Skip to main content

The Genus Thermomicrobium

  • Reference work entry
The Prokaryotes

Introduction

Thermomicrobium roseum (ATCC 27502), the sole representative of a phylogenetically distinct branch of the eubacteria, is an obligate thermophile originally isolated from the effluent of a hot spring in Yellowstone National Park, WY (Jackson et al., 1973). The grouping of T. roseum with the green nonsulfur (GNS) bacteria is based on ribosomal RNA sequence comparisons (Oyaizu et al., 1987). The sequence of 5S rRNA from T. roseum (Van den Eynde et al., 1990) affirms that it should be clustered with Chloroflexus. Herpetosiphon and Chloroflexus, the other representatives in this branch, are markedly different phenotypically from T. roseum (for a review see Kristjansson and Alfredsson, 1992). Although the GNS bacteria share some common ribosomal characters, they are the progeny of a deep phylogenetic divergence (Gibson et al., 1985); Herpetosiphon is a mesophile and more rapidly evolving than either Chloroflexus or Thermomicrobium. The deepest branching in eubacterial evolution...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Achenbach-Richter, A., R. Gupta, K. O. Stetter, and C. R. Woese. 1987 Were the original eubacteria thermophiles? System. Appl. Microbiol. 9 34–39

    Article  CAS  Google Scholar 

  • Allen, M. B. 1959 Studies with Cyanidium caldarium, an anomously pigmented chlorophyte Arch. Microbiol. 32 270–277

    CAS  Google Scholar 

  • Allgood, G. S., and J. J. Perry. 1985a Paraquat toxicity and effect of hydrogen peroxide on thermophilic bacteria J. Free Rad. Biol. Med. 1 233–237

    Article  CAS  Google Scholar 

  • Allgood, G. S., and J. J. Perry. 1985b Oxygen defense systems in obligately thermophilic bacteria Can. J. Microbiol. 31 1006–l010

    Article  PubMed  CAS  Google Scholar 

  • Allgood, G. S., and J. J. Perry. 1986 Effect of methyl viologen and oxygen concentration on thermophilic bacteria J. Basic Microbiol. 26 379–382

    Article  CAS  Google Scholar 

  • Castenholz, R. W. 1969 Thermophilic blue-green algae and the thermal environment Bacteriol. Rev. 33 476–504

    PubMed  CAS  Google Scholar 

  • Gibson. J., W. Ludwig, E. Stackebrandt, and C. R. Woese. 1985 The phylogeny of the green photosynthetic bacteria: Absence of a close relationship between Chlorobium and Chloroflexus System. Appl. Microbiol. 6 152–156

    Article  CAS  Google Scholar 

  • Gribaldo, S., V. Lumia, R. Creti, E.C. deMacario, A. Sanangelantoni, and P. Cammarano. 1999 Discontinuous occurrence of the hsp70 (dnaK) gene among Archaea and sequence features of HSP70 to suggest a novel outlook on phylogenies inferred from this protein J. Bacteriol. 181 434–443

    PubMed  CAS  Google Scholar 

  • Gupta, R. S., K. Bustard, M. Falah, and D. Singh. 1997 Sequencing of heat shock protein 70 (DnaK) homologs from Deinococcus proteolyticus and Thermomicrobium roseum and their integration in a protein-based phylogeny of prokaryotes J. Bacteriol. 179 345–357

    PubMed  CAS  Google Scholar 

  • Haas, E. S., and J. W. Brown. 1998 Evolutionary variation in bacterial RNase P RNAs Nucleic Acids Res. 26 4093–4099

    Article  PubMed  CAS  Google Scholar 

  • Hamana, K., S. Matsuzaki, M. Niitsu, and K. Samejima. 1990 Pentamines and hexaamine are present in a thermophilic eubacterium, Thermomicrobium roseum FEMS Microbiol. Lett. 68 31–34

    Article  CAS  Google Scholar 

  • Jackson, T. J., R. F. Ramaley, and W. G. Meinschein. 1973 Thermomicrobium, a new genus of extremely thermophilic bacteria Int. J. Syst. Bacteriol. 23 28–36

    Article  Google Scholar 

  • Kristjansson, J. K., and G. A. Alfredsson. 1992 The heterotrophic, thermophilic genera Thermomicrobium, Rhodothermus, Saccharococcus, Acidothermus, and Scotothermus In: J. K. Kristjansson (Ed.) Thermophilic Bacteria CRC Press Boca Raton FL 63–76

    Google Scholar 

  • Merkel, G. J., S.S. Stapleton, and J. J. Perry. 1978 Isolation and peptidoglycan of Gram-negative hydrocarbon-utilizing thermophilic bacteria J. Gen. Microbiol. 109 141–148

    Article  CAS  Google Scholar 

  • Merkel. G. J., D. R. Durham, and J. J. Perry. 1980 The atypical celI wall composition of Thermomicrobium roseum Can. J. Microbiol. 26 556–559

    Article  PubMed  CAS  Google Scholar 

  • Oyaizu, H., D. Debrunner-Vossbrinck, L. Mandelco. J. A. Studier, and C. R. Woese. 1987 The green non-sulfur bacteria: A deep branching in the eubacterial line of descent System. Appl. Microbiol. 9 47–53

    Article  CAS  Google Scholar 

  • Phillips, W. E., and J. J. Perry. 1976 Thermomicrobium fosteri sp. nov., a hydrocarbon-utilizing obligate thermophile Int. J. System. Bacteriol. 26 220–225

    Article  Google Scholar 

  • Pond, J. L., T. A. Langworthy, and G. Holzer. 1986 Long-chain diols: a new class of membrane lipids from a thermophilic bacterium Science 231 1134–1136

    Article  PubMed  CAS  Google Scholar 

  • Pond, J. L., and T. A. Langworthy. 1987 Effect of growth temperature on the long-chain diols and fatty acids of Thermomicrobium roseum J. Bacteriol. 169 1328–1330

    PubMed  CAS  Google Scholar 

  • Ramaley, R. F., F. R. Turner, L. E. Malick, and R. B. Wilson. 1978 The morphology and surface structure of some extremely thermophilic bacteria found in slightly alkaline hot springs In: S. M. Friedman (Ed.) Biochemistry of Thermophily Academic Press New York NY 89–102

    Chapter  Google Scholar 

  • Van den Eynde, H., Y. Van de Peer, J. Perry, and R. De Wachter. 1990 5S rRNA sequences of representatives of the genera Chlorobium, Prosthecochloris, Thermomicrobium, Cytophaga, Flavobacterium, Flexibacter, and Saprospira, and a discussion of the evolution of eubacteria in general J. Gen. Microbiol. 136 11–18

    Article  PubMed  Google Scholar 

  • Wait, R., L. Carreto, M. F. Nobre, A. M. Ferreira, and M. S. Da Costa. 1997 Characterization of long-chain 1,2-diols in Thermus species and demonstration that Thermus strains contain both glycerol-linked and diol-linked glycolipids J. Bacteriol. 179 6154–6162

    PubMed  CAS  Google Scholar 

  • Zeng, Y. B., D. M. Ward, S. C. Brassell, and G. Eglinton. 1992 Biogeochemistry of hot spring environments 3: Apolar and polar lipids in the biologically active layers of a cyanobacterial mat Chem. Geol. 95 347–360

    Article  CAS  Google Scholar 

  • Zarilla, K. A., and J. J. Perry. 1986 Deoxyribonucleic acid homology and other comparisons among obligately thermophilic hydrocarbonoclastic bacteria, with a proposal for Thermoleophilum minutum sp. nov Int. J. Syst. Bacteriol. 36 13–16

    Article  CAS  Google Scholar 

  • Zarilla, K. A., and J. J. Perry. 1987 Bacillus thermoleovorans, sp. nov., a species of obligately thermophilic hydrocarbon utilizing endospore forming bacteria System. Appl. Microbiol. 9 258–264

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Perry, J.J. (2006). The Genus Thermomicrobium . In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30747-8_35

Download citation

Publish with us

Policies and ethics