Skip to main content

Sphingomonas and Related Genera

  • Reference work entry
The Prokaryotes

Introduction

The genus Sphingomonas was defined by Yabuuchi et al. (1990) as a group of Gram-negative, rod-shaped, chemoheterotrophic, strictly aerobic bacteria that possess ubiquinone 10 as the major respiratory quinone, contain glycosphingolipids (GSLs) instead of lipopolysaccharide in their cell envelopes, and typically produce yellow-pigmented colonies. By 2001, the genus included more than 20 species that were quite diverse in terms of their phylogenetic, ecological, and physiological properties. As a result, Takeuchi et al. (2001) subdivided Sphingomonas into four genera: Sphingomonas, Sphingobium, Novosphingobium and Sphingopyxis. These genera are referred to collectively as “sphingomonads” in this chapter. The sphingomonads are widely distributed in nature, having been isolated from many different aqueous and terrestrial habitats, as well as from plant root systems, clinical specimens, and other sources. Sphingomonads are metabolically versatile and, thus, are able to utilize...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cite

  • Adkins, A. 1999 Degradation of the phenoxy acid herbicide diclofop-methyl by Sphingomonas paucimobilis isolated from a Canadian prairie soil J. Ind. Microbiol. Biotechnol. 23 332–335

    PubMed  CAS  Google Scholar 

  • Anderson, G. R. 1955 Nitrogen fixation by Pseudomonas-like soil bacteria J. Bacteriol. 70 129–133

    PubMed  CAS  Google Scholar 

  • Anson, A., P. J. Fisher, A. F. D. Kennedy, and I. W. Sutherland. 1987 A bacterium yielding a polysaccharide with unusual properties J. Appl. Bacteriol. 62 147–150

    CAS  Google Scholar 

  • Armengaud, J., and K. N. Timmis. 1998 The reductase RedA2 of the multi-component dioxin dioxygenase system of Sphingomonas sp. RW1 is related to class-I cytochrome P450-type reductases Eur. J. Biochem. 253 437–444

    PubMed  CAS  Google Scholar 

  • Ashtaputre, A. A., and A. K. Shah. 1995 Studies on a viscous, gel-forming exopolysaccharide from Sphingomonas paucimobilis GS1 Appl. Environ. Microbiol. 61 1159–1162

    PubMed  CAS  Google Scholar 

  • Azeredo, J., and R. Oliveira. 2000 The role of exopolymers in the attachment of Sphingomonas paucimobilis Biofouling 16 59–67

    CAS  Google Scholar 

  • Balkwill, D. L. 1989 Numbers, diversity, and morphological characteristics of aerobic, chemoheterotrophic bacteria in deep subsurface sediments from a site in South Carolina Geomicrobiol. J. 7 33–52

    Google Scholar 

  • Balkwill, D. L., G. R. Drake, R. H. Reeves, J. K. Fredrickson, D. C. White, D. B. Ringelberg, D. P. Chandler, M. F. Romine, D. W. Kennedy, and C. M. Spadoni. 1997a Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov Int. J. Syst. Bacteriol. 47 191–201

    PubMed  CAS  Google Scholar 

  • Balkwill, D. L., R. H. Reeves, G. R. Drake, J. Y. Reeves, F. H. Crocker, M. B. King, and D. R. Boone. 1997b Phylogenetic characterization of bacteria in the Subsurface Microbial Culture Collection FEMS Microbiol. Rev. 20 201–216

    PubMed  CAS  Google Scholar 

  • Bastiaens, L., D. Springael, W. Dejonghe, P. Wattiau, H. Verachtert, and L. Diels. 2001 A transcriptional luxAB reporter fusion responding to fluorine in Sphingomonas sp. LB126 and its initial characterisation for whole-cell bioreporter purposes Res. Microbiol. 152 849–859

    PubMed  CAS  Google Scholar 

  • Bertini, I., F. Capozzi, A. Dikiy, B. Happe, C. Luchinat, and K. N. Timmis. 1995 Evidence of histidine coordination to the catalytic ferrous ion in the ring-cleaving 2,2′,3-trihydroxybiphenyl dioxygenase from the dibenzofuran-degrading bacterium Sphingomonas sp. strain RW1 Biochem. Biophys. Res. Comm. 215 855–860

    PubMed  CAS  Google Scholar 

  • Bowman, J. P., S. A. McCammon, M. V. Brown, D. S. Nichols, and T. A. McMeekin. 1997 Diversity and association of psychrophilic bacteria in Antarctic sea ice Appl. Environ. Microbiol. 63 3068–3078

    PubMed  CAS  Google Scholar 

  • Bünz, P. V., and A. M. Cook. 1993a Dibenzofuran 4,4a-dioxygenase from Sphingomonas sp. strain RW1: Angular dioxygenation by a three-component enzyme system J. Bacteriol. 175 6467–6475

    PubMed  Google Scholar 

  • Bünz, P. V., R. Falchetto, and A. M. Cook. 1993b Purification of two isofunctional hydrolases (EC 3.7.1.8) in the degradative pathway for dibenzofuran in Sphingomonas sp. strain RW1 Biodegradation 4 171–178

    PubMed  Google Scholar 

  • Bünz, P. V., M. Buck, S. Hebenbrock, and P. Fortnagel. 1999 Stability of mutations in a Sphingomonas strain Can. J. Microbiol. 45 404–407

    PubMed  Google Scholar 

  • Buswell, C. M., Y. M. Herlihy, P. D. Marsh, C. W. Keevil, and S. A. Leach. 1997 Coaggregation amongst aquatic biofilm bacteria J. Appl. Microbiol. 83 477–484

    Google Scholar 

  • Byun, T., M. Tang, A. Sloma, K. M. Brown, C. Marumoto, M Fujii, and A. M. Blinkovsky. 2001 Aminopeptidase from Sphingomonas capsulata J. Biol. Chem. 276 17902–17907

    PubMed  CAS  Google Scholar 

  • Chandler, D. P., F. J. Brockman, T. J. Bailey, and J. K. Fredrickson. 1998 Phylogenetic diversity of archaea and bacteria in a deep subsurface paleosol Microb. Ecol. 36 37–50

    PubMed  CAS  Google Scholar 

  • Chang, D., B. Witholt, and Z. Li. 2000 Preparation of (S)-N-substituted 4-hydroxy-pyrrolidin-2-ones by regio-and stereoselective hydroxylation with Sphingomonas sp. HXN-200 Org. Lett. 2 3949–3942

    PubMed  CAS  Google Scholar 

  • Chang, D., H. J. Feiten, K. H. Engesser, J. B. van Beilen, B. Witholt, and Z. Li. 2002 Practical syntheses of N-substituted 3-hydroxyazetidines and 4-hydroxypiperidines by hydroxylation with Sphingomonas sp. HXN-200 Org. Lett. 4 1859–1862

    PubMed  CAS  Google Scholar 

  • Christner, B. C., E. Mosley-Thompson, L. G. Thompson, and J. N. Reeve. 2001 Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice Environ. Microbiol. 3 570–577

    PubMed  CAS  Google Scholar 

  • Coughlin, M. F., B. K. Kinkle, and P. L. Bishop. 1999 Degradation of azo dyes containing aminonaphthol by Sphingomonas sp. strain 1CX J. Ind. Microbiol. Biotechnol. 23 341–346

    PubMed  CAS  Google Scholar 

  • Cousineau, B., D. Smith, S. Lawrence-Cavanagh, J. E. Mueller, J. Yang, D. Mills, D. Manias, G. Dunny, A. M. Lambowitz, and M. Belfort. 1998 Retrohoming of a bacterial group II intron: mobility via complete reverse splicing, independent of homologous DNA recombination Cell 94 451–462

    PubMed  CAS  Google Scholar 

  • Crane, L. R., L. C. Tagle, and W. A. Palutke. 1981 Outbreak of Pseudomonas paucimobilis in an intensive care facility J. Am. Med. Assoc. 246 985–987

    CAS  Google Scholar 

  • Crawford, R. L., and M. M. Ederer. 1999 Phylogeny of Sphingomonas species that degrade pentachlorophenol J. Ind. Microbiol. Biotechnol. 23 320–325

    PubMed  CAS  Google Scholar 

  • Daane, L. L., I. Harjono, G. J. Zylstra, and M. M. Häggblom. 2001 Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants Appl. Environ. Microbiol. 67 2683–2691

    PubMed  CAS  Google Scholar 

  • Davison, A. D., and D. A. Veal. 1993 Storage of a mixed microbial consortium capable of growth on biphenyl Lett. Appl. Microbiol. 17 101–103

    Google Scholar 

  • Davison, A. D., P. Karuso, D. R. Jardine, and D. A. Veal. 1996 Halopicilinic acids, novel products arising through the degradation of chloro-and bromo-biphenyl by Sphingomonas paucimobilis BPSI-3 Can. J. Microbiol. 42 66–71

    PubMed  CAS  Google Scholar 

  • De Feyter, R., and D. W. Gabriel. 1991 Use of cloned DNA methylase genes to increase the frequency of transfer of foreign genes into Xanthomonas campestris pv. malvacearum J. Bacteriol. 173 6421–6427

    PubMed  Google Scholar 

  • Denner, E. B. M., P. Kämpfer, H.-J. Busse, and E. R. B. Moore. 1999 Reclassification of Pseudomonas echinoides Heumann 1962, 343AL, in the genus Sphingomonas as Sphingomonas echinoides comb. nov Int. J. Syst. Bacteriol. 49 1103–1109

    PubMed  CAS  Google Scholar 

  • Denner, E. B. M., S. Paukner, P. Kämpfer, E. R. B. Moore, W.-R. Abraham, H.-J. Busse, G. Wanner, and W. Lubitz. 2001 Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan Int. J. Syst. Evol. Microbiol. 51 827–841

    PubMed  CAS  Google Scholar 

  • de Otero, J., J. Masip, S. Elia, A. Betbese, J. Paez, and L. Ferrer. 1998 Bacteremia caused by Sphingomonas (Pseudomonas) paucimobilis [in Spanish] Enferm. Infecc. Microbiol. Clin. 16 388–389

    PubMed  Google Scholar 

  • Ditta, G., T. Schmidhauser, E. Yakobson, P. Lu, X. W. Liang, D. R. Finlay, D. Guiney, and D. R. Helinski. 1985 Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression Plasmid 13 149–153

    PubMed  CAS  Google Scholar 

  • Dutta, T. K., S. A. Selifonov, and I. C. Gunsalus. 1998 Oxidation of methyl-substituted naphthalenes: Pathways in versatile Sphingomonas paucimobilis strain Appl. Environ. Microbiol. 64 1884–1889

    PubMed  CAS  Google Scholar 

  • Edgehill, R. U., and R. K. Finn. 1982 Isolation, characterization and growth kinetics of bacteria metabolizing pentachlorophenol Eur. J. Appl. Microbiol. Biotechnol. 16 179–184

    CAS  Google Scholar 

  • Eguchi, M., T. Nishikawa, K. MacDonald, R. Cavicchioli, J. C. Gottschal, and S. Kjelleberg. 1996 Responses to stress and nutrient availability by the marine ultramicrobacterium Sphingomonas sp. strain RB2256 Appl. Environ. Microbiol. 62 1287–1294

    PubMed  CAS  Google Scholar 

  • Eguchi, M., M. Ostrowski, F. Fegatella, J. Bowman, D. Nichols, T. Nishino, and R. Cavicchioli. 2001 Sphingomonas alaskensis strain AFO1, an abundant oligotrophic ultramicrobacterium from the North Pacific Appl. Environ. Microbiol. 67 4945–4954

    PubMed  CAS  Google Scholar 

  • Faden, H., M. Britt, and B. Epstein. 1981 Sinus contamination with Pseudomonas paucimobilis: A pseudoepidemic due to contaminated irrigation fluid Infect. Control 2 233–235

    PubMed  CAS  Google Scholar 

  • Fegatella, F., J. Lim, S. Kjelleberg, and R. Cavicchioli. 1998 Implications of rRNA operon copy number and ribosome content in the marine oligotrophic ultramicrobacterium Sphingomonas sp. strain RB2256 Appl. Environ. Microbiol. 64 4433–4438

    PubMed  CAS  Google Scholar 

  • Fegatella, F., and R. Cavicchioli. 2000 Physiological responses to starvation in the marine oligotrophic ultramicrobacterium Sphingomonas sp. strain RB2256 Appl. Environ. Microbiol. 66 2037–2044

    PubMed  CAS  Google Scholar 

  • Feng, X., L.-T. Ou, and A. Ogram. 1997 Plasmid-mediated mineralization of carbofuran by Sphingomonas sp. strain CF06 Appl. Environ. Microbiol. 63 1332–1337

    PubMed  CAS  Google Scholar 

  • Ferat, J. L., M. Le Gouar, and F. Michel. 1994 Multiple group II self-splicing introns in mobile DNA from Escherichia coli C. R. Acad. Sci. 317 141–148

    CAS  Google Scholar 

  • Fialho, A. M., L. O. Martins, M.-L. Donval, J. H. Leitão, M. J. Ridout, A. J. Jay, V. J. Morris, and I. Sá-Correia. 1999 Structures and properties of gellan polymers produced by Sphingomonas paucimobilis ATCC 31461 from lactase compared with those produced from glucose and from cheese whey Appl. Environ. Microbiol. 65 2485–2491

    PubMed  CAS  Google Scholar 

  • Fortnagel, P., H. Harms, R.-M. Wittich, S. Krohn, H. Meyer, V. Sinnwell, H. Wilkes, and W. Francke. 1990 Metabolism of dibenzofuran by Pseudomonas sp. strain HH69 and the mixed culture HH27 Appl. Environ. Microbiol. 56 1148–1156

    PubMed  CAS  Google Scholar 

  • Fredrickson, J. K., D. L. Balkwill, G. R. Drake, M. F. Romine, D. B. Ringelberg, and D. C. White. 1995 Aromatic-degrading Sphingomonas isolates from the deep subsurface Appl. Environ. Microbiol. 61 1917–1922

    PubMed  CAS  Google Scholar 

  • Fredrickson, J. K., D. L. Balkwill, M. F. Romine, and T. Shi. 1999 Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp J. Ind. Microbiol. Biotechnol. 23 273–283

    PubMed  CAS  Google Scholar 

  • Fujii, K., N. Urano, H. Ushio, M. Satomi, and S. Kimura.. 2001 Sphingomonas cloacae sp. nov., a nonylphenol-degrading bacterium isolated from wastewater of a sewage-treatment plant in Tokyo Int. J. Syst. Evol. Microbiol. 51 603–610

    PubMed  CAS  Google Scholar 

  • Fukuda, K., S. Nagata, and H. Taniguchi. 2002 Isolation and characterization of dibenzofuran-degrading bacteria FEMS Microbiol. Lett. 208 179–185

    PubMed  CAS  Google Scholar 

  • Furukawa, K., and A. M. Chakrabarty. 1982 Involvement of plasmids in total degradation of chlorinated biphenyls Appl. Environ. Microbiol. 44 619–626

    PubMed  CAS  Google Scholar 

  • Furukawa, K., J. R. Simon, and A. M. Chakrabarty. 1983 Common induction and regulation of biphenyl, xylene/toluene, and salicylate catabolism in Pseudomonas paucimobilis J. Bacteriol. 154 1356–1362

    PubMed  CAS  Google Scholar 

  • Gibson, D. T., R. L. Roberts, M. C. Wells, and V. M. Kobal. 1973 Oxidation of biphenyl by a Beijerinckia species Biochem. Biophys. Res. Comm. 50 211–219

    PubMed  CAS  Google Scholar 

  • Gibson, D. T. 1999 Beijerinckia sp. strain B1: A strain by any other name J. Ind. Microbiol. Biotechnol. 23 284–293

    PubMed  CAS  Google Scholar 

  • Gilardi, G. L. 1984 Antimicrobial susceptibility of glucose-nonfermenting Gram-negative bacilli (NFGNB) Clin. Microbiol. Newslett. 6 149–152

    Google Scholar 

  • Gilewicz, M., Ni’matuzahroh, T. Nadalig, H. Budzinski, P. Doumenq, V. Michotey, and J. C. Bertrand. 1997 Isolation and characterization of a marine bacterium capable of utilizing 2-methylphenanthrene Appl. Microbiol. Biotechnol. 48 528–533

    PubMed  CAS  Google Scholar 

  • Gorricho, J., L. Torres, J. Navascues, M. C. Villuendas, and M. L. Marco. 1998 Bacteremia by Sphingomonas paucimobilis [in Spanish] Enferm. Infecc. Microbiol. Clin. 16 98–99

    PubMed  CAS  Google Scholar 

  • Halden, R. U., B. G. Halden, and D. F. Dwyer. 1999 Removal of dibenzofuran, dibenzo-p-dioxin, and 2-chlorodibenzo-p-dioxin from soils inoculated with Sphingomonas sp. strain RW1 Appl. Environ. Microbiol. 65 2246–2249

    PubMed  CAS  Google Scholar 

  • Hashimoto, W., T. Inose, H. Nakajima, N. Sato, S. Kimura, and K. Murata. 1996 Purification and characterization of microbial gellan lyase Appl. Environ. Microbiol. 62 1475–1477

    PubMed  CAS  Google Scholar 

  • Hashimoto, W., and K. Murata. 1998 Alpha-L-rhamnosidase of Sphingomonas sp. R1 producing an unusual exopolysaccharide of sphingan Biosci. Biotechnol. Biochem. 62 1068–1074

    PubMed  CAS  Google Scholar 

  • Hashimoto, W., K. Momma, Y. Mishima, B. Mikami, and K. Murata. 2001 Super-channel in bacteria: function and structure of a macromolecular import system mediated by a pit-dependent ABC transporter Biosci. Biotechnol. Biochem. 65 1949–1956

    PubMed  CAS  Google Scholar 

  • Hernáez, M. J., W. Reineke, and E. Santero. 1999 Genetic analysis of biodegradation of tetralin by a Sphingomonas strain Appl. Environ. Microbiol. 65 1806–1810

    PubMed  Google Scholar 

  • Heumann, W. 1962 Die Methodik der Kreuzung sternbildender Bakterien Biol. Zentbl. 81 341–354

    Google Scholar 

  • Hill, S., and J. R. Postgate. 1969 Failure of putative nitrogen-fixing bacteria to fix nitrogen J. Gen. Microbiol. 58 277–285

    PubMed  CAS  Google Scholar 

  • Hiraishi, A., H. Kuraishi, and K. Kawahara. 2000 Emendation of the description of Blastomonas natatoria (Sly 1985) Sly and Cahill 1997 as an aerobic photosynthetic bacterium and reclassification of Erythromonas ursincola Yurkov et al. 1997 as Blastomonas ursincola comb. nov Int. J. Syst. Evol. Microbiol. 50 1113–1118

    PubMed  CAS  Google Scholar 

  • Holmes, B., R. J. Owen, A. Evans, H. Malnick, and W. R. Willcox. 1977 Pseudomonas paucimobilis, a new species isolated from human clinical specimens, the hospital environment, and other sources Int. J. Syst. Bacteriol. 27 133–146

    Google Scholar 

  • Holmes, B., and P. Roberts. 1981 The classification, identification, and nomenclature of agrobacteria. Incorporating revised descriptions for each of Agrobacterium tumefaciens (Smith & Townsend) Conn 1942, Agrobacterium rhizogenes (Riker et al.) Conn 1942, and Agrobacterium rubi (Hildebrand) Starr & Weiss 1943 J. Appl. Bacteriol. 50 443–467

    Google Scholar 

  • Horvath, M., G. Ditzelmüller, M. Loidl, and F. Streichsbier. 1990 Isolation and characterization of a 2-(2,4-dichlorophenoxy)propionic acid-degrading soil bacterium Appl. Microbiol. Biotechnol. 33 213–216

    PubMed  CAS  Google Scholar 

  • Hsueh, P.-R., L.-J. Teng, P.-C. Yang, Y.-C. Chen, H.-J. Pan, S.-W. Ho, and K.-T. Luh. 1998 Nosocomial infections caused by Sphingomonas paucimobilis: clinical features and microbiological characteristics Clin. Infect. Dis. 26 676–681

    PubMed  CAS  Google Scholar 

  • Hynková, K., Y. Nagata, M. Takagi, and J. Damborsky. 1999 Identification of the catalytic triad in the haloalkane dehalogenase from Sphingomonas paucimobilis UT26 FEBS Lett. 446 177–181

    PubMed  Google Scholar 

  • Imai, R., Y. Nagata, K. Senoo, H. Wada, M. Fukuda, M. Takagi, and K. Yano. 1989 Dehydrochlorination of γ-hexachlorocyclohexane (γ-BHC) by γ-BHC-assimilating Pseudomonas paucimobilis Agric. Biol. Chem. 53 2015–2017

    CAS  Google Scholar 

  • Janikowski, T. B., D. Velicogna, M. Punt, and A. J. Daugulis. 2002 Use of a two-phase partitioning bioreactor for degrading polycyclic aromatic hydrocarbons by a Sphingomonas sp Appl. Microbiol. Biotechnol. 59 368–376

    PubMed  CAS  Google Scholar 

  • Jiang, S. C., C. A. Kellogg, and J. H. Paul. 1998 Characterization of marine temperate phage-host systems isolated from Mamala Bay, Oahu, Hawaii Appl. Environ. Microbiol. 64 535–542

    PubMed  CAS  Google Scholar 

  • Johnsen, A. R., M. Hausner, A. Schnell, and S. Wuertz. 2000 Evaluation of fluorescently labeled lectins for noninvasive localization of extracellular polymeric substances in Sphingomonas biofilms Appl. Environ. Microbiol. 66 3487–3491

    PubMed  CAS  Google Scholar 

  • Ka, J. O., W. E. Holben, and J. M. Tiedje. 1994 Analysis of competition in soil among 2,4-dichlorophenoxyacetic acid-degrading bacteria Appl. Environ. Microbiol. 60 1121–1128

    PubMed  CAS  Google Scholar 

  • Kämpfer, P., E. B. M. Denner, S. Meyer, E. R. B. Moore, and H.-J. Busse. 1997 Classification of “Pseudomonas azotocolligans” Anderson 1955, 132, in the genus Sphingomonas as Sphingomonas trueperi sp. nov Int. J. Syst. Bacteriol. 47 577–583

    PubMed  Google Scholar 

  • Kaneko, A., H. Miyadai, H. Danbara, and K. Kawahara. 2000 Construction of mutants of Sphingomonas paucimobilis defective in terminal mannose in the glycosphingolipid Biosci. Biotechnol. Biochem. 64 1298–1301

    PubMed  CAS  Google Scholar 

  • Karberg, M., H. Guo, J. Zhong, R. Coon, J. Perutka, and A. M. Lambowitz. 2001 Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria Nature Biotechnol. 19 1162–1167

    CAS  Google Scholar 

  • Kasai, Y., H. Kishira, K. Syutsubo, and S. Harayama. 2001 Molecular detection of marine bacterial populations on beaches contaminated by the Nakhodka tanker off-spill accident Environ. Microbiol. 3 246–255

    PubMed  CAS  Google Scholar 

  • Katayama, Y., S. Nishikawa, A. Murayama, M. Yamasaki, N. Morohoshi, and T. Haraguchi. 1988 The metabolism of biphenyl structure in lignin of the soil bacterium (Pseudomonas paucimobilis SYK-6) FEBS Lett. 233 129–133

    CAS  Google Scholar 

  • Kawahara, K., U. Seydel, M. Matsuura, H. Danbara, E. T. Reitschel, and U. Zähringer. 1991 Chemical structure of glycosphingolipids isolated from Sphingomonas paucimobilis FEBS Lett. 292 107–110

    PubMed  CAS  Google Scholar 

  • Kawahara, K., I. Mizuta, W. Katabami, M. Koizumi, and S. Wakayama. 1994 Isolation of Sphingomonas strains from ears of rice and other plants of family Gramineae Biosci. Biotech. Biochem. 58 600–601

    Google Scholar 

  • Kawahara, K., H. Kuraishi, and U. Zähringer. 1999 Chemical structure and function of glycosphingolipids of Sphingomonas spp and their distribution among members of the α-4 subclass of Proteobacteria J. Ind. Microbiol. Biotechnol. 23 408–413

    PubMed  CAS  Google Scholar 

  • Kawahara, K., B. Lindner, Y. Isshiki, K. Jakob, Y. A. Knirel, and U. Zähringer. 2001 Structural analysis of a new glycosphingolipid from the lipopolysaccharide-lacking bacterium Sphingomonas adhaesiva Carbohydr. Res. 333 87–93

    PubMed  CAS  Google Scholar 

  • Kawai, F., T. Kimura, Y. Tani, and H. Yamada. 1984 Involvement of a polyethylene glycol (PEG)-oxidizing enzyme in the bacterial metabolism of PEG Agric. Biol. Chem. 48 1349–1351

    CAS  Google Scholar 

  • Kawai, F. 1999 Sphingomonads involved in the biodegradation of xenobiotic polymers J. Ind. Microbiol. Biotechnol. 23 400–407

    PubMed  CAS  Google Scholar 

  • Kawasaki, S., R. Moriguchi, K. Sekiya, T. Nakai, E. Ono, K. Kume, and K. Kawahara. 1994 The cell envelope structure of the lipopolysaccharide-lacking Gram-negative bacterium Sphingomonas paucimobilis J. Bacteriol. 176 284–290

    PubMed  CAS  Google Scholar 

  • Kilpi, S., V. Backström, and M. Korhola. 1980 Degradation of 2-methyl-4-chlorophenoxyacetic acid (MCPA), 2,4-dichlorophenoxyacetic acid (2,4-D), benzoic acid and salicylic acid by Pseudomonas sp. HV3 FEMS Microbiol. Lett. 8 177–182

    CAS  Google Scholar 

  • Kim, C. K., J. W. Kim, Y. C. Kim and T. I. Mheen. 1986 Isolation of aromatic hydrocarbon-degrading bacteria and genetic characterization of their plasmid genes Korean J. Microbiol. 24 67–72

    CAS  Google Scholar 

  • Kim, E., and G. J. Zylstra. 1995 Molecular and biochemical characterization of two meta-cleavage dioxygenases involved in biphenyl and m-xylene degradation by Beijerinckia sp. strain B1 J. Bacteriol. 177 3095–3103

    PubMed  CAS  Google Scholar 

  • Kim, E. 1996a Molecular analysis of aromatic hydrocarbon degradation by Sphingomonas yanoikuyae B1 [PhD thesis] Rutgers State University of New Jersey New Brunswick, NJ

    Google Scholar 

  • Kim, E., P. J. Aversano, M. F. Romine, R. P. Schneider, and G. J. Zylstra. 1996b Homology between genes for aromatic hydrocarbon degradation in surface and deep-subsurface Sphingomonas strains Appl. Environ. Microbiol. 62 1467–1470

    PubMed  CAS  Google Scholar 

  • Kim, S.-J., J. Chun, K. S. Bae, and Y.-C. Kim. 2000 Polyphasic assignment of an aromatic-degrading Pseudomonas sp., strain DJ77, in the genus Sphingomonas, as Sphingomonas chungbukensis sp. nov Int. J. Syst. Evol. Microbiol. 50 1641–1647

    PubMed  CAS  Google Scholar 

  • Knoop, V., and A. Brennicke. 1994 Evidence for a group II intron in Escherichia coli inserted into a highly conserved reading frame associated with mobile DNA sequences Nucleic Acids Res. 22 1167–1171

    PubMed  CAS  Google Scholar 

  • Kohler, H. P. E. 1999 Sphingomonas herbicidovorans MH: A versatile phenoxyalkonic acid herbicide degrader J. Ind. Microbiol. Biotechnol. 23 336–340

    PubMed  CAS  Google Scholar 

  • Kuehn, M., M. Mehl, M. Hausner, H. J. Bungartz, and S. Wuertz. 2001 Time-resolved study of biofilm architecture and transport processes using experimental and simulation techniques: the role of EPS Water Sci. Technol. 43 143–150

    PubMed  CAS  Google Scholar 

  • Kulaeva, O. I, E. V. Koonin, J. C. Wootton, A. S. Levine, and R. Woodgate. 1998 Unusual insertion element polymorphisms in the promoter and terminator regions of the mucAB-like genes of R471a and R446b Mutation Res. 397 247–262

    PubMed  CAS  Google Scholar 

  • Lee, J.-S., Y. K. Shin, J.-H. Yoon, M. Takeuchi, Y.-R. Pyun, and Y.-H. Park. 2001 Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov. and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water Int. J. Syst. Evol. Microbiol. 51 1491–1498

    PubMed  CAS  Google Scholar 

  • Leifson, E. 1962 The bacterial flora of distilled and stored water. III: New species of the genera Corynebacterium, Flavobacterium, Spirillum, and Pseudomonas Int. Bull. Bacteriol. Nom. Tax. 12 161–170

    Google Scholar 

  • Lemaitre, D., A. Elaichouni, M. Hundhausen, G. Claeys, P. Vanhaesebrouck, M. Vaneechoutte, and G. Verschraegen. 1996 Tracheal colonization with Sphingomonas paucimobilis in mechanically ventilated neonates due to contaminated ventilator temperature probes J. Hosp. Infect. 32 199–206

    PubMed  CAS  Google Scholar 

  • Leung, K. T., O. Tresse, D. Errampalli, H. Lee, and J. T. Trevors. 1997 Mineralization of p-nitrophenol by pentachlorophenol-degrading Sphingomonas spp FEMS Microbiol. Lett. 155 107–114

    CAS  Google Scholar 

  • Li, Z., H.-J. Feiten, J. B. van Beilen, W. Duetz, and B. Witholt. 1999 Preparation of optically active N-benzyl-3-hydroxypyrrolidine by enzymatic hydroxylation Tetrahedron: Asymmetry 10 1323–1333

    CAS  Google Scholar 

  • Li, Z., H.-J. Feiten, D. Chang, W. A. Duetz, J. B. van Beilen, and B. Witholt. 2001 Preparation of (R)-and (S)-N-protected 3-hydroxypyrrolidines by hydroxylation with Sphingomonas sp. HXN-200, a highly active, regio-and stereoselective, and easy to handle biocatalyst J. Org. Chem. 66 8424–8430

    PubMed  CAS  Google Scholar 

  • Lloyd-Jones, G. and P. C. K. Lau. 1997 Glutathione s-transferase-encoding gene as a potential probe for environmental bacterial isolates capable of degrading polycyclic aromatic hydrocarbons Appl. Environ. Microbiol. 63 3286–3290

    PubMed  CAS  Google Scholar 

  • Lobas, D., S. Schumpe, and W. D. Deckwer. 1992 The production of gellan exopolysaccharide with Sphingomonas paucimobilis E2 (DSM 6314) Appl. Microbiol. Biotechnol. 37 411–415

    CAS  Google Scholar 

  • Lobas, D., M. Nimtz, V. Wray, A. Schumpe, C. Proppe, and W.-D. Deckwer. 1994 Structure and physical properties of the extracellular polysaccharide PS-P4 produced by Sphingomonas paucimobilis P4 (DSM 6418) Carbohydr. Res. 251 303–313

    PubMed  CAS  Google Scholar 

  • Lu, J., T. Nakajima-Kambe, T. Shigeno, A. Ohbo, N. Nomura, and T. Nakahara. 1999 Biodegradation of dibenzothiophene and 4,6-dimethyldibenzothiophene by Sphingomonas paucimobilis strain TZS-7 Biosci. Bioengin. 88 293–299

    CAS  Google Scholar 

  • Macur, R. E., J. T. Wheeler, T. R. McDermott, and W. P. Inskeep. 2001 Microbial populations associated with the reduction and enhanced mobilization of arsenic in mine tailings Environ. Sci. Technol. 35 3676–3682

    PubMed  CAS  Google Scholar 

  • Männistö, M. K., M. A. Tirola, M. S. Salkinoja-Salonen, M. S. Kulomaa, and J. A. Puhakka. 1999 Diversity of chlorophenol-degrading bacteria isolated from contaminated boreal groundwater Arch. Microbiol. 171 189–197

    PubMed  Google Scholar 

  • Martínez-Abarca, F., S. Zekri, and N. Toro. 1998 Characterization and splicing in vivo of a Sinorhizobium meliloti group II intron associated with particular insertion sequences of the IS630-Tcl/IS3 transposon superfamily Molec. Microbiol. 28 1295–1306

    Google Scholar 

  • Martino, R., C. Martinez, R. Pericas, R. Salazar, C. Sola, S. Brunet, A. Sureda, and A. Domingo-Albos. 1996 Bacteremia due to glucose non-fermenting Gram-negative bacilli in patients with hematological neoplasias and solid tumors Eur. J. Clin. Microbiol. Infect. Dis. 15 610–615

    PubMed  CAS  Google Scholar 

  • Martins, L. O., A. M. Fialho, P. L. Rodrigues, and I. Sá-Correia. 1996 Gellan gum production and activity of biosynthetic enzymes in Sphingomonas paucimobilis mucoid and non-mucoid variants Biotechnol. Appl. Biochem. 24 47–54

    CAS  Google Scholar 

  • Masai, E., Y. Katayama, S. Nishikawa, and K. Fukuda. 1999 Characterization of Sphingomonas paucimobilis SYK-6 genes involved in degradation of lignin-related compounds J. Ind. Microbiol. Biotechnol. 23 364–373

    PubMed  CAS  Google Scholar 

  • Mills, D. A., L. L. McKay, and G. M. Dunny. 1996 Splicing of a group II intron involved in the conjugative transfer of pRS01 in lactococci J. Bacteriol. 178 3531–3538

    PubMed  CAS  Google Scholar 

  • Mohn, W. W. 1995 Bacteria obtained from a sequencing batch reactor that are capable of growth on dehydroabietic acid Appl. Environ. Microbiol. 61 2145–2150

    PubMed  CAS  Google Scholar 

  • Mohn, W. R., and G. R. Stewart. 1997 Bacterial metabolism of chlorinated dehydroabietic acids occurring in pulp and paper mill effluents Appl. Environ. Microbiol. 63 3014–3020

    PubMed  CAS  Google Scholar 

  • Mohn, W. W., Z. Yu, E. R. B. Moore, and A. F. Muttray. 1999 Lessons learned from Sphingomonas species that degrade abietane triterpenoids J. Ind. Microbiol. Biotechnol. 23 374–379

    PubMed  CAS  Google Scholar 

  • Momma, K., W. Hashimoto, O. Miyake, H.-J. Yoon, S. Kawai, Y. Mishima, B. Mikami, and K. Murata. 1999 Special cell surface structure, and novel macromolecule transport/depolymerization system of Sphingomonas sp. A1 J. Ind. Microbiol. Biotechnol. 23 425–435

    PubMed  CAS  Google Scholar 

  • Morrison Jr., A. J., and J. A. Shulman. 1986 Community-acquired bloodstream infection caused by Pseudomonas paucimobilis: case report and review of the literature J. Clin. Microbiol. 24 853–855

    PubMed  Google Scholar 

  • Mueller, J. G., P. J. Chapman, B. O. Blattmann, and P. H. Pritchard. 1990 Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis Appl. Environ. Microbiol. 56 1079–1086

    PubMed  CAS  Google Scholar 

  • Mullany, P., M. Pallen, M. Wilks, J. R. Stephen, and S. Tabaqchali. 1996 A group II intron in a conjugative transposon from the Gram-positive bacterium, Clostridium difficile Gene 174 145–150

    PubMed  CAS  Google Scholar 

  • Murphy, E. M., J. A. Schramke, J. K. Fredrickson, H. W. Bledsoe, A. J. Francis, D. S. Sklarew, and J. C. Linehan. 1992 The influence of microbial activity and sedimentary organic carbon on the isotope geochemistry of the Middendorf Aquifer Water Resource Res. 28 723–740

    CAS  Google Scholar 

  • Nagata, Y., K. Miyauchi, and M. Takagi. 1999 Complete analysis of genes and enzymes for γ-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26 J. Ind. Microbiol. Biotechnol. 23 380–390

    PubMed  CAS  Google Scholar 

  • Nishiyama, M., K. Senoo, H. Wada, and S. Matsumoto. 1992 Identification of soil micro-habitats for growth, death and survival of a bacterium, g-1,2,3,4,5,6-hexachlorocyclohexane-assimilating Sphingomonas paucimobilis, by fractionation of soil FEMS Microbiol. Ecol. 101 145–150

    CAS  Google Scholar 

  • Nohynek, L. J., E. L. Suhonen, E.-L. Nurmiaho-Lassila, J. Hantula, and M. Salkinoja-Salonen. 1995 Description of four pentachlorophenol-degrading bacterial strains as Sphingomonas chlorophenolica sp. nov Syst. Appl. Microbiol. 18 527–538

    Google Scholar 

  • Nohynek, L. J., E.-L. Nurmiaho-Lassila, E. L. Suhonen, H.-J. Busse, M. Mohammadi, J. Hantula, F. Rainey, and M. S. Salkinoja-Salonen. 1996 Description of chlorophenol-degrading Pseudomonas sp. strains KF1T, KF3, and NKF1 as a new species of the genus Sphingomonas, Sphingomonas subarctica sp. nov Int. J. Syst. Bacteriol. 46 1042–1055

    PubMed  CAS  Google Scholar 

  • Nörtemann, B., J. Baumgarten, H. G. Rast, and H.-J. Knackmuss. 1986 Bacterial communities degrading amino-and hydroxynaphthalene-2-sulfonates Appl. Environ. Microbiol. 52 1195–1202

    PubMed  Google Scholar 

  • Oakley, A. J., Z. Prokop, M. Bohác, J. Kmunícek, T. Jedlicka, M. Monincová, I. Kutá-Smatanová, Y. Nagata, J. Damborsky, and M. C. J. Wilce. 2002 Exploring the structure and activity of haloalkane dehalogenase from Sphingomonas paucimobilis UT26: evidence for product-and water-mediated inhibition Biochemistry 41 4847–4855

    PubMed  CAS  Google Scholar 

  • Ohe, T., T. Ohmoto, Y. Kobayashi, A. Sato, and Y. Watanabe. 1990 Metabolism of naphthalenesulfonic acids by Pseudomonas sp. TA-2 Agric. Biol. Chem. 54 669–675

    CAS  Google Scholar 

  • Parsons, J. R., J. A. de Bruijne, and A. R. Weiland. 1998 Biodegradation pathway of 2-chlorodibenzo-p-dioxin and 2-chlorodibenzofuran in the biphenyl-utilising strain JB1 Chemosphere 37 1915–1922

    PubMed  CAS  Google Scholar 

  • Paster, B. J., W. A. Falkler Jr., C. O. Enwonwu, E. O. Idigbe, K. O. Savage, V. A. Levanos, M. A. Tamer, R. L. Ericson, C. N. Lau, and F. E. Dewhirst. 2002 Prevalent bacterial species and novel phenotypes in advanced noma lesions J. Clin. Microbiol. 40 2187–2191

    PubMed  CAS  Google Scholar 

  • Perola, O., T. Nousiainen, S. Suomalainen, S. Aukee, U. M. Kärkkäinen, J. Kauppinen, T. Ojanen, and M.-L. Katila. 2002 Recurrent Sphingomonas paucimobilis-bacteraemia associated with a multi-bacterial water-borne epidemic among neutropenic patients J. Hosp. Infect. 50 196–201

    PubMed  CAS  Google Scholar 

  • Pollock, T. J. 1993 Gellan-related polysaccharides and the genus Sphingomonas J. Gen. Microbiol. 139 1939–1945

    CAS  Google Scholar 

  • Pollock, T. J., W. A. T. van Workam, L. Thorne, M. J. Mikolajczak, M. Yamazaki, J. W. Kijne, and R. W. Armentrout. 1998 Assignment of biochemical functions to glycosyl transferase genes which are essential for biosynthesis of exopolysaccharides in Sphingomonas strain S88 and Rhizobium leguminosarum J. Bacteriol. 180 586–593

    PubMed  CAS  Google Scholar 

  • Pollock, T. J., and R. W. Armentrout. 1999 Planktonic/sessile dimorphism of polysaccharide-encapsulated sphingomonads J. Ind. Microbiol. Biotechnol. 23 436–441

    PubMed  CAS  Google Scholar 

  • Puhakka, J. A., R. P. Herwig, P. M. Koro, G. V. Wolfe, and J. F. Ferguson. 1995 Biodegradation of chlorophenols by mixed and pure cultures from a fluidized-bed reactor Appl. Microbiol. Biotechnol. 42 951–957

    PubMed  CAS  Google Scholar 

  • Radehaus, P. M., and S. K. Schmidt. 1992 Characterization of a novel Pseudomonas sp. that mineralizes high concentrations of pentachlorophenol Appl. Environ. Microbiol. 58 2879–2885

    PubMed  CAS  Google Scholar 

  • Reasoner, D. J., and E. E. Geldreich. 1985 A new medium for the enumeration and subculture of bacteria from potable water Appl. Environ. Microbiol. 46 1–7

    Google Scholar 

  • Reina, J., A. Bassa, I. Llompart, D. Portela, and N. Borell. 1991 Infections with Pseudomonas paucimobilis: report of four cases and review Rev. Infect. Dis. 13 1072–1076

    PubMed  CAS  Google Scholar 

  • Resnick, S. M., and P. J. Chapman. 1994 Physiological properties and substrate specificity of a pentachlorophenol-degrading Pseudomonas species Biodegradation 5 47–54

    PubMed  CAS  Google Scholar 

  • Richardson, L. L. 1997 Occurrence of the black band disease cyanobacterium on healthy corals of the Florida Keys Bull. Mar. Sci. 61 485–490

    Google Scholar 

  • Richardson, L. L., W. M. Goldberg, K. G. Kuta, R. B. Aronson, G. W. Smith, K. B. Ritchie, J. C. Halas, J. S. Feingold, and S. L. Miller. 1998 Florida’s mystery coral-killer identified Nature 392 557–558

    CAS  Google Scholar 

  • Rickard, A. H., S. A. Leach, L. S. Hall, C. M. Buswell, N. J. High, and P. S. Handley. 2002 Phylogenetic relationships and coaggregation ability of freshwater biofilm bacteria Appl. Environ. Microbiol. 68 3644–3650

    PubMed  CAS  Google Scholar 

  • Riegert, U., G. Heiss, A. E. Kuhm, C. Müller, M. Contzen, H.-J. Knackmuss, and A. Stolz. 1999 Catalytic properties of the 3-chlorocatechol-oxidizing 2,3-dihydroxybiphenyl 1,2-dioxygenase from Sphingomonas sp. strain BN6 J. Bacteriol. 181 4812–4817

    PubMed  CAS  Google Scholar 

  • Romine, M. F., L. C. Stillwell, K.-K. Wong, S. J. Thurston, E. C. Sisk, C. Sensen, T. Gaasterland, J. K. Fredrickson, and J. D. Saffer. 1999 Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199 J. Bacteriol. 181 1585–1602

    PubMed  CAS  Google Scholar 

  • Ryeom, T. K., I. G. Lee, S. Y. Son, and T. Y. Ahn. 2000 Degradation of phenanthrene by Sphingomonas sp. 1-21 isolated from oil-contaminated soil J. Microbiol. Biotechnol. 10 724–727

    CAS  Google Scholar 

  • Sabaté, J., M. Grifoll, M. Viñas, and A. M. Solanas. 1999 Isolation and characterization of a 2-methylphenanthrene utilizing bacterium: Identification of ring cleavage metabolites Appl. Microbiol. Biotechnol. 52 704–712

    Google Scholar 

  • Saber, D. L., and R. L. Crawford. 1985 Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol Appl. Environ. Microbiol. 50 1512–1518

    PubMed  CAS  Google Scholar 

  • Schmidt, S., R.-M. Wittich, D. Erdmann, H. Wilkes, W. Francke, and P. Fortnagel. 1992 Biodegradation and diphenyl ether and its monohalogenated derivatives by Sphingomonas sp. strain SS3 Appl. Environ. Microbiol. 58 2744–2750

    PubMed  CAS  Google Scholar 

  • Schmidt, C. 1994 Isolation and growth physiology of N,N-dimethylaniline and 2,4-dimethylaniline degrading Sphingomonas sp. [PhD thesis No. 10710] ETH Zürich Zurich, Switzerland

    Google Scholar 

  • Schut, F., J. C. Gottschal, and R. A. Prins. 1997 Isolation and characterisation of the marine ultramicrobacterium Sphingomonas sp. strain RB2256 FEMS Microbiol. Rev. 20 363–369

    CAS  Google Scholar 

  • Segers, P., M. Vancanneyt, B. Pot, U. Torck, B. Hoste, D. Dewettinck, E. Falsen, K. Kersters, and P. De Vos. 1994 Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Büsing, Döll, and Freytag 1953 in Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., respectively Int. J. Syst. Bacteriol. 44 499–510

    PubMed  CAS  Google Scholar 

  • Senoo, K., and H. Wada. 1989 Isolation and identification of an aerobic γ-HCH-decomposing bacterium from soil Soil. Sci. Plant Nutr. 35 79–87

    CAS  Google Scholar 

  • Senoo, K., M. Nishiyama, and S. Matsumoto. 1996 Bioremediation of gamma-HCH-polluted field soil by inoculation with an aerobic gamma-HCH-decomposing bacterium (Sphingomonas paucimobilis SS86) Soil Sci. Plant Nutr. 42 11–19

    CAS  Google Scholar 

  • Shah, A. K., and A. A. Ashtaputre. 1999 Evaluation of rheological properties of the exopolysaccharide of Sphingomonas paucimobilis GS-1 for application in oil exploration J. Ind. Microbiol. Biotechnol. 23 442–445

    PubMed  CAS  Google Scholar 

  • Shearman, C., J. J. Godon, and M. Gasson. 1996 Splicing of a group II intron in a functional transfer gene of Lactococcus lactis Molec. Microbiol. 21 45–53

    CAS  Google Scholar 

  • Sly, L. I. 1985 Emendation of the genus Blastobacter Zavarzin 1961 and description of Blastobacter natatorius sp. nov Int. J. Syst. Bacteriol. 35 40–45

    Google Scholar 

  • Sly, L. I., and M. M. Cahill. 1997 Transfer of Blastobacter natatorius (Sly 1985) to the genus Blastomonas gen. nov. as Blastomonas natatoria comb. nov Int. J. Syst. Bacteriol. 47 566–568

    PubMed  CAS  Google Scholar 

  • Smalley, D. L., V. R. Hansen, and V. S. Baselski. 1983 Susceptibility of Pseudomonas paucimobilis to 24 anti-microbial agents Antimicrob. Agents Chemother. 23 161–162

    PubMed  CAS  Google Scholar 

  • Sonoki, T., T. Obi, S. Kubota, M. Higashi, E. Masai, and Y. Katayama. 2000 Coexistence of two different O demethylation systems in lignin metabolism by Sphingomonas paucimobilis SKY-6: Cloning and sequencing of the lignin biphenyl-specific O-demethylase (LigX) gene Appl. Environ. Microbiol. 66 2125–2132

    PubMed  CAS  Google Scholar 

  • Sørensen, S. R., Z. Ronen, and J. Aamand. 2001 Isolation from agricultural soil and characterization of a Sphingomonas sp. able to mineralize the phenylurea herbicide Isoproturon Appl. Environ. Microbiol. 67 5403–5409

    PubMed  Google Scholar 

  • Stackebrandt, E., R. G. E. Murray, and H. G. Trüper. 1988 Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives.” Int. J. Syst. Bacteriol. 38 321–325

    Google Scholar 

  • Stackebrandt, E., and B. M. Goebel. 1994 Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology Int. J. Syst. Bacteriol. 44 846–849

    CAS  Google Scholar 

  • Staley, J. T. 1968 Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria J. Bacteriol. 95 1921–1942

    PubMed  CAS  Google Scholar 

  • Stillwell, L. C., S. J. Thurston, R. P. Schneider, M. F. Romine, J. K. Fredrickson, and J. D. Saffer. 1995 Physical mapping and characterization of a catabolic plasmid from the deep-subsurface bacterium Sphingomonas sp. strain F199 J. Bacteriol. 177 4537–4539

    PubMed  CAS  Google Scholar 

  • Stolz, A., C. C Schmidt-Maag, E. B. M. Denner, H.-J. Busse, T. Egli, and P. Kämpfer. 2000 Description of Sphingomonas xenophaga sp. nov. for strains BN6T and N,N which degrade xenobiotic aromatic compounds Int. J. Syst. Evol. Microbiol. 50 35–41

    PubMed  CAS  Google Scholar 

  • Story, S. P., S. H. Parker, S. S. Hayasaka, M. B. Riley, and E. L. Kline. 2001 Convergent and divergent points in catabolic pathways involved in utilization of fluoranthene, naphthalene, anthracene, and phenanthrene by Sphingomonas paucimobilis var. EPA505 J. Ind. Microbiol. Biotechnol. 26 369–382

    PubMed  CAS  Google Scholar 

  • Sutherland, I. W., and L. Kennedy. 1996 Polysaccharide lyases from gellan-producing Sphingomonas spp Microbiology 142 867–872

    PubMed  CAS  Google Scholar 

  • Sutherland, I. W. 1999 Microbial polysaccharide products Biotechnol. Genet. Engin. Rev. 16 217–229

    CAS  Google Scholar 

  • Suzuki, M. T., M. S, Rappe, Z. W., Haimberger, H. Winfield, N. Adair, J. Ströbel, and S. Giovannoni. 1997 Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample Appl. Environ. Microbiol. 63 983–989

    PubMed  CAS  Google Scholar 

  • Tabata, K., K.-I. Kasuya, H. Abe, K. Masuda, and Y. Doi. 1999 Poly(aspartic acid) degradation by a Sphingomonas sp. isolated from freshwater Appl. Environ. Microbiol. 65 4268–4270

    PubMed  CAS  Google Scholar 

  • Takeuchi, M., F. Kawai, Y. Shimada, and A. Yokota. 1993 Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov Syst. Appl. Microbiol. 16 227–238

    CAS  Google Scholar 

  • Takeuchi, M., H. Sawada, H. Oyaizu, and A. Yakota. 1994 Phylogenetic evidence for Sphingomonas and Rhizomonas as nonphotosynthetic members of the alpha-4 subclass of the Proteobacteria Int. J. Syst. Bacteriol. 44 308–314

    PubMed  CAS  Google Scholar 

  • Takeuchi, M., T. Sakane, M. Yanagi, K. Yamasato, K. Hamana, and A. Yokota. 1995 Taxonomic study of bacteria isolated from plants: proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov., and Sphingomonas mali sp. nov Int. J. Syst. Bacteriol. 45 334–341

    PubMed  CAS  Google Scholar 

  • Takeuchi, M., K. Hamana, and A. Hiraishi. 2001 Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis on the basis of phylogenetic and chemotaxonomic analyses Int. J. Syst. Evol. Microbiol. 51 1405–1417

    PubMed  CAS  Google Scholar 

  • Tirola, M. A., M. K. Männistö, J. A. Puhakka, and M. S. Kulomaa. 2002 Isolation and characterization of Novosphingobium sp. strain MT1, a dominant polychlorophenol-degrading strain in a groundwater bioremediation system Appl. Environ. Microbiol. 68 173–180

    Google Scholar 

  • van Bruggen, A. H. C., K. N. Jochimsen, and P. R. Brown. 1990 Rhizomonas suberifaciens gen. nov., sp. nov., the causal agent of corky root of lettuce Int. J. Syst. Bacteriol. 40 175–188

    Google Scholar 

  • van Bruggen, A. H. C., K. N. Jochimsen, E. M. Steinberger, P. Segers, and M. Gillis. 1993 Classification of Rhizomonas suberifaciens, an unnamed Rhizomonas species, and Sphingomonas spp. in rRNA superfamily IV Int. J. Syst. Bacteriol. 43 1–7

    PubMed  Google Scholar 

  • Vancanneyt, M., F. Schut, C. Snauwaert, J. Goris, J. Swings, and J. C. Gottschal. 2001 Sphingomonas alaskensis sp. nov., a dominant bacterium from a marine oligotrophic environment Int. J. Syst. Evol. Microbiol. 51 73–79

    PubMed  CAS  Google Scholar 

  • van Kranenburg, R., I. C. Boels, M. Kleerebezem, and W. M. de Vos. 1999 Genetics and engineering of microbial exopolysaccharides for food: approaches for the production of existing and novel polysaccharides Curr. Opin. Biotechnol. 10 498–504

    PubMed  Google Scholar 

  • Vartak, N. B., C. C. Lin, J. M. Cleary, M. J. Fagan, and M. H. Saier Jr. 1995 Glucose metabolism in “Sphingomonas elodea”: Pathway engineering via construction of a glucose-6-phosphate dehydrogenase insertion mutant Microbiology 141 2339–2350

    PubMed  CAS  Google Scholar 

  • Vuilleumier, S., Z. Ucurum, S. Oelhafen, T. Leisinger, J. Armengaud, R.-M. Wittich, and K. N. Timmis. 2001 The glutathione S-transferase OrfE3 of the dioxin-degrading bacterium Sphingomonas sp. RW1 displays maleylpyruvate isomerase activity Chem.-Biol. Interact. 133 265–267

    CAS  Google Scholar 

  • White, D. C., S. D. Sutton, and D. B. Ringelberg. 1996 The genus Sphingomonas: physiology and ecology Curr. Opin. Biotechnol. 7 301–306

    PubMed  CAS  Google Scholar 

  • Wittich, R.-M., H. Wilkes, V. Sinnwell, W. Francke, and P. Fortnagel. 1992 Metabolism of dibenzo-p-dioxin by Sphingomonas sp. strain RW1 Appl. Environ. Microbiol. 58 1005–1010

    PubMed  CAS  Google Scholar 

  • Wittmann C., A.-P. Zeng, and W.-D. Deckwer. 1998 Physiological characterization and cultivation strategies of the pentachlorophenol-degrading bacteria Sphingomonas chlorophenolica RA2 and Mycobacterium chlorophenolicum PCP-1 J. Ind. Microbiol. Biotechnol. 21 315–321

    CAS  Google Scholar 

  • Woese, C. R. 1987 Bacterial evolution Microbiol. Rev. 51 221–272

    PubMed  CAS  Google Scholar 

  • Xun, L., J. Bohuslavek, and M. Cai. 1999 Characterization of 2,6-dichloro-p-hydroquinone 1,2-dioxygenase (PcpA) of Sphingomonas chlorophenolica ATCC 39723 Biochem. Biophys. Res. Commun. 266 323–325

    Google Scholar 

  • Yabuuchi, E., I. Yano, H. Oyaizu, Y. Hashimoto, T. Ezaki, and H. Yamamoto. 1990 Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas Microbiol. Immunol. 34 99–119

    PubMed  CAS  Google Scholar 

  • Yabuuchi, E., Y. Kosako, T. Naka, S. Suzuki, and I. Yano. 1999 Proposal of Sphingomonas suberifaciens (van Bruggen, Jochimsen and Brown 1990) comb. nov., Sphingomonas natatoria (Sly 1985) comb. nov., Sphingomonas ursincola (Yurkov et al. 1997) comb. nov., and emendation of the genus Sphingomonas Microbiol. Immunol. 43 339–349

    PubMed  CAS  Google Scholar 

  • Yabuuchi, E., H. Yamamoto, S. Terakubo, N. Okamura, T. Naka, N. Fujiwara, K. Kobayashi, Y. Kosako, and A. Hiraishi. 2001 Proposal of Sphingomonas wittichii sp. nov. for strain RW1T, known as a dibenzo-p-dioxin metabolizer Int. J. Syst. Evol. Microbiol. 51 281–292

    PubMed  CAS  Google Scholar 

  • Yamazaki, M., L. Thorne, M. Mikolajczak, R. W. Armentrout, and T. J. Pollock. 1996 Linkage of genes essential for synthesis of a polysaccharide capsule in Sphingomonas strain S88 J. Bacteriol. 178 2676–2687

    PubMed  CAS  Google Scholar 

  • Ye, D., M. A. Siddiqi, A. E. Maccubbin, S. Kumar, and H. C. Sikka. 1996 Degradation of polynuclear aromatic hydrocarbons by Sphingomonas paucimobilis Environ. Sci. Technol. 30 136–142

    CAS  Google Scholar 

  • Yeo, C. C., J. M Tham, M. W.-C. Yap, and C. L. Poh. 1997 Group II intron from Pseudomonas alcaligenes NCIB 9867 (P25X): entrapment in plsmid RP4 and sequence analysis Microbiology 143 2833–2840

    PubMed  CAS  Google Scholar 

  • Yrjälä, K., S. Suomalainen, E. L. Suhonen, S. Kilpi, L. Paulin, and M. Romantschuk. 1998 Characterization and reclassification of an aromatic-and chloroaromatic-degrading Pseudomonas sp., strain HV3, as Sphingomonas sp. HV3 Int. J. Syst. Bacteriol. 48 1057–1062

    PubMed  Google Scholar 

  • Yun, N. R., Y. K. Shin, S. Y. Hwang, H. Kuraishi, J. Sugiyama, and K. Kawahara. 2000 Chemotaxonomic and phylogenetic analyses of Sphingomonas strains isolated from ears of plants in the family Gramineae and a proposal of Sphingomonas roseoflava sp. nov J. Gen. Appl. Microbiol. 46 9–18

    PubMed  CAS  Google Scholar 

  • Yurkov, V., E. Stackebrandt, O. Buss, A. Vermeglio, V. Gorlenko, and J. T. Beatty. 1997 Reorganization of the genus Erythromicrobium: description of “Erythromicrobium sibiricum” as Sandaracinobacter sibiricus gen. nov., sp. nov., and of “Erythromicrobium ursincola” as Erythromonas ursincola gen. nov., sp. nov Int. J. Syst. Bacteriol. 47 1172–1178

    PubMed  CAS  Google Scholar 

  • Zipper, C., K. Nickel, W. Angst, and H.-P. E. Kohler. 1996 Complete microbial degradation of both enantiomers of the chiral herbicide Mecoprop [(RS)-2-(4-chloro-2-methylphenoxy)propionic acid] in an enantioselective manner by Sphingomonas herbicidovorans sp. nov Appl. Environ. Microbiol. 62 4318–4322

    PubMed  CAS  Google Scholar 

  • Zylstra, G. J., and E. Kim. 1997 Aromatic hydrocarbon degradation by Sphingomonas yanoikuyae B1 J. Ind. Microbiol. Biotechnol. 19 408–414

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Balkwill, D.L., Fredrickson, J.K., Romine, M.F. (2006). Sphingomonas and Related Genera. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30747-8_23

Download citation

Publish with us

Policies and ethics