and C. D. Kern, 1965. The determination of infrared emissivities of terrestrial surfaces, Jour. Geophys. Research 70, 1329–1337.

    Google Scholar 

  • Davies, J. A., and C. D. Allen, 1973. Equilibrium, potential and actual evapotranspiration from cropped surfaces in Southern Ontario, Jour. Appl. Meteorol. 12, 649–657.

    Article  Google Scholar 

  • Davies, J. A., P.J. Robinson, and M. Nunez, 1971. Field determinations of surface emissivity and temperature for Lake Ontario, Jour. of Appl. Meteorol. 10, 811–819.

    Article  Google Scholar 

  • Deacon, E. L., and E. K. Webb, 1962. Small-scale interactions, in The Sea, vol. 1, M. Hill (ed.). New York: Wiley, pp. 43–87.

    Google Scholar 

  • Dutton, J. A., and R. A. Bryson, 1962. Heat flux in Lake Mendota, Limnology and Oceanography, 7, 80–97.

    Article  Google Scholar 

  • Dyer, A. J., 1961. Measurement of evaporation and heat transfer in the lower atmosphere by an automatic eddycorrelation technique, Q. Jour. Royal Meteorol. Soc. 87, 401–412.

    Google Scholar 

  • Dyer, A. J., 1974. A review of flux-profile relationships, Boundary Layer Meteorol. 7, 363–372.

    Article  Google Scholar 

  • Dyer, A. J., and B. B. Hicks, 1970. Flux-gradient relationships in the constant flux layer, Q. Jour. Royal Meteorol. Soc. 96, 715–721.

    Google Scholar 

  • Elliott, W. P., 1958. The growth of the atmospheric internal boundary layer. Am. Geophys. Union Trans. 39, 1048–1054.

    Google Scholar 

  • Fuchs, M., and C. B. Tanner, 1968. Calibration and field test of soil heat flux plates, Soil Sci. Soc. America Proc. 32, 326–328.

    Article  Google Scholar 

  • Funk, J. P., 1959. Improved polyetheylene-shielded net radiometer, Jour. Sci. Instruments 36, 267–270.

    Article  Google Scholar 

  • Garratt, J. R., and B. B. Hicks, 1973. Momentum, heat and water vapour transfer to and from natural and artificial surfaces, Q. Jour. Royal Meteorol. Soc. 99, 680–687.

    Article  Google Scholar 

  • Geiger, R., 1966. The Climate Near the Ground. Cambridge, Mass.: Harvard University Press.

    Google Scholar 

  • Lettau, H., 1969. Note on aerodynamic roughness-parameter estimation on the basis of roughness element description, Jour. of Appl. Meteorol. 8, 828–832.

    Article  Google Scholar 

  • Lettau, H. H., and B. Davidson, 1957. Exploring the Atmosphere's First Mile. London: Pergamon.

    Google Scholar 

  • Lindroth, A., 1984. Gradient distributions and flux profile relations above a rough forest, Q. Jour. Royal Meteorol. Soc. 110, 553–563.

    Article  Google Scholar 

  • McKay, D. C., and G. W. Thurtell, 1978. Measurements of the energy fluxes involved in the energy budget of a snow cover, Jour. Appl. Meteorol. 17, 339–349.

    Article  Google Scholar 

  • McNeil, D. D., and W. J. Shuttleworth, 1975. Comparative measurements of the energy fluxes over a pine forest, Boundary Layer Meteorol. 9, 297–313.

    Article  Google Scholar 

  • Monteith, J. L., 1963. Gas exchange in plant communities, in Environmental Control of Plant Growth. New York: Academic Press, pp. 95–110.

    Google Scholar 

  • Monteith, J. L., 1973. Principles of Environmental Physics. London: Edward Arnold.

    Google Scholar 

  • Monteith, J. L., 1981. Evaporation and surface temperature, Q. Jour. Royal Meteorol. Soc. 107, 1–27.

    Article  Google Scholar 

  • Monteith, J. L., and G. Szeicz, 1961. The radiation balance of bare soil and vegetation, Q. Jour. Royal Meteorol. Soc. 87, 159–170.

    Google Scholar 

  • Morgan, D. L., W. O. Pruitt, and F. J. Lourence, 1971. Analyses of Energy, Momentum and Mass Transfers Above Vegetative Surfaces, Research and Development Tech. Rep. ECOM 68-G10-F. Fort Huachuca, Ariz.: U.S. Army Electronics Command Atmospheric Sciences Laboratory.

    Google Scholar 

  • Munro, D.S., 1980. A portable differential psychrometer system, Jour. Appl. Meteorol. 19, 206–214.

    Article  Google Scholar 

  • Nunez, M., J. A. Davies, and P. J. Robinson, 1972. Surface albedo at a tower site in Lake Ontario, Boundary Layer Meteorol. 3, 77–86.

    Article  Google Scholar 

  • Oke, T. R., 1978. Boundary Layer Climates. London: Methuen.

    Google Scholar 

  • Penman, H. L., 1948. Natural evaporation from open water, bare soil and grass, Royal Soc. London Proc., Ser. A, 193, 120–145.

    Article  Google Scholar 

  • Priestley, C. H. B., 1959. Turbulent Transfer in the Lower Atmosphere. Chicago: University of Chicago Press.

    Google Scholar 

  • Priestley, C. H. B., and R. J. Taylor, 1972. On the assessment of surface heat flux and evaporation using largescale parameters, Monthly Weather Rev. 100, 81–92.

    Google Scholar 

  • Raupach, M. R., A. S. Thom, and I. Edwards, 1980. A wind-tunnel study of turbulent flow close to regularly arrayed rough surfaces, Boundary Layer Meteorol. 18, 373–397.

    Article  Google Scholar 

  • Rider, N. E., J. R. Philip, and E. F. Bradley, 1963. The horizontal transport of heat and moisture—a micro-meteorological study, Q. Jour. Royal Meteorol. Soc. 89, 507–531.

    Google Scholar 

  • Schwerdtfeger, P., and G. Weller, 1967. The measurement of radiative and conductive heat transfer in ice and snow, Archiv Meteorologie, Geophysik, u. Bioklimatologie B15, 24–38.

    Article  Google Scholar 

  • Sellers, P. J., and J. G. Lockwood, 1981. A computer simulation of the effects of differing crop types on the water balance of small catchments over long time periods, Q. Jour. Royal Meteorol. Soc. 107, 395–414.

    Article  Google Scholar 

  • Sellers, W. D., 1965. Physical Climatology. Chicago: University of Chicago Press.

    Google Scholar 

  • Stewart, J. B., 1977. Evaporation from the wet canopy of a pine forest, Water Resources Research 13, 915–921.

    Google Scholar 

  • Sutton, O. G., 1953. Micrometeorology. New York: McGraw-Hill.

    Google Scholar 

  • Swinbank, W. C., and A. J. Dyer, 1967. An experimental study in micrometeorology, Q. Jour. Royal Meteorol. Soc. 93, 494–500.

    Google Scholar 

  • Szeicz, G., and I. F. Long, 1969. Surface resistance of crop canopies, Water Resources Research 5, 672–633.

    Google Scholar 

  • Tajchman, S. J., 1971. Evapotranspiration and energy balances of forest and field, Water Resources Research 7, 511–523.

    Article  Google Scholar 

  • Tan, A. S., and T. A. Black, 1976. Factors affecting the canopy resistance of a Douglas-fir forest. Boundary Layer Meteorol. 10, 475–488.

    Article  Google Scholar 

  • Tanner, C. B., and M. Fuchs, 1968. Evaporation from unsaturated surfaces: A generalized combination method, Jour. Geophys. Research 73, 1299–1303.

    Google Scholar 

  • Thom, A. S., 1975. Momentum, mass and heat exchange of plant communities, in Principles, vol. 1, Vegetation and the Atmosphere. J. L. Monteith (ed.). London: Academic Press, pp. 57–109.

    Google Scholar 

  • Thom, A. S., and H. R. Oliver, 1977. On Penman's equation for estimating regional evaporation, Q. Jour. Royal Meteorol. Soc. 103, 345–358.

    Article  Google Scholar 

  • Thornthwaite, C. W., and B. Holzman, 1939. The determination of evaporation from land and water surfaces, Monthly Weather Rev. 67, 4–11.

    Article  Google Scholar 

  • Verma, S. B., N. J. Rosenberg, and B. L. Blad, 1978. Turbulent exchange coefficients for sensible heat and water vapour under advective conditions, Jour. Appl. Meteorol. 17, 330–338.

    Article  Google Scholar 

  • Webb, E. K., 1970. extension to strong stability, Q. Jour. Royal Meteorol. Soc. 96, 67–90.

    Google Scholar 

  • Wesley, M. L., G. W. Thurtell, and C. B. Tanner, 1970. Eddy correlation measurements of sensible heat flux near the earth's surface, Jour. Appl. Meteorol. 9, 45–50.

    Article  Google Scholar 

  • Yap, D., and T. R. Oke, 1974. Sensible heat fluxes over an urban area—Vancouver, B.C., Jour. Appl. Meteorol. 13, 880–890.

    Article  Google Scholar 

Cross-references

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Van Nostrand Reinhold

About this entry

Cite this entry

Munro, D.S. (1987). Boundary layer climatology . In: Climatology. Encyclopedia of Earth Science. Springer, Boston, MA. https://doi.org/10.1007/0-387-30749-4_29

Download citation

  • DOI: https://doi.org/10.1007/0-387-30749-4_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-87933-009-5

  • Online ISBN: 978-0-387-30749-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics